Archivo de la etiqueta: complejos

Álgebra Lineal II: Aplicaciones de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores demostramos que cualquier matriz (o transformación lineal) tiene una y sólo una forma canónica de Jordan. Además, explicamos cómo se puede obtener siguiendo un procedimiento específico. Para terminar nuestro curso, platicaremos de algunas de las consecuencias del teorema de Jordan.

Clasificación de matrices por similaridad

Una pregunta que aún no hemos podido responder es la siguiente: si nos dan dos matrices $A$ y $B$ en $M_n(F)$, ¿son similares? Con la maquinaria desarrollada hasta ahora podemos dar una muy buena respuesta.

Proposición. Sean $A$ y $B$ matrices en $M_n(F)$ tales que el polinomio característico de $A$ se divide en $F$. Entonces, $A$ y $B$ son similares si y sólo si se cumplen las siguientes dos cosas:

  • El polinomio característico de $B$ también se divide en $M_n(F)$ y
  • $A$ y $B$ tienen la misma forma canónica de Jordan.

Demostración. Sea $J$ la forma canónica de Jordan de $A$.

Si $A$ y $B$ son similares, como $A$ es similar a $J$, se tiene que $B$ es similar a $J$. Entonces, $B$ tiene el mismo polinomio característico que $A$ y por lo tanto se divide en $F$. Además, como $J$ es similar a $B$, entonces por la unicidad de la forma canónica de Jordan, precisamente $J$ es la forma canónica de Jordan de $B$. Esto es un lado de nuestra proposición.

Supongamos ahora que el polinomio característico de $B$ también se divide en $M_n(F)$ y que la forma canónica de Jordan de $B$ también es $J$. Por transitividad de similaridad, $A$ es similar a $B$.

$\square$

Veamos un ejemplo de cómo usar esto en un problema específico.

Problema. Encuentra dos matrices en $M_2(\mathbb{R})$ que tengan como polinomio característico a $x^2-3x+2$, pero que no sean similares.

Solución. Las matrices $A=\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ y $B=\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ ya están en forma canónica de Jordan y son distintas, así que por la proposición anterior no pueden ser similares. Además, por ser triangulares superiores, en ambos casos el polinomio característico es $$(X-1)(X-2)=X^2-3X+2.$$

$\triangle$

El problema anterior fue sumamente sencillo. Piensa en lo difícil que sería argumentar con cuentas de producto de matrices que no hay ninguna matriz $P\in M_2(\mathbb{R})$ tal que $A=P^{-1}B P$.

Forma canónica de Jordan «para cualquier matriz»

Como en $\mathbb{C}[X]$ todos los polinomios se dividen, entonces tenemos el siguiente corolario del teorema de Jordan.

Corolario. Toda matriz en $M_n(\mathbb{C})$ tiene una única forma canónica de Jordan.

Aquí $\mathbb{C}$ es muy especial pues es un campo completo, es decir, en el cual cualquier polinomio no constante tiene por lo menos una raíz. En general esto no es cierto, y es muy fácil dar ejemplos: $x^2-2$ no tiene raíces en $\mathbb{Q}$ y $x^2+1$ no tiene raíces en $\mathbb{R}$.

Sin embargo, existe toda un área del álgebra llamada teoría de campos en donde se puede hablar de extensiones de campos. Un ejemplo de extensión de campo es que $\mathbb{C}$ es una extensión de $\mathbb{R}$ pues podemos encontrar «una copia de» $\mathbb{R}$ dentro de $\mathbb{C}$ (fijando la parte imaginaria igual a cero).

Un resultado importante de teoría de campos es el siguiente:

Teorema. Sea $F$ un campo y $P(X)$ un polinomio en $F[X]$. Existe una extensión de campo $G$ de $F$ tal que $P(X)$ se divide en $G$.

¿Puedes notar la consecuencia que esto trae para nuestra teoría de álgebra lineal? Para cualquier matriz en $M_n(F)$, podemos considerar a su polinomio característico y encontrar campo $G$ que extiende a $F$ en donde el polinomio se divide. Por el teorema de Jordan, tendríamos entonces lo siguiente.

Corolario. Sea $A$ una matriz en $M_n(F)$. Entonces, $A$ tiene una forma canónica de Jordan en un campo $G$ que extiende a $F$.

Por supuesto, la matriz $P$ invertible que lleva $A$ a su forma canónica quizás sea una matriz en $M_n(G)$.

Toda matriz compleja es similar a su transpuesta

Ya demostramos que para cualquier matriz $A$ en $M_n(F)$ se cumple que $\chi_A(X)=\chi_(A^T)(X)$. Esto implica que $A$ y su transpuesta $A^T$ tienen los mismos eigenvalores, traza y determinante. También vimos que $\mu_A(X)=\mu_{A^T}(X)$. Las matrices $A$ y $A^T$ comparten muchas propiedades. ¿Será que siempre son similares? A continuación desarrollamos un poco de teoría para resolver esto en el caso de los complejos.

Proposición. Sea $J_{\lambda,n}$ un bloque de Jordan en $M_n(F)$. Entonces, $J_{\lambda,n}$ y $J_{\lambda,n}^T$ son similares.

Demostración. Para bloques de Jordan, podemos dar explícitamente la matriz de similitud. Es la siguiente matriz, con unos en la diagonal no principal:

$$P=\begin{pmatrix} 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & 1 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 1 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \end{pmatrix}.$$

Esta matriz es invertible, su inversa es ella misma y cumple lo siguiente (ver ejercicios). Si $A$ es una matriz en $M_n(F)$, entonces:

  • Si $A$ tiene columnas $C_1,\ldots, C_n$, entonces $AP$ tiene columnas $C_n, \ldots, C_1$.
  • Si $A$ tiene filas $R_1,\ldots, R_n$, entonces $PA$ tiene filas $R_n, \ldots, R_1$.

Para los bloques de Jordan, si revertimos el orden de las filas y luego el de las columnas, llegamos a la transpuesta. Así, $J_{\lambda,n}^T=PJ_{\lambda,n}P$ es la similitud entre las matrices dadas.

$\square$

La prueba anterior no funciona en general pues para matrices arbitrarias no pasa que $A^T=PAP$ (hay un contraejemplo en los ejercicios). Para probar lo que buscamos, hay que usar la forma canónica de Jordan.

Teorema. En $M_n(\mathbb{C})$, toda matriz es similar a su transpuesta.

Demostración. Sea $A$ una matriz en $M_n(\mathbb{C})$. Como en $\mathbb{C}$ todo polinomio se divide, tanto $A$ como $A^T$ tienen forma canónica de Jordan. Digamos que la forma canónica de Jordan es

\begin{equation}J=\begin{pmatrix} J_{\lambda_1,k_1} & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2} & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3} & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}\end{pmatrix}.\end{equation}

Si $P$ es la matriz de similitud, tenemos que $A=P^{-1}JP$ y al transponer obtenemos que:

$$A^T=P^T\begin{pmatrix} J_{\lambda_1,k_1}^T & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2}^T & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3}^T & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}^T\end{pmatrix}(P^T)^{-1}.$$

Como por la proposición anterior cada bloque de Jordan es similar a su transpuesta, existen matrices invertibles $Q_1,\ldots,Q_d$ tales $J_{\lambda_i,k_i}^T=Q_i^{-1}J_{\lambda_i,k_i}Q_i$ para todo $i\in\{1,\ldots,d\}$. Pero entonces al definir $Q$ como la matriz de bloques

$$Q=\begin{pmatrix} Q_1 & 0 & \ldots & 0 \\ 0 & Q_2 & \ldots & 0 \\ 0 & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & Q_d \end{pmatrix},$$

obtenemos la similaridad

$$A^T=P^TQ^{-1} \begin{pmatrix} J_{\lambda_1,k_1} & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2} & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3} & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}\end{pmatrix} Q (P^T)^{-1}.$$

Así, $A$ y $A^T$ tienen la misma forma canónica de Jordan y por lo tanto son matrices similares.

$\square$

Más adelante…

¡Hemos terminado el curso de Álgebra Lineal II! Por supuesto, hay muchos temas de Álgebra Lineal adicionales que uno podría estudiar.

Un tema conectado con lo que hemos platicado es qué hacer con las matrices cuyo polinomio característico no se divide en el campo con el que estamos trabajando. Por ejemplo si tenemos una matriz $A$ en $M_n(\mathbb{R})$ cuyo polinomio característico no se divide, una opción es pensarla como matriz en $M_n(\mathbb{C})$ y ahí encontrar su forma canónica de Jordan. ¿Pero si queremos quedarnos en $\mathbb{R}$? Sí hay resultados que llevan una matriz a algo así como una «forma canónica» en $\mathbb{R}$ muy cercana a la forma canónica de Jordan.

Otro posible camino es profundizar en la pregunta de cuándo dos matrices en $M_n(F)$ son similares. Si tienen forma canónica de Jordan, ya dimos una buena caracterización en esta entrada. En los ejercicios encontrarás otra. Pero, ¿y si no tienen forma canónica de Jordan? Podríamos extender el campo a otro campo $G$ y comprar las formas canónicas ahí, pero en caso de existir la similaridad, sólo la tendremos en $M_n(G)$. Existe otra manera de expresar a una matriz en forma canónica, que se llama la forma canónica de Frobenius y precisamente está pensada para determinar si dos matrices son similares sin que sea necesario encontrar las raíces del polinomio característico, ni extender el campo.

Estos son sólo dos ejemplos de que la teoría de álgebra lineal es muy extensa. En caso de que estés interesado, hay mucho más por aprender.

Tarea moral

  1. Sea $A$ una matriz en $M_n(F)$ y tomemos $P$ en $M_n(F)$ la matriz
    $$P=\begin{pmatrix} 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & 1 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 1 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \end{pmatrix}.$$
    • Demuestra que si $A$ tiene columnas $C_1,\ldots, C_n$, entonces $AP$ tiene columnas $C_n, \ldots, C_1$.
    • Demuestra que si $A$ tiene filas $R_1,\ldots,R_1$, entonces $PA$ tiene filas $R_n,\ldots,R_n$.
    • Concluye con cualquiera de los incisos anteriores que $P$ es invertible y su inversa es ella misma.
    • Tomemos explicitamente $n=2$ y $A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Encuentra explícitamente $PAP$. ¿Es $A^T$?
  2. ¿Cuál es la máxima cantidad de matrices que se pueden dar en $M_5(\mathbb{C})$ de manera que cada una de ellas tenga polinomio característico $x^2(x^2+1)(x+3)$ y tales que no haya dos de ellas que sean similares entre sí.
  3. Sea $A$ una matriz en $M_n(\mathbb{R})$ tal que su polinomio característico se divide en $\mathbb{R}$, con forma canónica de Jordan $J$. Sea $P(X)$ un polinomio en $\mathbb{R}[X]$.
    • Demuestra que el polinomio característico de $P(A)$ se divide en $\mathbb{R}$.
    • La forma canónica de Jordan de $P(A)$ no necesariamente será $P(J)$ pues puede que el polinomio altere el orden de los eigenvalores pero, ¿cómo se obtiene la forma canónica de $P(A)$ a partir de $J$?
  4. Sean $A$ y $B$ matrices en $M_n(F)$ cuyo polinomio característico se divide en $F$. Muestra que $A$ y $B$ son similares si y sólo si para cualquier polinomio $P(X)$ en $F[X]$ se tiene que $\text{rango}(P(A))=\text{rango}(P(B))$.
  5. Investiga sobre la forma canónica de Frobenius y sobre la variante a la forma canónica de Jordan restringida a $\mathbb{R}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Adjunciones complejas y transformaciones unitarias

Por Ayax Calderón

Introducción

Lo que hemos trabajado en esta unidad tiene su análogo para espacios hermitianos. En esta entrada haremos una recapitulación de los resultados que demostramos en el caso real, pero ahora los enunciaremos para el caso complejo. Las demostraciones son similares al caso real, pero haremos el énfasis correspondiente cuando haya distinciones para el caso complejo.

Adjunciones en espacios hermitianos

Uno de los ejercicios de la entrada Dualidad y representación de Riesz en espacios euclideanos consiste en enunciar y demostrar el teorema de representación de Riesz para espacios hermitianos. Si recuerdas, eso es justo lo que se necesita para hablar de la adjunción, de modo que en espacios hermitianos también podemos definir la adjunción como sigue.

Definición. Sea $V$ un espacio hermitiano con producto interior hermitiano $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Definimos a la adjunta de $T$, como la única transformación lineal $T^\ast:V\to V$ que cumple la siguiente condición para todos $x,y$ en $V$:

$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle$$

En el caso real la matriz de la transformación adjunta en una base ortonormal era la transpuesta. En el caso complejo debemos tomar la transpuesta conjugada.

Proposición. Sea $V$ un espacio hermitiano con producto interior hermitiano $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Sea $\mathcal{B}$ una base ortonormal de $V$. Se tiene que $$\text{Mat}_{\mathcal{B}}(T^\ast)=\text{Mat}_{\mathcal{B}}(T)^\ast.$$

La demostración queda como ejercicio.

Transformaciones unitarias e isometrías

En espacios hermitianos también podemos hablar de las transformaciones lineales que preservan la distancia: las isometrías. En el caso real, las isometrías de un espacio a sí mismo las llamábamos ortogonales, pero en el caso complejo usaremos otro nombre.

Definición. Sean $V_1, V_2$ espacios hermitianos sobre $\mathbb{C}$ con productos interiores hermitianos $\langle \cdot,\cdot \rangle_1,\langle \cdot,\cdot \rangle_2$. Diremos que una transformación lineal $T:V_1\to V_2$ es una isometría si es un isomorfismo de espacios vectoriales y para cualesquiera $x,y\in V_1$ se cumple que $$\langle T(x), T(y) \rangle_2 = \langle x,y\rangle_1.$$ Si $V_1$ $V_2$ son un mismo espacio hermitiano $V$, diremos que $T$ es una transformación unitaria.

Diremos que una matriz $A\in M_n(\mathbb{C})$ se dice unitaria si $AA^\ast=I_n$. Puede demostrarse que si una matriz $A$ es unitaria, entonces la transformación $X\mapsto AX$ también lo es. Así mismo, se puede ver que si $T$ es una transformación unitaria, entonces cualquier representación matricial en una base ortonormal es unitaria.

Equivalencias de matrices y transformaciones unitarias

Así como en el caso real, hay muchas maneras de pensar a las transformaciones y a las matrices unitarias. Puedes pensar en los siguientes resultados como los análogos a las descripciones alternativas en el caso real.

Teorema. Sea $T:V\to V$ una transformación lineal. Las siguientes afirmaciones son equivalentes:

  1. $T$ es unitaria es decir, $\langle T(x),T(y) \rangle = \langle x,y \rangle$ para cualesquiera $x,y\in V$.
  2. $||T(x)||=||x||$ para cualquier $x\in V$.
  3. $T^*\circ T = Id$.

Teorema. Sea $A\in M_n(\mathbb{C})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es unitaria.
  2. Las filas de $A$ forman una base ortonormal de $\mathbb{C}^n$.
  3. Las columnas de $A$ forman una base ortonormal de $\mathbb{C}^n$.
  4. Para cualquier $x\in \mathbb{C}^n$, se tiene que $$||Ax||=||x||$.

Propiedades de grupo y caracterización de unitarias

Así como en el caso real las transformaciones ortogonales forman un grupo bajo la composición, en el caso complejo las transformaciones unitarias también forman un grupo bajo la composición. Si hablamos de matrices unitarias, entonces forman un grupo bajo el producto de matrices. Es posible clasificar a las matrices unitarias así como se clasificó a las matrices ortogonales, sin embargo los resultados son notablemente más difíciles de expresar.

Más adelante…

En la siguiente entrada hablaremos de quiénes son las transformaciones complejas para las que se puede enunciar el teorema espectral en el caso complejo. Veremos el resultado correspondiente y haremos énfasis en las diferencias que debemos tomar en cuenta.

Tarea moral

  1. Demuestra que si $A$ es una matriz unitaria, entonces $|\det A|=1$.
  2. Prueba que para que una transformación lineal $T$ de un espacio hermitiano sea unitaria, basta que a los vectores de norma $1$ los mande a vectores de norma $1$.
  3. Describe las matrices $A\in M_n(\mathbb{C})$ que son simultaneamente diagonales y unitarias.
  4. Demuestra que el producto de dos matrices unitarias es una matriz unitaria y que la inversa de una matriz unitaria es unitaria.
  5. Revisa nuevamente la entrada y realiza todas las demostraciones faltantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior II: Raíces de polinomios de grados 3 y 4

Por Leonardo Ignacio Martínez Sandoval

Introducción

Esta es la entrada final de la unidad de polinomios y del curso. En ella hablaremos acerca de las fórmulas para encontrar las raíces de polinomios de grado $3$ y $4$. Además, en la parte final, hablaremos de polinomios de grados más altos y cómo ellos te pueden llevar a cursos muy interesantes que puedes tomar para continuar tu formación matemática.

Existen métodos generales para encontrar las raíces de polinomios de grado $3$ y $4$, ya sea en $\mathbb{R}[x]$ o en $\mathbb{C}[x]$. Para los polinomios de grado $3$, se usa el método de Cardano. Para los polinomios de grado $4$ se usa el método de Ferrari. Encontrar estas fórmulas tomó mucho tiempo. Ambas requieren de manipulaciones algebraicas muy creativas.

Raíces de polinomios de grado 3 y el método de Cardano

Tomemos un polinomio $f(x)$ en $\mathbb{R}[x]$ de grado $3$. Si $f(x)$ no es mónico, podemos multiplicarlo por el inverso de su coeficiente principal para obtener un polinomio con las mismas raíces. De esta forma, podemos suponer sin pérdida de generalidad que $f(x)$ es de la forma $$f(x)=x^3+ax^2+bx+c.$$

Consideremos al polinomio $$g(x)=f\left(x-\frac{a}{3}\right).$$ Observa que $r$ es una raíz de $g(x)$ si y sólo si $g(r)=0$, si y sólo si $f\left(r-\frac{a}{3}\right)=0$, si y sólo si $r-\frac{a}{3}$ es una raíz de $f$. De esta forma, si conocemos las raíces de $g(x)$, podemos encontrar las de $f(x)$, y viceversa.

Al hacer las cuentas (que quedan como tarea moral), se tiene que $g(x)$ se simplifica a
\begin{align*}
g(x)&=f\left(x-\frac{a}{3}\right)\\
&=x^3+\left(b-\frac{a^2}{3}\right)x+\left(-\frac{ba}{3}+c+\frac{2a^3}{27}\right),
\end{align*}

que tiene la ventaja de ya no tener término cuadrático. En otras palabras, para encontrar las raíces de polinomio cúbico, basta con poder encontrar las de los polinomios de la forma $$g(x)=x^3+px+q.$$

Tomando $x=u+v$ y haciendo las operaciones, se tiene que $$g(u+v)=u^3+v^3+(3uv+p)(u+v)+q.$$

Observa que si logramos encontrar $u$ y $v$ que satisfagan el sistema de ecuaciones
\begin{align*}
u^3+v^3&=-q\\
uv&=-\frac{p}{3},
\end{align*}

entonces tendríamos una raíz $x=u+v$.

La segunda ecuación implica $u^3v^3=-\frac{p^3}{27}$. Pero entonces conocemos la suma y el producto de las variables $u^3$ y $v^3$, con lo cual obtenemos que son las raíces del siguiente polinomio de grado $2$ en la variable $t$:
\begin{align*}
(t-u^3)(t-v^3)&=t^2-(u^3+v^3)t+u^3v^3\\
&=t^2+qt-\frac{p^3}{27}.
\end{align*}

El discriminante de esta ecuación cuadrática es $$\Delta = q^2 + \frac{4p^3}{27}.$$

Si $\Delta >0$, esta ecuación cuadrática tiene las siguientes soluciones reales:
\begin{align*}
\sqrt[3]{-\frac q2 + \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}}\\
\sqrt[3]{-\frac q2 – \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}}.
\end{align*}

Sin pérdida de generalidad, $u$ es la primera y $v$ la segunda. De esta forma, una raíz real para $g(x)$ es $$x= \sqrt[3]{-\frac q2 + \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}} + \sqrt[3]{-\frac q2 – \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}}.$$

Hasta aquí hay algunas cosas por notar:

  • Supusimos que el discriminante $\Delta$ es positivo.
  • Sólo hemos encontrado una de las $3$ raíces de $p(x)$ que garantiza el teorema fundamental del álgebra.

Cuando el discriminante es positivo, las otras dos soluciones son $\omega x$ y $\omega^2 x$, en donde $\omega$ es una raíz cúbica primitiva de la unidad.

Cuando la cuadrática tiene discriminante $\Delta<0$, tenemos que $u$ y $v$ son complejos, y entonces al sacar raíz cúbica podemos tener tres opciones para cada uno, algo que parecería dar un total de $9$ soluciones. Sin embargo, recordando que $uv=-\frac{p}{3}$, tenemos que $u$ queda totalmente determinado por $v$, así que de ahí se obtienen las tres soluciones.

Raíces de polinomios de grado 4 y el método de Ferrari

El método de Ferrari está explicado a detalle en el libro de Álgebra de Bravo, Rincón y Rincón. Ahí están las ideas principales para encontrar una fórmula general para encontrar las raíces de un polinomio de grado $4$, es decir, de la forma $$p(x)=ax^4+bx^3+cx^2+dx+e.$$ Recuerda que el libro está disponible para descarga gratuita.

Al igual que en el caso del método de Ferrari, los primeros pasos consisten en hacer simplificaciones algebraicas. Así como el método de Cardano usa la fórmula cuadrática, del mismo modo el método de Ferrari reduce el problema a encontrar soluciones a un polinomio de grado 3. Uno podría creer que este patrón se repite, y que se pueden encontrar métodos para polinomios de grado arbitrario. Esto no es así, y lo platicaremos en la siguiente sección.

Para otra derivación de la fórmula de Ferrari, compartimos el artículo «Identidades para la resolución de ecuaciones cúbicas y cuárticas» de José Leonardo Sáenz Cetina, que apareció en el número 24 de la revista Miscelánea Matemática de la Sociedad Matemática Mexicana:

Este documento también tiene otras dos formas de resolver ecuaciones cúbicas, así que es una lectura recomendada.

Finalmente, se recomienda también echarle un ojo a la página de Wikipedia acerca de la ecuación cuártica. La entrada en inglés es mucho mejor. Sobre todo la sección referente al método de Ferrari.

Raíces de polinomios de grado 5 y más

De acuerdo al teorema fundamental del álgebra, todo polinomio sobre los complejos tiene al menos una raíz. De hecho, se puede mostrar que si es de grado $n$, entonces tiene exactamente $n$ raíces, contando multiplicidades.

Cuando tenemos polinomios de grados $2$, $3$ y $4$ podemos usar la fórmula cuadrática, el método de Cardano y el método de Ferrari para encontrar una fórmula para las soluciones. ¿Hay algún método que tenga fórmulas similares para polinomios de grado más grande?

La respuesta es que no. Aunque el teorema fundamental del álgebra garantice la existencia de las raíces, hay un teorema de Abel y Ruffini que muestra que no es posible encontrar una fórmula general. Al menos no una que ayude a poner las raíces de cualquier polinomio de grado cinco (o más) usando únicamente sumas, restas, multiplicaciones, divisiones y raíces. Esto formalmente se enuncia como que hay ecuaciones de grado 5 y más que no son solubles por radicales.

Enunciar y demostrar este teorema formalmente requiere de herramientas que quedan fuera del alcance de este curso, sin embargo, se puede estudiar en un curso avanzado de álgebra, en donde se hable de extensiones de campo y teoría de Galois.

Por otro lado, podemos dejar de lado la exactitud y preguntarnos si, dado un polinomio, podemos acercarnos a sus raíces tanto como queramos. Hoy en día eso se hace mediante métodos computacionales. Aunque la computadora sea muy buena haciendo cuentas, hay que ser particularmente cuidadoso con los errores que comete al hacer aproximaciones.

Eso es otra de las cosas que quedan fuera del alcance de este curso, y que puedes estudiar en un buen curso de métodos numéricos. Si lo que buscas es saber cómo pedirle a la computados que haga los cálculos, eso lo puedes aprender en un buen curso de programación, en donde te enseñen a usar ambientes de computación científica.

Más adelante…

Antes de concluir el curso, en la siguiente entrada, repasamos lo aprendido en esta entrada y vemos como se puede realizar una ecuación de grado $3$ y de grado $4$ usando los métodos de Cardano y de Ferrari, sin embargo, es importante no olvidar que antes de estos métodos, tenemos otros teoremas importantes que en principio podrían ser más simples para obtener las soluciones a una cúbica o cualquier ecuación.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Completa las cuentas faltantes en la discusión del método de Cardano.
  2. Muestra que un polinomio de grado $3$ y coeficientes reales tiene exactamente cero o dos raíces complejas distintas.
  3. ¿Cuántas raíces complejas distintas puede tener un polinomio de grado $4$ con coeficientes reales? Encuentra un ejemplo para cada una de las respuestas.
  4. Encuentra las raíces del polinomio cuártico $$p(x)=x^4+2x^3-12x^2-10x+4.$$ Después, compara tu respuesta con el Ejemplo 216 del libro de Álgebra de Bravo, Rincón, Rincón.
  5. Lee las entradas en Wikipedia acerca de ecuaciones cúbicas y ecuaciones cuárticas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Matrices simétricas reales y sus eigenvalores

Por Leonardo Ignacio Martínez Sandoval

Introducción

Hemos llegado a la cima del curso. En estas últimas entradas probaremos uno de los teoremas más bellos en álgebra lineal: el teorema espectral para matrices simétricas reales. También hablaremos de varias de las consecuencias que tiene.

Hay dos formas equivalentes de enunciar el teorema.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Teorema. Sea $A$ una matriz simétrica en $\mathbb{R}^n$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $\mathbb{R}^n$, tales que $$A=P^{-1}DP.$$

Para hablar de la demostración y de las consecuencias del teorema espectral para matrices simétricas reales, necesitaremos usar teoría de todas las unidades del curso. En particular, usaremos las siguientes definiciones:

  • Una matriz $A$ en $M_n(F)$ es simétrica si es igual a su transpuesta.
  • Una matriz $A$ en $M_n(F)$ es ortogonal si es invertible y $A^{-1}= {^tA}$.
  • Si $T:V\to V$ es una transformación lineal de un espacio vectorial $V$ a sí mismo y $W$ es un subespacio de $V$, entonces decimos que $W$ es estable bajo $T$ si $T(W)\subseteq W$.
  • Un producto interior es una forma bilineal simétrica y positiva definida.
  • Un espacio Euclideano es un espacio vectorial de dimensión finita con un producto interior.
  • Si $W$ es un subespacio de un espacio Euclideano $V$, entonces $W^\bot$ es el conjunto de todos los vectores que de $V$ que son ortogonales a todos los vectores de $W$.
  • Una matriz $A$ en $M_n(F)$ es diagonalizable si existen matrices $P$ y $D$ en $M_n(F)$ con $P$ invertible, $D$ diagonal y tales que $A=P^{-1}DP$.

Y los siguientes resultados principales:

En esta entrada enunciaremos tres resultados auxiliares de interés propio. A partir de estos resultados, la demostración del teorema espectral para matrices simétricas reales y la equivalencia entre ambas versiones será mucho más limpia.

Los eigenvalores de matrices simétricas reales

El polinomio característico de una matriz $A$ en $M_n(\mathbb{R})$ tiene coeficientes reales. Por el teorema fundamental del álgebra, debe tener exactamente $n$ raíces en $\mathbb{C}$, contando multiplicidades. Si alguna de estas raíces $r$ no es real, entonces $A$ no puede ser diagonalizable en $M_n(\mathbb{R})$. La razón es que $A$ sería similar a una matriz diagonal $D$, y los eigenvalores de las matrices diagonales (incluso triangulares) son las entradas de la diagonal principal. Como $A$ y $D$ comparten eigenvalores (por ser similares), entonces $r$ tendría que ser una entrada de $D$, pero entonces $D$ ya no sería una matriz de entradas reales.

Lo primero que veremos es que las matrices simétricas reales «superan esta dificultad para poder diagonalizarse». Esta va a ser nuestra primer herramienta para demostrar el teorema espectral.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$ y $\lambda$ una raíz del polinomio característico de $A$. Entonces, $\lambda$ es un número real.

Demostración. El polinomio característico de $A$ es un polinomio con coeficientes reales, así que por el teorema fundamental del álgebra se tiene que $\lambda$ debe ser un número en $\mathbb{C}$. Así, podemos escribirlo de la forma $\lambda = a+ib$, con $a$ y $b$ números reales. Lo que mostraremos es que $b=0$.

Se tiene que $\lambda$ es un eigenvalor de $A$ vista como matriz en $M_n(\mathbb{C})$, y por lo tanto le corresponde un eigenvector $U$ en $\mathbb{C}^n$, es decir, un $U\neq 0$ tal que $$AU=\lambda U.$$ Este vector $U$ lo podemos separar en partes reales e imaginarias con vectores $V$ y $W$ en $\mathbb{R}^n$ tales que $$U=V+iW.$$

En estos términos,
\begin{align*}
AU&=A(V+iW)=AV+iAW \quad\text{y}\\
\lambda U &= (a+ib)(V+iW)\\
&=(aV-bW) + i (aW+bV),
\end{align*}

de modo que igualando partes reales e imaginarias en la expresión $AU=\lambda U$ tenemos que
\begin{align*}
AV&=aV-bW\quad\text{y}\\
AW&=aW+bV.
\end{align*}

Como $A$ es simétrica, tenemos que

\begin{equation}
\langle AV,W \rangle=\langle {^tA}V,W \rangle= \langle V, AW\rangle.
\end{equation}

Estudiemos las expresiones en los extremos, reemplazando los valores de $AV$ y $AW$ que encontramos arriba y usando la bilinealidad del producto interior. Se tiene que

\begin{align*}
\langle AV,W \rangle &= \langle aV-bW,W \rangle\\
&=a\langle V,W \rangle – b \langle W,W \rangle\\
&=a \langle V,W \rangle – b \norm{W}^2,
\end{align*}

y que

\begin{align*}
\langle V,AW \rangle &= \langle V,aW+bV \rangle\\
&=a\langle V,W \rangle + b \langle V,V \rangle\\
&=a \langle V,W \rangle + b \norm{V}^2.
\end{align*}

Substituyendo estos valores en la expresión (1), obtenemos la igualdad

$$a \langle V,W \rangle – b \norm{W}^2 = a \langle V,W \rangle + b \norm{V}^2,$$

que se simplifica a $$b(\norm{V}^2+\norm{W}^2)=0.$$

Estamos listos para dar el argumento final. Como $U=V+iW$ es un eigenvector, entonces no es nulo, de modo que no es posible que $V$ y $W$ sean ambos el vector $0$ de $\mathbb{R}^n$. Como el producto interior es positivo definido, entonces alguna de las normas $\norm{V}$ o $\norm{W}$ no es cero, de modo que $$\norm{V}^2+\norm{W}^2\neq 0.$$

Concluimos que $b=0$, y por lo tanto que $\lambda$ es un número real.

$\square$

La demostración anterior es ejemplo de un truco que se usa mucho en las matemáticas. Aunque un problema o un teorema no hablen de los números complejos en su enunciado, se puede introducir a $\mathbb{C}$ para usar sus propiedades y trabajar ahí. Luego, se regresa lo obtenido al contexto real. Aquí en el blog hay otra entrada en donde damos más ejemplos de «brincar a los complejos».

Un resultado auxiliar de transformaciones simétricas

A continuación damos la segunda herramienta que necesitaremos para probar el teorema espectral. Recuerda que si $V$ es un espacio Euclideano y $T:V\to V$ es una transformación lineal, entonces decimos que $T$ es simétrica si para todo par de vectores $u$ y $v$ en $V$ se tiene que $$\langle T(u),v\rangle = \langle u, T(v) \rangle.$$ Enunciamos el resultado en términos de transformaciones, pero también es válido para las matrices simétricas asociadas.

Teorema. Sea $V$ un espacio Eucideano y $T:V\to V$ una transformación lineal simétrica. Sea $W$ un subespacio de $V$ estable bajo $T$. Entonces:

  • $W^\bot$ también es estable bajo $T$ y
  • Las restricciones de $T$ a $W$ y a $W^\bot$ son transformaciones lineales simétricas en esos espacios.

Demostración. Para el primer punto, lo que tenemos que mostrar es que si $w$ pertenece a $W^\bot$, entonces $T(w)$ también, es decir, que $T(w)$ es ortogonal a todo vector $v$ en $W$.

Tomemos entonces un vector $v$ en $W$. Como $W$ es estable bajo $T$, tenemos que $T(v)$ está en $W$, de modo que $\langle w, T(v) \rangle =0$. Como $T$ es simétrica, tenemos entonces que $$\langle T(w),v \rangle = \langle w, T(v) \rangle = 0.$$ Esto es lo que queríamos probar.

Para la segunda parte, si $T_1$ es la restricción de $T_1$ a $W$ y tomamos vectores $u$ y $v$ en $W$, tenemos que
\begin{align*}
\langle T_1(u), v \rangle &= \langle T(u), v \rangle\\
&=\langle u, T(v) \rangle \\
&=\langle u, T_1(v) \rangle,
\end{align*}

lo cual muestra que $T_1$ es simétrica. La prueba para $W^\bot $ es análoga y queda como tarea moral.

$\square$

Matrices diagonalizables y bases ortonormales de eigenvectores

El tercer y último resultado enuncia una equivalencia entre que una matriz en $M_n(F)$ sea diagonalizable, y que exista una base especial para $F^n$. Es lo que usaremos para probar la equivalencia entre ambas formulaciones del teorema espectral para matrices simétricas reales.

Teorema. Sea $A$ una matriz en $M_n(F)$. Las siguientes dos afirmaciones son equivalentes:

  • $A$ es diagonalizable, es decir, existen matrices $P$ y $D$ en $M_n(F)$, con $P$ invertible y $D$ diagonal tales que $A=P^{-1}DP.$
  • Existe una base para $F^n$ que consiste de eigenvectores de $A$.

Demostración. Antes de comenzar la demostración, recordemos que si tenemos una matriz $B$ en $M_n(F)$ de vectores columna $$C_1,\ldots,C_n,$$ entonces los vectores columna del producto $AB$ son $$AC_1,\ldots AC_n.$$ Además, si $D$ es una matriz diagonal en $M_n(F)$ con entradas en la diagonal $d_1,\ldots,d_n$, entonces los vectores columna de $BD$ son $$d_1C_1,\ldots,d_nC_n.$$

Comencemos la prueba del teorema. Supongamos que $A$ es diagonalizable y tomemos matrices $P$ y $D$ en $M_n(F)$ con $P$ invertible y $D$ diagonal de entradas $d_1,\ldots,d_n$, tales que $A=P^{-1}DP$. Afirmamos que los vectores columna $C_1,\ldots,C_n$ de $P^{-1}$ forman una base de $F^n$ que consiste de eigenvectores de $A$.

Por un lado, como son los vectores columna de una matriz invertible, entonces son linealmente independientes. En total son $n$, como la dimensión de $F^n$. Esto prueba que son una base.

De $A=P^{-1}DP$ obtenemos la igualdad $AP^{-1}=P^{-1}D$. Por las observaciones al inicio de la prueba, tenemos al igualar columnas que para cada $j=1,\ldots,n$ se cumple $$AC_j = d_j C_j.$$ Como $C_j$ forma parte de un conjunto linealmente independiente, no es el vector $0$. Así, $C_j$ es un eigenvector de $A$ con eigenvalor $d_j$. Con esto terminamos una de las implicaciones.

Supongamos ahora que existe una base de $F^n$ que consiste de eigenvectores $C_1,\ldots,C_n$ de $A$. Para cada $j=1,\ldots,n$, llamemos $\lambda_j$ al eigenvalor correspondiente a $C_j$, y llamemos $D$ a la matriz diagonal con entradas $\lambda_1,\ldots,\lambda_n$.

Como $C_1,\ldots,C_n$ son vectores linealmente independientes, la matriz $B$ cuyas columnas son $C_1,\ldots, C_n$ es invertible. Además, por las observaciones al inicio de la prueba, se tiene que la columna $j$ de la matriz$AB$ es $AC_j$ y la columna $j$ de la matriz $BD$ es $\lambda_j C_j$. Entonces, por construcción, estas matrices son iguales columna a columna, y por lo tanto lo son iguales. De esta forma, tenemos que $AB=BD$, o bien, reescribiendo esta igualdad, que $$A=BDB^{-1}.$$ Así, la matriz invertible $P=B^{-1}$ y la matriz diagonal $D$ diagonalizan a $A$.

$\square$

Las matrices simétricas reales serán todavía más especiales que simplemente las matrices diagonalizables. Lo que asegura el teorema espectral es que podremos encontrar no sólo una base de eigenvectores, sino que además podemos garantizar que esta base sea ortonormal. En términos de diagonalización, la matriz $P$ no sólo será invertible, sino que además será ortogonal.

Más adelante…

En esta entrada enunciamos dos formas del teorema espectral y hablamos de algunas consecuencias que tiene. Además, repasamos un poco de la teoría que hemos visto a lo largo del curso y vimos cómo nos ayuda a entender mejor este teorema.

En la siguiente entrada, que es la última del curso, demostraremos las dos formas del teorema espectral que enunciamos en esta entrada y haremos un pequeño comentario sobre qué hay más allá del teorema espectral en el álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un ejemplo de una matriz simétrica en $M_n(\mathbb{C})$ cuyos eigenvalores no sean reales.
  • En el contexto del segundo teorema, muestra que la restricción de $T$ a $W^\bot$ es simétrica.
  • Realiza la demostración de que si $A$ y $B$ son matrices en $M_n(F)$ y los vectores columna de $B$ son $C_1,\ldots,C_n$, entonces los vectores columna de $AB$ son $AC_1,\ldots,AC_n$. También, prueba que si $D$ es diagonal de entradas $d_1,\ldots,d_n$, entonces las columnas de $BD$ son $d_1C_1,\ldots,d_nC_n$.
  • Encuentra una matriz $A$ con entradas reales similar a la matriz $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3 \end{pmatrix},$$ tal que ninguna de sus entradas sea igual a $0$. Encuentra una base ortogonal de eigenvectores de $A$ para $\mathbb{R}^3$.
  • Diagonaliza la matriz $$\begin{pmatrix}-2 & 0 & 0 & 0\\0 & 2 & 0 & 0\\ \frac{19}{7} & \frac{30}{7} & \frac{65}{7} & \frac{24}{7}\\ \frac{6}{7} & – \frac{20}{7} & – \frac{48}{7} & – \frac{23}{7}\end{pmatrix}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Irreducibilidad y factorización en polinomios reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Los números enteros tiene un teorema de factorización en primos: el teorema fundamental de la aritmética. Los polinomios en $\mathbb{R}[x]$ también. En esta entrada hablaremos de la irreducibilidad y factorización en polinomios reales. Lo primero lo haremos para decir «quiénes son los primos» en $\mathbb{R}[x]$. Para lo segundo usaremos el teorema del factor, que demostramos con anterioridad.

Resulta que el teorema de factorización en polinomios reales depende de un resultado importante de polinomios en $\mathbb{C}[x]$, es decir, los de coeficientes complejos. Esto es algo que sucede con frecuencia: a veces para resolver un problema en los números reales, hay que dar un paso hacia los complejos y luego regresar. Por esa razón, para esta entrada es importante que tengas en mente varias propiedades en los complejos, sobre todo cómo se realizan las operaciones y cuales son las propiedades de la conjugación compleja. Esto nos dará la oportunidad de enunciar (sin demostración) el teorema fundamental del álgebra.

Como recordatorio, un polinomio es irreducible en $\mathbb{R}[x]$ si no es un polinomio constante y no se puede escribir como producto de dos polinomios no constantes en $\mathbb{R}[x]$. Además, el teorema del factor nos dice que si $a$ es raíz de un polinomio $p(x)$, entonces $x-a$ divide a $p(x)$. Diremos que un polinomio es lineal si es de grado $1$ y cuadrático si es de grado $2$.

El teorema fundamental del álgebra

Así como construimos a $\mathbb{R}[x]$, se puede hacer algo análogo para construir a $\mathbb{C}[x]$, los polinomios de coeficientes complejos. Puedes practicar todo lo que hemos visto haciendo la construcción formal. Por el momento, para fines prácticos, puedes pensarlos como expresiones de la forma $$a_0+a_1 x + \ldots + a_n x^n$$ con $a_i$ complejos, digamos, $$(1+i)+2i x -3x^3+(5+2i)x^4.$$

Los polinomios en $\mathbb{C}[x]$ cumplen todo lo que hemos dicho de $\mathbb{R}[x]$: se vale el lema de Bézout, el algoritmo de Euclides, el teorema del factor, el teorema del residuo, etc. Una copia de $\mathbb{R}[x]$, con su estructura algebraica, «vive» dentro de $\mathbb{C}[x]$, es decir, todo polinomio con coeficientes reales se puede pensar como uno con coeficientes complejos.

Sin embargo, los polinomios en $\mathbb{R}[x]$ y en $\mathbb{C}[x]$ son muy diferentes en términos de raíces. Esto se nota, pir ejemplo, en el hecho de que el polinomio $x^2+1$ no tiene raíces en $\mathbb{R}$, pero sí en $\mathbb{C}$, donde la raíz es $i$. Resulta que esta $i$ hace toda la diferencia. Al agregarla no solamente hacemos que $x^2+1$ tenga una raíz, sino que ya todo polinomio tiene raíz. Esto está enunciado formalmente por el teorema fundamental del álgebra.

Teorema (teorema fundamental del álgebra). Todo polinomio no constante en $\mathbb{C}[x]$ tiene al menos una raíz en $\mathbb{C}$.

No vamos a demostrar este teorema durante el curso. Hay desde demostraciones elementales (como la que aparece en el bello libro Proofs from the book), hasta algunas muy cortas, pero que usan teoría un poco más avanzada (como las que se hacen en cursos de análisis complejo). Sin embargo, lo usaremos aquí para obtener algunas de sus consecuencias y, al final de esta entrada, demostrar los teoremas de irreducibilidad y factorización en polinomios reales.

Teorema de factorización en $\mathbb{C}[x]$

En la entrada anterior ya demostramos que los polinomios lineales son irreducibles. Veremos ahora que en $\mathbb{C}[x]$ no hay ningún otro polinomio irreducible.

Proposición. Los únicos polinomios irreducibles en $\mathbb{C}[x]$ son los de grado $1$.

Demostración. Tomemos cualquier polinomio $p(x)$ en $\mathbb{C}[x]$ de grado al menos $2$. Por el teorema fundamental del álgebra, $p(x)$ tiene al menos una raíz $z$ en $\mathbb{C}$. Por el teorema del factor, $$x-z \mid p(x),$$ así que podemos escribir $p(x)=(x-z)q(x)$ con $q(x)$ en $\mathbb{C}[x]$ de grado $\deg(p(x))-1\geq 1$.

De esta forma, pudimos factorizar al polinomio $p(x)$ en dos factores no constantes, y por lo tanto no es irreducible.

$\square$

Con esto podemos mostrar que en $\mathbb{C}[x]$ todo polinomio es factorizable como producto de términos lineales.

Teorema (de factorización única en $\mathbb{C}[x]$). Todo polinomio $p(x)$ en $\mathbb{C}[x]$ distinto del polinomio cero se puede factorizar de manera única como $$p(x)=a(x-z_1)(x-z_2)\cdots(x-z_n)$$ en donde $a$ es un complejo no cero, $n$ es el grado de $p(x)$ y $z_1,\ldots,z_n$ son complejos que son raíces de $p(x)$.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Procedemos por inducción en el grado de $p(x)$. Si $p(x)$ es de grado cero, entonces es de la forma $p(x)=a$ con $a$ un complejo, y ya está en la forma que queremos.

Tomemos ahora un entero $n\geq 1$. Supongamos que el resultado es cierto para los polinomios de grado $n-1$ y consideremos un polinomio $p(x)$ de grado $n$. Por el teorema fundamental del álgebra, $p(x)$ tiene al menos una raíz, digamos $z_n$. Usando el teorema del factor, existe un polinomio $q(x)$, que debe de ser de grado $n-1$, tal que $$p(x)=q(x)(x-z_n).$$ Aplicando la hipótesis inductiva a $q(x)$, podemos factorizarlo de la forma $$q(x)=a(x-z_1)(x-z_2)\cdots(x-z_{n-1}),$$ con $z_1,\ldots,z_{n-1}$ raíces de $q(x)$ (y por lo tanto también raíces de $p(x)$). De esta forma, $$p(x)=(x-z_1)(x-z_2)\cdots(x-z_{n-1})(x-z_n)$$ es una factorización que cumple lo que queremos. Esto termina la hipótesis inductiva, y por lo tanto la parte de existencia de la demostración.

$\square$

Ejemplo. Consideremos al polinomio $$p(x)=x^4+5x^2+4$$ en $\mathbb{R}[x]$. Este polinomio no tiene raíces reales, pues sus evaluaciones siempre son positivas. Sin embargo, lo podemos pensar como un polinomio en $\mathbb{C}[x]$. Por el teorema fundamental del álgebra, este polinomio debe tener una raíz en $\mathbb{C}$.

Afortunadamente, podemos encontrarla por inspección. Una de estas raíces es $i$, pues $$i^4+5i^2+4=1-5+4=0.$$ Por el teorema del factor, $x-i$ divide a $p(x)$. Al realizar la división, obtenemos $$p(x)=(x-i)(x^3+ix^2+4x+4i).$$ De aquí, por inspección, obtenemos que $-i$ es una raíz de $x^3+ix^2+4x+4i$, y realizando la división entre $x+i$, tenemos que $$p(x)=(x-i)(x+i)(x^2+4).$$

El polinomio $x^2+4$ claramente tiene como raíces a $2i$ y $-2i$. A partir de todo esto concluimos que $$p(x)=(x-i)(x+i)(x-2i)(x+2i)$$ es la factorización de $p(x)$ en polinomios lineales en $\mathbb{C}[x]$.

$\square$

En el ejemplo anterior podemos agrupar los factores $(x-i)$ y $(x+i)$ para obtener el polinomio $x^2+1$. De aquí obtenemos la factorización alternativa $$p(x)=(x^2+1)(x^2+2).$$ Esta factorización tiene puros coeficientes reales. Aquí hay que hacer una observación importante: esta no es una factorización en irreducibles en $\mathbb{C}[x]$, pero sí es una factorización en irreducibles en $\mathbb{R}[x]$. Retomaremos varias de estas ideas más en general en las siguientes secciones.

Raíces complejas de polinomios en $\mathbb{R}[x]$

En el ejemplo de la sección anterior sucedió que $i$ era una raíz de $p(x)$, y que $-i$ también. Cuando tenemos un polinomio de coeficientes reales y $z$ es un complejo que es raíz, entonces su conjugado también.

Proposición. Tomemos $p(x)$ un polinomio en $\mathbb{R}[x]$ y $z$ un número en $\mathbb{C}$. Si $p(z)=0$, entonces $p(\overline{z})=0$.

Demostración. Si $p(x)$ es el polinomio cero, la afirmación es cierta. En otro caso, sea $n$ el grado de $p(x)$ y escribamos a $p(x)$ como $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ donde $a_i$ son números en $\mathbb{R}$ para $i=0,\ldots,n$. Por lo que sabemos de la conjugación compleja, $\overline{a_i}=a_i$, y además abre sumas y productos. Así,
\begin{align*}
\overline{p(z)}&=\overline{a_0+a_1z+\ldots+a_nz^n}\\
&=\overline{a_0}+\overline{a_1z}+\ldots +\overline{a_nz^n}\\
&=\overline{a_0} + \overline{a_1}\, \overline{z} + \ldots +\overline{a_n}\, \overline{z}^n\\
&=a_0 + a_1 \overline{z} + \ldots + a_n \overline{z}^n\\
&=p(\overline{z}).
\end{align*}

Como $p(z)=0$, concluimos que $$p(\overline{z})=\overline{p(z)}=\overline{0}=0.$$

$\square$

El resultado anterior no es cierto en general para polinomios con coeficientes en $\mathbb{C}[x]$. Esto debe ser muy claro pues, por ejemplo, $i$ es raíz de $x-i$, pero $-i$ no.

Proposición. Tomemos $p(x)$ un polinomio en $\mathbb{R}[x]$ y una raíz $z$ de $p(x)$ en $\mathbb{C}\setminus \mathbb{R}$. Entonces el polinomio $$q(x)=x^2-(z+\overline{z})x+z\overline{z}$$ es un polinomio en $\mathbb{R}[x]$ que divide a $p(x)$ en $\mathbb{R}[x]$.

Demostración. Observa que $q(x)=(x-z)(x-\overline{z})$. Recordemos que
\begin{align*}
z+\overline{z}&=2\Rea{(z)} \\
z\overline{z}&=\norm{z}^2 .
\end{align*}

Esto muestra que los coeficientes de $q(x)$ son reales. Usemos el algoritmo de la división en $\mathbb{R}[x]$ para escribir $$p(x)=q(x)h(x)+r(x),$$ con $r(x)$ el polinomio cero, o de grado a lo más $1$.

Evaluando en $z$ y en $\overline{z}$, se obtiene que $r(z)=r(\overline{z})=0$. Como $z$ no es real, entonces $z$ y $\overline{z}$ son distintos. De este modo, $r(x)$ es el polinomio cero. Así, $p(x)=q(x)h(x)$ es una factorización de $p(x)$ en $\mathbb{R}[x]$ que usa a $q(x)$.

$\square$

Nuevamente, hay que tener cuidado con las hipótesis del resultado anterior. Es muy importante que usemos que $z$ es una raíz compleja y no real de un polinomio con coeficientes reales. En la tarea moral puedes encontrar un contraejemplo si no se satisfacen las hipótesis.

Ejemplo. Consideremos el polinomio $$p(x)=2x^3-16x^2+44x-40.$$ Una de sus raíces complejas es $3+i$, como puedes verificar. Como es un polinomio con coeficientes reales, el conjugado $3-i$ también es una raíz. Tal como lo menciona la proposición anterior, el polinomio
\begin{align*}
q(x):&=(x-(3+i))(x-(3-i))\\
&=x^2-(3+i+3-i)x+(3+i)(3-i)\\
&=x^2-6x+10
\end{align*}

es un polinomio de coeficientes reales. Además, divide a $p(x)$ en $\mathbb{R}[x]$ pues haciendo la división polinomial, tenemos que $$2x^3-16x^2+44x-40=(2x-4)(x^2-6x+10).$$

$\square$

Irreducibilidad y factorización en polinomios reales

Con todo lo que hemos hecho hasta ahora, estamos listos para probar los resultados que queremos en $\mathbb{R}[x]$. Observa que los enunciados de las secciones anteriores involucran a $\mathbb{C}$, pero los de esta sección ya no. Sin embargo, para hacer las demostraciones tenemos que dar un «brinco momentáneo a los complejos».

Recuerda que para un polinomio cuadrático $q(x)=ax^2+bx+c$ su discriminante es $b^2-4ac$.

Teorema (irreducibilidad en polinomios reales). Los únicos polinomios irreducibles en $\mathbb{R}[x]$ son los lineales y los cuadráticos de discriminante negativo.

Demostración. Ya mostramos antes que los polinomios lineales son irreducibles. Si $q(x)=ax^2+bx+c$ es un polinomio cuadrático y $r$ es una raíz real, tenemos que
\begin{align*}
ar^2+br+c&=0\\
r^2+\frac{b}{a}r+\frac{c}{a}&=0\\
r^2+\frac{b}{a}r+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+\frac{c}{a}&=0\\
\left(r+\frac{b}{2a}\right)^2&=\frac{b^2-4ac}{4a^2}.
\end{align*}

De esta igualdad, obtenemos que $\frac{b^2-4ac}{4a^2}\geq 0$ y por lo tanto que $b^2-4ac \geq 0$. Dicho de otra forma, si $b^2-4ac<0$, entonces $q(x)$ no tiene raíces reales. De esta misma equivalencia de igualdades se puede ver que si $b^2-4ac\geq 0$, entonces $q(x)$ sí tiene por lo menos una raíz real.

Supongamos que $q(x)$ es un polinomio cuadrático con discriminante negativo. Si existiera una factorización en $\mathbb{R}[x]$ de la forma $q(x)=a(x)b(x)$, con ninguno de ellos constante, entonces ambos deben tener grado $1$. Podemos suponer que $a$ es mónico. Pero entonces $a(x)=x-r$ para $r$ un real, y por el teorema del factor tendríamos que $r$ sería raíz de $q(x)$, una contradicción a la discusión anterior. Esto muestra que $q(x)$ es irreducible.

Falta ver que no hay ningún otro polinomio irreducible en $\mathbb{R}[x]$. Cuando $p(x)$ es cuadrático de discriminante no negativo, entonces por la fórmula cuadrática tiene al menos una raíz real $r$ y por lo tanto $x-r$ divide a $p(x)$, mostrando que no es irreducible.

Si $p(x)$ es de grado mayor o igual a $3$ y tiene una raíz real $r$, sucede lo mismo. En otro caso, es de grado mayor o igual a $3$ y no tiene raíces reales. Pero de cualquier forma tiene al menos una raíz compleja $z$. Usando la proposición de la sección anterior, tenemos que $x^2-(z+\overline{z})x+z\overline{z}$ es un polinomio de coeficientes reales que divide a $p(x)$ en $\mathbb{R}[x]$, lo cual muestra que no es irreducible.

Concluimos entonces que los únicos polinomios irreducibles en $\mathbb{R}[x]$ son los lineales y los cuadráticos de discriminante negativo.

$\square$

Ahora sí podemos enunciar el resultado estelar de esta entrada.

Teorema (factorización en polinomios reales). Todo polinomio $p(x)$ en $\mathbb{R}[x]$ distinto del polinomio cero se puede factorizar de manera única como $$a(x-r_1)\cdots(x-r_m)(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ en donde:

  • $a$ es un real distinto de cero,
  • $m$ y $n$ son enteros tales que $m+2n$ es igual al grado de $p(x)$,
  • para cada $i$ en $\{1,\ldots,m\}$ se tiene que $r_i$ es raíz real de $p(x)$ y
  • para cada $j$ en $ \{1,\ldots,n\}$ se tiene que $b_j,c_j$ son reales tales que $b_j^2-4c_j<0$.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Si $p(x)$ es irreducible, entonces al factorizar su coeficiente principal $a$ obtenemos la factorización deseada. Si $p(x)$ no es irreducible, procedemos por inducción fuerte sobre el grado $d$ de $p(x)$. El menor grado que debe tener es $2$ para no ser irreducible.

Si $d=2$ y es no irreducible, el resultado es cierto pues se puede factorizar como dos factores lineales y luego factorizar al término $a$ los coeficientes principales de cada factor para que queden mónicos.

Sea $d\geq 3$ y supongamos el resultado cierto para todo polinomio de grado menor a $d$. Tomemos un polinomio $p(x)$ de grado $d$. Por el teorema de irreducibilidad de polinomios reales, $p(x)$ no es irreducible, así que se puede factorizar como $p(x)=r(x)s(x)$ con $r(x)$ y $s(x)$ no constantes, y por lo tanto de grado menor al de $p(x)$. Por hipótesis inductiva, tienen una factorización como la del teorema. La factorización de $p(x)$ se obtiene multiplicando ambas. Esto termina la inducción.

$\square$

Veamos cómo podemos usar todas estas ideas en un problema en concreto de factorización en polinomios reales.

Problema. Factoriza al polinomio $x^{12}-1$ en polinomios irreducibles en $\mathbb{R}[x]$.

Solución. Usando identidades de factorización, podemos avanzar bastante:
\begin{align*}
x^{12}-1&=(x^6-1)(x^6+1)\\
&=(x^3-1)(x^3+1)(x^6+1)\\
&=(x-1)(x^2+x+1)(x+1)(x^2-x+1)(x^2+1)(x^4-x^2+1).
\end{align*}

Hasta aquí, $x+1$ y $x-1$ son factores lineales. Además, $x^2+x+1$, $x^2-x+1$ y $x^2+1$ son factores cuadráticos irreducibles pues sus discriminantes son, respectivamente, $-3,-3,-4$.

Aún queda un factor $x^4-x^2+1$ que por ser de grado $4$ no es irreducible. Sumando y restando $2x^2$, y luego factorizando la diferencia de cuadrados, tenemos:
\begin{align*}
x^4-x^2+1 &= x^4+2x^2+1-3x^2\\
&=(x^2+1)^2-3x^2\\
&=(x^2+1-\sqrt{3}x)(x^2+1+\sqrt{3}x).
\end{align*}

Cada uno de estos factores cuadráticos tiene discriminante $-1$, y por lo tanto es irreducible. Concluimos entonces que la factorización en irreducibles de $x^{12}-1$ en $\mathbb{R}[x]$ es
\begin{align*}
(x-1)(x&+1)(x^2+1)(x^2+x+1)\\
&(x^2-x+1)(x^2+\sqrt{3}x+1)(x^2-\sqrt{3}x+1).
\end{align*}

$\square$

Más adelante…

El teorema fundamental del álgebra y sus consecuencias en $\mathbb{R}$ son los resultados algebraicos más importantes que obtendremos en el estudio de polinomios, ya que nos permite caracterizar, al menos en teoría a todos los polinomios a partir de sus raíces.

En las siguientes entradas ocuparemos las herramientas que hemos desarrollado hasta ahora, sin embargo cambiaremos el enfoque de estudio, usaremos también herramientas de los cursos de cálculo para poder dar un análisis más detallado del comportamiento de los polinomios, y que nos servirán para que en muchos casos podamos encontrar las raíces de un polinomio, o cuando menos tener una idea de cómo son.

Tarea moral

  • Haz la construcción formal de $\mathbb{C}[x]$ a partir de sucesiones de complejos. Muestra que se pueden expresar en la notación de $x$ y sus potencias. Prueba los teoremas que hemos visto hasta ahora. Todo debe ser análogo al caso real, por lo que te servirá mucho para repasar los conceptos vistos hasta ahora.
  • Muestra la unicidad de la factorización en $\mathbb{C}[x]$ y en $\mathbb{R}[x]$.
  • Sea $z$ un complejo no real. Muestra que que $x-z$ y $x-\overline{z}$ son polinomios primos relativos en $\mathbb{C}[x]$.
  • Hay que tener cuidado en las hipótesis de los teoremas de esta entrada. Muestra que $3$ es una raíz del polinomio $x^3-6x^2+11x-6$, pero que $x^2-6x+9$ no divide a este polinomio.
  • Argumenta por qué en el teorema de factorización en polinomios reales sucede que $m+2n$ es el grado de $p(x)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»