Archivo de la etiqueta: transformaciones lineales

Álgebra Lineal II: Unicidad de la forma de Jordan para nilpotentes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan para matrices nilpotentes. Demostramos una parte: la existencia de la forma canónica de Jordan. Para ello, nos enfocamos en el teorema en su versión en términos de transformaciones lineales. En esta entrada nos enfocaremos en demostrar la unicidad de la forma canónica de Jordan. Curiosamente, en este caso será un poco más cómodo trabajar con la forma matricial del teorema. Para recordar lo que queremos probar, volvemos a poner el enunciado del teorema a continuación. Lo que buscamos es ver que los enteros $k_1,\ldots, k_d$ que menciona el teorema son únicos.

Teorema. Sea $A$ una matriz nilpotente en $M_n(F)$. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales $A$ es similar a la siguiente matriz de bloques: $$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Nuestra estrategia para mostrar la unicidad será el estudio del rango de las potencias de $A$. Si $A$ es similar a $B$, entonces existe $P$ invertible tal que $A=P^{-1}BP$, de donde se puede mostrar indutivamente que $A^k=P^{-1}B^kP$, mostrando que $A^k$ y $B^k$ son similares. Además, matrices similares tienen el mismo rango. De modo que si $A$ es similar a $B$ entonces todas las potencias de $A$ tienen el mismo rango que todas las potencias de $B$. Con esta idea en mente, ¿cómo son las potencias de las matrices hechas por bloques de Jordan? Comenzaremos estudiando esto.

Rango de potencias de bloques de Jordan

Claramente el rango del bloque de Jordan $J_{0,n}$ es $n-1$, pues ya está en forma escalonada reducida y tiene $n-1$ vectores distintos de cero. El siguiente resultado generaliza esta observación.

Proposición. Sea $n$ un entero positivo, $F$ un campo y $J_{0,n}$ el bloque de Jordan de eigenvalor $0$ y tamaño $n$ en $M_n(F)$. Para $k=1,\ldots,n$ se tiene que el rango de $J_{0,n}^k$ es igual a $n-k$. Para $k$ más grandes, el rango es igual a cero.

Demostración. Si $e_1,\ldots,e_n$ es la base canónica de $F^n$, tenemos que $J_{0,n}e_i=e_{i-1}$ para $i=2,\ldots,n$ y $J_{0,n}e_1=0$. De manera intuitiva, la multiplicación matricial por $J_{0,n}$ va «desplazando los elementos de la base $e_1,\ldots,e_n$ a la izquierda, hasta sacarlos». De este modo, $J_{0,n}^k$ para $k=1,\ldots,n$ hace lo siguiente:

$$J_{0,n}^k e_i=\begin{cases} 0 & \text{para $i\leq k$}\\ e_{i-k} & \text{para $i\geq k+1$.}\end{cases}$$

Así, $J_{0,n}^k$ manda a la base $e_1,\ldots,e_n$ a los vectores $e_1,\ldots,e_{n-k}$ y a $k$ copias del vector cero. Como los primeros son $n-k$ vectores linealmente independientes, obtenemos que el rango de $J_{0,n}^k$ es $n-k$.

Para varlores de $k$ más grandes la potencia se hace la matriz cero, así que su rango es cero.

$\square$

Rango de potencias de matrices diagonales por bloques de Jordan

¿Qué sucede si ahora estudiamos el rango de las potencias de una matriz diagonal por bloques hecha por puros bloques de Jordan? Consideremos, por ejemplo, la siguiente matriz, con $k_1\leq \ldots \leq k_d$ de suma $n$:

$$J=\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Por un lado, es sencillo elevar esta matriz a potencias, pues simplemente los bloques se elevan a las potencias correspondientes. En símbolos:

$$J^r=\begin{pmatrix} J_{0,k_1}^r& 0 & \cdots & 0 \\ 0 & J_{0,k_2}^r& \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}^r\end{pmatrix}.$$

¿Cuál es el rango de esta potencia? Nos conviene cambiar un poco de notación. En vez de considerar a los $k_i$ por separado, los agruparemos de acuerdo a su valor, que puede ir de $1$ a $n$. Así, para cada $j=1,\ldots,n$ definimos $m_j$ como la cantidad de valores $k_i$ iguales a $j$. Bajo esta notación, la igualdad $k_1+\ldots+k_d=n$ se puede reescribir como $$m_1+2m_2+3m_3+\ldots+nm_n=n.$$

Una primera observación es que el rango de $J$ es simplemente la suma de los rangos de cada una de las $J_{0,k_i}$. Cada una de estas contribuye con rango $k_i-1$. Así, en términos de las $m_i$ tenemos lo siguiente:

\begin{align*}
\text{rango}(J)&=\sum_{i=1}^d (k_i-1)\\
&=\sum_{j=1}^n (j-1) m_j \\
&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n.
\end{align*}

De manera similar,

\begin{align*}
\text{rango}(J^r)&=\sum_{i=1}^d \text{rango}(J_{0,k_i}^r)\\
&=\sum_{j=1}^n m_j \text{rango}(J_{0,j}^r).
\end{align*}

El término $\text{rango}(J_{0,j}^r)$ lo podemos calcular con la proposición de la sección anterior, cuidando la restricción entre el tamaño y las potencias que queremos. De aquí y de la restricción original para la las $m_i$ salen todas las siguientes igualdades:

\begin{align*}
n&= 1\cdot m_1 + 2\cdot m_2 + 3 \cdot m_3 + \ldots + n \cdot m_n\\
\text{rango}(J)&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n\\
\text{rango}(J^2)&= 0 \cdot m_1 + 0 \cdot m_2 + 1 \cdot m_3 + \ldots + (n-2)\cdot m_n\\
\text{rango}(J^3)&= 0 \cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + (n-3)\cdot m_n\\
&\vdots\\
\text{rango}(J^{n-1})&= 0\cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + 1 \cdot m_n.
\end{align*}

A partir de aquí el rango de $J^n$ es $0$. Esto nos da una manera de entender con mucha precisión el rango de cualquier potencia de una matriz diagonal por bloques hecha con bloques de Jordan.

Unicidad de la forma canónica de Jordan

Estamos listos para justificar la unicidad de la forma canónica de Jordan. Una matriz diagonal por bloques hecha por bloques de Jordan queda totalmente determinada por los valores de $m_j$ de la sección anterior. Supongamos que $A$ tiene como forma canónica de Jordan tanto a una matriz $J$ con valores $m_j$, como a otra matriz $J’$ con valores $m_j’$.

Como dos matrices similares cumplen que las sus potencias son todas del mismo rango, entonces para cualquier $r$ de $1$ a $n-1$ se cumple que $$\text{rango}(J^r)=\text{rango}(A^r)=\text{rango}(J’^r).$$ Así, tanto $(m_1,\ldots,m_n)$ como $(m_1′,\ldots,m_n’)$ son soluciones al siguiente sistema de ecuaciones en variables $x_1,\ldots,x_n$.

\begin{align*}
n&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + n \cdot x_n\\
\text{rango}(A)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (n-1) \cdot x_n\\
\text{rango}(A^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (n-2)\cdot x_n\\
\text{rango}(A^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (n-3)\cdot x_n\\
&\vdots\\
\text{rango}(A^{n-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_n.
\end{align*}

Pero este es un sistema de ecuaciones de determinante $1$, así que su solución es única. Esto muestra que $(m_1,\ldots,m_n)=(m’_1,\ldots,m’_n)$, con lo cual se deduce que $J=J’$.

Como consecuencia de toda esta discusión, obtenemos de hecho lo siguiente.

Corolario. Dos matrices nilpotentes son semejantes si y sólo si tienen la misma forma canónica de Jordan. Distintas formas canónicas de Jordan dan distintas clases de semejanza.

Una receta para encontrar la forma canónica de Jordan de nilpotentes

La demostración anterior no sólo demuestra la unicidad de la forma canónica de Jordan. Además, nos dice exactamente cómo obtenerla. Para ello:

  1. Calculamos todas las potencias de $A$ hasta $n-1$.
  2. Usando reducción gaussiana (o de otro modo), calculamos el rango de cada una de estas potencias.
  3. Resolvemos el sistema de ecuaciones en variables $x_i$ de la sección anterior.
  4. La forma canónica de Jordan de $A$ tiene $x_i$ bloques de tamaño $i$.

Ejemplo. Consideremos la siguiente matriz en $M_7(\mathbb{R})$: $$C=\begin{pmatrix}-27 & 266 & 1 & -37 & 135 & -125 & 53\\217 & -1563 & 118 & 33 & -1251 & 1020 & 361\\236 & -1784 & 188 & 16 & -1512 & 1234 & 585\\11 & -10 & -25 & 12 & 28 & -29 & -80\\-159 & 1133 & -114 & -98 & 878 & -690 & -232\\197 & -1409 & 88 & -19 & -1151 & 952 & 348\\-230 & 1605 & -179 & -100 & 1316 & -1031 & -440\end{pmatrix}$$

Sus números son muy complicados, sin embargo, nos podemos auxiliar de herramientas computacionales para encontrar sus potencias. Soprendenemente esta es una matriz nilpotente de índice $3$ pues:

$$C^2=\begin{pmatrix}0 & -10209 & -3403 & -6806 & -6806 & 10209 & 0\\0 & 14691 & 4897 & 9794 & 9794 & -14691 & 0\\0 & 2739 & 913 & 1826 & 1826 & -2739 & 0\\0 & 7221 & 2407 & 4814 & 4814 & -7221 & 0\\0 & -14193 & -4731 & -9462 & -9462 & 14193 & 0\\0 & 10956 & 3652 & 7304 & 7304 & -10956 & 0\\0 & -11952 & -3984 & -7968 & -7968 & 11952 & 0\end{pmatrix}$$

y

$$C^3=\begin{pmatrix}0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\end{pmatrix}.$$

Usando reducción gaussiana, o herramientas computacionales, obtenemos que el rango de $C$ es $4$ y que el rango de $C^2$ es $2$. A partir de $j\geq 3$ obtenemos que $\text{rango}(C^j)=0$. Si quieremos encontrar la forma canónica de Jordan de $C$, necesitamos entonces resolver el siguiente sistema de ecuaciones, que nos dirá cuántos bloques $x_i$ de tamaño $i$ hay:

\begin{align*}
7&= x_1+2x_2+3x_3+4x_4+5x_5+6x_6+7x_7\\
4&=x_2 + 2x_3 + 3x_4+4x_5+5x_6+6x_7\\
2&= x_3 + 2x_4+3x_5+4x_6+5x_7 \\
0&= x_4+2x_5+3x_6+4x_7\\
0&= x_5+2x_6+3x_7\\
0&= x_6+2x_7\\
0&= x_7
\end{align*}

Para resolverlo lo mejor es proceder «de abajo hacia arriba». Las últimas cuatro ecuaciones nos dicen que $x_7=x_6=x_5=x_4=0$. Así, el sistema queda un poco más simple, como:

\begin{align*}
7&= x_1+2x_2+3x_3\\
4&=x_2 + 2x_3\\
2&= x_3.
\end{align*}

De la última igualdad, tenemos $x_3=2$, lo que nos dice que la forma canónica de Jordan tendría dos bloques de tamaño $3$. Sustituyendo en la penúltima igualdad obtenemos que $4=x_2+4$, de donde $x_2=0$. Así, no tendremos ningún bloque de tamaño $2$. Finalmente, sustituyendo ambos valores en la primera igualdad obtenemos que $7=x_1+0+6$. De aquí obtenemos $x_1=1$, así que la forma canónica de Jordan tendrá un bloque de tamaño $1$. En resumen, la forma canónica de Jordan es la matriz $$\begin{pmatrix} J_{0,1} & 0 & 0 \\ 0 & J_{0,3} & 0 \\ 0 & 0 & J_{0,3}\end{pmatrix}.$$ Explícitamente, esta es la siguiente matriz:

$$\begin{pmatrix} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Para verla un poco más «como de bloques» la podemos reescribir de la siguiente manera:

$$\left(\begin{array}{c|ccc|ccc} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

$\square$

Más adelante…

Hemos demostrado la existencia y unicidad de la forma canónica de Jordan para matrices nilpotentes. Este es un resultado interesante por sí mismo. Sin embargo, también es un paso intermedio para un resultado más general. En las siguientes entradas hablaremos de una versión más general del teorema de Jordan, para matrices tales que su polinomio característico se descomponga totalmente en el campo en el que estemos trabajando.

Tarea moral

  1. Considera la siguiente matriz: $$M=\begin{pmatrix}11 & 11 & -11 & -11\\-1 & -1 & 1 & 1\\3 & 3 & -3 & -3\\7 & 7 & -7 & -7\end{pmatrix}.$$
    1. Muestra que $M$ es una matriz nilpotente y determina su índice.
    2. ¿Cuál es la forma canónica de Jordan de $M$?
  2. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{5}(F)$ de índice $2$.
  3. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{7}(F)$ de rango $5$.
  4. Encuentra de manera explícita la inversa de la siguiente matriz en $M_n(\mathbb{R})$ y usa esto para dar de manera explícita la solución al sistema de ecuación en las variables $x_i$ que aparece en la entrada: $$\begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 0 & 0 & 1 & \cdots & n-3 & n-2 \\ & \vdots & & \ddots & & \vdots\\ 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & \cdots & 0 & 1\end{pmatrix}.$$
  5. Sea $A$ una matriz nilpotente en $M_n(\mathbb{R})$. Muestra que las matrices $A$ y $5A$ son similares entre sí.

Entradas relacionadas

Álgebra Lineal II: Aplicaciones del teorema de Cayley-Hamilton

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya enunciamos y demostramos el teorema de Cayley-Hamilton. Veremos ahora algunas aplicaciones de este resultado.

Encontrar inversas de matrices

El teorema de Cayley-Hamilton nos puede ayudar a encontrar la inversa de una matriz haciendo únicamente combinaciones lineales de potencias de la matriz. Procedemos como sigue. Supongamos que una matriz $A$ en $M_n(F)$ tiene polinomio característico $$\chi_A(x)=x^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0.$$ Como $a_0=\det(A)$, si $a_0=0$ entonces la matriz no es invertible. Supongamos entonces que $a_0\neq 0$. Por el teorema de Cayley-Hamilton tenemos que $$A^n+a_{n-1}A^{n-1}+\ldots+a_1A+a_0I_n=O_n.$$ De aquí podemos despejar la matriz identidad como sigue:

\begin{align*}
I_n&=-\frac{1}{a_0}\left( A^n+a_{n-1}A^{n-1}+\ldots+a_1A \right)\\
&=-\frac{1}{a_0}\left(A^{n-1}+a_{n-1}A^{n-2}+\ldots+a_1 I\right) A.
\end{align*}

Estos cálculos muestran que la inversa de $A$ es la matriz $$ -\frac{1}{a_0}\left(A^{n-1}+a_{n-1}A^{n-1}+\ldots+a_1 I\right).$$

Ejemplo. Supongamos que queremos encontrar la inversa de la siguiente matriz $$A=\begin{pmatrix} 2 & 2 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$ Su polinomio característico es $\lambda^3-2\lambda^2 – \lambda +2$. Usando la fórmula de arriba, tenemos que

$$A^{-1}=-\frac{1}{2}(A^2-2A-I).$$

Necesitamos entonces $A^2$, que es:

$$A^2=\begin{pmatrix} 4 & 2 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}.$$

De aquí, tras hacer las cuentas correspondientes, obtenemos que:

$$A^{-1}=\begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 0 & -1 & 0 \\ -\frac{1}{2} & 0 & 1\end{pmatrix}.$$

Puedes verificar que en efecto esta es la inversa de $A$ realizando la multiplicación correspondiente.

$\square$

El método anterior tiene ciertas ventajas y desventajas. Es práctico cuando es sencillo calcular el polinomio característico, pero puede llevar a varias cuentas. En términos de cálculos, en general reducción gaussiana funciona mejor para matrices grandes. Como ventaja, el resultado anterior tiene corolarios teóricos interesantes. Un ejemplo es el siguiente resultado.

Corolario. Si $A$ es una matriz con entradas en los enteros y determinante $1$ ó $-1$, entonces $A^{-1}$ tiene entradas enteras.

Encontrar el polinomio mínimo de una matriz

Otra de las consecuencias teóricas del teorema de Cayley-Hamilton con aplicaciones prácticas ya la discutimos en la entrada anterior.

Proposición. El polinomio mínimo de una matriz (o transformación lineal) divide a su polinomio característico.

Esto nos ayuda a encontrar el polinomio mínimo de una matriz: calculamos el polinomio característico y de ahí intentamos varios de sus divisores polinomiales para ver cuál de ellos es el de grado menor y que anule a la matriz. Algunas consideraciones prácticas son las siguientes:

  • Si el polinomio característico se factoriza totalmente sobre el campo y conocemos los eigenvalores, entonces conocemos todos los factores lineales. Basta hacer las combinaciones posibles de factores lineales para encontrar el polinomio característico (considerando posibles multiplicidades).
  • Además, para cada eigenvalor $\lambda$ ya vimos que $\lambda$ debe ser raíz no sólo del polinomio característico, sino también del polinomio mínimo. Así, debe aparecer un factor $x-\lambda$ en el polinomio mínimo para cada eigenvalor $\lambda$.

Ejemplo. Encontramos el polinomio mínimo de la siguiente matriz:

$$B=\begin{pmatrix} 2 & 0 & 4 \\ 3 & -1 & -1 \\0 & 0 & 2 \end{pmatrix}.$$

Una cuenta estándar muestra que el polinomio característico es $(x-2)^2(x+1)$. El polinomio mínimo debe ser mónico, dividir al polinomio característico y debe contener forzosamente a un factor $(x-2)$ y un factor $(x+1)$. Sólo hay dos polinomios con esas condiciones: $(x-2)(x+1)$ y $(x-2)^2(x+1)$. Si $(x-2)(x+1)$ anula a $B$, entonces es el polinomio mínimo. Si no, es el otro. Haciendo las cuentas:

\begin{align*}
(B-2I_3)(B+I_3)&=\begin{pmatrix}0 & 0 & 4 \\ 3 & -3 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 4 \\ 3 & 0 & -1 \\ 0 & 0 & 3 \end{pmatrix}\\
&=\begin{pmatrix} 0 & 0 & 12 \\ 0 & 0 & 12 \\ 0 & 0 & 0 \end{pmatrix}.
\end{align*}

Así, $(x-2)(x+1)$ no anula a la matriz y por lo tanto el polinomio mínimo es justo el polinomio característico $(x-2)^2(x+1)$.

$\square$

Ejemplo. Consideremos la matriz $C=\begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Su polinomio característico es $(x-3)^3$. Así, su polinomio mínimo es $x-3$, $(x-3)^2$ ó $(x-3)^3$. Nos damos cuenta rápidamente que $x-3$ sí anula a la matriz pues $A-3I_3=O_3$. De este modo, el polinomio mínimo es $x-3$.

$\square$

Clasificación de matrices con alguna condición algebraica

Si sabemos que una matriz cumple una cierta condición algebraica, entonces el teorema de Cayley-Hamilton puede ayudarnos a entender cómo debe ser esa matriz, es decir, a caracterizar a todas las matrices que cumplan la condición.

Por ejemplo, ¿quienes son todas las matrices en $M_n(\mathbb{R})$ que son su propia inversa? La condición algebraica es $A^2=I_2$. Si el polinomio característico de $A$ es $x^2+bx+c$, entonces por el teorema de Cayley-Hamilton y la hipótesis tenemos que $O_2=A^2+bA+cI_2=bA+(c+1)I_2$. De aquí tenemos un par de casos:

  • Si $b\neq 0$, podemos despejar a $A$ como $A=-\frac{c+1}{b}I_2$, es decir $A$ debe ser un múltiplo de la identidad. Simplificando la notación, $A=xI_2$. Así, la condición $A^2=I_2$ se convierte en $x^2I_2=I_2$, de donde $x^2=1$ y por lo tanto $x=\pm 1$. Esto nos da las soluciones $A=I_2$ y $A=-I_2$.
  • Si $b=0$, entonces $O_2=(c+1)I_2$, de donde $c=-1$. De este modo, el polinomio característico es $x^2-1=(x+1)(x-1)$. Se puede demostrar que aquí las soluciones son las matices semejantes a la matriz $\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}$, y sólo esas.

Más adelante…

El teorema de Cayley-Hamilton es un resultado fundamental en álgebra lineal. Vimos dos demostraciones, pero existen varias más. Discutimos brevemente algunas de sus aplicaciones, pero tiene otras tantas. De hecho, más adelante en el curso lo retomaremos para aplicarlo nuevamente.

Por ahora cambiaremos ligeramente de tema. De manera muy general, veremos cómo llevar matrices a otras matrices que sean más simples. En las siguientes entradas haremos esto mediante similaridades de matrices. Más adelante haremos esto mediante congruencias de matrices. Hacia la tercer unidad del curso encontraremos un resultado aún más restrictivo, en el que veremos que cualquier matriz simétrica real puede ser llevada a una matriz diagonal mediante una matriz que simultáneamente da una similaridad y una congruencia.

Tarea moral

  1. Encuentra el polinomio mínimo de la matriz $\begin{pmatrix}-3 & 1 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{pmatrix}$
  2. Encuentra la inversa de la siguiente matriz usando las técnica usada en esta entrada: $$\begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & 2\\ 2 & 2 & 1 \end{pmatrix}.$$
  3. Demuestra el corolario de matrices con entradas enteras. De hecho, muestra que es un si y sólo si: una matriz invertibles con entradas enteras cumple que su inversa tiene únicamente entradas enteras si y sólo si su determinante es $1$ ó $-1$.
  4. ¿Cómo son todas las matrices en $M_2(\mathbb{R})$ tales que $A^2=A$?
  5. ¿Cómo son todas las matrices en $M_3(\mathbb{R})$ de determinante $0$ tales que $A^3=O_3$?

Entradas relacionadas

Álgebra Lineal II: Adjunta de una transformación lineal

Por Ayax Calderón

Introducción

La adjunta de una transformación lineal

Sea $(V,\langle , \rangle)$ un espacio euclidiano de dimensión finita. Sea $T:V \to V$ una transformación lineal.
Para cada $y\in V$, la transformación $x\mapsto \langle T(x),y\rangle\in V^*$. Del teorema de representación de Riesz se sigue que existe un único vector $T^*(y)\in V$ tal que
$$\langle T(x),y\rangle=\langle T^*(y),x\rangle =\langle x, T^*(y)\rangle \hspace{2mm} \forall x\in V.$$

De esta manera obtenemos una transformación $T^*:V\to V$ caracterizada de manera única por la siguiente condición:
$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle \hspace{2mm} \forall x,y\in V.$$

Resulta que la transformación $T^*$ es lineal y la llamaremos la adjunta de $T$. Ahora sí, ya estamos listos para enunciar el siguiente teorema.

Teorema. Sea $(V,\langle , \rangle)$ un espacio euclidiano de dimensión finita. Para cada transformación lineal $T:V\to V$ existe una única transformación $T^*:V\to V$, llamada la adjunta de $T$, tal que para cualesquiera $x,y\in V$ se tiene que
$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle.$$

Notemos que para cualesquiera $x,y\in V$ tenemos que
$$\langle y,T(x)\rangle=\langle T(x),y\rangle=\langle x,T^* (y)\rangle=\langle T^*(y),x\rangle =\langle y, (T^*)^*(x)\rangle.$$

Restando el último término del primero, se sigue que $T(x)-(T^*)^*(x)=0$, de manera que $$(T^*)^*=T,$$ por lo cual simplemente escribiremos $$T^{**}=T.$$

Por lo tanto, la función $T\to T^*$ es una transformación auto-inversa sobre $V$.

$\square$

La matriz de la transformación adjunta

Proposición. Sea $(V,\langle , \rangle)$ un espacio euclidiano de dimensión finita y sea $T:V\to V$ una transformación lineal. Sea $\mathcal{B}=(e_1,\dots, e_n)$ una base otronormal de $V$ y $A$ la matriz asociada $T$ con respecto a $\mathcal{B}$. Se tiene que la matriz asociada a $T^*$ con respecto a $\mathcal{B}$ es $^tA$.

Solución. Sea $B=[B_{ij}]$ la matriz asociada a $T^*$ con respecto a $\mathcal{B}$, por lo que para cada $i\in[1,n]$ se tiene
$$T^*(e_i)=\displaystyle\sum_{k=1}^n b_{ki}e_k.$$

En vista de que $$\langle T(e_i),e_j\rangle=\langle e_i,T^*(e_j) \rangle $$ y $T(e_i)=\displaystyle\sum _{k=1}^n a_{ki}e_k$, y como la base $\mathcal{B}$ es ortonormal, entonces $$\langle T(e_i),e_j\rangle=\displaystyle\sum_{k=1}^n a_{ki}\langle e_k,e_j\rangle=a_{ji}$$ y
$$\langle e_i,T^*(e_j)\rangle=\displaystyle\sum_{k=1}^n b_kj\langle e_i,e_k \rangle.$$

Como, por definición de transformación adjunta, se tiene que
$$\langle T(e_i),e_j\rangle =\langle e_i, T^*(e_j)\rangle,$$ entonces $b_{ij}=a_{ji}$, o bien $B= {}^tA$.


$\square$

Ejemplo de encontrar una adjunción

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Demuestra que si $T$ es una transformación lineal, entonces $T^*$ también lo es.
  2. Demuestra que si $T$ es una transformación lineal sobre un espacio euclidiano de dimensión finita, entonces $$\det T= \det T^*.$$
  3. Considera la transformación lineal $T:\mathbb{C}^3 \to \mathbb{C}^2$ cuya matriz asociada es
    $$\begin{pmatrix}
    1 & i & 0\\
    0 & 1+i & 3\end{pmatrix}.$$ Encuentra la matriz asociada a $T^*$.

Entradas relacionadas

Álgebra Lineal I: Matrices invertibles

Por Julio Sampietro

Introducción

Siguiendo el hilo de la entrada pasada, por la correspondencia entre transformaciones lineales y matrices así como la composición y su producto, podemos traducir el problema de invertibilidad de transformaciones lineales en términos de matrices, a las que llamaremos matrices invertibles. Es decir, si tenemos $\varphi: F^n\to F^n$, $\psi: F^n\to F^n$ transformaciones lineales tales que

\begin{align*}
\varphi\circ \psi= Id_{F^n}, \hspace{2mm} \psi \circ \varphi=Id_{F^n}
\end{align*}

¿cómo se traduce esto en términos de sus matrices asociadas?

Veremos que la respuesta yace en matrices que tienen inverso multiplicativo, a diferencia de un campo $F$, donde todo $x$ tiene un $x^{-1}$, cuando trabajamos con matrices no todas tienen una matriz inversa y las que si son de especial importancia.

Definición de matrices invertibles

Definición. Decimos que una matriz $A\in M_n (F)$ es invertible o bien no singular si existe una matriz $B\in M_n(F)$ tal que

\begin{align*}
AB=BA=I_n
\end{align*}

Ejemplo. Veamos que la matriz $A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ es invertible. Para ello, tenemos que exhibir una matriz $B$ tal que $AB=I_2=BA$. Proponemos a la matriz $B=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Haciendo la multiplicación con la regla del producto, tenemos que

\begin{align*}
AB&=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + 1 \cdot 0 & 1 \cdot (-1) + 1\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot (-1)+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

¡Aún no hemos terminado! Para satisfacer la definición, también tenemos que mostrar que $BA=I_2$:

\begin{align*}
BA&=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + (-1) \cdot 0 & 1 \cdot 1 + (-1)\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot 1+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

Ahora sí, podemos concluir que la matriz $A$ es invertible.

$\square$

Observación. Una primera cosa que hay que notar es que en la definición se pide que tanto $AB$ como $BA$ sean la matriz identidad $I_n$. Es importante verificar ambas, pues como sabemos, el producto de matrices no siempre conmuta.

Otra observación importante es que si la matriz $B$ como en la definición existe, entonces es necesariamente única: En efecto, si $C\in M_n(F)$ es otra matriz tal que

\begin{align*}
AC=CA=I_n,
\end{align*}

entonces manipulando las expresiones en juego:

\begin{align*}
C&= I_n C \\&= (BA)C\\
&=B(AC)\\&= B I_n \\&=B.
\end{align*}

Entonces no hay ambigüedad al hablar de la matriz inversa de $A$. Ya no tiene mucho sentido usar una letra diferente para ella. Simplemente la denotaremos por $A^{-1}$.

Primeras propiedades de matrices invertibles

Resumimos algunas propiedades de las matrices invertibles en la siguiente proposición.

Proposición.

  1. Para $c\in F$ es un escalar distinto de cero, se tiene que $c I_n$ es invertible.
  2. Si $A$ es invertible, entonces $A^{-1}$ también lo es, y $\left(A^{-1}\right)^{-1}=A$
  3. Si $A,B\in M_n(F)$ son invertibles, entonces $AB$ también lo es y

    \begin{align*}
    \left(AB\right)^{-1}= B^{-1}A^{-1}.
    \end{align*}

Demostración:

  1. Como $c\neq 0$ y $F$ es un campo, entonces existe $c^{-1}$ en $F$ y así $c^{-1} I_n$ satisface (por la compatibilidad del producto por escalares de esta entrada)

    \begin{align*}
    (cI_n)\cdot (c^{-1}I_n)&= (cc^{-1})\cdot (I_n I_n)\\&= I_n\\
    &= (c^{-1} c) \cdot(I_n)\\&= (c^{-1} I_n) \cdot (c I_n).
    \end{align*}
    Luego $c^{-1}I_n$ es la matriz inversa de $c I_n$.
  2. Para evitar alguna confusión con la notación, denotemos a $A^{-1}$ por $B$. Así

    \begin{align*}
    AB=BA=I_n.
    \end{align*}
    Luego $B$ es invertible y su inversa es $A$.
  3. Si $A,B\in M_n(F)$ son invertibles entonces existen $A^{-1}$ y $B^{-1}$. Sea $C= B^{-1} A^{-1}$. Así

    \begin{align*}
    (AB)C=ABB^{-1}A^{-1}= A I_n A^{-1}= AA^{-1} =I_n.
    \end{align*}
    Y análogamente

    \begin{align*}
    C(AB)= B^{-1}A^{-1} A B= B^{-1} I_n B= B^{-1} B=I_n.
    \end{align*}
    Mostrando así que $AB$ es invertible con inversa $C$.

$\square$

Observación. Es importante notar que el ‘sacar inverso’ invierte el orden de los productos. Es decir, en el producto $AB$ aparece primero $A$ y luego $B$, mientras que el inverso $(AB)^{-1}$ es $B^{-1}A^{-1}$, en donde aparece primero $B^{-1}$ y luego $A^{-1}$. Esto es muy importante en vista de que la multiplicación de matrices no es conmutativa y por lo tanto en general

\begin{align*}
(AB)^{-1}\neq A^{-1} B^{-1}.
\end{align*}

También es importante notar que si bien la invertibilidad se preserva bajo productos (el producto de matrices invertibles es invertible) ésta no se preserva bajo sumas. Por ejemplo, tanto $I_n$ como $-I_n$ son invertibles en virtud del teorema, sin embargo su suma es $I_n+(-I_n)=O_n$, que no es invertible.

Ya hablamos de cuándo una matriz $A$ en $M_n(F)$ es invertible. ¿Qué sucede si consideramos a todas las matrices invertibles en $M_n(F)$? Introducimos el siguiente objeto de importancia fundamental en muchas áreas de las matemáticas:

Definición. El conjunto de matrices invertibles $A\in M_n(F)$ es llamado el grupo lineal general y es denotado por $GL_n(F)$.

En la tarea moral hay un ejercicio en el que se pide mostrar que $GL_n(F)$ es un grupo bajo la operación de producto de matrices. En realidad en este curso no hablaremos mucho de $GL_n(F)$ como grupo. Pero es importante que sepas de su existencia y que conozcas su notación, pues será importante en tu preparación matemática futura.

Invirtiendo matrices

Si bien el concepto de invertibilidad es sencillo de introducir, gran parte de la herramienta para determinar (irónicamente, a través de los determinantes) la invertibilidad de una matriz o propiedades relacionadas (por ejemplo, una computación efectiva de matrices inversas) todavía no está a nuestra disposición. Por tanto, lo único que podemos hacer es uso de ‘fuerza bruta’ para encontrar las inversas de matrices invertibles, y eso haremos en los siguientes ejemplos para al menos familiarizarnos con los cálculos.

Problema. Sea la matriz $A=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}$. ¿Es $A$ invertible? De serlo, calcula su inversa.

Solución. Como mencionamos, con la teoría que hemos desarrollado hasta ahora solo podemos atacar el problema directamente. Buscamos una matriz

\begin{align*}
B= \begin{pmatrix} a & b & c\\ x & y & z\\ u & v & w\end{pmatrix}
\end{align*}

tal que $AB=I_3=BA$. Usando la regla del producto, calculamos

\begin{align*}
AB=\begin{pmatrix} x & y & z\\ a & b &c \\ u & v & w \end{pmatrix}.
\end{align*}

Igualando esta matriz a $I_3$ obtenemos las condiciones

\begin{align*}
\begin{cases} x=b=w=1\\ y=z=a=c=u=v=0. \end{cases}
\end{align*}

Esto muestra que una buena candidata a ser la inversa de $A$ es la matriz

\begin{align*}
A^{-1}= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}.
\end{align*}

Falta un paso más: hay que verificar que $BA=I_3$. Afortunadamente esto es cierto. Su verificación queda como tarea moral.

$\square$

Resaltamos que el método usado no es eficiente, y tampoco es general (pues funcionó solo por la particularidad de la matriz $A$). Dicho esto, exhibimos un método que puede ser útil cuando la matriz por invertir es suficientemente ‘bonita’ (por ejemplo si tiene muchos ceros).

Sea $A\in M_n(F)$ una matriz y $b\in F^n$ un vector. Supongamos que el sistema $AX=b$ en el vector variable $X$ tiene una única solución $X\in F^n$. Un resultado que probaremos más adelante nos dice que entonces $A$ es invertible y que la solución es $X=A^{-1}b$ (es decir, que podemos ‘despejar’ $X$ multiplicando por $A^{-1}$ del lado izquierdo ambos lados). Así, si el sistema resulta fácil de resolver, podemos obtener una expresión de $A^{-1}$ en términos de cualquier vector $b$, y ésto basta para determinar a $A^{-1}$. En la práctica, la resolución del sistema mostrará que

\begin{align*}
A^{-1} b = \begin{pmatrix}
c_{11}b_1 + c_{12} b_2 +\dots + c_{1n}b_n\\
c_{21}b_1+c_{22}b_2 + \dots + c_{2n} b_n\\
\vdots\\
c_{n1} b_1 + c_{n2} b_2 +\dots + c_{nn}b_n
\end{pmatrix}
\end{align*}

para algunos escalares $c_{ij}$ independientes de $b$. Escogiendo $b=e_i$ el $i-$ésimo vector de la base canónica, el lado izquierdo es simplemente la $i-$ésima columna de $A^{-1}$ y el lado derecho es la $i-$ésima columna de $[c_{ij}]$. Como ambas matrices son iguales columna a columna, deducimos que

\begin{align*}
A^{-1}=[c_{ij}]
\end{align*}

Subrayamos que, una vez el sistema resuelto, el resto es relativamente sencillo pues solo es fijarnos en los coeficientes. La dificultad reside entonces en resolver el sistema $AX=b$, y la dificultad de este sistema depende fuertemente de la matriz $A$, por lo que nos limitaremos por lo pronto a ejemplos sencillos.

Retomemos el problema anterior para ver cómo funciona este método recién expuesto.

Problema. Resuelve el problema anterior usando el método que acabamos de describir.

Solución. Sea $b=\begin{pmatrix} b_1 \\ b_2 \\ b3 \end{pmatrix}\in F^3$, tratemos de resolver $AX=b$ para $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. El sistema se escribe entonces

\begin{align*}
\begin{pmatrix} b_1 \\ b_2 \\ b_3\end{pmatrix}=AX= \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} x_2 \\ x_1 \\ x_3\end{pmatrix}.
\end{align*}

O equivalentemente

\begin{align*}
\begin{cases} x_1=b_2\\ x_2= b_1 \\ x_3=b_3.\end{cases}
\end{align*}

Como el sistema siempre se puede resolver dado $b\in F^3$, podemos afirmar que $A$ es invertible, y tenemos que

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1\\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} b_2\\ b_1 \\ b_3\end{pmatrix}= \begin{pmatrix} 0\cdot b_1 + 1\cdot b_2 + 0 \cdot b_3\\ 1\cdot b_1 +0\cdot b_2 +0\cdot b_3\\ 0\cdot b_1 + 0\cdot b_2 +1\cdot b_3\end{pmatrix}. \end{align*}

Fijándonos en los coeficientes del lado derecho, vemos que la primera fila de $A^{-1}$ es $(0 \ 1 \ 0)$, la segunda $(1\ 0 \ 0)$ y la tercera $(0\ 0\ 1)$. Luego

\begin{align*}
A^{-1}=\begin{pmatrix}
0 & 1& 0\\
1 & 0&0\\
0 & 0 & 1\end{pmatrix}\end{align*}

$\square$

Problema. Sea la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 1 &1 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 1\end{pmatrix} \end{align*}

Demuestre que $A$ es invertible y encuentre su inversa.

Solución. Usamos el mismo método. Sea $b= \begin{pmatrix} b_1\\ b_2 \\ b_3 \\ b_4 \end{pmatrix}\in F^4$ y resolvemos $AX=b$ con $X=\begin{pmatrix} x_1\\ x_2 \\ x_3 \\ x_4\end{pmatrix}$. Esta vez el sistema asociado es el siguiente (omitimos los cálculos de la regla del producto):

\begin{align*}
\begin{cases}
x_1+x_2+x_3+x_4=b_1\\
x_2+x_3+x_4=b_2\\
x_3+x_4=b_3\\
x_4=b_4
\end{cases}.
\end{align*}

Este sistema lo podemos resolver de manera más o menos sencilla: De la última ecuación tenemos que $x_4=b_4$, luego sustituyendo en la penúltima obtenemos $x_3+b_4=b_3$ o bien $x_3=b_3-b_4$. Sustituyendo esto a su vez en la segunda ecuación obtenemos que $x_2+b_3=b_2$, es decir $x_2=b_2-b_3$ y finalmente $x_1= b_1-b_2$. Así el sistema siempre tiene solución y estas están dadas por

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4\end{pmatrix} = \begin{pmatrix} b_1-b_2\\ b_2-b_3\\ b_3-b_4\\ b_4 \end{pmatrix}.
\end{align*}

De esto se sigue que (fijándonos en los coeficientes) la primera fila de $A^{-1}$ es $(1\ -1 \ 0 \ 0)$, y análogamente obtenemos las demás, de manera que

\begin{align*}
A^{-1}=\begin{pmatrix}
1 & -1 & 0 &0\\
0 & 1 & -1 & 0\\
0&0 &1 &-1\\
0 & 0 & 0 &1
\end{pmatrix}.
\end{align*}

Un buen ejercicio es verificar que en efecto con esta inversa propuesta se cumple que $AA^{-1}=I_4=A^{-1}A$.

$\square$

Matrices invertibles diagonales

Concluimos esta sección con un último problema de matrices invertibles. Para resolverlo no usamos el método expuesto, sino un argumento particular para las matrices diagonales.

Problema. Demuestre que una matriz diagonal $A\in M_n(F)$ es invertible si y sólo si todas sus entradas en la diagonal son distintas de cero. Más aún, de ser el caso, $A^{-1}$ también es diagonal.

Solución. Sea $A=[a_{ij}]\in M_n(F)$ una matriz diagonal y $B=[b_{ij}]\in M_n(F)$ cualquier matriz. Usando la regla del producto tenemos que

\begin{align*}
(AB)_{ij}= \sum_{k=1}^{n} a_{ik} b_{kj}.
\end{align*}

Como $a_{ik}=0$ para $k\neq i$ (por ser $A$ diagonal) muchos de los términos en la suma desaparecen y nos quedamos con

\begin{align*}
(AB)_{ij}= a_{ii} b_{ij}
\end{align*}

y de manera similar se puede verificar que

\begin{align*}
(BA)_{ij}=a_{jj}b_{ij}.
\end{align*}

Aprovechemos estas observaciones para proponer a la inversa de $A$.

Si $a_{ii}\neq 0$ para todo $i\in \{1,\dots, n\}$ entonces podemos considerar a $B$ como la matriz diagonal con entradas $b_{ii}=\frac{1}{a_{ii}}$. Las fórmulas que acabamos de calcular nos dan que $AB=BA=I_n$ y así $A$ es invertible y su inversa $B$ es diagonal.

Conversamente, supongamos que $A$ es invertible y diagonal. Así, existe una matriz $B$ tal que $AB=BA=I_n$. Luego para toda $i\in \{1, \dots, n\}$ se cumple

\begin{align*}
1= (I_n)_{ii}= (AB)_{ii}= a_{ii}b_{ii}
\end{align*}

Así $a_{ii}\neq 0$ para $i\in \{1, \dots, n\}$ y así todas las entradas en la diagonal son distintas de cero.

$\square$

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  • Aunque para determinar inversos de matrices generales necesitamos desarrollar más teoría, las matrices invertibles de $2\times 2$ son fáciles de entender. Muestra que si se tiene una matriz $A$ en $M_2(F)$ con entradas $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ y $ad-bc\neq 0$, entonces la matriz $$B=\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$ es la inversa de $A$. Para ello verifica explícitamente usando la regla del producto que tanto $AB=I_2$, como que $BA=I_2$.
  • En el primer problema de invertir matrices, muestra que $BA$ también es $I_3$.
  • La matriz $$A=\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \sqrt{2}\end{pmatrix}$$ es invertible. Encuentra su inversa.
  • Verifica que $GL_n(F)$ es en efecto un grupo bajo la operación de multiplicación de matrices. Debes mostrar que:
    • El producto de dos matrices invertibles es invertible.
    • Existe un neutro multiplicativo $E$ (¿quién sería?).
    • Para matriz $A$ en $GL_n(F)$ existe una matriz $B$ en $GL_n(F)$ tal que $AB=BA=E$.
  • Explica por qué la matriz $O_n$ no es invertible. Explica por que si una matriz en $M_n(F)$ tiene una columna (o fila) tal que todas sus entradas sen iguales a $0$, entonces la matriz no es invertible. Este ejercicio lo puedes hacer directamente de la definición, sin tener que recurrir a herramientas más fuertes.
  • Generaliza el penúltimo problema a una matriz de tamaño $n\times n$ con puros unos sobre y por encima de la diagonal, es decir, para la cual $[a_{ij}]=1$ si $j\geq i$ y $0$ en otro caso.

Más adelante…

En esta entrada hablamos del concepto de matrices invertibles, vimos algunas de sus propiedades y esbozamos un método para encontrar la inversa de una matriz. Hay mejores métodos para encontrar dicha inversa. Uno de ellos, que es muy rápido, es el método de reducción gaussiana, que sirve para mucho más que invertir matrices. Para llegar a él, aún tenemos que desarrollar algo de teoría. Pero antes de eso, hablaremos de otros tipos particulares de matrices.

Entradas relacionadas

Álgebra Lineal I: Problemas de vectores, matrices y matrices como transformaciones lineales

Por Julio Sampietro

Introducción

Esta entrada consiste de puros problemas resueltos. Mediante la solución de estos problemas se puede poner en práctica los conceptos vistos anteriormente. En específico, aquí repasamos los conceptos de suma y producto escalar que vimos al inicio, así como la idea de la entrada anterior de relacionar a matrices con transformaciones lineales.

Problemas resueltos

Problema. Escribe de manera explicita la matriz $A=[a_{ij}]\in M_{2,3}(\mathbb{R})$ tal que

\begin{align*}
a_{ij}=\begin{cases} 1 & \text{si } i+j \text{ es par}\\ 0 & \text{si } i+j\text{ es impar}\end{cases}
\end{align*}

Solución. Tomemos como ejemplo a la entrada $a_{11}$. Como $1+1=2$ y $2$ es par, entonces la entrada $a_{11}$ será igual a $1$. De manera similar, obtenemos que $a_{12}=0$ pues $1+2=3$, que es un número impar. Siguiendo de este modo, obtenemos que
\begin{align*}
A=\begin{pmatrix} 1 & 0 & 1\\
0 & 1& 0 \end{pmatrix}.
\end{align*}

$\square$

Problema. Para cada par de matrices $(A,B)$, explica cuáles de las operaciones $A+2B$ y $A-B$ tienen sentido, y cuando tengan sentido, haz el cálculo.

  1. \begin{align*}
    A= \begin{pmatrix} 1 & 1& 0\\
    0& 1 & 1\\
    1 & 0 & 1 \end{pmatrix} \hspace{5mm} \text{y}\hspace{5mm} B=\begin{pmatrix} 1 &2 &3\\
    7 & 8 & 9\\
    4 & 5 & 6
    \end{pmatrix}.
    \end{align*}
  2. \begin{align*}
    A=\begin{pmatrix} 192450916\\1\\0 \\1\\2\end{pmatrix} \hspace{5mm} \text{y} \hspace{5mm} B= \begin{pmatrix} -1\\ 0 \\ 199\\ 2020\\ 0\\ 3\end{pmatrix}.
    \end{align*}
  3. \begin{align*}
    A= \begin{pmatrix} 1 & 1 & 2\\
    3 & 5 & 8 \end{pmatrix} \hspace{5mm} \text{y} \hspace{5mm}B= \begin{pmatrix} 1&-1 & 1\\ 2 & 4 & 8 \end{pmatrix}.
    \end{align*}

Solución:

  1. Dado que ambas matrices tienen el mismo tamaño, podemos calcular ambas operaciones. Tenemos que hacer las operaciones entrada a entrada. Así, la primer entrada de $A+2B$ será $1+2\cdot 1 = 3$. Haciendo lo mismo para cada entrada, obtenemos que
    \begin{align*}
    A+2B= \begin{pmatrix}
    3 & 5 & 6\\
    14 & 17 & 19\\
    9 & 10 & 13
    \end{pmatrix}
    \end{align*}
    De manera similar, obtenemos que \begin{align*}A-B=\begin{pmatrix} 0 &-1 & -3 \\ -7 & -7 & -8\\ -3 & -5 &-5\end{pmatrix}.\end{align*}
  2. En este caso las operaciones no tienen sentido, pues una matriz tiene 5 renglones y la otra 6.
  3. Observamos que ambas matrices tienen el mismo tamaño, por lo que sí podemos calcular ambas operaciones: \begin{align*}
    A+2B= \begin{pmatrix}
    3 & -1 & 4\\ 7 & 13 & 24
    \end{pmatrix} \hspace{5mm} \text{y} \hspace{5mm} A-B=\begin{pmatrix} 0 &2 & 1 \\ 1 & 1 & 0 \end{pmatrix}.\end{align*}

$\square$

Problema.

  • a) Considera la función $f: \mathbb{R}^2\to \mathbb{R}^2$ dada por
    \begin{align*}
    f(x,y)=(x^2,y^2).
    \end{align*}
    ¿Es $f$ una transformación lineal?
  • b) Responde la misma pregunta reemplazando $\mathbb{R}$ por $\mathbb{F}_2$.

Solución.

  • a) No, $f$ no es lineal. Vamos a ver un ejemplo en el cual no «abre sumas». Por un lado, tenemos por definición que $f(2,0)=(4,0)$. Por otro lado, tenemos que $(2,0)=(1,0)+(1,0)$ y que $f(1,0)+f(1,0)= (2,0)$. Es decir
    \begin{align*}
    f( (1,0)+(1,0) ) \neq f(1,0)+f(1,0).
    \end{align*}
  • b) Si cambiamos el dominio por $\mathbb{F}_2$ entonces $f$ sí es lineal. Lo podemos verificar:
    \begin{align*}
    f(x+y,z+w)&= \left((x+y)^2, (z+w)^2\right)\\
    &= \left( x^2+y^2+2xy, z^2+w^2+2wz\right)\\
    &=\left(x^2+y^2, z^2+w^2\right)\\
    &= \left(x^2,z^2\right)+\left(y^2,w^2\right)\\
    &= f(x,z)+f(y,w).
    \end{align*}
    En estas igualdades estamos usando que $\mathbb{F}_2$ es el campo con dos elementos, en donde se cumple que $2=1+1=0$, por lo cual $2xy=0=2wz$.
    Por otro lado, si $\alpha\in \mathbb{F}_2$ es un escalar, entonces
    \begin{align*}
    f(\alpha\cdot(x,y))&= f(\alpha x, \alpha y)\\
    &= (\alpha^2 x^2, \alpha^2 y^2)\\
    &= \alpha^2 \cdot (x^2,y^2)\\
    &= \alpha \cdot f(x,y).
    \end{align*}
    De nuevo estamos usando las propiedades del campo $\mathbb{F}_2$ en la última igualdad. Como $\mathbb{F}_2$ es el campo con $2$ elementos, los valores de $\alpha, x,y $ sólo pueden ser $0$ o $1$. Como $0^2=0$ y $1^2=1$, tenemos la igualdad. Concluimos que $f$ es lineal.
  • b)’ Otra manera de resolver el inciso b) es observar que en $\mathbb{F}_2$, $x^2=x$ para todo $x$ (esto lo usamos con $\alpha, x, y$ en la prueba pasada). Luego la función $f$ coincide con la función identidad, y es más fácil verificar que ésta es lineal.

$\square$

Problema. Da un ejemplo de un mapeo $f:\mathbb{R}^2\to \mathbb{R}$ que no sea lineal, pero que cumpla

\begin{align*}
f(av)= af(v)
\end{align*}

para cualesquiera $v\in \mathbb{R}^2$ y $a\in \mathbb{R}$.

Solución. Proponemos

\begin{align*}
f(x,y)= \begin{cases} x & \text{si } y=0\\
y & \text{si } y\neq 0
\end{cases}.
\end{align*}

Verifiquemos que $f$ cumple la compatibilidad con escalares. Primero, si $a=0$ es claro que

\begin{align*}
f(av) &= f(0,0)\\
&= 0\\
&= 0 \cdot f(v)\\
&= a\cdot f(v).
\end{align*}

Entonces si $a=0$ se cumple la condición. Ahora supongamos que $a\neq 0$, tenemos dos subcasos que verificar:

  • Si $v=(x,y)$ con $y\neq 0$, entonces $av= (ax,ay)$ y $ay\neq 0$ (pues el producto de reales no nulos es no nulo), por lo que
    \begin{align*}
    f(av)&= f(ax,ay)\\
    &= ay\\
    &= a\cdot f(x,y)=a\cdot f(v).
    \end{align*}
  • Si $v=(x,0)$ entonces $av= (ax,0)$ y así
    \begin{align*}
    f(av)&= f(ax,0)\\
    &= ax\\
    &= a\cdot f(x,0)=a\cdot f(v).
    \end{align*}

Así verificamos que $f$ cumple con la condición buscada. Para ver que $f$ no es lineal, observamos que

  • $f(1,0)=1$
  • $f(0,1)=1$
  • $f(1,1)=1$

Y así tenemos

\begin{align*}
f(0,1)+f(1,0)&= 2\\
&\neq 1\\
&= f(1,1)\\
&=f((1,0)+(0,1))
\end{align*}

Es decir, existen $u$ y $v$ vectores tales que $f(u+v)\neq f(u)+f(v)$, por lo que $f$ no es lineal.

$\square$

Entradas relacionadas