Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Teoría de los Conjuntos I: Isomorfismos

Introducción

En esta entrada hablaremos acerca de funciones biyectivas entre conjuntos ordenados, algunas con propiedades particulares a las que llamaremos isomorfismos.

Concepto

Definición: Sean $(A, \leq_A)$ y $(B, \leq_B)$ conjuntos parcialmente ordenados. Decimos que $A$ es isomorfo a $B$ si existe $f:A\to B$ una función biyectiva tal que $f$ preserva el orden, es decir,

$a_1\leq_A a_2$ si y sólo si $f(a_1)\leq_B f(a_2)$.

Ejemplo:

Sea $(A, \leq_A)$ un orden parcial. Resulta que $A$ es isomorfo a sí mismo, pues la función identidad $id_A:A\to A$ es una función biyectiva que preserva el orden en $A$. Efectivamente, la función $id_A$ es claramente biyectiva de $A$ en $A$ y, además, $a_1\leq_Aa_2$ si y sólo si $id_A(a_1)\leq_Aid_A(a_2)$.

$\square$

Teorema: Sean $(A, \leq_A)$ y $(B, \leq_B)$ conjuntos parcialmente ordenados y sea $f:A\to B$ un isomorfismo de $A$ en $B$. Entonces, $f^{-1}$ es un isomorfismo de $B$ en $A$.

Demostración:

Sean $(A, \leq_A)$ y $(B, \leq_B)$ conjuntos parcialmente ordenados y supongamos que $f:A\to B$ es un isomorfismo de $A$ en $B$, es decir, $f:A\to B$ es una función biyectiva y preserva el orden.

Dado que $f$ es una función biyectiva, entonces es invertible y más aún, $f^{-1}:B\to A$ es biyectiva. Resta ver que $f^{-1}$ preserva el orden, es decir,

$b_1\leq_B b_2$ si y sólo si $f^{-1}(b_1)\leq_A f^{-1}(b_2)$.

$\rightarrow$] Sean $b_1, b_2\in B$ tales que $b_1\leq_B b_2$. Entonces $(f\circ f^{-1})(b_1)\leq_B (f\circ f^{-1})(b_2)$, es decir, $f(f^{-1}(b_1))\leq_B f(f^{-1}(b_2))$ y dado que $f$ es isomorfismo, se tiene que $f^{-1}(b_1)\leq_A f^{-1}(b_2)$.

$\leftarrow$] Sean $b_1, b_2\in B$ tales que $f^{-1}(b_1)\leq_A f^{-1}(b_2)$. Entonces, $f (f^{-1}(b_1))\leq_B f( f^{-1}(b_2))$ y así $b_1\leq_B b_2$.

Por lo tanto, $f^{-1}$ es un isomorfismo de $B$ en $A$.

$\square$

Teorema: Sean $(A, \leq_A), (B, \leq_B)$ y $(C, \leq_C)$ conjuntos parcialmente ordenados y $f:A\to B$ y $g:B\to C$ isomorfismos de orden. Entonces, $g\circ f:A\to C$ es un isomorfismo de $A$ en $C$.

Demostración:

Sean $(A, \leq_A), (B, \leq_B)$ y $(C, \leq_C)$ conjuntos parcialmente ordenados y supongamos que $f$ es un isomorfismo de $A$ en $B$ y $g$ un isomorfismo de $B$ en $C$, es decir, $f:A\to B$ es una función biyectiva y preserva el orden y $g:B\to C$ es una función biyectiva y preserva el orden.

Dado que $f$ y $g$ son funciones biyectivas, entonces $g\circ f: A\to C$ es una función biyectiva. Resta ver que $g\circ f$ preserva el orden, es decir,

$a_1\leq_A a_2$ si y sólo si $g\circ f(a_1)\leq_C g\circ f(a_2)$.

$\rightarrow$] Sean $a_1, a_2\in A$ tales que $a_1\leq_A a_2$, entonces $f(a_1)\leq_B f(a_2)$. Luego, $f(a_1), f(a_2)\in B$ y como $f(a_1)\leq_B f(a_2)$ se sigue que $g(f(a_1))\leq_C g(f(a_2))$.

$\leftarrow$] Sean $a_1, a_2\in A$ tales que $g\circ f(a_1)\leq_C g\circ f(a_2)$, lo que es equivalente a $g(f(a_1))\leq_C g(f(a_2))$. Luego, como $g$ es un isomorfismo preserva el orden y, por ende, $f(a_1)\leq_Bf(a_2)$. Finalmente, como $f$ es isomorfismo preserva el orden y, en consecuencia, $a_1\leq_A a_2$.

Por lo tanto, $g\circ f$ es un isomorfismo de $A$ en $C$.

$\square$

Tarea moral

En la siguiente lista podrás fortalecer el contenido visto en esta sección:

  • Da un ejemplo de dos conjuntos ordenados $A$ y $B$, tales que existe $f:A\to B$ función biyectiva tal que si $a\leq_A b$, entonces $f(a)\leq_B f(b)$, pero que $f^{-1}$ no preserva el orden, es decir, existen $c,d\in B$ tal que $c\leq_B d$ pero $f^{-1}(c)\leq_A f^{-1}(d)$.

Más adelante

En la siguiente sección comenzaremos a construir al conjunto que conocemos como los naturales. Para ello será de gran importancia el contenido acerca de conjuntos ordenados que hemos visto hasta este momento.

Enlaces

Diferenciabilidad en el sentido complejo

Introducción

En esta entrada abordaremos el concepto de diferenciabilidad desde un enfoque complejo, es decir, definiremos lo que entenderemos por la derivada de una función compleja, lo cual nos será de gran utilidad para caracterizar a $\mathbb{C}$ y a las funciones complejas que posean derivadas en el sentido complejo, con lo cual quedará claro que la diferenciabilidad compleja es más estricta que la diferenciabilidad estudiada sobre $\mathbb{R}^2$.

Al hablar de funciones complejas y sus derivadas, algunos textos usan los términos «holomorfa» y «analítica» de forma indistinta, al referirse a la diferenciabilidad de dichas funciones, mientras que otros utilizan «diferenciable» o «complejo diferenciable» y «holomorfa» de forma indistinta. El uso del término «analítica» se debe al hecho de que una función «holomorfa» tiene una expansión en series de potencias locales en cada punto de su dominio. De hecho, esta propiedad de la expansión en series de potencias es una caracterización completa de las funciones holomorfas, la cual se discutirá a detalle más adelante. Por otra parte, el uso del término «complejo diferenciable» surge por las propiedades relacionadas con la derivada compleja. En otros textos más antiguos se suelen utilizar los términos «regular» y «monogénica».

Las funciones holomorfas son una generalización de los polinomios complejos, pero resultan ser objetos matemáticos mucho más flexibles que los polinomios. El conjunto de los polinomios complejos es cerrado bajo la suma y la multiplicación, mientras que el conjunto de las funciones holomorfas es cerrado no solo bajo la suma y la multiplicación, sino también bajo recíprocos, inversas, exponenciación, logarítmos, raíces cuadradas y muchas otras operaciones.

Otro término que suele usarse al hablar de funciones holomorfas es el de «conforme» o «trasformación conforme», el cual se debe a una propiedad geométrica muy importante de dichas funciones que estudiaremos a detalle en las siguientes entradas. La conformidad es una propiedad que permite modelar el flujo de los fluidos incompresibles y otros fenómenos físicos mediante las funciones holomorfas.

Definición 14.1. (Diferenciabilidad compleja.)
Sea $U\subset\mathbb{C}$ un conjunto abierto, sea $z_0 \in U$ y sea $f:U\to\mathbb{C}$ una función. Diremos que $f$ es complejo diferenciable o $\mathbb{C}$-diferenciable en $z_0$ si existe el límite: \begin{equation*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0}, \tag{14.1} \end{equation*} y en caso de existir, a dicho límite se le llama la derivada compleja, o simplemente la derivada, de $f$ en $z_0$, la cual se denota como $f'(z_0)$, $\frac{df}{dz}(z_0)$ o $\frac{d}{dz}f(z_0)$. Si $f$ posee derivada en todo punto de $U$, entonces diremos que $f$ es holomorfa en $U$ y denotamos al conjunto de funciones holomorfas en $U$ como: \begin{equation*} \mathcal{H}(U) = \{ f:U\to\mathbb{C} \,:\, f \,\, \text{es holomorfa en}\,\,U\}. \end{equation*}

Observación 14.1.
Para definir el concepto de derivada compleja no es necesario pedir que $U$ sea un conjunto abierto, sino que basta con considerar a $z_0 \in U \cap U’$ para que la definición anterior sea válida. Sin embargo esta generalización carece de importancia para la teoría, por lo que en general siempre que se hable de funciones diferenciables en el sentido complejo se considerarán conjuntos abiertos en $\mathbb{C}$.

Observación 14.2.
Tomando $z=z_0 + h$, podemos reescribir el límite (14.1) como: \begin{equation*} \lim_{h \to 0} \dfrac{f(z_0 + h) – f(z_0)}{h}, \tag{14.2} \end{equation*} notemos que tanto en (14.1) como en (14.2) se observa una definición similar a la de la derivada de una función real, sin embargo debe ser claro que en el caso real utilizando (14.1) tenemos que $x$ solo puede aproximarse a $x_0$ en dos direcciones, por la izquierda o por la derecha, análogamente si consideramos (14.2) tenemos que $h$ solo puede aproximarse a $0$ en dichas direcciones, mientras que en el caso complejo esto no se cumple, ya que sin importar cual de los dos límites utilicemos, es claro que $z$ puede aproximarse a $z_0$ y/o $h$ puede aproximarse a $0$ en más de dos direcciones, por lo que la existencia de la derivada de una función compleja no dependerá de la dirección en que $z$ se aproxime a $z_0$ y/o $h$ se aproxime a $0$, figura 61.

Figura 61: Gráfica de tres posibles direcciones por las que $z$ se aproxima a $z_0$ y $h$ se aproxima a $0$.

Definición 14.2. (Analicidad.)
Sean $S\subset \mathbb{C}$, $z_0$ un punto interior de $S$ y $f:S \to \mathbb{C}$ una función, entonces:

  1. Diremos que $f$ es analítica en $z_0 \in S$, si $f$ es holomorfa en $B(z_0, \rho)\subset S$ para algún $\rho>0$, es decir si existe algún $\rho$-vecindario de $z_0$, en $S$, donde $f$ es holomorfa.
  2. Si $S=\mathbb{C}$ y $f$ es una función definida en todo el plano complejo, entonces diremos que $f$ es entera si $f$ es holomorfa en $\mathbb{C}$.

Observación 14.3.
A partir de las definiciones 14.1 y 14.2 es claro que una función $f:U\to\mathbb{C}$, con $U$ un abierto, será analítica en $U$ si es analítica en cada punto $z\in U$, por lo que durante el curso utilizaremos de manera indistinta los términos analítica y holomorfa para referirnos a funciones $\mathbb{C}$-diferenciables en conjuntos abiertos $U$ en $\mathbb{C}$. Sin embargo más adelante veremos que la definición 13.2 será de gran utilidad al trabajar con funciones dadas por series de potencias.

Observación 14.4.
Notemos que si una función $f$ es holomorfa en un conjunto abierto $U\subset\mathbb{C}$, entonces $f'(z)$ define una función $f’ : U \to \mathbb{C}$. Si $f’$ es continua, entonces se dice que $f’$ es continuamente diferenciable. Si $f’$ es holomorfa en $U$, entonces se dice que $f$ es dos veces diferenciable en $U$. Continuando de esta manera, tenemos que una función $f$ tal que cada una de sus derivadas sucesivas es nuevamente diferenciable es llamada infinitamente diferenciable. Este concepto es de suma importancia pues de manera equivalente se puede definir a una función $f:U \to \mathbb{C}$ como analítica en $U$ si $f$ es infinitamente diferenciable en $U$. De hecho, más adelante veremos que a diferencia de las funciones reales, en el caso complejo la existencia de $f’$ garantiza la existencia de todas las derivadas de $f$, lo cual no sucede en el caso real, por ejemplo para la función $f(x) = |x|x$ es claro que $f'(x) = 2|x|$ existe para todo $x\in\mathbb{R}$, pero $f»$ no existe para $x=0$.

Ejemplo 14.1.
a) Sea $f:\mathbb{C} \to \mathbb{C}$ tal que $f(z)=c$, con $c\in\mathbb{C}$ constante, entonces $f$ es entera en $\mathbb{C}$.

Solución. Sea $z_0\in\mathbb{C}$, entonces: \begin{align*} f'(z_0) & = \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0}\\ &= \lim_{z \to z_0} \dfrac{c – c}{z-z_0}\\ & = 0. \end{align*}

b) Sea $f:\mathbb{C} \to \mathbb{C}$ tal que $f(z)=(3-i)z$, entonces $f$ es entera en $\mathbb{C}$.

Solución. Sea $z_0\in\mathbb{C}$, entonces: \begin {align*} f'(z_0) &= \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0}\\ &= \lim_{z \to z_0} \dfrac{(3-i)z – (3-i)z_0}{z-z_0}\\ & = 3-i. \end{align*}

c) Sea $f:\mathbb{C} \to \mathbb{C}$ tal que $f(z)=z^3$, entonces $f$ es entera en $\mathbb{C}$.

Solución. Sea $z_0\in\mathbb{C}$, entonces: \begin{align*} f'(z_0) &= \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0}\\ &= \lim_{z \to z_0} \dfrac{z^3 – z_0^3}{z-z_0}\\ & = \lim_{z \to z_0} \dfrac{(z-z_0)(z^2 + zz_0 + z_0^2)}{z-z_0}\\ &= 3z_0^2. \end{align*}

Del inciso a) tenemos que para $f(z) = c$, con $c\in\mathbb{C}$ constante, se tiene que $f'(z) = 0$, para todo $z\in\mathbb{C}$.

Por otra parte, del inciso b) tenemos que en general para $c\in\mathbb{C}$ constante, se cumple que si $f(z) = cz$, entonces $f'(z) = c$, para todo $z\in\mathbb{C}$.

Veamos ahora que el concepto de diferenciabilidad y analicidad no son intercambiables, es decir puede pasar que una función sea diferenciable en $z_0$, pero que no sea analítica en dicho punto.

Ejemplo 14.2.
Sea $f:\mathbb{C} \to \mathbb{C}$ dada por $f(z) = \overline{z}^2$. Veamos que dicha función es diferenciable en $z_0=0$ y que no es diferenciable en ningún $z_0\neq 0$, en particular veamos que $f$ no es analítica en $z_0=0$.

Solución. Si $z_0 = 0$, entonces: \begin{align*} f'(z_0) & = \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0}\\ & = \lim_{z \to 0} \dfrac{\overline{z}^2 – 0}{z-0}\\ & = \lim_{z \to 0} \dfrac{\overline{z}^2}{z}\\ & = 0. \end{align*} Veamos que si $z_0\neq 0$, entonces el límite que define a la derivada no existe. Primeramente, si nos aproximamos a $z_0$ a través de la recta que pasa por $0$ y que tiene dirección $z_0$, figura 62, es decir: \begin{equation*} z = tz_0, \quad t\in\mathbb{R}, \end{equation*} entonces: \begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 1} \dfrac{\overline{tz_0}^2 – \overline{z_0}^2}{tz_0-z_0}\\ & = \lim_{t \to 1} \dfrac{\left(\overline{z_0}\right)^2\left(t^2 – 1\right)}{z_0\left(t-1\right)}\\ & = \dfrac{\overline{z_0}^2}{z_0} \lim_{t \to 1} (t+1)\\ & = 2 \dfrac{\overline{z_0}^2}{z_0}. \end{align*} Por otra parte tenemos que si nos aproximamos a $z_0$ a través de la recta paralela al eje real que pasa por $z_0$, figura 62, es decir: \begin{equation*} z = z_0 + t, \quad t\in\mathbb{R}, \end{equation*} entonces:
\begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 0} \dfrac{\overline{(z_0+t)}^2 – \overline{z_0}^2}{t}\\ & =\lim_{t \to 0} \dfrac{(\overline{z_0}+t)^2 – \overline{z_0}^2}{t}\\ & =\lim_{t \to 0} \dfrac{2t\,\overline{z_0} +t^2}{t}\\ & = \lim_{t \to 0} \left(2\,\overline{z_0} + t\right)\\ & = 2\, \overline{z_0}. \end{align*} Desde que estos dos límites son distintos y $z_0\neq 0$ es arbitrario, concluimos que para $z_0 \neq 0$ la función no es diferenciable, por lo que en $z_0 = 0$ la función no es analítica ya que no existe vecindad de $z_0 = 0$ donde $f’$ exista.

Figura 62: Gráfica de las dos direcciones por las que $z$ se aproxima a $z_0$ en el ejemplo 14.2.

Ejemplo 14.3.
Veamos que las siguientes funciones no son analíticas en ningún punto de $\mathbb{C}$.
a) $f(z) = \overline{z}$.
b) $f(z) = \operatorname{Re}(z)$.

Solución. Sea $z_0\in\mathbb{C}$. Para verificar la afirmación basta con mostrar que el límite que define a la derivada no existe para todo $z_0\in\mathbb{C}$, para ello nos aproximaremos a $z_0$ a lo largo de las rectas utilizadas en el ejemplo 14.2, figura 62.

a) Si nos aproximamos a $z_0$ a través de la recta $z = tz_0$, con $t\in\mathbb{R}$, tenemos que: \begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 1} \dfrac{\overline{tz_0} – \overline{z_0}}{tz_0-z_0}\\ & = \lim_{t \to 1} \dfrac{\overline{z_0}\left(t – 1\right)}{z_0\left(t-1\right)}\\ & = \dfrac{\overline{z_0}}{z_0}. \end{align*} Mientras que si nos aproximamos a $z_0$ a través de la recta $z = z_0 + t$, con $t\in\mathbb{R}$, tenemos que: \begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 0} \dfrac{\overline{(z_0+t)} – \overline{z_0}}{t}\\ & =\lim_{t \to 0} \dfrac{\overline{z_0}+t – \overline{z_0}}{t}\\ & =1. \end{align*} Como estos límites son distintos y $z_0\in\mathbb{C}$ es arbitrario, entonces concluimos que no existe $f’$ para ningún punto de $\mathbb{C}$, por lo que $f(z) = \overline{z}$ no es analítica en $\mathbb{C}$.

b) Si nos aproximamos a $z_0$ a través de la recta $z = tz_0$, con $t\in\mathbb{R}$, tenemos que: \begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 1} \dfrac{\operatorname{Re}(tz_0) – \operatorname{Re}(z_0)}{tz_0-z_0}\\ & = \lim_{t \to 1} \dfrac{\operatorname{Re}(z_0)\left( t -1\right)}{z_0\left(t-1\right)}\\ & = \dfrac{\operatorname{Re}(z_0)}{z_0}. \end{align*} Mientras que si nos aproximamos a $z_0$ a través de la recta $z = z_0 + t$, con $t\in\mathbb{R}$, tenemos que: \begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 0} \dfrac{\operatorname{Re}(z_0 + t) – \operatorname{Re}(z_0)}{t}\\ & =\lim_{t \to 0} \dfrac{\operatorname{Re}(z_0) + t – \operatorname{Re}(z_0)}{t}\\ & =1. \end{align*} Dado que estos límites son distintos y $z_0\in\mathbb{C}$ es arbitrario, entonces concluimos que no existe $f’$ para ningún punto de $\mathbb{C}$, por lo que $f(z) =\operatorname{Re}(z)$ no es analítica en $\mathbb{C}$.

Proposición 14.1.
Sean $U\subset\mathbb{C}$ un conjunto abierto y $f:U \to \mathbb{C}$ una función analítica, entonces $f$ es continua en $U$.

Demostración. Dadas las hipótesis, consideremos a $z_0\in U$, veamos que $\lim_{z\to z_0}f(z) = f(z_0)$. De acuerdo con la proposición 13.2(2) sabemos que el límite de un producto es el producto de los límites, entonces: \begin{align*} \lim_{z\to z_0} \left(f(z) – f(z_0)\right) & = \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z – z_0} \left(z-z_0 \right)\\ & = \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z – z_0} \lim_{z\to z_0} \left(z-z_0 \right)\\ & = f'(z_0) \cdot 0\\ & = 0, \end{align*} de donde se tiene que $f$ es continua en $z_0$.

$\blacksquare$

Proposición 14.2. (Reglas de diferenciación.)
Sean $U\subset\mathbb{C}$ un conjunto abierto, $g,f:U \to \mathbb{C}$ dos funciones analíticas y $c_1, c_2\in \mathbb{C}$ dos constantes, entonces:

  1. La función $c_1f + c_2g$ es analítica en $U$ y para todo $z\in U$ se tiene que: \begin{equation*} (c_1f(z) \pm c_2g(z))’= c_1f'(z) \pm c_2g'(z). \end{equation*}
  2. La función $fg$ es analítica en $U$ y para todo $z\in U$ se tiene que: \begin{equation*} (f(z)g(z))’ = f'(z)g(z) + f(z)g'(z). \end{equation*}
  3. La función $\dfrac{f}{g}$ es analítica en $W = U \setminus \left\{ z\in U : g(z)=0\right\}$ y para todo $z\in W$ se tiene que: \begin{equation*} \left(\frac{f(z)}{g(z)}\right)’ = \frac{f'(z)g(z) – f(z)g'(z)}{(g(z))^2}. \end{equation*}

Demostración.

  1. Se deja como ejercicio al lector.
  2. Dadas las hipótesis, para $z_0\in U$ tenemos, por la proposición 13.2(2) y la proposición 14.1, que: \begin{align*} (f(z_0)g(z_0))’ & = \lim_{z \to z_0} \frac{f(z)g(z) – f(z_0)g(z_0)}{z-z_0}\\ & = \lim_{z\to z_0} \frac{f(z)g(z) – f(z_0)g(z) + f(z_0)g(z) – f(z_0)g(z_0)}{z-z_0}\\ & = \lim_{z\to z_0} \frac{g(z)\left[f(z) – f(z_0) \right] + f(z_0) \left[g(z) – g(z_0)\right]}{z-z_0}\\ & = \lim_{z \to z_0} g(z) \frac{f(z) – f(z_0)}{z-z_0} + \lim_{z\to z_0} f(z_0) \frac{g(z) – g(z_0)}{z-z_0}\\ & = g(z_0) f'(z_0) + f(z_0) g'(z_0). \end{align*}
  3. Dadas las hipótesis, procedemos a realizar la prueba considerando $f(z)=1$ para todo $z\in U$, el caso general {\bf se deja como ejercicio al lector.} Sea $z_0\in W$, entonces $g(z_0)\neq 0$. Por la proposición 14.1 sabemos que $g$ es continua en $W$, por lo que, para $\varepsilon =|\,g(z_0)\,|/2>0$ existe $\delta>0$ tal que si $|\,z – z_0\,|<\delta$, entonces: \begin{equation*} |g(z) – g(z_0)|<\frac{|\,g(z_0)\,|}{2}, \end{equation*} de donde: \begin{equation*} 0<\frac{|\,g(z_0)\,|}{2} < |g(z)|, \end{equation*} por lo que $g(z)\neq 0$.

    Entonces, para todo $z\in B(z_0, \delta)$, por la proposición 13.2(2) y la proposición 14.1, tenemos que: \begin{align*} \left(\frac{1}{g(z_0)}\right)’ & = \lim_{z \to z_0} \frac{\frac{1}{g(z)} – \frac{1}{g(z_0)}}{z-z_0}\\ & = \lim_{z \to z_0} \frac{-1}{g(z)g(z_0)} \frac{g(z)-g(z_0)}{z-z_0}\\ & = -\frac{g'(z_0)}{g(z_0)^2}. \end{align*}

$\blacksquare$

Ejemplo 14.4.
Sea $f:\mathbb{C} \to \mathbb{C}$ dada por $f(z) = z^n$, con $n\in\mathbb{N}^+$, veamos que $f$ es una función entera y que: \begin{equation*} \frac{d}{dz} z^n = n z^{n-1}. \tag{14.3} \end{equation*}

Demostración. Realizamos la prueba por inducción sobre $n$. Sea $n=1$, entonces $f(z)=z$, por lo que para $z_0\in\mathbb{C}$ tenemos que: \begin{equation*} f'(z_0) = \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z – z_0} \lim_{z\to z_0} \frac{z – z_0}{z – z_0} = 1, \end{equation*} de donde (14.3) se cumple para $n=1$.

Supongamos que (14.3) se cumple para $n=k$ con $k\in\mathbb{N}$ fijo. Veamos que (14.3) se cumple para $n=k+1$. Notemos que para $n=k+1$ se tiene que $f(z) = z^{k+1} = z^k z$, entonces para $z_0\in\mathbb{C}$, por la proposición 14.2(2), tenemos que: \begin{equation*} f'(z_0) = \left( z_0^k z_0 \right)’ = (z^k)’ z + z^k z’ = kz^{k-1}z + z^k = (k+1) z^k. \end{equation*} Por lo que para todo $n\in\mathbb{N}^+$ se tiene que $f(z) = z^n$ es entera y su derivada está dada por (14.3).

$\blacksquare$

De hecho se puede mostrar que si $f:\mathbb{C}\setminus\{0\} \to \mathbb{C}$ está dada por $f(z)=z^n$ y $n\in\mathbb{Z}$, entonces $f$ es analítica y su derivada está dada por (14.3), lo cual se deja como ejercicio al lector.

Corolario 14.1.
Sea $n\in\mathbb{N}$ y sean $c_i \in\mathbb{C}$, con $i\in{0,1,\ldots,n}$, constantes con $c_n\neq 0$. Entonces:

  1. Todo polinomio de grado $n$, digamos $p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n$, es una función entera y su derivada es: \begin{equation*} p'(z) = c_1 + 2c_2 z + \cdots + (n-1)c_{n-1} z^{n-2} + nc_n z^{n-1}. \tag{14.4} \end{equation*}
  2. Toda función racional $f(z) = \dfrac{p(z)}{g(z)}$, donde $p(z)$ y $g(z)$ son polinomios, es una función analítica para todos los puntos $z$ tales que $g(z)\neq 0$ y su derivada es: \begin{equation*} f'(z) = \frac{p'(z)g(z) + p(z)g'(z)}{g(z)^2}. \tag{14.5} \end{equation*}

Demostración.

  1. Dadas las hipótesis, procedemos a realizar la prueba por inducción sobre $n$. Si $n=0$ entonces $p(z)=c_0$ es una función constante y por tanto es una función entera tal que $p'(z) = 0$. Si $n = 1$, entonces tenemos que $p(z) = c_0 + c_1 z$. De acuerdo con el ejemplo 14.4 y la proposición 14.2, tenemos que $p(z)$ es una función entera y su derivada es: \begin{equation*} p'(z) = 0 + c_1(1)z^{1-1} = c_1, \end{equation*} por lo que para $n=1$ se cumple (14.4). Supongamos que el resultado es válido para $n=k$, con $k\in\mathbb{N}$ fijo. Para $n=k+1$ tenemos que: \begin{align*} p(z) & = c_0 + \sum_{n=1}^{k+1} c_n z^n\\ & = c_0 + \sum_{n=1}^k c_n z^n + c_{k+1} z^{k+1}, \end{align*} por hipótesis de inducción sabemos que $c_0 + \sum_{n=1}^k c_n z^n$ es una función entera cuya derivada está dada por (14.4) y por el ejemplo 14.4 y la proposición 14.2 tenemos que $c_{k+1} z^{k+1}$ es también una función entera cuya derivada es $(k+1)c_{k+1}z^k$, entonces:
  2. \begin{equation*} p'(z) = c_1 + 2c_2 z + \cdots + (k-1)c_{k-1} z^{k-2} + kc_k z^{k-1} + (k+1)c_{k+1}z^k, \end{equation*} por lo que el resultado es válido para todo $n\in\mathbb{N}$.
  1. De acuerdo con la proposición 14.2(3) y considerando el inciso anterior, es claro que una función racional $f(z) = \dfrac{p(z)}{g(z)}$, con $p(z)$ y $g(z)$ polinomios, es una función analítica en su dominio de definición, es decir en $S = \{ z\in\mathbb{C} : g(z) \neq 0\}$, cuya derivada está dada por (14.5).

$\blacksquare$

Ejemplo 14.5.
Determina la derivada de las siguientes funciones y en caso de ser necesario especifica en dónde es analítica la función.

a) $f(z) = 3z^4 – 5z^3 + 2z$.

Solución. De acuerdo con el corolario 14.1 tenemos que $f$ es una función entera y su derivada es: \begin{equation*} f'(z) = 2(1) -5(3z^2) + 3(4z^3) = 12z^3 -15z^2 + 2. \end{equation*} b) $f(z) = \dfrac{(z+1)(z+i)^2}{z+1-3i}$.

Solución. De acuerdo con la proposición 13.2 tenemos que: \begin{align*} f'(z) & = \frac{((z+i)^2 + 2(z+1)(z+i))(z+1-3i) – (z+1)(z+i)^2}{(z+1-3i)^2}\\ & = \frac{2z^3 + (4-7i)z^2 + (14-2i)z + 5i + 6}{(z+1-3i)^2}. \end{align*} Por el corolario 14.1 tenemos que esta función es analítica en $S = \mathbb{C}\setminus\{-1+3i\}$, ya que en $z=-1+3i$ el denomidador de $f$ se anula.

c) $f(z) = \dfrac{z^2}{4z+1}$.

Solución. Por la proposición 14.2 tenemos que: \begin{align*} f'(z) & = \frac{(4z+1)(2z – z^2(4))}{(4z+1)^2}\\ & = \frac{4z^2 + 2z}{(4z+1)^2}. \end{align*} De acuerdo con el corolario 14.1 tenemos que esta función es analítica en $S = \mathbb{C}\setminus\{-\frac{1}{4}\}$, ya que en $z=-\frac{1}{4}$ el denomidador de $f$ se anula.

Proposición 14.3. (Carathéodory.)
Sean $U\subset\mathbb{C}$ un conjunto abierto, $z_0\in U$ y $f:U\to\mathbb{C}$ una función. Entonces, $f$ es $\mathbb{C}$-diferenciable en $z_0$ si y solo si existe una función $\varphi:U \to \mathbb{C}$ continua en $z_0$ tal que para todo $z\in U$: \begin{equation*} f(z) = f(z_0) + \varphi(z) (z-z_0). \end{equation*} En este caso $\varphi(z_0) = f'(z_0)$.

Demostración. Dadas las hipótesis, tenemos que:

$\Rightarrow)$

Si $f$ es $\mathbb{C}$-diferenciable en $z_0$, entonces existe: \begin{equation*} f'(z_0) = \lim_{z \to z_0} \frac{f(z) – f(z_0)}{z-z_0}. \end{equation*} Sea $\varphi:U\to\mathbb{C}$ dada por: \begin{equation*} \varphi(z)= \left\{ \begin{array}{lcc} \dfrac{f(z) – f(z_0)}{z – z_0} & \text{si} & z \neq z_0, \\ f'(z_0) & \text{si} & z = z_0. \end{array} \right. \end{equation*} Es claro que para todo $z\in U$, incluso para $z=z_0$, se tiene que: \begin{equation*} f(z) = f(z_0) + \varphi(z) (z-z_0). \end{equation*} Por otra parte notemos que:
\begin{equation*} \lim_{z \to z_0} \varphi(z) = \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z – z_0} = f'(z_0) = \varphi(z_0), \end{equation*} por lo que $\varphi$ es continua en $z_0$ y $f'(z_0) = \varphi(z_0)$.

$(\Leftarrow$

Sea $\varphi:U \to \mathbb{C}$ una función continua en $z_0$ tal que para todo $z\in U$: \begin{equation*} f(z) = f(z_0) + \varphi(z) (z-z_0). \end{equation*} Entonces, por la continuidad de $\varphi$ tenemos que: \begin{equation*} \varphi(z_0) = \lim_{z \to z_0} \varphi(z) = \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z – z_0}, \end{equation*} por lo que el límite que define a $f'(z_0)$ existe y $f'(z_0) = \varphi(z_0)$, entonces $f$ es $\mathbb{C}$-diferenciable en $z_0$.

$\blacksquare$

De nuestros cursos de Cálculo, sabemos que otra de las reglas de diferenciación importantes es la regla de la cadena, por lo que podemos preguntarnos si dicho resultado es válido para funciones complejas dado que hemos visto que la composición de funciones es una operación posible para las funciones complejas, por lo que nos disponemos a responder a esta pregunta mediante el siguiente resultado.

Proposición 14.4. (Regla de la cadena.)
Sean $U_1, U_2 \subset \mathbb{C}$ dos conjuntos abiertos, $g:U_1 \to \mathbb{C}$ una función analítica en $U_1$ y $f:U_2 \to \mathbb{C}$ una función analítica en $U_2$, tales que $g(U_1) \subset U_2$. Entonces $f \circ g$ es una función analítica en $U_1$ y para $z_0 \in U_1$ se tiene que: \begin{equation*} (f\circ g)'(z_0) = f'(g(z_0)) g'(z_0). \tag{14.6} \end{equation*}

Demostración. Dadas las hipótesis, por la proposición 13.3 tenemos que si $g$ es analítica en $z_0\in U_1$ y $f$ es analítica en $w_0 = g(z_0)\in U_2$, entonces existen funciones $\varphi_1:U_1 \to \mathbb{C}$ y $\varphi_2:U_2 \to \mathbb{C}$ continuas en $z_0$ y $w_0$, respectivamente, tales que: \begin{align*} g(z) = g(z_0) + \varphi_1(z)(z-z_0),\quad \forall z\in U_1,\\ f(w) = f(w_0) + \varphi_2(w) (w-w_0),\quad \forall w\in U_2, \end{align*} con $\varphi_1(z_0) = g'(z_0)$ y $\varphi_2(w_0) = f'(w_0)$.

Notemos que para todo $z\in U_1$, $w=g(z)\in U_2$, se tiene que: \begin{align*} (f \circ g)(z) & = f(g(z))\\ & = f(g(z_0)) + \varphi_2(g(z))(g(z)-g(z_0))\\ & = (f\circ g)(z_0) + \varphi_2(g(z))\varphi_1(z)(z-z_0), \quad \forall z\in U_1, \end{align*} entonces, por la continuidad de $\varphi_1(z)$ y $\varphi_2(g(z))$ en $z_0$, tenemos que: \begin{align*} \lim_{z \to z_0} \frac{(f\circ g)(z) – (f\circ g)(z_0)}{z-z_0} & = \lim_{z \to z_0} \frac{\varphi_2(g(z))\varphi_1(z)(z-z_0)}{z-z_0} \\ & = \lim_{z \to z_0} \varphi_2(g(z))\varphi_1(z)\\ & = \varphi_2(g(z_0))\varphi_1(z_0)\\ & = f'(g(z_0)) g'(z_0). \end{align*} Como $z_0 \in U_1$ era arbitrario, entonces es claro que $f\circ g$ es analítica en $U_1$ y su derivada está dada por (14.6).

$\blacksquare$

Ejemplo 14.6.
Determina la derivada de las siguientes funciones y en caso de ser necesario especifica en dónde es analítica la función.
a) $f(z) = (iz^2+3z)^5$.

Solución. De acuerdo con la regla de la cadena tenemos que:
\begin{equation*} f'(z) = 5(iz^2+3z)^4(2iz + 3). \end{equation*} b) $f(z) = \dfrac{(z^2+1)^4}{z^4}$.

Solución. Considerando la proposición 14.2(3) y la regla de la cadena tenemos que: \begin{align*} f'(z) & = \frac{4(z^2+1)^3(2z)(z^4) – (z^2+1)^4(4z^3)}{(z^4)^2}\\ & = \frac{4(z^2+1)^3(z^2 -1)}{z^5}. \end{align*} c) $f(z) = (z^3+1)^{10}$.

Solución. Por la regla de la cadena tenemos que: \begin{equation*} f'(z) = 10(z^3+1)^9(3z) = 30z(z^3+1)^9. \end{equation*}

Otro resultado importante, de nuestros cursos de Cálculo, con el que estamos familiarizados, es el de la regla de L’Hôpital. Como consecuencia de la analicidad de funciones complejas, tenemos una versión de esta regla para calcular límites de cocientes que consideren indeterminaciones de la forma $0/0$.

Proposición 14.5. (Regla de L’Hôpital.)
Sean $U\subset\mathbb{C}$ un conjunto abierto y $z_0\in U$. Si $f$ y $g$ son dos funciones analíticas en $z_0$ tales que $f(z_0) = 0 = g(z_0)$ y $g'(z_0)\neq 0$, entonces: \begin{equation*} \lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}. \end{equation*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 14.7.
Considera las siguientes funciones y determina los siguientes límites:
a) $\lim_{z\to 2+i}\dfrac{f(z)}{g(z)}$, donde $f(z) = z^2 – 4z + 5$ y $g(z) = z^3-z-10i$.

Solución. Es fácil verificar que $f(2+i) = g(2+i) = 0$, por lo que evaluar el límite dado nos lleva a una indeterminación de la forma $0/0$. Dado que $f$ y $g$ son funciones polinómicas, es claro que son funciones enteras, cuyas derivadas son: \begin{align*} f'(z) = 2z-4,\\ g'(z) = 3z^{2}-1 \end{align*} y $g'(i) \neq 0$, por lo que de acuerdo con la regla de L’Hôpital tenemos que: \begin{align*} \lim_{z \to 2+i} \frac{f(z)}{g(z)} & = \lim_{z \to 2+i} \frac{z^{2}-4z+5}{z^3 -z -10i}\\ & = \frac{2(2+i) – 4}{3(2+i)^2-1}\\ & = \frac{2i}{12i + 8}\\ & = \frac{3}{26} + \frac{1}{26} i. \end{align*} b) $\lim_{z\to i}\dfrac{f(z)}{g(z)}$, donde $f(z) = z^{14} + 1$ y $g(z) = z^7 + i$.

Solución. Claramente $f(i) = g(i) = 0$, por lo que evaluar el límite dado nos lleva a una indeterminación de la forma $0/0$. Dado que $f$ y $g$ son funciones polinómicas, es claro que son funciones enteras con derivadas: \begin{align*} f'(z) = 14z^{13},\\ g'(z) = 7z^{6} \end{align*} y $g'(i) \neq 0$, por lo que de acuerdo con la proposición 14.5 tenemos que: \begin{align*} \lim_{z \to i} \frac{f(z)}{g(z)} & = \lim_{z \to i} \frac{z^{14}+1}{z^7 + i}\\ & = \frac{14i^{13}}{7i^6}\\ & = 2i^7\\ & = -2i. \end{align*}

Proposición 14.6. (Teorema de la función inversa.)
Sean $U,G\subset\mathbb{C}$ dos conjuntos abiertos, $f:U \to G$ una función biyectiva, $g:G \to U$ la inversa de $f$ y $z_0\in G$. Si $f$ es diferenciable en $g(z_0)$ con $f'(g(z_0))\neq 0$ y $g$ es continua en $z_0$, entonces $g$ es diferenciable en $z_0$ y su derivada es: \begin{equation*} g'(z_0) = \frac{1}{f'(g(z_0))}. \end{equation*}

Demostración. Dadas las hipótesis, como $f(g(z)) = z$ para todo $z\in G$, entonces tenemos que: \begin{align(} g'(z_0) & = \lim_{z\to z_0}\frac{g(z) – g(z_0)}{z – z_0}\\ & = \lim_{z\to z_0}\frac{g(z) – g(z_0)}{f(g(z)) – f(g(z_0))}\\ & = \lim_{z\to z_0}\dfrac{1}{\dfrac{f(g(z)) – f(g(z_0))}{g(z) – g(z_0)}}. \end{align*} Sea $w = g(z)$, definimos: \begin{equation*} \varphi(w)= \left\{ \begin{array}{lcc} \dfrac{f(w) – f(w_0)}{w – w_0} & \text{si} & w \neq w_0, \\ f'(w_0) & \text{si} & w = w_0. \end{array} \right. \end{equation*} Dado que $f$ es diferenciable en $w_0 = g(z_0)$, entonces: \begin{align*} \varphi(w_0) = f'(w_0) & = \lim_{w \to w_0} \frac{f(w) – f(w_0)}{w-w_0}\\ & = \lim_{w \to w_0} \varphi(w), \end{align*} por lo que $\varphi$ es una función continua en $w_0$. Por otra parte como $g$ es continua en $z_0$, entonces $\lim_{z\to z_0} g(z) = g(z_0) = w_0 \in U$. Entonces, por la proposición 13.5, de la entrada anterior, tenemos que: \begin{align*} g'(z_0) & = \lim_{z\to z_0}\frac{1}{\varphi(g(z))}\\ & = \frac{1}{\varphi\left(\lim_{z\to z_0}g(z)\right)}\\ & = \frac{1}{f'(w_0)}\\ & = \frac{1}{f'(g(z_0))}. \end{align*}

$\blacksquare$


Tarea moral

  1. Considera a la función $f:\mathbb{C}\setminus{0}\to\mathbb{C}$ dada por $f(z)=z^n$. Prueba que $f$ es analítica en $\mathbb{C}\setminus\{0\}$, para toda $n\in\mathbb{Z}$, y que su derivada está dada por (14.3).
  2. Demuestra la proposición 14.5. Hint: Considera que: \begin{equation*} \frac{f(z)}{g(z)} = \frac{f(z) – f(z_0)}{z-z_0} \frac{1}{\frac{g(z) – g(z_0)}{z-z_0}}. \end{equation*}

Más adelante…

Como hemos visto con los ejemplos anteriores, las reglas de diferenciación, en el sentido complejo, para la suma, el producto y el cociente de funciones, al igual que para las potencias enteras, parecen ser simplemente una extensión de las reglas de diferenciación para funciones reales, sin embargo como hemos mencionado antes, la derivada en el caso complejo es más restrictiva. A pesar de que parezca que simplemente estamos trabajando con la variable $z$, no debemos olvidar que dicha variable depende a su vez de dos variables, su parte real y su parte imaginaria, por lo que las reglas de diferenciación obtenidas hasta ahora puede que no nos permitan obtener la derivada de algunas funciones complejas, incluso aunque estas funciones sí posean derivadas, por ejemplo si consideramos a las funciones $f(z) = 4x^2 – iy$ y $g(z) = xy + i(x+y)$, es claro que no podemos utilizar la proposición 14.2 para intentar obtener sus derivadas, en caso de existir.

Es importante remarcar que a diferencia del caso real en el que dabamos distintas interpretaciones a la derivada de una función, en el caso complejo no nos centraremos en darle una interpretación a la derivada, sino que nos enfocaremos en saber si una función compleja tiene o no derivada, ya que la existencia de la misma nos dice mucho sobre la función compleja. Por ello en la siguiente entrada caracterizaremos la diferenciabilidad compleja mediante las ecuaciones de Cauchy-Riemann, las cuales resultan ser una condición necesaria para asegurar la diferenciabilidad de una función compleja y veremos que bajo ciertas condiciones podemos garantizar que también son una condición suficiente.

Entradas relacionadas

Funciones de variable compleja. Definiciones y preliminares

Introducción

Hasta ahora hemos visto que a diferencia de $\mathbb{R}^2$, el conjunto de los números complejos $\mathbb{C}$ es un campo dotado con las operaciones definidas en la sección 2 de la primera unidad. Sin embargo no es difícil convencerse de que como $\mathbb{R}$-espacios vectoriales estos son isomorfos.

Al estudiar matemáticas uno de los conceptos más importantes es el de función. De manera intuitiva podemos pensar a una función como una regla que asocia elementos entre dos conjuntos. A lo largo de nuestros cursos de Cálculo hemos estudiado a detalle funciones de una y varias variables reales, por lo que pensar en funciones de $\mathbb{R}^2$ a $\mathbb{R}^2$ no debe parecernos algo ajeno, de hecho en nuestros cursos de Geometría dedicamos un tiempo al estudio de algunas funciones de estas llamadas transformaciones lineales. Entonces, considerando que $\mathbb{R}^2$ y $\mathbb{C}$ son isomorfos como $\mathbb{R}$-espacios vectoriales podríamos pensar que al definir una función sobre $\mathbb{C}$ de variable compleja debería ser algo indistinguible de una función de dos variables reales. Sin embargo, de manera intuitiva es fácil notar que si pensamos en una función $f(z)$, donde la variable $z$ es un número complejo, entonces estamos trabajando con una función de una única variable como en el caso real, por lo que de algún modo podemos pensar que las funciones complejas de variable compleja parecen estar entre las funciones reales de variable real y las funciones vectoriales de dos variables reales.

Funciones complejas

Definición 12.1. (Función compleja de variable compleja.)
Sea $S\subset\mathbb{C}$. Una función compleja de variable compleja $f$, o simplemente una función compleja, definida en $S$ es una regla que para cada $z=x+iy\in S$ asigna un único número complejo $w=u+iv\in\mathbb{C}$ y se escribe como $f:S\to\mathbb{C}$. El número $w$ es llamado el valor de $f$ en $z$, lo cual denotamos como $f(z)$, es decir $w=f(z)$. Al conjunto $S$ se le llama el dominio de $f$ y el conjunto $f(S) = {f(z) \, : \, z\in S} \subset \mathbb{C}$ es llamado el rango o la imagen de $f$.

Observación 12.1.
De acuerdo con la definición podemos pensar que una función compleja transforma los valores de un plano $z$ en valores de un plano $w$. Esto lo analizaremos a detalle en la siguiente entrada, ya que nos será imposible ver la gráfica de una función compleja pues ésta tiene lugar en $\mathbb{R}^4$.

Observación 12.2.
Cuando una función está dada sólo por una fórmula sin especificar el dominio $S$, entonces se toma como dominio al mayor conjunto $S$ donde dicha función está definida.

Observación 12.3.
El término dominio se usa aquí en un sentido conjuntista y no topólogico, es decir el conjunto $S$ no tendría porque ser en principio un conjunto abierto y conexo (región), aunque a lo largo del curso estaremos trabajando comúnmente en dominios $S$ que son una región (definición 10.3).

Observación 12.4.
A lo largo de esta unidad estaremos trabajando con funciones complejas de variable compleja. Sin embargo, dado que $\mathbb{R}\subset\mathbb{C}$ es posible considerar al dominio $S$ de una función $f$ tal que $S\subset\mathbb{R}$, en cuyo caso tendríamos una función compleja de variable real. Más aún, podríamos tener que $f(S)\subset\mathbb{R}$, en dicho caso reduciríamos nuestro estudio al de funciones reales de variable real. Por lo que, nuestro objetivo en esta entrada será generalizar los resultados y propiedades ya conocidos de las funciones reales de variable real para las funciones complejas de variable compleja.

Ejemplo 12.1.
Las siguientes son funciones complejas cuyo dominio $S$ es todo $\mathbb{C}$:
a) $w_1 = f_1(z) = |z|^2$.
b) $w_2 = f_2(z) = 3z^2 + 7z$.
c) $w_3 = f_3(z) = \overline{z}$.

Mientras que:
d) $w_4 = f_4(z) = \dfrac{1}{z}$,
e) $w_5 = f_5(z) = \dfrac{1}{z^2-1}$,
son también funciones complejas, pero sus dominios son $S_4 = \mathbb{C}\setminus\{0\}$ y $S_5 = \mathbb{C}\setminus\{-1,1\}$, respectivamente.

Observación 12.5.
Algunas veces consideraremos funciones multivaluadas, es decir, funciones que asignan un número finito o infinito de subconjuntos no vacíos de $\mathbb{C}$ para cada elemento de su dominio $S$. Es importante tener cuidado con este concepto, pues una función multivaluada no es una función en el sentido estricto de la palabra, ya que rompe con la definición conjuntista con la que hemos trabajado durante nuestros cursos anteriores, ya que a un mismo número complejo se le asigna más de un valor.

Ejemplo 12.2.
De acuerdo con la observación 4.8, de la entrada 4 primera unidad, sabemos que la expresión $z^{1/n}$ es $n$-valuada, entonces la función $w= f(z) = z^{1/3}$ es 3-valuada, es decir que para cada valor de $z$ existen tres valores de $w$ que satisfacen la ecuación. Para ejemplificar esto consideremos la ecuación $w^3 = 1$. Considerando el argumento principal de $z=1$ tenemos que: \begin{align*} w_0 = 1,\\ w_1 = \frac{-1 + i\sqrt{3}}{2},\\ w_2 = \frac{-1 – i\sqrt{3}}{2}, \end{align*} son las 3 raíces cúbicas de la unidad, es decir las soluciones de la ecuación. Entonces, es claro que para $z=1$ la función $f(z) = z^{1/3}$, asigna los valores $w_0, w_1$ y $w_2$ dados.

Ejemplo 12.3.
En la definición 4.1, de la entrada 4, se especifico que la notación usada para referirse al argumento de un número complejo, es decir $\operatorname{arg} z$ no es una función de $z$, esto porque como vimos dicha notación representa a todo un conjunto de números reales $\theta$ que satisfacen las ecuaciones: \begin{align*} \text{sen}(\theta) = \frac{\text{Re}(z)}{|\, z \,|},\\ \text{cos}(\theta) = \frac{\text{Im}(z)}{|\, z \,|}. \tag{12.1} \end{align*}

Sin embargo, considerando el concepto de funciones multivaluadas podemos hablar de la función $\operatorname{arg}(z)$, la cual asignará a cada número complejo $z$ una infinidad de valores que satisfagan las ecuaciones (12.1), ya que para cada $n\in\mathbb{Z}$, si $\theta\in\mathbb{R}$ satisface las ecuaciones (12.1), entonces $\theta + 2\pi n$ también lo hará.

Por lo que, si nos restringimos al argumento principal de un número complejo, es decir $\operatorname{Arg} z \in (-\pi, \pi]$, podemos definir a la función $f: \mathbb{C}\setminus\{0\} \to (-\pi, \pi]$, dada por $f(z) = \operatorname{Arg}(z)$ como: \begin{equation*} \text{Arg}(z) = \left\{ \begin{array}{lcc} \text{arc tan}\left(\frac{y}{x}\right) & \text{si} & x>0,\\ \text{arc tan}\left(\frac{y}{x}\right) + \pi & \text{si} & x<0 \quad \text{y} \quad y>0,\\ \text{arc tan}\left(\frac{y}{x}\right) – \pi & \text{si} & x<0 \quad \text{y} \quad y<0,\\ \frac{\pi}{2} & \text{si} & x=0 \quad \text{y} \quad y>0,\\ -\frac{\pi}{2} & \text{si} & x=0 \quad \text{y} \quad y<0,\\ 0 & \text{si} & x>0 \quad \text{y} \quad y=0,\\ \pi & \text{si} & x<0 \quad \text{y} \quad y=0.\ \end{array} \right. \end{equation*}

Además, considerando el producto de dos números complejos en su forma polar es fácil verificar que esta función satisface las siguientes propiedades. Sean $z_1, z_2 \in \mathbb{C}\setminus\{0\}$, entonces:

  1. $\operatorname{Arg}(z_1 z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$.
  2. $\operatorname{Arg}\left(\dfrac{z_1}{z_2}\right) = \operatorname{Arg}(z_1) – \operatorname{Arg}(z_2)$.
  3. $\operatorname{Arg}\left(z_1^{-1}\right) = – \operatorname{Arg}(z_1)$.
  4. $\operatorname{Arg}(z_1^n) = n \operatorname{Arg}(z_1)$, para todo $n\in\mathbb{Z}$.

Ejemplo 12.4.
Sean $z_1 = 2+2i$ y $z_2 = \sqrt{3} + i$. Calcular:
a) $\operatorname{Arg}(z_1 z_2)$.

Solución. Tenemos que: \begin{align*} z_1 z_2 &= (2+2i)(\sqrt{3}+i)\\ & = 2(\sqrt{3}-1) + i2(\sqrt{3}+1), \end{align*} por lo que: \begin{align*} \operatorname{Arg}\left(z_1 z_2\right) & = \operatorname{arc\, tan}\left(\frac{2(\sqrt{3}+1)}{2(\sqrt{3}-1)}\right)\\ & = \frac{5}{12}\pi. \end{align*} Usando la propiedad 1 tenemos: \begin{equation*} \operatorname{Arg}(z_1) = \frac{\pi}{4} \quad \text{y} \quad \operatorname{Arg}(z_2) = \frac{\pi}{6}, \end{equation*} entonces: \begin{align*} \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) & = \frac{\pi}{4} + \frac{\pi}{6}\\ & = \frac{5}{12}\pi. \end{align*} b) $\operatorname{Arg}\left(z_2^{-1}\right)$.

Solución. Por la propiedad 3 tenemos que: \begin{align*} \operatorname{Arg}\left(z_2^{-1}\right) & = – \operatorname{Arg}(z_2)\\ & = – \frac{\pi}{6}. \end{align*} c) $\operatorname{Arg}(z_1^2)$.

Solución. De acuerdo con la propiedad 4 tenemos:
\begin{align*} \operatorname{Arg}\left(z_1^2\right) & = 2 \operatorname{Arg}(z_1)\\ & = 2 \left(\frac{\pi}{4}\right)\\ & = \frac{\pi}{2}. \end{align*}

Al igual que cada número complejo $z$ es caracterizado por un par de números reales, digamos $x$ y $y$, una función compleja $f$ de variable $z$ puede ser especificada por dos funciones reales de las variables reales $x$ e $y$, digamos $u=u(x,y)$ y $v=v(x,y)$. Para justificar esto consideremos la siguiente:

Proposición 12.1.
Sean $S\subset\mathbb{C}$ y $f:S\to\mathbb{C}$ una función compleja.

  1. Si $z=x+iy\in S$, entonces $w=f(z)$ puede expresarse como: \begin{equation*} w = u(x,y) + iv(x,y), \end{equation*} donde $u (x,y)$ y $v(x,y)$ son funciones reales de las variables $x$ e $y$.
  2. Sean $u(x,y)$ y $v(x,y)$ dos funciones reales de las variables $x$ e $y$, definidas en $S$. Si $z = x+iy \in S$, entonces: \begin{equation*} w = u(x,y) + iv(x,y), \end{equation*} es una función compleja en $S$.

Demostración. Dadas las hipótesis, consideremos a $z=x+iy$. Sabemos que: \begin{equation*} x = \frac{z+\overline{z}}{2}, \quad y = \frac{z-\overline{z}}{2i}. \tag{12.1} \end{equation*}

  1. Considerando (12.1) es claro que existe una relación estrecha entre los números reales $x$ e $y$ y el número complejo $z$, por lo que especificar los valores de $x$ e $y$ en $S$ equivale a especificar a un número complejo $z=x+iy\in S$. Entonces $f$ es una función compleja de las variables $x$ e $y$, por lo que definiendo: \begin{align*} u(x,y) = \frac{f(x,y) + \overline{f}(x,y)}{2},\\ v(x,y) = \frac{f(x,y) – \overline{f}(x,y)}{2i}, \end{align*} tenemos que: \begin{align*} u(x,y) + iv(x,y) & = \frac{f(x+iy) + \overline{f}(x+iy)}{2} + i \frac{f(x+iy) – \overline{f}(x+iy)}{2i}\\ & = f(x+iy)\\ & = f(z) = w. \end{align*} Notemos que: \begin{align*} \overline{u}(x,y) & = \overline{\frac{f(x+iy) + \overline{f}(x+iy)}{2}}\\ & = \frac{\overline{f}(x+iy) + f(x+iy)}{2}\\ & = u(x,y), \end{align*} \begin{align*} \overline{v}(x,y) & = \overline{\frac{f(x+iy) – \overline{f}(x+iy)}{2i}}\\ & = \frac{\overline{f}(x+iy) – f(x+iy)}{-2i}\\ & = v(x,y), \end{align*} por lo que, considerando la proposición 2.2(5), tenemos que $u(x,y)$ y $v(x,y)$ son funciones reales de las variables $x$ e $y$ para todo $z = x+iy \in S$.
  2. Sea $z=x+iy\in S$. Es claro que $f(z) = \overline{z}$ es una función compleja de $z$ definida en $S$. Entonces, de acuerdo con (12.1), tenemos que las funciones: \begin{align*} u(x,y) = u \left( \frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i} \right),\\ v(x,y) = v \left( \frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i} \right), \end{align*} son ambas funciones de $z$ para todo $z\in S$, por lo que su suma también es una función de $z$ para toda $z\in S$ (hecho que definiremos a continuación). Entonces para todo $z=x+iy \in S$: \begin{equation*} w = u(x,y) + iv(x,y), \end{equation*} es una función compleja definida en $S$.

$\blacksquare$

De acuerdo con el resultado anterior, tenemos que una función compleja $f:S\to\mathbb{C}$, tal que para cada $z=x+iy\in S$ cumple que $f(z)=w\in\mathbb{C}$, puede escribirse de la forma: \begin{equation*} w = f(z) = f(x+iy) = u(x,y) + iv(x,y), \end{equation*} donde las funciones $u$ y $v$ son llamadas la parte real e imaginaria respectivamente de la función $f$, es decir $\operatorname{Re}(f)=u$ y $\operatorname{Im}(f)=v$. Además dichas funciones $u$ y $v$ tienen como común dominio al dominio de la función $f$.

Ejemplo 12.5.
Consideremos las primeras tres funciones del ejemplo 12.1 y sea $z=x+iy\in\mathbb{C}$, entonces:

a) \begin{align*} f_1(x+iy) & = |\,x+iy\,|^2\\
& = x^2 + y^2, \end{align*} de donde se sigue que $\operatorname{Re}(f_1) = u_1(x,y)=x^2 + y^2$ e $\operatorname{Im}(f_1) = v_1(x,y)=0$.

b) \begin{align*} f_2(x+iy) & = 3(x+iy)^2 + 7(x+iy)\\
& = (3x^2-3y^2+7x) + i(6xy+7y), \end{align*} de donde se sigue que $\operatorname{Re}(f_2) = u_2(x,y)=3x^2-3y^2+7x$ e $\operatorname{Im}(f_2)=v_2(x,y)=6xy+7y$.

c) \begin{align*} f_3(x+iy) & = \overline{x+iy}\\
& = x – iy, \end{align*} de donde se sigue que $\operatorname{Re}(f_3) = u_3(x,y)=x$ e $\operatorname{Im}(f_3)=v_3(x,y)=-y$.

Para el inciso d) consideremos a $z=x+iy\in\mathbb{C}\setminus\{0\}$, de acuerdo con la observación 3.2 tenemos que:
\begin{equation*} f_4(z) = \frac{1}{z} = \frac{\overline{z}}{|\,z\,|^2} = \frac{f_3(z)}{f_1(z)},\end{equation*} entonces:
d)\begin{align*} f_4(x+iy) & = \frac{x-iy}{x^2+y^2}\\
& = \frac{x}{x^2+y^2} – i\left(\frac{y}{x^2+y^2}\right),
\end{align*} de donde se sigue que $\operatorname{Re}(f_4)=u_4(x,y)=\dfrac{x}{x^2+y^2}$ e $\operatorname{Im}(f_4)=v_4(x,y)=\dfrac{-y}{x^2+y^2}$.

Ejemplo 12.6.
Si $u(x,y) = -x$, $v(x,y) = -(1+5y)$ y $w = u(x,y) + iv(x,y)$, escribe a $w$ como función de la variable compleja $z=x+iy$.

Solución. Considerando las coordenadas complejas conjugadas (12.1) tenemos que: \begin{align*} w & = u(x,y) + iv(x,y)\\ & = -x -i(1+5y)\\ & = – \frac{z+\overline{z}}{2} – i\left[ 5\left(\frac{z – \overline{z}}{2i}\right) + 1 \right]\\ & = \frac{-z-\overline{z}}{2} – i\left[ \frac{5z – 5\overline{z} + 2i}{2i}\right]\\ & = \frac{-z-\overline{z} – 5z + 5\overline{z} – 2i}{2}\\ & = \frac{-z6 + 4\overline{z} – 2i}{2}\\ & = -3z + 2\overline{z} – i. \end{align*} Por lo que $w = f(z) = -3z + 2\overline{z} – i$.

Definición 12.2. (Operaciones de funciones.)
Denotemos al conjunto de todas las funciones definidas de $S\subset\mathbb{C}$ en $\mathbb{C}$ como $\mathcal{F}(S)$. Considerando la definición 12.1 tenemos que de manera natural las operaciones de suma y producto definidas en $\mathbb{C}$ se trasladan al conjunto $\mathcal{F}(S)$, es decir para $f,g\in\mathcal{F}(S)$ podemos definir su suma $f+g$ y su producto $f\cdot g$ como: \begin{equation*} (f+g)(z) = f(z)+g(z), \quad \forall z\in S. \end{equation*} \begin{equation*} (f\cdot g)(z) = f(z) \cdot g(z), \quad \forall z\in S. \end{equation*}
Utilizaremos el símbolo «$\cdot$» para denotar el producto entre funciones solo cuando sea necesario, en general lo omitiremos.

Como caso particular del producto de funciones, si una de ellas es constante, entonces definimos el producto por escalares complejos como:
\begin{equation*} (c \, f)(z) = c \, f(z), \quad \forall z\in S, \end{equation*} donde $c\in\mathbb{C}$ es una constante.

Más aún, si $g(z)\neq0$ para toda $z\in S$, entonces definimos a la función cociente $\dfrac{f}{g}$ como: \begin{equation*} \left(\frac{f}{g}\right)(z) = \frac{f(z)}{g(z)}, \quad \forall z\in S. \end{equation*}

Definición 12.3. (Composición de funciones.)
Sea $g\in\mathcal{F}(H)$. Sabemos que $g(H) = {g(z) \,: \, z\in H}$ es la imagen de $g$. Sea $f\in\mathcal{F}(S)$ y $g(H)\subset S$, entonces se define a la composición de $f$ con $g$ como la función $f\circ g: H \rightarrow \mathbb{C}$ tal que: \begin{equation*} (f\circ g)(z) = f(g(z)), \quad \forall z\in H. \end{equation*}

Definición 12.4. (Función inyectiva, suprayectiva, biyectiva e inversa.)
Sean $S,H\subset\mathbb{C}$ y sea $f:S \to H$ una función. Diremos que $f$ es inyectiva si para toda imagen $w\in H$ existe un único $z\in S$ tal que $f(z) = w$. Diremos que $f$ es suprayectiva si para todo $w\in H$ existe una preimagen $z\in S$, es decir si existe $z\in S$ tal que $f(z) = w$. Diremos que $f$ es una biyección si $f$ es una función inyectiva y suprayectiva.
Si $f:S \to H$ es una función biyectiva, entonces diremos que una función $g:H \to S$ es la inversa de $f$ si para todo $z\in H$ se cumple que $f(g(z)) = z$, es decir si la composición $f\circ g$ es la función identidad en $H$.

Recordemos que para $S\subset\mathbb{C}$, el conjunto $S’$ denota al conjunto de los puntos de acumulación de $S$.

Ejemplo 12.7.
a) La función $f(z) = z^2$ no es inyectiva.
Solución. Claramente $f$ es una función de variable compleja con valores en $\mathbb{C}$. Desde que: \begin{equation*} f(i) = i^2 = -1 = (-i)^2 = f(-i), \end{equation*} entonces $f$ no es inyectiva en $\mathbb{C}$.
b) La función $f:\mathbb{C} \to \mathbb{C}$ dada por $f(z) = 2z – 6i$ es biyectiva. Determina su función inversa.
Solución. Primero probemos que $f$ es inyectiva. Sean $z_1, z_2 \in \mathbb{C}$ tales que $f(z_1) = f(z_2)$. Veamos que $z_1 = z_2$.
Notemos que: \begin{align*} f(z_1) = f(z_2) &\Longleftrightarrow 2z_1 – 6i = 2z_2 – 6i\\ &\Longleftrightarrow 2z_1 = 2z_2\\ &\Longleftrightarrow z_1 = z_2, \end{align*} por lo que $f$ es inyectiva.
Procedemos ahora a verificar que $f$ es suprayectiva. Sea $w \in \mathbb{C}$, entonces existe: \begin{equation*} z := \frac{w+6i}{2}\in\mathbb{C}, \end{equation*} tal que: \begin{align} f(z) & = 2\left(\frac{w+6i}{2}\right) – 6i\\ & = w, \end{align*} por lo que $f$ es sobreyectiva. Por lo tanto $f$ es una función biyectiva y su función inversa está dada por: \begin{equation*} f^{-1}(z) = \frac{z+6i}{2}, \end{equation*} desde que: \begin{align*} f\left(f^{-1}(z)\right) & = f\left(\frac{z+6i}{2}\right)\\ & = 2\left(\frac{z+6i}{2}\right) – 6i\\ & = z, \end{align*} para todo $z\in\mathbb{C}$.

Definición 12.5. (Función acotada.)
Sea $S\subset\mathbb{C}$. Diremos que una función $f:S\to\mathbb{C}$ es acotada si existe un número $M>0$ tal que para todo $z\in S$ se cumple que: \begin{equation*} |\,f(z)\,| \leq M. \end{equation*}

Tarea moral

  1. Considera las siguientes funciones complejas. Escribelas en la forma $f(z) = u(x,y) + iv(x,y)$ identificando claramente a las funciones $u$ y $v$ y los dominios de definición de cada función.
    a) $\dfrac{2}{z-1+i}$.
    b) $2z^2 + z\overline{z}+3z$.
    c) $\overline{z} + \dfrac{2}{z}$.
  2. Considera la siguiente forma de construir a los números complejos. Sea: \begin{equation*} K = \left\{ \begin{pmatrix} a & b\\ -b & a \end{pmatrix} \,:\, a,b\in\mathbb{R} \right\} \end{equation*} un subconjunto del anillo de matrices reales de $2\times2$ ($M_{2\times2}(\mathbb{R})$). Verifica que $K$ es cerrado bajo la suma y multiplicación de matrices, es decir es un subanillo de $M_{2\times2}(\mathbb{R})$. Además, muestra que: \begin{equation*} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}^2 = – \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}. \end{equation*}
    Por último prueba que la función $f:K \to \mathbb{C}$ tal que: \begin{equation*} f\left(\begin{pmatrix} a & b\\ -b & a \end{pmatrix}\right) = a + ib, \end{equation*} define un isomorfismo entre $K$ y el campo de los números complejos $\mathbb{C}$, es decir:
    i) $f$ es biyectiva,
    ii) $f(A+B) = f(A) + f(B)$, para todo $A,B\in K$,
    iii) $f(AB) = f(A)f(B)$, para todo $A,B\in K$.
    Observa que si se aplica dicha función $f$ sobre el subconjunto de matrices escalares de $K$, es decir el subconjunto de $K$ tal que $b=0$, entonces $f$ es un isomorfismo sobre el campo de los números reales $\mathbb{R}$.
  3. Considerando la parte real y la parte imaginaria, funciones $u(x,y)$ y $v(x,y)$ respectivamente, determina a la función compleja $w=u(x,y)+iv(x,y)$ como función de la variable compleja $z=x+iy$.
    a) $u(x,y)=\dfrac{x^2 + x – y^2 }{(x+1)^2 + y^2}$ y $v(x,y)=\dfrac{y(1-2x)}{(x+1)^2 + y^2}$.
    Hint: Recuerda que para todo $z\in\mathbb{C}$ se tiene que $z \overline{z} = |\,z\,|^2$.
    b) $u(x,y) = 6x – 5$ y $v(x,y) = 6y+9$.
    c) $u(x,y)=2(x^2 – y^2)$ y $v(x,y)=0$.
    Hint: Observa que $v(x,y)=2ixy – 2ixy$.

Más adelante…

En esta entrada hemos abordado de manera formal la definición de una función compleja de variable compleja, además de dar las definiciones elementales de operaciones de funciones desde el enfoque de la variable compleja.

La siguiente entrada veremos dos conceptos fundamentales en la teoría de las funciones, límites y continuidad. Como vimos en nuestros cursos de Cálculo, hablar del límite de una función y la continuidad de la misma en un punto resulta de gran importancia pues nos permite caracterizar a las funciones reales. Nuestra labor en la siguiente entrada consistirá en trabajar dichos conceptos pero desde la perspectiva de la variable compleja.

Como vimos, toda función de variable compleja puede describirse considerando a su parte real e imaginaria, las cuales resultaron ser funciones reales de dos variables.En la siguiente entrada veremos que a través de estas funciones podremos abordar los conceptos de límite y continuidad utilizando los resultados que ya conocemos para funciones reales de dos variables, lo cual resultará de gran utilidad para el estudio de estas propiedades elementales de las funciones complejas.

Entradas relacionadas

Límites y continuidad en $\mathbb{C}$

Introducción

A lo largo de nuestros cursos de Cálculo hemos trabajado el concepto de límite a detalle, pues como sabemos conceptos esenciales en la teoría de las funciones reales como el de continuidad y derivada, además de muchos otros, tienen sustento y se definen precisamente a tráves del límite. Intuitivamente sabemos que el límite de una función real, cuando existe, digamos $\lim_{x\to x_0} f(x) = L$, nos dice que los valores de la función $f$ estarán tan cercanos al número real $L$ siempre que $x$ esté próximo a $x_0$, pero sin llegar a ser igual a dicho valor.

En esta entrada veremos que al igual que en el caso real, el concepto de límite para funciones complejas nos permitirá hablar de la continuidad y la diferenciabilidad de una función compleja. Aunque el concepto de límite para funciones complejas será idéntico a nuestra idea de proximidad en el caso real, veremos que el caso complejo es mucho más rico ya que aquí consideraremos más de dos posibles direcciones en que un número complejo se aproxime a otro.

Es interesante cuestionarnos sobre cómo podríamos pensar de forma intuitiva el concepto de continuidad en el caso complejo, puesto que solíamos asociar la idea intuitiva de que una función real continua era aquella cuya gráfica no tenía huecos o saltos, sin embargo como hemos mencionado antes, en el caso complejo nos será imposible visualizar la gráfica de una función compleja. Por lo que, aunque tendremos definiciones similares a las del caso real, no debemos dar por hecho que el comportamiento de las funciones complejas será el mismo que el de las funciones reales y de hecho veremos que las funciones complejas se comportan distinto a las funciones vectoriales de $\mathbb{R}^2$ a $\mathbb{R}^2$.

Límites

Recordemos que para $S\subset\mathbb{C}$, el conjunto $S’$ denota al conjunto de los puntos de acumulación de $S$.

Definición 13.1. (Límite.)
Sea $S \subset \mathbb{C}$ y sea $z_0 \in S’$. Dada $f\in\mathcal{F}(S)$, diremos que el número complejo $L\in\mathbb{C}$ es el límite de $f(z)$ cuando z tiende a $z_0$, lo cual denotamos como $\lim_{z\to z_0} f(z) = L$, si para todo $\varepsilon>0$ existe un $\delta>0$ tal que si $z\in S$ y $0<|\,z – z_0\,|<\delta$ entonces $|\,f(z) – L\,|<\varepsilon$.

Observación 13.1.
Al igual que en el caso real, de existir dicho límite, este es único. Supongamos que $\lim_{z \to z_0} f(z) = L_1$ y $\lim_{z \to z_0} f(z) = L_2$. Por la definición 12.4 tenemos que dado $\varepsilon>0$ existen $\delta_1>0$ y $\delta_2>0$ tales que si $z\in S$ y $0<|\,z – z_0\,|<\delta_1$, $0<|\,z – z_0\,|<\delta_2$, entonces $|\,f(z) – L_1\,|<\frac{\varepsilon}{2}$ y $|\,f(z) – L_2\,|<\frac{\varepsilon}{2}$. Como $z_0 \in S’$, entonces para $\delta = \text{mín}\{\delta_1, \delta_2\} > 0$ existe $z^* \in S$ tal que $0<|\,z^* – z_0\,| < \delta$, por lo que: \begin{equation*} |\,L_1 – L_2\,| \leq |\,f(z^*) – L_1\,| + |\,f(z^*) – L_2\,| < \varepsilon. \end{equation*} Como se cumple para todo $\varepsilon>0$, entonces $L_1 = L_2$.

Observación 13.2.
Primeramente, notemos que la existencia del límite $L$ no depende de que la función $f$ esté definida en el punto $z_0$. Por otra parte, de acuerdo con la observación 12.6 tenemos que para garantizar la existencia de $\lim_{z \to z_0} f(z)$, debe suceder que la función $f$ evaluada en $z$ se aproxime siempre al mismo número complejo $L$, esto sin importar la forma en que $z$ se aproxime a $z_0$, figura~\ref{fig:f60}. Es decir, si $f$ se aproxima a dos números complejos distintos, digamos $L_1$ y $L_2$, cuando $z$ se aproxima a $z_0$ siguiendo dos trayectorias distintas, entonces $\lim_{z \to z_0} f(z)$ no existe.

Figura 60: Gráfica de los planos $z$ y $w$ donde se representan dos posibles formas en que $f(z)$ se aproxima a $L$ conforme $z$ se aproxima a $z_0$. La existencia del límite no depende de la forma en que $z$ se aproxime a $z_0$.

Ejemplo 13.1.
a) Consideremos la siguiente función: \begin{equation*} f(z)= \dfrac{z^2 + 4}{z-2i}. \end{equation*} Es claro que el dominio de $f$ es $S = \mathbb{C} \setminus \{2i\}$. Sin embargo, veamos que $\lim_{z \to 2i} f(z) = 4i$.

Solución. Sea $z \in S$. Notemos que: \begin{equation*} |\,f(z) \,-\, 4i\,| = \left|\, \dfrac{z^2 + 4}{z-2i} \, – \, 4i \,\right| = |\,z – 2i\,|. \end{equation*} Por lo que para $\varepsilon>0$ definimos $\delta = \varepsilon$, entonces $|\,f(z) – 4i\,|<\varepsilon$ si $0<|\,z – 2i\,|<\delta$, es decir $\lim_{z \to 2i} f(z) = 4i$.

b) Consideremos a la función $f(z) = \overline{z}^2 – 2$. Es claro que la función $f$ está definida en todo $\mathbb{C}$. Veamos que $\lim_{z\to 1-i} f(z) = -2 + 2i$.

Solución. Sean $z\in\mathbb{C}$ y $\varepsilon>0$. Notemos que: \begin{align*} |\,\overline{z}^2 – 2 -(-2+2i)\,| & = |\,\overline{z}^2 – 2i\,| = |\,\overline{\overline{z}^2 – 2i}\,| = |\,z^2 + 2i\,|\\ & = |\,z-(1-i)\,| \, |\,z+(1-i)\,|\\ &\leq |\,z-(1-i)\,| \, \bigg( |\,z-(1-i)\,| + 2|\,1-i\,| \bigg). \end{align*}

Haciendo $0<|\,z-(1-i)\,|<1$ tenemos que: \begin{align*} |\,\overline{z}^2 – 2 -(-2+2i)\,| &\leq |\,z-(1-i)\,| \, \bigg( 1 + 2\sqrt{2} \bigg) \end{align*} Por lo que tomando $\delta= \text{mín}\left\{1, \dfrac{\varepsilon}{1+2\sqrt{2}}\right\}>0$, se sigue que si $0<|\,z-(1-i)\,|<\delta$ entonces: \begin{equation*} |\,f(z) – (-2+i)\,| = |\,\overline{z}^2 – 2 -(-2+2i)\,| < \varepsilon. \end{equation*} Por lo tanto $\lim_{z\to 1-i} f(z) = -2 + 2i$.

c) Sea $c\in\mathbb{C}$ una constante. Consideremos a las funciones $f(z) = c$, $g(z)=z$ y $h(z)=\overline{z}$. Es claro que dichas funciones complejas están definidas en todo $\mathbb{C}$. Entonces para todo $z_0\in\mathbb{C}$ se cumple que para todo $\varepsilon>0$ existe $\delta = \varepsilon>0$ tal que: \begin{align*} \lim_{z \to z_0} f(z) = c,\\ \lim_{z \to z_0} g(z) = z_0,\\ \lim_{z \to z_0} h(z) = \overline{z_0}. \end{align*}

Ejemplo 13.2.
Consideremos a la función: \begin{equation*} f(z) = \dfrac{z}{\overline{z}},\end{equation*} cuyo dominio es $S =\mathbb{C}\setminus\{0\}$. Veamos que $\lim_{z\to 0} f(z)$ no existe.

Solución. De acuerdo con la observación 12.7, basta encontrar dos trayectorias por las que $z$ se aproxime a $0$ que nos den valores distintos para dicho límite.

Notemos que si nos acercamos a $0$ a través del eje real, es decir tomando $z=x+i0$, con $x\rightarrow 0$, entonces: \begin{equation*} \lim_{z \to 0} f(z) = \lim_{z \to 0} \dfrac{z}{\overline{z}} = \lim_{x \to 0} \dfrac{x+i0}{x-i0} = \lim_{x \to 0} \dfrac{x}{x} = 1. \end{equation*}

Mientras que si nos acercamos a $0$ a través del eje imaginario, es decir tomando $z=0+iy$, con $y\rightarrow 0$, entonces: \begin{equation*} \lim_{z \to 0} f(z) = \lim_{z \to 0} \dfrac{z}{\overline{z}} = \lim_{y \to 0} \dfrac{0+iy}{0-iy} = \lim_{y \to 0} \dfrac{iy}{-iy} = -1. \end{equation*}

Por lo que $\lim_{z\to 0} f(z)$ no existe.

Proposición 13.1.
Sean $f\in\mathcal{F}(S)$, $z_0\in S’$ y $L\in\mathbb{C}$. Se tiene que:
\begin{align*} \lim_{z \to z_0} f(z) = L \quad & \text{si y solo si}\\ &\lim_{z \to z_0} \operatorname{Re}(f(z)) = \operatorname{Re}(L) \,\,\, \text{y} \,\, \lim_{z \to z_0} \operatorname{Im}(f(z)) = \operatorname{Im}(L) \end{align*}

Demostración. De acuerdo con la observación 3.1 tenemos que para todo $z\in S$ se cumple que: \begin{equation*} |\,\operatorname{Re}(f(z)) – \operatorname{Re}(L)\,| \leq |\,f(z) – L\,| \leq |\,\operatorname{Re}(f(z)) – \operatorname{Re}(L)\,| + |\,\operatorname{Im}(f(z)) – \operatorname{Im}(L)\,|, \end{equation*} \begin{equation*} |\,\operatorname{Im}(f(z)) – \operatorname{Im}(L)\,| \leq |\,f(z) – L\,| \leq |\,\operatorname{Re}(f(z)) – \operatorname{Re}(L)\,| + |\,\operatorname{Im}(f(z)) – \operatorname{Im}(L)\,|. \end{equation*} De donde se sigue el resultado.

$\blacksquare$

Por la proposición 13.1 tenemos que la existencia de un límite en $\mathbb{C}$ está garantizada por la existencia de los límites de dos funciones escalares, por lo que podemos utilizar los resultados que conocemos para límites de funciones escalares de $\mathbb{R}^2$ a $\mathbb{R}$ para verificar si dicho límite existe en $\mathbb{C}$.

Ejemplo 13.3.
Consideremos a la función $f(z) = z^2$, la cual está definida en todo $\mathbb{C}$. Veamos que para todo $z_0\in\mathbb{C}$ se cumple: \begin{equation*} \lim_{z \to z_0} f(z) = z_0^2. \end{equation*}

Solución. Procediendo por la definición 13.1 es fácil probar la existencia de dicho límite. Sin embargo, podemos hacer uso de la proposición 13.1 para probar el resultado. Sean $z=x+iy$ y $z_0 = x_0+iy_0$. Entonces tenemos que:\begin{equation*} f(x+iy) = u(x,y) + iv(x,y), \end{equation*}

donde $\operatorname{Re}(f(z)) = u(x,y) = x^2 -y^2$ e $\operatorname{Im}(f(z))=v(x,y) = 2xy$.

Tenemos que: \begin{align*} \lim_{z \to z_0} \operatorname{Re}(f(z)) = \lim_{\substack{x \to x_0 \ y \to y_0}} u(x,y) = x_0^2 – y_0^2,\\ \lim_{z \to z_0} \operatorname{Im}(f(z)) = \lim_{\substack{x \to x_0 \ y \to y_0}} v(x,y) = 2x_0 y_0. \end{align*} Por lo tanto $\lim_{z \to z_0} f(z) = x_0^2 – y_0^2 + i2x_0y_0 = z_0^2$.

Observación 13.3.
Notemos que para la función $f(z)=z^n$, con $n\in\mathbb{N}^+$ y $z\in\mathbb{C}$, se puede probar por inducción que para todo $z_0\in\mathbb{C}$: \begin{equation*} \lim_{z \to z_0} f(z) = \lim_{z \to z_0} z^n = z_0^n. \end{equation*}

Proposición 13.2. (Álgebra de límites.)
Sean $f,g\in\mathcal{F}(S)$, sea $z_0 \in S’$ y sean $c, L_1, L_2 \in \mathbb{C}$. Supongamos que $\lim_{z \to z_0} f(z) = L_1$, $\lim_{z \to z_0} g(z) = L_2$. Entonces:

  1. $\lim_{z \to z_0} \left[f(z) \pm c g(z)\right] = L_1 \pm c \, L_2$.
  2. $\lim_{z \to z_0} \left[f(z)g(z)\right] = L_1L_2$.
  3. Si $L_2 \neq 0$, entonces $\lim_{z \to z_0} \left[\dfrac{f(z)}{g(z)}\right] = \dfrac{L_1}{ L_2}$.

Demostración.

  1. Dadas las hipótesis, tenemos que si $c = 0$ entonces se sigue el resultado. Supongamos que $c\neq 0$ y sea $\varepsilon>0$, entonces existen $\delta_1>0$, $\delta_2>0$ tales que si $z\in S$ y $0<|\,z-z_0\,|<\delta_1$, $0<|\,z-z_0\,|<\delta_2$, entonces: \begin{align*} |\,f(z) – L_1\,| < \frac{\varepsilon}{2},\\ |\,g(z) – L_2\,| < \frac{\varepsilon}{2|c|}. \end{align*} Por lo que tomando $\delta = \text{mín}\{\delta_1, \delta_2\}>0$, tenemos que si $z\in S$ y $0<|\,z-z_0\,|<\delta$, entonces: \begin{equation*} |\,f(z) \pm cg(z) – (L_1 \pm c \, L_2) \,| \leq |\,f(z) – L_1\,| + |\,c\,| \, |\,g(z) – L_2\,| < \varepsilon. \end{equation*}
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.

$\blacksquare$

Observación 13.4.
De acuerdo con la proposición 13.2 y el inciso (c) del ejemplo 13.1, podemos calcular de forma inmediata el límite de un polinomio en cualquier punto, o el límite de una función racional en un punto donde dicha función esté definida, simplemente evaluando el polinomio o la función racional en el punto dado.

Ejemplo 13.4.
Hallar cada uno de los siguientes límites:
a) $\lim_{z \to 3i} \dfrac{z^2 + 9}{z-3i}$.
b) $\lim_{z \to 2+3i} (z-5i)^2$.
c) $\lim_{z \to i} 3z^2 + 2z -1$.

Solución. Considerando la observación 13.4 y las propiedades de los límites tenemos:
a) \begin{align*} \lim_{z \to 3i} \dfrac{z^2 + 9}{z-3i} & = \lim_{z \to 3i} \dfrac{(z+3i)(z-3i)}{z-3i}\\ & = \lim_{z \to 3i} z+3i\\ & = \lim_{z \to 3i} z + \lim_{z \to 3i} 3i \\ & = 3i + 3i \\ & = 6i. \end{align*}
b) \begin{align*} \lim_{z \to 2+3i} (z-5i)^2 & = \lim_{z \to 2+3i} (z-5i)(z-5i) \\ & = \left(\lim_{z \to 2+3i} z-5i\right)^2 \\ & = \left(\lim_{z \to 2+3i} z – \lim_{z \to 2+3i} 5i\right)^2 \\ & = \left(2+3i – 5i\right)^2\\ & = \left(2-2i\right)^2\\ & = -8i. \end{align*}
c) \begin{align*} \lim_{z \to i} 3z^2 + 2z -1 & = 3 \lim_{z \to i} z^2 + 2\lim_{z \to i} z – \lim_{z \to i} 1\\ & = 3\left( \lim_{z \to i} z\right)^2 + 2i – 1\\ & = 3i^2 + 2i – 1 \\ & = -4 + 2i. \end{align*}

Consideremos ahora a la función $f(z) = 1/z$, dada en el ejemplo 12.1(d). Al pensarla como una función compleja definida en $\mathbb{C}$, es claro que el dominio $S$ de dicha función es $S = \mathbb{C}\setminus{0}$. Sin embargo, considerando al plano complejo extendido tomemos $f:S\subset\mathbb{C}_\infty \to\mathbb{C}_\infty$, por lo que podemos definir a la imagen de $z=0$ bajo dicha función como el punto al infinito, es decir $w = f(z) = \infty$. Es claro que al trabajar con $\mathbb{C}_\infty$ la función f es biyectiva, por lo que podemos pensar en la inversa de $f$, es decir en $z = f^{-1}(w) = 1/w$. Entonces ¿qué pasa con $\lim{w\to 0} f(f^{-1}(w))$? ¿y con $\lim_{z \to \infty} f(z)$? ¿Qué relación hay entre dichos límites?

Por otra parte, como vimos en la entrada 11, cuando pensamos en que un número complejo tiende a infinito, lo cual denotamos como $z \to \infty$, estamos considerando que su módulo crece de manera arbitraria, es decir $|\,z\,| \to \infty$. Del mismo modo al hablar de una función $f$ que tiende a infinito, lo cual denotamos como $f(z) \to \infty$, estamos considerando que el módulo de dicha función crece de forma arbitraria, es decir $|\,f(z)\,| \to \infty$.

Para formalizar todo lo anterior consideremos la siguientes definiciones.

Definición 13.2. ($\rho$-vecindad de $\infty$.)
Sea $\rho>0$ suficientemente pequeño. En el plano complejo extendido $\mathbb{C}_\infty$, una $\rho$-vecindad de $\infty$ o simplemente una vecindad de $\infty$, es el conjunto: \begin{equation*} B(\infty, \rho) = \left\{z\in\mathbb{C} \,: \, \frac{1}{\rho} < |\,z\,| \right\}. \end{equation*}
Un conjunto $U\subset\mathbb{C}\infty$ abierto que contenga a una $\rho$-vecindad de $\infty$, para algún $\rho>0$, es también una $\rho$-vecindad de $\infty$.

Definición 13.3. (Límites al infinito e infinitos.)
Sea $f:S\subset\mathbb{C} \to \mathbb{C}$ una función.

  1. Diremos que $\lim_{z\to \infty} f(z) = w_0$ si para todo $\varepsilon>0$, existe $\delta>0$ tal que si $z\in S$ y $|\,z\,|>\frac{1}{\delta}$, entonces: \begin{equation*} |\,f(z) – w_0\,| < \varepsilon. \end{equation*}
  2. Diremos que $\lim_{z\to z_0} f(z) = \infty$ si para todo $\varepsilon>0$ existe un $\delta>0$ tal que si $z\in S$ y $0<|\,z-z_0\,|<\delta$, entonces: \begin{equation*} |\,f(z)\,| > \frac{1}{\varepsilon}. \end{equation*}
  3. Diremos que $\lim_{z\to \infty} f(z) = \infty$ si para todo $\varepsilon>0$, existe $\delta>0$ tal que si $z\in S$ y $|\,z\,|>\frac{1}{\delta}$, entonces: \begin{equation*} |\,f(z)\,| > \frac{1}{\varepsilon}. \end{equation*}

Ejemplo 13.5.
a) Sea $f(z) = \dfrac{1}{z^2}$, con $z\neq 0$, entonces: \begin{equation*} \lim_{z\to \infty} f(z) = 0. \end{equation*}
Solución. Sea $\varepsilon>0$. Notemos que para $\delta=\sqrt{\varepsilon}>0$, si $z\neq 0$ y $|\,z\,| > \dfrac{1}{\delta}$, entonces: \begin{equation*} \left|\,f(z) – 0\,\right| = \left|\,\frac{1}{z^2} – 0\,\right| = \frac{1}{|\,z^2\,|} = \frac{1}{|\,z\,|^2} < \varepsilon. \end{equation*} Por lo que $\lim_{z\to \infty} f(z) = 0$.
b) Sea $f(z) = \dfrac{1}{z-3}$, con $z\neq 3$, entonces: \begin{equation*} \lim_{z\to 3} f(z) = \infty. \end{equation*}
Solución. Sea $\varepsilon>0$. Notemos que para $\delta=\varepsilon>0$, si $z\neq 3$ y $0<|\,z-3\,|<\delta$, entonces: \begin{equation*} \left|\,f(z)\,\right| = \left|\,\frac{1}{z-3}\,\right| = \frac{1}{|\,z-3\,|} > \frac{1}{\varepsilon}.\end{equation*} Por lo que $\lim_{z\to 3} f(z) = \infty$.

De lo anterior tenemos que los valores $z_0$ y $L$ en la definición 13.1 pueden ser sustituidos de forma indistinta por el punto al infinito, es decir en: \begin{equation*} \lim_{z \to z_0} f(z) = L, \end{equation*} podemos remplazar a $z_0$ y/o $L$ por $\infty$, para ello solo habría que remplazar apropiadamente sus vecindades por vecindades de $\infty$. Para tener más claro esto y poder trabajar de manera más sencilla con estos límites tenemos el siguiente resultado.

Proposición 13.3.
Sea $f:S \subset \mathbb{C} \to \mathbb{C}$ una función y sean $z_0$ en el plano $z$, que corresponde al del dominio de $f$, y $w_0$ en el plano $w$, que corresponde al plano de la imagen de $f$, observación 12.1, entonces:

  1. \begin{equation*} \lim_{z \to z_0} f(z) = \infty \quad \text{si y solo si} \quad \lim_{z \to z_0} \frac{1}{f(z)} = 0. \end{equation*}
  2. \begin{equation*} \lim_{z \to \infty} f(z) = w_0 \quad \text{si y solo si} \quad \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0. \end{equation*}
  3. \begin{equation*} \lim_{z \to \infty} f(z) = \infty \quad \text{si y solo si} \quad \lim_{z \to 0} \frac{1}{f(1/z)} = 0. \end{equation*}

Demostración.

  1. Sea $z\in S$. Si $\lim_{z \to z_0} f(z) = \infty$ existe, entonces de la definición 13.3(2) tenemos que para todo $\varepsilon>0$, existe $\delta>0$ tal que: \begin{equation*} |\,f(z)\,| > \frac{1}{\varepsilon} \quad \text{si} \quad 0<|\,z-z_0\,|<\delta. \end{equation*} Notemos que para el punto $w=f(z)$ se tiene que $|\,w\,| > 1/\varepsilon$, es decir $w$ pertenece a un $\varepsilon$-vecindario de $\infty$, siempre que $0<|\,z-z_0\,|<\delta$. De lo anterior tenemos que: \begin{equation*} \left|\,\frac{1}{f(z)} – 0 \,\right| = \left|\,\frac{1}{f(z)}\,\right| = \frac{1}{|f(z)|} < \varepsilon \quad \text{si} \quad 0<|\,z-z_0\,|<\delta. \end{equation*} Por lo que $\lim_{z \to z_0} \dfrac{1}{f(z)} = 0$.
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.

$\blacksquare$

La proposición 13.3 es de gran utilidad al trabajar con el punto al infinito. La idea de dicha proposición es representar al punto al infinito y su entorno mediante sus imágenes en la función $w = f(z) = 1/z$. Esto es, el punto $z=\infty$ corresponde con el punto $w=0$ y un $\varepsilon$-vecindario de $\infty$ corresponde con un $\varepsilon$-vecindario de $0$. Por lo que la existencia de un límite de una función $f(z)$ que considere al punto $z=\infty$ dependerá de la existencia de un límite que considere al punto $w=0$.

Ejemplo 13.6.
a) Consideremos a la función $f(z) = \dfrac{2z^3-1}{z^2+1}$ definida en $S=\mathbb{C}\setminus\{i,-i\}$. Veamos que: \begin{equation*} \lim_{z \to \infty} f(z) = \infty. \end{equation*} Solución. Notemos que: \begin{equation*} f(1/z) = \frac{(2/z^3)-1}{(1/z^2)+1}, \quad \quad \frac{1}{f(1/z)} = \frac{(1/z^2)+1}{(2/z^3)-1}. \end{equation*} De acuerdo con la proposición 13.3 como: \begin{align*} \lim_{z \to 0} \frac{1}{f(1/z)} &= \lim_{z \to 0} \frac{(1/z^2)+1}{(2/z^3)-1}\\ &= \lim_{z \to 0} \frac{z^3\left[(1/z^2)+1\right]}{z^3\left[(2/z^3)-1\right]}\\ &= \lim_{z \to 0} \frac{z^3 + z}{2 – z^3} = 0. \end{align*} Entonces $\lim_{z \to \infty} f(z) = \infty$.
b) Consideremos a la función $g(z) = \dfrac{iz+3}{z+1}$ con dominio $S=\mathbb{C}\setminus\{-1\}$. Veamos que: \begin{equation*} \lim_{z \to -1} g(z) = \infty. \end{equation*} Solución. Notemos que: \begin{equation*} \lim_{z \to -1} \frac{1}{g(z)} = \lim_{z \to -1} \frac{z+1}{iz+3} = 0.\ \end{equation*} Por lo que se sigue de la proposición 13.3 que $\lim_{z \to \infty} g(z) = \infty$.
c) Sea $h(z) = \dfrac{2z+i}{z+1}$ una función definida en $S=\mathbb{C}\setminus\{-1\}$. Veamos que: \begin{equation*} \lim_{z \to \infty} h(z) = 2. \end{equation*} Solución. De acuerdo con la proposición 13.3 como:
\begin{equation*} \lim_{z \to 0} h(1/z) = \lim_{z \to 0} \frac{(2/z)+i}{(1/z)+1} = \lim_{z \to 0} \frac{2+iz}{1 + z} = 2. \end{equation*} Entonces $\lim_{z \to \infty} h(z) = 2$.

Continuidad

Definición 13.4. (Continuidad.)
Sea $f\in\mathcal{F}(S)$. Diremos que $f$ es continua en un punto $z_0\in S$ si para todo $\varepsilon>0$ existe $\delta>0$ tal que si $z\in S$ y $|\,z-z_0\,|<\delta$, entonces $|\,f(z)-f(z_0)\,|<\varepsilon$. Si $f$ es continua en todo punto $z_0 \in S$, entonces diremos que $f$ es continua en $S$. Si $f$ no es continua en $z_0\in S$, entonces diremos que es discontinua en $z_0$.

Ejemplo 13.7.
a) Veamos que las funciones $f(z) = \operatorname{Re}(z)$ y $g(z) = \operatorname{Im}(z)$ son continuas para todo $z_0\in\mathbb{C}$. Solución. Sea $z_0 \in \mathbb{C}$. De acuerdo con la observación 3.1 tenemos que: \begin{equation*} |\,\operatorname{Re}(z) – \operatorname{Re}(z_0)\,| \leq |\,z – z_0\,|, \end{equation*} \begin{equation*} |\,\operatorname{Im}(z) – \operatorname{Im}(z_0)\,| \leq |\,z – z_0\,|. \end{equation*} Por lo que para todo $\varepsilon>0$ existe $\delta = \varepsilon >0$ tal que si $z\in\mathbb{C}$ y $|\,z – z_0\,| < \delta$, entonces: \begin{equation*} |\,f(z) – f(z_0)\,| = |\,\operatorname{Re}(z) – \operatorname{Re}(z_0)\,| < \varepsilon, \end{equation*} \begin{equation*} |\,g(z) – g(z_0)\,| = |\,\operatorname{Im}(z) – \operatorname{Im}(z_0)\,| < \varepsilon. \end{equation*} De donde se sigue el resultado.
b) Veamos que la función $h(z)=|\,z\,|$ es continua para todo $z_0 \in\mathbb{C}$. Solución. Sea $z_0\in\mathbb{C}$. Por la proposición 3.3 sabemos que: \begin{equation*} |\,|\,z\,| – |\,z_0\,| \,| \leq |\,z – z_0\,|. \end{equation*} Por lo que para todo $\varepsilon>0$ existe $\delta = \varepsilon>0$ tal que si $z\in\mathbb{C}$ y $|\,z-z_0\,|<\delta$, entonces: \begin{equation*} |\,h(z) – h(z_0)\,| = |\,|\,z\,| – |\,z_0\,| \,| < \varepsilon. \end{equation*} Por lo que $f$ es continua para todo $z_0\in\mathbb{C}$.

Ejemplo 13.8.
De acuerdo con la observación 13.3, el ejemplo 13.1(c) y la proposición 13.2(2) es claro que para $c\in\mathbb{C}$ una constante y $z\in\mathbb{C}$ se tiene para toda $n\in\mathbb{N}^+$ que: \begin{equation*} \lim_{z \to z_0} c z^n = c z_0^n, \end{equation*} por lo que $f(z) = c z^n$ es una función continua en $\mathbb{C}$.

Observación 13.5.
Notemos que en la definición 13.4 se tiene implícita la condición de que:

  1. existe $f(z_0)$.

Además, si $z_0 \in S\cap S’$ también debe cumplirse que:

  1. existe $\lim_{z \to z_0} f(z)$,
  2. y $\lim_{z \to z_0} f(z) = f(z_0)$.

Por lo que basta con que no se cumpla alguna de estas tres condiciones para que una función $f\in\mathcal{F}(S)$ sea discontinua en $z_0\in S\subset\mathbb{C}$.

Ejemplo 13.9.
a) Verificar si la función $f(z) = z^2 – iz + 2$ es continua en $z_0 = 1 – i$.

Solución. De acuerdo con la observación 13.5 para ver si la función $f$ es continua en el punto $z_0$ basta con ver que se cumplan las tres condiciones establecidas en dicha observación.
1. Es claro que $f$ está definida en $z_0$, y es tal que: \begin{equation*} f(z_0) = (1-i)^2 – i(1-i) + 2 = 1 – 3i. \end{equation*} 2. Considerando la observación 13.4 tenemos que: \begin{align*} \lim_{z \to z_0} f(z) &= \left(\lim_{z \to z_0} z\right)^2 – i \left( \lim_{z \to z_0} z\right) + 2\\ & = \left(1-i\right)^2 – i \left(1-i\right) + 2\\ & = 1-3i. \end{align*} 3. Tenemos que: \begin{equation*} \lim_{z \to z_0} f(z) = f(z_0). \end{equation*} Por lo tanto $f$ es continua en $z_0 = 1-i$.

b) Consideremos a la siguiente función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} z^2 & \text{si} & z \neq i, \\ 0 & si & z = i. \end{array} \right. \end{equation*} Probar que $f$ no es continua en $z_0 = i$.

Solución. Notemos que:
1. $f$ está definida en $z_0$, y es tal que: \begin{equation*} f(z_0) = 0. \end{equation*} 2. Considerando la observación 13.4 tenemos que: \begin{align*} \lim_{z \to z_0} f(z) &= \left(\lim_{z \to i} z\right)^2\\ & = (i)^2 = -1. \end{align*} 3. Es claro que: \begin{equation*} \lim_{z \to z_0} f(z) = -1 \neq 0 = f(z_0). \end{equation*} Por lo tanto, considerando la observación 13.5 tenemos que $f$ no es continua en $z_0 = i$.

Observación 13.6.
Dado que $\mathbb{C}$ dotado con el módulo es un espacio métrico, entonces son válidas las propiedades de continuidad para espacios métricos dados en la entrada 9.

Proposición 13.4.
Sea $H\subset \mathbb{C}$, $g\in\mathcal{F}(H)$ una función tal que $g(H) \subset S \subset\mathbb{C}$ y sea $f\in\mathcal{F}(S)$. Supongamos que $z_0$ es un punto de acumulación de $H$, que $\lim_{z \to z_0} g(z) = w_0 \in S$ y que $f$ es continua en $w_0$. Entonces $\lim_{z \to z_0} f(g(z)) = f(w_0)$, es decir: \begin{equation*} \lim_{z \to z_0} f(g(z)) = f\left(\lim_{z \to z_0} g(z) \right). \end{equation*}

Demostración. Dadas las hipótesis, tenemos que dado $\varepsilon>0$ existe $\eta>0$ tal que si $w\in S$ y $|\,w – w_0\,| < \eta $ entonces: \begin{equation*} |\,f(w) – f(w_0)\,| < \varepsilon. \end{equation*} Más aún, tenemos que para dicha $\eta>0$ existe un $\delta>0$ tal que si $z\in H$ y $0<|\,z-z_0\,|<\delta$ entonces: \begin{equation*} |\,g(z) – w_0\,| < \eta. \end{equation*} Por lo que considerando estas dos implicaciones se sigue que si $z\in H$ y $0<|\,z-z_0\,|<\delta$ entonces: \begin{equation*} |\,f(g(z)) – f(w_0)\,| < \varepsilon. \end{equation*} Por lo tanto $\lim_{z \to z_0} f(g(z)) = f(w_0)$.

$\blacksquare$

Proposición 13.5.
Sean $S\subset \mathbb{C}$ y $f,g\in\mathcal{F}(S)$ dos funciones continuas en $S$, entonces:

  1. $f \pm g$ es continua en $S$.
  2. $fg$ es continua en $S$. Si $g$ es constante, es decir si $g(z) = c\in\mathbb{C}$ para todo $z\in S$, entonces $cf$ es continua en $S$.
  3. Si $g(z) \neq 0$ para todo $z\in S$, entonces $\dfrac{f}{g}$ es continua en $S$.

Demostración. Utilizando la definición 13.4 y la proposición 13.2 es fácil probar el resultado, por lo que se deja como ejercicio al lector.

$\blacksquare$

Corolario 13.1.
Los polinomios son continuos en $\mathbb{C}$. Las funciones racionales son continuas en su dominio de definición.

Demostración. Sea \begin{equation*} p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n, \end{equation*} con $z\in\mathbb{C}$, un polinomio de coeficientes complejos, es decir $c_i \in\mathbb{C}$ para toda $i\in{0,1,\ldots, n}$, con $c_n\neq 0$.

Procedemos a realizar la prueba por inducción sobre $n$. Notemos que para $n=0$ se tiene que $p(z) = c_0\neq 0$ es una función constante, por lo que considerando el ejemplo 13.1 inciso (c) tenemos que: \begin{equation*} \lim_{z\to z_0} p(z) = \lim_{z\to z_0} c_0= c_0 = p(z_0), \end{equation*} por lo que en dicho caso $p(z)$ es continuo para todo $z_0\in\mathbb{C}$.

Para $n=1$, tenemos que $p(z) = c_0 + c_1 z$, por lo que considerando la proposición 13.5(1), al ser $c_0$ y $c_1 z$ funciones continuas en $\mathbb{C}$, entonces $p(z) = c_0 + c_1 z$ es continuo para todo $z\in\mathbb{C}$. Supongamos que $p(z) = c_0 + \sum_{n = 1}^{k}c_n z^n$, para algún $k\in\mathbb{N}$ fijo, es continuo para todo $z\in\mathbb{C}$. Para $n=k+1$ tenemos que: \begin{align*} p(z) & = c_0 + \sum_{n = 1}^{k+1}c_n z^n\\ & = c_0 + \sum_{n = 1}^{k}c_n z^n + c_{k+1} z^{k+1}, \end{align*} por hipótesis de inducción tenemos que $c_0 + \sum_{n = 1}^{k}c_n z^n$ es continuo y al ser $c_{k+1} z^{k+1}$ una función continua, entonces por la proposición 13.5(1), es claro que para $n=k+1$ el polinomio $p(z)$ es continuo para todo $z\in\mathbb{C}$, por lo que el resultado es válido para todo $n\in\mathbb{N}$.

Por otra parte, consideremos a $f(z) = \dfrac{p(z)}{q(z)}$, la cual es una función racional definida como el cociente de dos polinomios. De acuerdo con la proposición 13.5(3), considerando que todo polinomio es continuo en $\mathbb{C}$ se sigue que $f$ es continua en todo su dominio de definición, es decir en $S =\{z\in\mathbb{C} \, : \, q(z)\neq 0\}$.

$\blacksquare$

Observación 13.7.
Considerando la definición 13.2 y la proposición 13.3 notemos que podemos extender el concepto de continuidad para funciones definidas sobre el plano complejo extendido, es decir, diremos que una función $f: \mathbb{C}_\infty \to \mathbb{C}_\infty$ es continua en $\infty$ si \begin{equation*} f(\infty) = \lim_{z\to \infty} f(z) \end{equation*} y si $f(a) = \infty$, entonces $f$ es continua en $a$ si \begin{equation*} f(a) = \infty =\lim_{z\to a} f(z). \end{equation*}

Ejemplo 13.10.
Consideremos a la siguiente función: \begin{equation*} f(z) = \frac{z+i}{z-i}, \end{equation*} es claro que dicha función no está definida en $z=i$, sin embargo dado que: \begin{equation*} f(i) = \infty = \lim_{z\to i} f(z) \end{equation*} y \begin{equation*} f(\infty) = 1 = \lim_{z\to \infty} f(z), \end{equation*} entonces definiendo: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} \dfrac{z+i}{z-i} & \text{si} & z \neq i, \\ 1 & \text{si} & z = \infty, \\ \infty & \text{si} & z = i, \end{array} \right. \end{equation*} es claro que $f$ es una función continua de $\mathbb{C}_\infty$ en $\mathbb{C}_\infty$.

Tarea moral

  1. Completa la demostración de las proposiciones 13.2 y 13.3.
  2. Considera a la función $f(z) = \dfrac{zi}{2}$ definida en el disco abierto $B(0,1)$. Prueba usando la definición que: \begin{equation*} \lim_{z \to 1} f(z) = \frac{i}{2} \end{equation*}
  3. Usando la definición de límite prueba que si: \begin{equation*} \lim_{z\to z_0} f(z) = w_0, \end{equation*} entonces: \begin{equation*} \lim_{z\to z_0} |\,f(z)\,| = |w_0|. \end{equation*} ¿Es cierto el recíproco?
  4. Considera la función $T:S\subset\mathbb{C} \to \mathbb{C}$ dada por: \begin{equation*} T(z) = \frac{az+b}{cz+b}, \quad \text{con} \,\, ad – bc \neq 0. \end{equation*} Usando la definición, prueba que:
    a) Si $c=0$, entonces: \begin{equation*} \lim_{z \to \infty} T(z) = \infty. \end{equation*} b) Si $c\neq 0$, entonces: \begin{align*} \lim_{z \to \infty} T(z) = \frac{a}{c},\\ \lim_{z \to -\frac{d}{c}} T(z) = \infty. \end{align*}
  5. Sea $S = [a,b] = \{ x\in\mathbb{R} \, : \, a\leq x \leq b\}$. Considera a $S\subset \mathbb{C}$ y sea $f: S \to \mathbb{C}$ una función. Tomando $z=x+i0$ podemos escribir $f(z) = u(x) + i v(x)$. Prueba que $f$ es continua si y solo si $u$ y $v$ son continuas.
  6. Analiza la continuidad de la función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} \dfrac{z^3 – 1}{z-1} & \text{si} & |\,z\,| \neq 1, \\ 3 & \text{si} & |\,z\,| = 1. \end{array} \right. \end{equation*} en los puntos $z_0 = 1$, $z_1 = -1$, $z_2 = i$ y $z_3 = -i$.
  7. Considerando la definición 13.3 y la definición de $\mathbb{C}_\infty$ prueba las siguientes reglas para límites que consideran al punto al infinito. Sean $a\in\mathbb{C}$ y $f,g\in\mathcal{F}(S)$ dos funciones.
    a) Si $\lim{z\to z_0} f(z)=\infty$ y $\lim_{z\to z_0} g(z)=a$, entonces $\lim_{z\to z_0}\left( f(z) + g(z) \right)=\infty$.
    b) Si $\lim_{z\to z_0} f(z)=\infty$ y $\lim_{z\to z_0} g(z)=a\neq 0$, entonces $\lim_{z\to z_0}\left( f(z) \cdot g(z) \right)=\infty$.
    c) Si $\lim_{z\to z_0} f(z)=\infty = \lim_{z\to z_0} g(z)$, entonces $\lim_{z\to z_0}\left( f(z) \cdot g(z) \right)=\infty$.
    d) Si $\lim_{z\to z_0} f(z)=\infty$ y $\lim_{z\to z_0} g(z)=a$, entonces $\lim_{z\to z_0}\dfrac{g(z)}{f(z)}=0$.
    e) Si $\lim_{z\to z_0} f(z)=\infty$ y $\lim_{z\to z_0} g(z)=a\neq 0$, entonces $\lim_{z\to z_0}\dfrac{g(z)}{f(z)}=\infty$.

Más adelante…

En esta entrada hemos abordado de manera formal las definiciones de límite y continuidad desde el enfoque de la variable compleja. Mediante una serie de resultados hemos caracterizado a las funciones complejas a través del estudio de su parte real e imaginaria, ya que dichas funciones escalares las hemos estudiado a detalle en nuestros cursos de Cálculo, por lo que los resultados que conocemos sobre dichas funciones pueden emplearse al trabajar con funciones complejas.

Aunque las definiciones que hemos dado en esta entrada son muy similares a las de las funciones reales de variable real, veremos en la siguiente entrada que al trabajar con funciones complejas algunos conceptos se vuelven más restrictivos para estas funciones, el cual es el caso de la diferenciabilidad compleja, ya que como veremos la definición de diferenciabilidad que hemos estudiado en nuestros cursos de Cálculo para $\mathbb{R}^2$ no bastará para garantizar la diferenciabilidad en el sentido complejo.

Entradas relacionadas

Teoría de los Conjuntos I: Principio de inducción

Introducción

En esta entrada hablaremos acerca del principio de inducción, este principio nos permitirá demostrar propiedades que cumple los números naturales. Será de gran importancia pues emplearemos este teorema como método de demostración en el conjunto de los naturales.

Principio de inducción

Teorema: Sea $P(x)$ una propiedad. Supongamos que:

  1. $P(0)$,
  2. Para cualquier $n\in \mathbb{N}$, si $P(n)$ se satisface, entonces $P(s(n))$ se cumple.

Entonces, $\set{n\in \mathbb{N}:P(n)}=\mathbb{N}$.

Demostración:

Sea $P(x)$ una propiedad. Supongamos que se satisfacen 1) y 2), entonces

$A=\set{n\in \mathbb{N}: P(n)}$

es un conjunto inductivo.

En la entrada anterior probamos que cualquier conjunto inductivo contiene a los naturales. Así, $\mathbb{N}\subseteq A$.

Además, $A\subseteq \mathbb{N}$ pues para cualquier $n\in A$, $n\in \mathbb{N}$ y por lo tanto, $A=\mathbb{N}$.

$\square$

Para entender este teorema podemos imaginar que apilamos una cantidad infinita de fichas de dominó de tal manera que al caer una vayan cayendo todas como se muestra en la imagen.

De este modo, podemos interpretar al teorema como sigue: $P(x): x\ \text{cae}$ donde $x$ es una ficha de dominó. Luego, estamos suponiendo que se cae la primer ficha de dominó y que si se cae la ficha $n$, entonces se cae la siguiente ficha.

Por lo que si asociamos a las fichas con los números naturales, podemos decir que cada ficha cumplirá la propiedad, o bien, que cada número natural lo hará.

Orden de los naturales

Ahora que hemos visto que la colección de los naturales es un conjunto podemos darle un orden a este conjunto.

Definición: Sean $n,m\in \mathbb{N}$. Decimos que $n\leq m$ si y sólo si $n\in m$ o $n=m$.

Ejemplos:

  • $0=\emptyset$ y $1=\set{\emptyset}$ son números naturales. Luego, $0\leq 1$ pues $\emptyset\in \set{\emptyset}$.
  • $0=\emptyset$ y $2=\set{\emptyset, \set{\emptyset}}$ son números naturales. Luego, $0\leq 2$ pues $\emptyset\in \set{\emptyset, \set{\emptyset}}$.
  • $1=\set{\emptyset}$ y $2=\set{\emptyset, \set{\emptyset}}$ son números naturales. Luego, $1\leq 2$ pues $\set{\emptyset}\in \set{\emptyset, \set{\emptyset}}$.

$\square$

A continuación demostraremos el siguiente lema que nos dice que la intersección de dos números naturales resulta ser un número natural.

Lema: Si $n,m\in \mathbb{N}$, entonces $n\cap m\in \mathbb{N}$.

Demostración:

Sean $n,m\in \mathbb{N}$. Tenemos los siguientes casos:

Caso 1: Si $n\cap m=\emptyset$, entonces $n\cap m\in \mathbb{N}$.

Caso 2: $n\cap m\not=\emptyset$.

$n\cap m$ es un conjunto transitivo: Sea $z\in n\cap m$, entonces $z\in n$ y $z\in m$, dado que $n,m\in \mathbb{N}$, entonces $n$ y $m$ son conjuntos transitivos, por lo que $z\subseteq n$ y $z\subseteq m$ y así, $z\subseteq n\cap m$, lo que demuestra que $n\cap m$ es un conjunto transitivo.

$n\cap m$ es un orden total con la pertenencia:

Asimetría de $\in$ en $n\cap m$:

Sean $z,w\in n\cap m$, tales que $z\in_{n\cap m} w$. Veamos que $w\notin_{n\cap m} z$. Dado que $z,w\in n\cap m$, entonces $z,w\in n$ y $z,w\in m$. Así, al ser $n$ un número natural, sabemos que $(n, \in_n)$ es un orden total, por lo que $\in_n$ es una relación asimetrica y por lo tanto, no puede ocurrir que $w\in_n z$. Además, como $(m, \in_m)$ es un orden total, $\in_m$ es una relación asimétrica en $m$ y por lo tanto, no puede ocurrir que $w\in_m z$. Por lo tanto, $w\notin_{n\cap m} z$.

Transitividad de $\in$ en $n\cap m$:

Sean $z,w,y\in n\cap m$, tales que $z\in_{n\cap m} w$ y $w\in_{n\cap m} y$. Veamos que $z\in_{n\cap m} y$. Dado que $z,w,y\in n\cap m$, entonces $z,w,y\in n$ y $z,w,y\in m$. Así, al ser $n$ un número natural, sabemos que $(n, \in_n)$ es un orden total, por lo que $\in_n$ es una relación transitiva y por lo tanto, $z\in_n y$. Además, como $(m, \in_m)$ es un orden total, $\in_m$ es una relación transitiva en $m$ y por lo tanto, $w\in_m y$. Por lo tanto, $w\in_{n\cap m} y$.

$\in_{n\cap m}$-comparables:

Sean $z,w\in n\cap m$, entonces $z,w\in n$ y $z,w\in m$. Luego, como $n$ es un número natural, sabemos que $(n, \in_n)$ es un orden total, por lo que los elementos de $n$ son $\in_n$-comparables y por lo tanto, $z\in_n w$ o $w\in_n z$ o $w=z$. Además, como $(m, \in_m)$ es un orden total, los elementos de $m$ son $\in_m$-comparables y por lo tanto, $z\in_m w$ o $w\in_m z$ o $w=z$. Por lo tanto, los elementos de $n\cap m$ son $\in_{n\cap m}$-comparables.

Finalmente, veamos que para cualquier subconjunto $b$ no vacío de $n\cap m$, $b$ tiene elemento mínimo y máximo.

Dado que $b\subseteq n\cap m$, entonces $b\subseteq n$ y $b\subseteq m$. Dado que $n$ y $m$ son números naturales y $b$ es un subconjunto no vacío de $n$ y $m$, se tiene que $b$ tiene mínimo con respecto a $\in_n$ y $b$ tiene mínimo con respecto a $\in_m$, respectivamente.

Sea $a=\min(b)$ con respecto a $\in_n$ y $x=\min(b)$ con respecto a $\in_m$. Luego, como $b\subseteq n$ y $b\subseteq m$, se tiene que $a,x\in n$ y $a,x\in m$. Por lo tanto, $a,x\in n\cap m$.

Luego, sea $\alpha=\min(\set{a, x})$. Supongamos sin pérdida de la generalidad que $\alpha=a$.

Afirmación: $\alpha=\min(b)$ con respecto a la pertenencia en $n\cap m$.

Demostración de la afirmación:

Sea $k\in b\setminus \set{\alpha}$, entonces $k\in b$ y $k\notin \set{\alpha}$. Luego, $k\in n$, pues $b\subseteq n$ y por tanto, $\alpha\in k$ pues $\alpha=a=\min(b)$ con respecto a $\in_n$.

Por lo tanto, $\alpha=\min(b)$ con respecto a $\in_{n\cap m}$.

$\square$

Por lo tanto, si $n,m\in \mathbb{N}$, entonces $n\cap m\in \mathbb{N}$.

$\square$

En la tarea moral verás que te corresponde probar que cualquier subconjunto no vacío de $n\cap m$ tiene elemento máximo.

Tarea moral

La siguiente lista te ayudará a reforzar el contenido de esta entrada:

  • Sea $X$ un subconjunto no vacío de $\mathbb{N}$, demuestra que $\bigcap X\in \mathbb{N}\cap X$. (Nota que esta es una generalización del lema que probamos en la parte de arriba).

Más adelante

En la siguiente entrada probaremos que el conjunto de los naturales con el orden que hemos definido en esta entrada es un buen orden, para esta demostración nos será de gran utilidad el lema que probamos en esta sección.

Enlaces

Entrada anterior: Teoría de los Conjuntos I: Conjuntos inductivos y axioma del infinito

Entradas relacionadas: Álgebra Superior II: Principio de inducción y teoremas de recursión