Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Superior I: Relaciones en conjuntos: dominio, codominio y composición

Introducción

Habiendo hablado del producto cartesiano, ya tenemos los ingredientes para irnos acercando a la definición de función, pero antes de hablar de ellas, tenemos que hablar de relaciones y de algunos de sus conceptos. En esta entrada introduciremos el concepto de relación, dominio, codominio y composición entre relaciones.

Relaciones

Cuando estamos hablando de el producto cartesiano, estamos juntando las parejas posibles de elementos entre dos conjuntos. Pero quizá no nos interesen todas las parejas posibles, quizá a veces solo nos interesaría hablar de algún subconjunto de estas parejas. Por ejemplo, si tenemos los conjuntos de zapatos izquierdos y derechos denotados por $I,D$ entonces no siempre nos interesan todas las parejas posibles de zapatos, quizá solo nos interese combinar cada zapato izquierda con su par correspondiente. Para dar un ejemplo, imagina que hay tres zapatos $A,B,C$ y los conjuntos $I$ y $D$ contienen tres zapatos de cada uno de los zapatos que hay:

$I = \{A_I,B_I,C_I\} $

$D = \{A_D,B_D,C_D\} $

Si quisieramos unir cada zapato con su par, nos podemos fijar en su producto cartesiano $I \times D$, sin embargo hay elementos que sí nos van a interesar y otros que no. Por ejemplo, la pareja $(I_A,D_A)$ sí nos interesa, pues es el zapato izquierdo y derecho del zapato $A$. Por otro lado, la pareja $(I_A,D_C)$ no nos interesa, pues estamos juntando dos zapatos pero de modelos distintos. En particular, el subconjunto de $I \times D$ que describe a los tres zapatos es: $$R = \{(I_A,D_A),(I_B,D_B),(I_C,D_C)\}.$$ Este conjunto es una relación entre los conjuntos $I$ y $D$. Como podrás notar, $R \subset I \times D$, y para la definición de relación, basta con que el conjunto esté contenido en el producto cartesiano para que cumpla la definicón.

Definición. Sean $X$ y $Y$ dos conjuntos, una relación entre los conjuntos $X$ y $Y$ es un subconjunto $R$ del producto cartesiano $X \times Y$: $$R \subset X \times Y $$

Definición. Si $R$ es una relación de $X$ en $Y$, diremos que $x$ está relacionado con $y$ bajo la relación $R$ si la pareja $(x,y) \in X \times Y$ y $(x,y) \in R$.

Con esta última definición, podemos notar que el zapato izquierdo $A$ ($I_A$) está relacionado con el zapato derecho $A$ ($D_A$) bajo la relación $R$, pues la pareja $(I_A,D_A)$ pertenece a la relación $R$.

En nuestro ejemplo anterior, mostramos una relación entre $I$ y $D$. Otros ejemplos de relaciones entre $I$ y $D$ son los siguientes:

$\{(I_B,D_A),(I_C,D_B),(I_C,D_A)\},$
$\{(I_C,D_B)\}$
$\{(I_A,D_A),(I_C,D_B)\}$
$\emptyset$
$I \times D$

Dominio y codominio de relaciones

Vamos ahora a trabajar con el conjunto de los números enteros $\mathbb{Z}$. Y trabajaremos con el producto cartesiano $\mathbb{Z} \times \mathbb{Z}$. Llamemos a este producto cartesiano $\mathbb{Z}^2$ que es la forma en que comúnmente se le denota al producto cartesiano entre el mismo conjunto (en este caso $\mathbb{Z}$) en la literatura.

Ahora, consideremos la siguiente relación entre los conjuntos: $$R = \{(x,y) \in \mathbb{Z}^2: (x \text{ es múltiplo de 3} )\land (y = 2x) \} $$

Y notemos que algunos ejemplos de elementos de esta relación son: $\{ (3,6),(0,0),(-3,-6),(3^{10},2*3^{10}) ,(-300,-600)\} \subset R$. Gráficamente, podemos ver la relación en la siguiente imagen:

Del lado izquierdo corresponden los elementos $x$ de las parejas $(x,y) \in R$ y del lado derecho los elementos $y$. Notemos que del lado izquierdo (los elementos $x$), no consideramos todos los elementos. Por ejemplo, los números $\{-5,-4,-2,-1,1,2,4,5\}$ no forman ninguna pareja, pues en la definición de nuestro conjunto, solo estamos considerando los múltiplos de $3$ del lado izquierdo de la relación. A estos números que sí forman parejas del lado izquierdo, les llamamos dominio.

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. El dominio de la relación $R$ es $$Dom(R) = \{x \in X: \exists y \in Y \text{ tal que } (x,y) \in R\}$$

Notemos que siempre pasará que $Dom(R)\subset X$, otra definición que no hay que confundir con la de dominio es la de contradominio, al que nos referimos como el conjunto $Y$.

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. El contradominio de $R$ es el conjunto $Y$.

En nuestro ejemplo anterior, $$Dom(R)=\{x \in X: x \text{ es múltiplo de 3}\}$$

Esto es cierto, pues las parejas de la relación $R$ son aquellas parejas de la forma $(3n,6n)$, pues pedimos que del lado izquierdo estén los múltiplos de $3$ (todo múltiplo de $3$ puede escribirse como algún número entero $n$ multiplicado por $3$), y del lado izquierdo el doble del número que escribimos del otro lado (si del lado izquierdo está $3n$ entonces del derecho estará $2*3n=6n$). Así que el dominio son aquellos números que forman alguna pareja, es decir, los múltiplos de $3$.

Por otro lado, el contradominio es $\mathbb{Z}$. Ahora, podemos preguntarnos en un concepto análogo a la idea de los elementos $y$ para los cuales existe un elemento $x$ de forma que $(x,y)$ pertenezca a la relación, para eso, podemos observar que los únicos elementos de $Z$ que pertenecen a alguna pareja del lado derecho son $\{\dots,-12,-6,0,6,12,\dots\}$, es decir, los múltiplos de $6$, de manera que podríamos hablar de que este conjunto es la imagen de la relación $R$.

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. La imagen de $R$ es: $$Im(R) = \{y \in Y: \exists x \in X \text{ tal que } (x,y) \in R\}$$

Imagen Directa e Imagen Inversa

Ahora, tomemos a los conjuntos $A=\{0,2,3,5,7,8,9\}$ y $B=\{-6,-1,2,3,4,6,7,12,21\}$ veamos que $A \times B \subset \mathbb{Z}^2$ pues ambos son subconjuntos de números enteros. El siguiente concepto que vamos a presentar, va a ser la imagen directa e inversa. Para esto, consideremos nuevamente nuestra relación $R$ de la sección anterior. Veamos que los elementos de $A$ que pertenecen al dominio de $R$ son $\{0,3,6,9\}$ esto pues $\{(0,0),(3,6),(6,12),(9,18)\} \subset R$. Definamos la imagen directa de $A$ como los elementos en la imagen de $R$ con la restricción de que únicamente consideremos elementos de $A$ del lado izquierdo.

Definición. Sean $X,Y$ dos conjuntos, $A \subset X$ y $R$ una relación de $X$ en $Y$. La imagen directa de $A$ es el conjunto: $$Im[A]=\{y \in Y: \exists x \in A \text{ tal que }(x,y) \in R\}$$

Compara esta definición con la definición de imagen, lo único que estamos cambiando es el conjunto al que pertencen las $x$.

De manera similar, tenemos un concepto similar para $B$, en donde restringiremos ahora el dominio. Para esto, nota que las parejas de $R$ que tienen su imagen en $B$ son $\{(-6,-3),(3,6),(6,12)\}$. Y el concepto de imagen inversa, serán aquellos elementos del dominio de $R$ los cuales están relacionados con algún elemento de $B$.

Definición. Sean $X,Y$ dos conjuntos, $B\subset Y$ y $R$ una relación de $X$ en $Y$. La imagen inversa de $B$ es el conjunto: $$Im^{-1}[B]=\{y \in Y: \exists x \in A \text{ tal que }(x,y) \in R\}$$

De esta, manera:

$$Im[A]=\{0,6,12,18\},$$ $$ Im^{-1}[B]=\{-6,3,6\}.$$

A continuación, vamos a introducir una última definición de esta entrada, que da la idea intuitiva de juntar distintas relaciones.

Composición de funciones

Ahora, veremos la siguiente relación entre el conjunto de zapatos izquierdos $I$ y conjunto de zapatos derechos $D$:

$$R = \{(x,y) \in I \times D: x \text{ es del mismo color que }y\} $$

Y la relación entre zapatos derechos y el conjunto $P$ de pantalones:

$$ T = \{(x,y) \in D \times P:x \text{ es del mismo color que }y\} $$

Estas relaciones solo nos están juntando colores de prendas, la primera nos junta zapatos del mismo color y la tercera relaciones el color de los zapatos derechos con el del pantalón.

Así que por si ejemplol tuvieramos los colores rojo, amarillo y azul entre zapatos izquierdos, derechos y pantalones, entonces la primera relación tendría al zapato izquierdo rojo $I_R$, el zapato derecho rojo $D_R$ y el pantalón rojo $P_R$, de manera que $(I_R,D_R) \in R \land (D_R,P_R) \in T$. ¿Podemos establecer la conexión entre los zapatos izquierdos y los pantalones? Pues con esta pareja, resulta que de alguna manera el zapato $D_R$ une a los dos elementos mediante dos relaciones distintas. La primera relación tiene como contradominio el conjunto $D$ mientras que la segunda lo tiene como dominio.

De la misma manera, podemos conectar el zapato izquierdo azul $I_A$ con algún pantalón de la siguiente manera:

  1. Notamos que $I_A$ está relacionado con el zapato derecho azul $D_A$ mediante la relación $R$.
  2. Observamos que a su vez el zapato $D_A$ está relacionado con el pantalón azul $P_A$ mediante $T$.

De esta manera, podemos encontrar alguna conexión del zapato $I_A$ al pantalón $P_A$ viendo que hay una relación entre $I_A$ con $D_A$ y de $D_A$ con $P_A$. Así que podríamos definir una relación entre los zapatos izquierdos y los pantalones a través de las relaciones $R$ y $T$. Definamos esta relación como $R \circ T$ de la siguiente manera:

$$T \circ R = \{(x,y) \in I \times P: \exists z \in D \text{ tal que }\big( (x,z) \in R \land (z,y) \in T\big) \} $$

Lo que queremos decir con esta expresión, es que los elementos de la relación $T \circ R$ son los elementos $(x,y)$ de tal forma que existe una forma de conectar $(x,y)$ mediante un elemento $z$ de tal forma que $x$ está relacionado con $y$ mediante la relación $T \circ R$ si existe un elemento $z$ que los conecta, es decir, si existe $z$ en $Im(R) \cap Dom(T)$ de tal forma que $(x,z) \in R$ y $(z,y) \in T$.

Definición. Sean $X,Z,Y$ tres conjuntos, $R$ una relación de $X$ en $Z$ y $T$ una relación de $Z$ en $Y$. La relación composición de $R$ con $T$ es la relación:
$$T \circ R = \{ (x,y) \in X \times Y: \exists z \in Z\big( (x,z) \in R \land (z,y) \in T\big)$$

Veamos ahora un ejemplo de nuevo con los número enteros. Considera la relación que ya habíamos visto anteriormente, dada por: $$R = \{(x,y) \in \mathbb{Z}^2: (x \text{ es múltiplo de 3} )\land (y = 2x) \} $$ Nota ahora, que como dijimos anteriormente, estos son las parejas de la forma $(3n,6n)$ de manera que otra forma de escribir el conjunto es $$R = \{(3n,6n): n \in \mathbb{Z} \} $$.

Ahora considera la siguiente relación $T$:$$T = \{(x,y) \in \mathbb{Z}^2: x = y+1\}$$

Algunos elementos de esta relación son: $\{(3,2),(7,6),(1,0),(-9,-10)\}$. Gráficamente se ve de la siguiente manera:

Y si te das cuenta, únicamente son los números de la forma $(n+1,n)$. Por lo que podríamos escribir esta relación como $$T = \{(n+1,n): n \in \mathbb{Z} \} $$.

Ahora veamos cómo se ve la composición $T \circ R$. Para ello, tomemos un elemento de la relación $R$. Por ejemplo, $(3,6) \in R$. Ahora notemos que de igual forma, $(6,5)$ pertenece a la relación $T$. De manera que $(3,5) \in T \circ R$. En general, un elemento de la relación $R$ se escribe como $(3n,6n)$, y un elemento de la relación $T$, como dijimos al principio del párrafo, es de la forma $(n+1,n)$ o lo que es lo mismo, $(n,n-1)$. Y enseguida nota que si tomamos un número entero $n$, entonces $(3n,6n) \in R$ y $(6n,6n-1) \in T$. De esta manera, podemos escribir a la composición de $R$ con $T$ como el conjunto: $$ T \circ R = \{(3n,6n-1): n \in \mathbb{Z}\}$$

Tarea moral

  1. Sea $$R=\{(x,y) \in \mathbb{Z}^2: x+y=0\}$$ y la relación$$T=\{(x,y) \in \mathbb{Z}^2: x-y=0\}.$$Encuentra:
    • $Dom(R)$
    • $Im(R)$
    • Escribe todos los elementos de $T \circ R$
    • Encuentra $Im[\{1,2,3,4,5\}]$ sobre la relación $R$
    • Encuentra $Im^{-1}[\{-1,-2,-3,-4,-5\}]$ sobre la relación $T$
  2. Demuestra que si $R = \{(x,y) \in \mathbb{Z}^2: (x \text{ es múltiplo de 3} )\land (y = 2x) \} $, entonces $$R = \{(3n,6n): n \in \mathbb{Z} \} $$
  3. La recta $\mathcal{L}$ con pendiente $m$ e intersección $b$ con el eje $y$ en los números enteros es el conjunto: $$\mathcal{L}=\{(x,y) \in \mathbb{Z}^2: mx+b=y\} $$ Encuentra $\mathcal{L_1}\cap \mathcal{L_2}$ donde $\mathcal{L_1}$ es la recta con $m=1,b=0$ y $\mathcal{L_2}$ es la recta con $m=-1,b=2$.

Más adelante…

En la siguiente entrada seguiremos hablando de las relaciones entre conjuntos y veremos algunos tipos de relaciones especiales que tendrán algunas propiedades interesantes. También hablaremos un poco más de relaciones de un conjunto en sí mismo, este tipo de relaciones ya las hemos visto, sin embargo, veremos más propiedades que pueden cumplir estas. Esto nos servirá para hablar después de órdenes entre conjuntos.

Entradas relacionadas

  • Ir a Álgebra Superior I
  • Entrada anterior del curso: Problemas de producto cartesiano
  • Siguiente entrada del curso: Tipos de relaciones en conjuntos

Geometría Moderna I: Teorema de Pitágoras

Introducción

En esta ocasión veremos el teorema de Pitágoras que relaciona la hipotenusa de un triangulo rectángulo con la longitud de sus catetos, esta propiedad permite definir una métrica en el espacio euclidiano, en particular con esto podemos calcular la longitud de un segmento si conocemos un triángulo rectángulo que tenga como hipotenusa dicho segmento.

Geométricamente el teorema de Pitágoras nos habla sobre el área de cuadrados construidos sobre los lados de un triángulo rectángulo, así que necesitamos presentar un concepto nuevo.

Definición. Definimos el área de un rectángulo como el producto de dos de sus lados adyacentes. De esta manera el área de un cuadrado será su lado al cuadrado.

Figura 1

Como las diagonales de todo rectángulo lo dividen en dos triángulos rectángulos congruentes, de la definición se sigue que el área de un triángulo rectángulo es el semiproducto de sus catetos.  

Teorema de Pitágoras

Teorema 1. De Pitágoras. El área de un cuadrado de lado igual a la hipotenusa de un triángulo rectángulo es igual a la suma de las áreas de cuadrados de lados igual a los catetos del triángulo rectángulo.

Demostración. Consideremos un triángulo rectángulo de catetos $a$, $b$ e hipotenusa $c$. Construimos un cuadrado $\square ABCD$ de lados $a + b$, y puntos $P \in \overline{AB}$, $Q \in \overline{BC}$, $R \in \overline{CD}$ y $S \in \overline{AD}$, tales que $AP = BQ = CR = DS = a$ y $BP = CQ = DR = AS = b$.

Figura 2

Como los ángulos en las esquinas son rectos entonces por criterio LAL
$\begin{equation} \triangle ASP \cong \triangle BPQ \cong \triangle CQR \cong \triangle DRS \end{equation}$
en particular $PQ = QR = RS = SP$.

Por $(1)$ $\angle CQR$ y $\angle PQB$ son complementarios en consecuencia $\angle RQP = \dfrac{\pi}{2}$, de manera análoga se ve que
$\angle SRQ = \angle QPS = \angle PSR = \angle RQP = \dfrac{\pi}{2}$.

Por lo tanto, $\square PQRS$ es un cuadrado de lado c.

Ahora construimos otro cuadrado $\square A’B’C’D’$ de lados $a + b$, y puntos $P’ \in \overline{A’B’}$ y $Q’ \in \overline{B’C’}$ tales que $A’P’ = B’Q’ = b$ y $B’P’ = C’Q’ = a$.

Trazamos una perpendicular a $\overline{A’B’}$ por $P’$ que interseca a $\overline{C’D’}$ en $R’$, y una perpendicular a $\overline{B’C’}$ por $Q’$ que interseca a $\overline{A’D’}$ en $S’$.

Figura 3

Como $\overline{A’B’} \parallel \overline{C’D’}$ entonces $\overline{P’R’} \perp \overline{C’D’}$, análogamente $\overline{Q’S’} \perp \overline{A’D’}$ y entonces $\overline{P’R’} \perp \overline{Q’S’}$.

Por lo tanto, $\square A’P’ES’$, $\square EQ’C’R’$, $\square P’B’Q’E$ y $\square S’ER’D’$ son rectángulos.

Como los lados opuestos de todo rectángulo son iguales, concluimos que $\square A’P’ES’$ y $\square EQ’C’R’$ son cuadrados de lados $b$ y $a$ respectivamente.

$\overline{B’E}$ y $\overline{ED’}$ dividen a $\square P’B’Q’E$ y $\square S’ER’D’$ en cuatro triángulos rectángulos congruentes entre si pues los rectángulos son congruentes.

Pero al mismo tiempo los triángulos en $\square A’B’C’D’$ son congruentes con los triángulos en $\square ABCD$, pues tienen los mismos lados $a$ y $b$, y todos son triángulos rectángulos.

Finalmente, como $\square ABCD$ y $\square A’B’C’D’$ son congruentes entonces sus áreas son iguales y podemos sustraer a cada uno el área de los cuatro triángulos resultando así que el área del cuadrado rosa es igual a la suma de las áreas de los cuadrados verde y naranja.

Por lo tanto, $c^2 = a^2 + b^2$.

$\blacksquare$

Reciproco del Teorema de Pitágoras

Teorema 2. Reciproco del teorema de Pitágoras. Si en un triángulo el cuadrado de uno de sus lados es igual a la suma de los cuadrados de los otros dos lados entonces el triángulo es rectángulo.

Demostración. Sea $\triangle ABC$ un triángulo tal que $AC^2 = AB^2 + BC^2$, construimos un punto $D$ del lado opuesto a $C$ respecto de $\overline{AB}$ tal que $BD = BC$ y $\overline{BD} \perp \overline{AB}$.

Figura 4

Por construcción $\triangle ABD$ es rectángulo, por el teorema de Pitágoras, $AD^2 = AB^2 + BD^2$,
como $BD = BC$ $\Rightarrow BD^2 = BC^2$, por lo tanto, $AD^2 = AB^2 + BC^2 = AC^2$.

Por hipótesis, $AC^2 = AB^2 + BC^2 \Rightarrow AD^2 = AC^2 \Rightarrow AD = AC$.

Por criterio LLL $\triangle ABC \cong \triangle ADC$ en particular $\angle CBA = \angle ABC = \dfrac{\pi}{2}$.

$\blacksquare$

Sea $\triangle ABC$ entonces por los teoremas 1 y 2
$\angle B = \dfrac{\pi}{2} \Leftrightarrow AC^2 = AB^2 + BC^2$.

Ahora consideremos un triángulo $\triangle A’B’C’$ con $A’B’ = AB$ y $B’C’ = BC$ pero $\angle B’ > \dfrac{\pi}{2}$, entonces por la proposición 2 de la entrada desigualdad del triángulo y su reciproco, esto ocurre si y solo si $A’C’ > AC$
$\Leftrightarrow A’C’^2 > AC^2 = AB^2 + BC^2 = A’B’^2 + B’C’^2$

Por otra parte, si tenemos $\triangle A’’B’’C’’$ tal que $A’’B’’ = AB$ y $B’’C’’ = BC$ pero $\angle B’’ < \dfrac{\pi}{2}$, por el resultado antes mencionado, esto ocurre si y solo si $A’’C’’ < AC$
$\Leftrightarrow A’’C’’^2 < AC^2 = AB^2 + BC^2 = A’’B’’^2 + B’’C’’^2$

Resumiendo, tenemos lo siguiente para cualquier triángulo $\triangle ABC$:

  • $\angle B$ es recto $\Leftrightarrow AC^2 = AB^2 + BC^2$,
  • $\angle B$ es obtuso $\Leftrightarrow AC^2 > AB^2 + BC^2$,
  • $\angle B$ es agudo $\Leftrightarrow AC^2 < AB^2 + BC^2$.

Ley del paralelogramo

Teorema 3. Ley del paralelogramo. La suma de los cuadrados de los lados de un paralelogramo es igual a la suma de los cuadrados de sus diagonales.

Demostración. Sean $\square ABCD$ un paralelogramo, $E$ y $F$ los pies de las perpendiculares a $\overline{BC}$ trazadas desde $A$ y $D$ respectivamente.

Figura 5

Recordemos que los lados opuestos de un paralelogramo son iguales, por lo que $AB = CD$ y $AD = BC$, además $\square AEFD$ es un rectángulo y todo rectángulo es paralelogramo, por lo tanto, $AE = DF$ y $EF = AD = BC$, $\Rightarrow BE = CF$.

Aplicando el teorema de Pitágoras a los triángulos $\triangle ABE$, $\triangle DBF$ y $\triangle AEC$ obtenemos:

$\begin{equation} AB^2 = AE^2 + BE^2 \end{equation}$

$DB^2 = DF^2 + BF^2$
$= AE^2 + (BC + CF)^2 = AB^2 – BE^2 + (BC + BE)^2$
$= AB^2 – BE^2 +BC^2 + 2BC \times BE + BE^2$
$\begin{equation} = AB^2 + BC^2 + 2BC \times BE\end{equation}$

$AC^2 = AE^2 + EC^2$
$= AE^2 + (BC – BE)^2 = AB^2 – BE^2 + BC^2 -2BC \times BE + BE^2$
$\begin{equation} = AB^2 + BC^2 -2BC \times BE \end{equation}$

Sumamos $(3)$ y $(4)$ para obtener
$AC^2 + BD^2 = 2AB^2 + 2BC^2$.

$\blacksquare$

Teorema de Apolonio

Teorema 4. De Apolonio. En todo triangulo la suma de los cuadrados de dos lados es igual a dos veces el cuadrado de la mitad del tercer lado más dos veces el cuadrado de la mediana que biseca al tercer lado.

Demostración. Sean $\triangle ABC$ y $M$ el punto medio de $\overline{BC}$. Por demostrar que $AB^2 + AC^2 = 2(BM^2 + AM^2)$.

Sea $D$ el pie de la perpendicular a $\overline{BC}$ trazada desde $A$, aplicamos el teorema de Pitágoras a los triángulos $\triangle ADM$, $\triangle ADB$ y $\triangle ADC$.

Figura 6

$\begin{equation} AM^2 = AD^2 + DM^2 \end{equation}$

$AB^2 = AD^2 + BD^2$
$= AM^2 – DM^2 + (DM – BM)^2 = AM^2 – DM^2 + DM^2 – 2DM \times BM + BM^2$
$\begin{equation} = AM^2 + BM^2 – 2DM \times BM \end{equation}$

$AC^2 = AD^2 + DC^2$
$= AM^2 – DM^2 + (DM + MC)^2 = AM^2 – DM^2 +DM^2 + 2DM \times MC + MC^2$
$\begin{equation} = AM^2 + 2DM \times MC + MC^2 \end{equation}$

Como $BM = MC$ sumando $(6)$ y $(7)$ obtenemos
$AB^2 + AC^2 = 2AM^2 + 2MC^2$.

$\blacksquare$

Caracterización de las alturas de un triángulo

Proposición. Sean $BC$ un segmento y $P$ un punto en el plano, considera $D$ el pie de la perpendicular a $BC$ trazada desde $P$, entonces $PB^2 – PC^2 = DB^2 – DC^2$.

Figura 7

Demostración. Los triángulos $\triangle PDB$ y $\triangle PDC$ son rectángulos, por el teorema de Pitágoras tenemos que $PB^2 = PD^2 + DB^2$ y $PC^2 = PD^2 + DC^2$.

Despejando $PD^2$ de ambas ecuaciones e igualando tenemos que $PB^2 – DB^2 = PC^2 – DC^2$
$\Rightarrow PB^2 – PC^2 = DB^2 – DC^2$.

$\blacksquare$

Teorema 5. Sea $\triangle ABC$ un triángulo entonces un punto $P$ está en la altura por $A$ si y solo si $PB^2 – PC^2 = AB^2 – AC^2$.

Demostración. Supongamos que $P$ es un punto en la altura desde $A$ entonces podemos considerar el triángulo $\triangle PBC$.

Figura 8

Por la proposición tenemos que los puntos $P$ y $A$ cumplen que $PB^2 – PC^2 = DB^2 – DC^2$ y $AB^2 – AC^2 = DB^2 – DC^2$ donde $D$ es el pie de la altura.

Por lo tanto $PB^2 – PC^2 = AB^2 – AC^2$.

$\blacksquare$

Ahora supongamos que $P$ es un punto en el plano tal que $PB^2 – PC^2 = AB^2 – AC^2$ por la proposición sabemos que $AB^2 – AC^2 = DB^2 – DC^2$, con $D$ el pie de la altura desde $A$.

Por transitividad se tiene que $PB^2 – PC^2 = DB^2 – DC^2$.

Sea $E$ el pie de la perpendicular a $BC$ trazada desde $P$, nuevamente por la proposición tenemos que $PB^2 – PC^2 = EB^2 – EC^2$ $\Rightarrow DB^2 – DC^2 = EB^2 – EC^2$

Figura 9

Supongamos que $D$ está en el segmento $BC$ y $E$ fuera del segmento y del lado de $B$ (figura 9), otros casos se muestran de manera similar, entonces $EB = ED – BD$ y $EC = ED + DC$.

$\Rightarrow DB^2 – DC^2 = (ED – BD)^2 – (ED + DC)^2$
$= ED^2 – 2ED \times BD + BD^2 – ED^2 – 2ED \times DC – DC^2$
$\Rightarrow 0 = ED \times BD + ED \times DC = ED(BD + DC)$

Como $BD + DC \neq 0 \Rightarrow ED = 0$
$\Rightarrow E = D$

De esto se concluye que $P$ está en la altura trazada desde $A$.

$\blacksquare$

Tarea moral

  1. Dado un segmento unitario construye un segmento de longitud $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ …
  2. Si $a$, $b$, $c$, $d$, y $e$ son las longitudes de cinco segmentos tales que con cualesquiera tres de ellos es posible construir un triángulo, muestra que al menos uno de los triángulos es acutángulo.
  3. Sea $\triangle ABC$ un triángulo tal que la mediana $AD$ es perpendicular a la mediana $BE$, encuentra $AB$ si $BC = a$ y $AC = b$.
  4. Muestra que en un triángulo con ángulos interiores iguales a $\dfrac{\pi}{2}$, $\dfrac{\pi}{3}$ y $\dfrac{\pi}{6}$, se tiene que el cateto opuesto al ángulo de $\dfrac{\pi}{6}$ es igual a la mitad de la hipotenusa y el cateto opuesto al ángulo de $\dfrac{\pi}{3}$ es igual a $\dfrac{\sqrt{3}}{2}$ veces la hipotenusa.
  5. Si dos de los lados de un triángulo miden $a$ y $b$ y el ángulo entre ellos mide $\dfrac{3\pi}{4}$ encuentra la longitud del segmento medio entre los lados dados.

Más adelante…

En la siguiente entada estudiaremos el teorema de Thales también conocido como teorema de la proporcionalidad.

Entradas relacionadas

Álgebra Moderna I: Permutaciones y Grupo Simétrico

Introducción

La Unidad 2 empieza con algunas definiciones nuevas. Veremos un ejemplo específico de grupo, primero definiremos qué es una permutación y luego, el conjunto de todas las permutaciones, al que llamaremos grupo simétrico junto con la composición. Este grupo es importante porque más adelante descubriremos que los grupos se pueden visualizar como subgrupos de grupos de permutaciones.

Primeras definiciones

Definición. Una permutación de un conjunto $X$ es una función biyectiva de $X$ en $X$.

Notación. El conjunto

\begin{align*}
S_X = \{\sigma: X \to X | \sigma \text{ es biyectiva}\}
\end{align*}

Si $X = \{1,…,n\}$, S_X se denota por $S_n$. Si tomamos $\alpha, \beta \in S_X$ la composición de $\alpha$ seguida de $\beta$ se denota por $\beta\alpha$.

Observación 1. $S_X$ con la composición es un grupo, se llama el Grupo Simétrico.

Observación 2. $|S_n| = n!$

Definición. Sea $\alpha \in S_n$, $i \in \{1,2,…,n\}$.

Decimos que $\alpha$ mueve a $i$ si $\alpha(i) \neq i$, y que $\alpha$ fija a $i$ si $\alpha(i) = i$. El soporte de $\alpha$ es

\begin{align*}
\text{sop }\alpha = \{i \in \{1,\dots, n\}: \alpha(i) \neq i\}.
\end{align*}

Ejemplo

Sea $\alpha \in S_{10}$, definida como

\begin{align*}
\alpha = \begin{pmatrix}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\
8 & 3 & 1 & 7 & 2 & 6 & 4 & 5 & 9 & 10 \end{pmatrix}
\end{align*}

La matriz es una manera de representar una permutación, la fila de arriba son todos los elementos de $X= \{1,2,3,4,5,6,7,8,9,10\}$ y la fila de abajo son la imagen que le corresponde a cada elemento. Es decir, la matriz de $\alpha$ se puede leer como: «$\alpha$ manda al $1$ al $8$», «el $ 2 $ lo manda al $3$», etc. Entonces tenemos que, $\alpha$ mueve a $1,2,3,4,5,7,8$ y fija al $6,9,10$. Así

\begin{align*}
\text{sop } \alpha = \{1,2, 3, 4, 5, 7, 8\}.
\end{align*}

Definición de ciclo

Definición. Sea $\alpha \in S_n$. Decimos que $\alpha$ es un ciclo de longitud $r$ o un $r$ ciclo si existen $i_1, \dots, i_r \in \{1, \dots, n\}$ distintos tales que $\text{sop }\alpha = \{i_1, \dots, i_r\}$ y

\begin{align*}
\alpha(i_t) = \begin{cases}
i_{t+1} & \text{si } t \in \{1, \dots, r-1\} \\
i_1 & \text{si } t = r
\end{cases}
\end{align*}

Figura para ilustrar la definición de un ciclo.
  • Los ciclos de longitud dos se llaman transposiciones. Estos ciclos son muy importantes porque nos permitirán describir a las demás permutaciones.

Notación.

  • Si tenemos una transformación $\alpha$, tal que cada $i_j$ va a $i_{j+1}$ para cada $j \in \{1,…,r-1\}$ y $i_r$ regresa a $i_1$. Esto se denota como $\alpha = (i_1\; i_2 \; \dots \; i_r)$.
  • Además, denotamos como $r = \text{long } \alpha$ a la longitud de $\alpha$.

Ejemplos

  1. $\alpha \in S_8$ con $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 4 & 3 & 5 & 8 & 2 & 7 & 6 \end{pmatrix}$.

\begin{align*}
\alpha &= (2 \; 4 \; 5 \; 8 \; 6) = (4 \; 5 \; 8 \; 6 \; 2) \\
& = (5 \; 8 \; 6 \; 2 \; 4) = (8 \; 6 \; 2 \; 4 \; 5) \\
& = (6 \; 2 \; 4 \; 5 \; 8)
\end{align*}

Representación de $\alpha$.

En este caso, $\alpha$ es un $5-$ciclo y $\text{long }\alpha = 5$.
Observemos que el ciclo se puede comenzar a escribir con cualquier elemento del mismo, siempre y cuando se cumpla lo establecido en la notación.

2. Ahora, consideremos $\beta \in S_8$ como

Representación de $\beta$.

\begin{align*}
\beta =\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 5 & 4 & 3 & 6 & 7 & 8\end{pmatrix}
\end{align*}
entonces podemos decir que $\beta = (3 \; 5)$, porque a los otros elementos los deja fijos.

Si componemos $\beta$ con el $\alpha$ del ejemplo anterior obtenemos:

\begin{align*}
\alpha\beta &= (2 \; 4 \; 5 \; 8 \; 6) (3 \; 5) = (2 \; 4 \; 5 \; 3 \; 8 \; 6).
\end{align*}

Para verificar qué le hace la composición, tenemos que observar a dónde manda a cada elemento. Ilustremos esto con $\alpha\beta$:

  • Comenzamos con el 2 (esto es arbitrario, se puede comenzar con el que sea), observamos que $\beta$ lo deja fijo, entonces nos fijamos a dónde lo manda $\alpha$, en este caso, el 2 es mandado al 4.
  • Repetimos el proceso con el 4, $\beta$ lo deja fino y $\alpha$ lo manda al 5.
  • Ahora con el 5, $\beta$ manda al 5 en 3, entonces ahora vemos a donde manda $\alpha$ al 3, en este caso lo deja fijo.
  • Entonces ahora tenemos que observar a dónde es mandado el $3$ después de la composición. Primero, $\beta$ manda el 3 al 5 y $\alpha$ manda el 5 al 8, por lo tanto $\alpha\beta$ manda el $3$ al $8$.
  • Así continuamos con todos los elementos que aparezcan en la composición hasta terminar.

    Ahora, veamos qué sucede con $\beta\alpha$. El proceso es análogo:
    \begin{align*}
    \beta\alpha &= (3 \; 5) (2 \; 4 \; 5 \; 8 \; 6) = (3 \; 5 \; 8 \; 6 \; 2 \; 4)
    \end{align*}
    Por lo tanto $\alpha\beta \neq \beta\alpha$.

3. En $S_5$. Podemos considerar la siguiente permutación: $(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5)$. A esta permutación la podemos simplificar usando el mismo procedimiento que en el ejemplo 2.

Observamos a dónde lleva cada uno de sus elementos:

  • Comencemos con el 2, la primera parte de la permutación, lleva el 2 al 4 y, la segunda parte lleva el 4 al 1.
  • Ahora veamos a dónde va el 1. La primera parte lo deja fijo y la segunda lo lleva al 2. Entonces obtenemos una permutación $(1\;2)$. Pero todavía falta ver el resto de elementos.
  • Ahora, veamos qué sucede con el 3. La primera parte lo deja fijo y la segunda lo manda al 4.
  • La primera parte de nuestra permutación manda el 4 al 5 y, el 5 se queda fijo.
  • Por último, el 5 es mandado al 2 por la primera parte de la permutación y, la segunda parte manda al 2 en el 3. Por lo tanto, el 5 regresa al 3. Esto se puede escribir como:

\begin{align*}
(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5) = (1 \; 2) (3 \; 4 \; 5)
\end{align*}

Es decir:

Representación de $(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5) = (1 \; 2) (3 \; 4 \; 5)$.

Este ejemplo nos da la noción de que las permutaciones se pueden simplificar.

Observación. Si $n \geq 3$, entonces $S_n$ no es abeliano.

Tarea moral

  1. Demostrar la observación 1: $S_X$ con la composición es un grupo, se llama el Grupo Simétrico.
  2. Sea $X$ un conjunto infinito, $H$ la colección de permutaciones de $S_X$ que mueven sólo un número finito de elementos y $K$ la colección de permutaciones que mueven a lo más $50$ elementos. ¿Son $H$ y $K$ subgrupos de $S_X$?
  3. Considera los siguientes elementos de $S_{10}$
    \begin{align*} \alpha &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
    10 & 4 & 3 & 2 & 9 & 7 & 5 & 1 & 6 & 8 \end{pmatrix} \\\\
    \beta &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
    10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix} \end{align*}
    Encuentra $\alpha \beta, \beta \alpha, \alpha^{-1}$ y $\beta^{-1}$.
  4. Sea $a \in S_n, $ con $n > 2$. Si $\alpha$ conmuta con toda permutación de $S_n$ ¿puedes decir quién debe ser $\alpha$?

Más adelante…

Por el momento continuaremos hablando de las permutaciones. El último ejemplo visto nos da la noción de permutaciones disjuntas, este tema es el que profundizaremos en la siguiente entrada, pero por el momento ¿puedes imaginarte de qué se trata?

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Propiedades del conjunto de soluciones a un sistema lineal de ecuaciones de primer orden

Introducción

En la entrada anterior comenzamos el estudio de los sistemas de ecuaciones diferenciales de primer orden $$\begin{alignedat}{4} \dot{x_{1}} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x_{2}} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x_{n}} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}$$ donde revisamos las principales definiciones y enunciamos el teorema de existencia y unicidad correspondiente a sistemas de primer orden y sus problemas de condición inicial. Es momento ahora de estudiar las principales propiedades que cumple el conjunto de soluciones a un sistema lineal de ecuaciones de primer orden, las cuales se comportan de una manera bastante similar al conjunto de soluciones a una ecuación de segundo orden lineal que revisamos en la unidad anterior.

Iniciaremos revisando al conjunto de soluciones al sistema lineal homogéneo $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}$$ el cual cumple el principio de superposición, es decir, si tenemos $n$ soluciones, digamos ${\textbf{X}_{1}}(t), {\textbf{X}_{2}}(t),…,{\textbf{X}_{n}}(t)$, entonces cualquier combinación lineal de estas también lo será. Si recuerdas tus cursos de Álgebra Lineal, esta última propiedad nos dice que el conjunto de soluciones es cerrado bajo la suma y producto por escalar usuales definidos para matrices. Con estas operaciones, veremos que el conjunto de soluciones al sistema lineal homogéneo forma un espacio vectorial.

Posteriormente definiremos el Wronskiano de un subconjunto de soluciones al sistema lineal homogéneo, el cual es similar más no igual al Wronskiano que definimos para ecuaciones lineales de segundo orden. En la tarea moral demostrarás la relación que tienen estos dos Wronskianos.

Si hablamos del Wronskiano y del conjunto de soluciones como un espacio vectorial, debemos hablar también de dependencia e independencia lineal entre las soluciones al sistema. Además demostraremos que si el Wronskiano no se anula entonces el subconjunto de soluciones es linealmente independiente. Además si lo último ocurre podremos expresar cualquier solución como una combinación lineal de las soluciones linealmente independientes. Con estos conceptos podremos definir a la matriz fundamental de soluciones del sistema, la cual revisaremos más a detalle en entradas posteriores.

Terminaremos revisando el caso no homogéneo $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}+ {\textbf{Q}}$$ demostrando que su solución general será la suma de la solución general al sistema homogéneo y una solución particular al sistema no homogéneo.

El espacio vectorial del conjunto de soluciones a un sistema lineal homogéneo

En el primer video probamos el principio de superposición de soluciones al sistema lineal homogéneo. Además vemos que el conjunto de soluciones al sistema forma un espacio vectorial con la suma y producto por escalar usuales para matrices.

El Wronskiano de un subconjunto de soluciones e independencia lineal

Definimos el Wronskiano de un subconjunto de soluciones al sistema lineal homogéneo, así como los conceptos de dependencia e independencia lineal de soluciones. Probamos un importante teorema que relaciona estos dos conceptos y nos dice cómo se ve la solución general al sistema. Finalizamos definiendo la matriz fundamental de soluciones del sistema.

Solución general al sistema lineal no homogéneo

Finalizamos la entrada demostrando que la solución general al sistema lineal no homogéneo es la suma de la solución general al sistema homogéneo y una solución particular al sistema no homogéneo.

Tarea moral

  • ¿El conjunto de soluciones a un sistema lineal no homogéneo forma un espacio vectorial con las operaciones usuales de matrices?
  • Prueba que $$\textbf{X}_{1}(t)=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} ; \, \textbf{X}_{2}(t)=\begin{pmatrix} t \\ 2 \\ 0 \end{pmatrix} ; \, \textbf{X}_{3}(t)=\begin{pmatrix} t^{2} \\ t \\ 0 \end{pmatrix}$$ son linealmente independientes en $\mathbb{R}$.
  • Sean ${\textbf{X}_{1}}(t), {\textbf{X}_{2}}(t),…,{\textbf{X}_{n}}(t)$ soluciones al sistema $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}$$ en el intervalo $[a,b]$. Demuestra que $W[{\textbf{X}_{1}}, {\textbf{X}_{2}},…,{\textbf{X}_{n}}](t)=0 \, \, \forall t \in [a,b]$, ó $W[{\textbf{X}_{1}}, {\textbf{X}_{2}},…,{\textbf{X}_{n}}](t) \neq 0 \, \, \forall t \in [a,b]$.
  • Considera el sistema lineal $$\dot{\textbf{X}}=\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \textbf{X}.$$ Prueba que $$\textbf{X}_{1}(t)=\begin{pmatrix} e^{t} \\ -e^{t} \end{pmatrix} ; \, \textbf{X}_{2}(t)=\begin{pmatrix} e^{-t} \\ e^{-t} \end{pmatrix}$$ son soluciones al sistema. Además prueba que son linealmente independientes en $\mathbb{R}$ y por lo tanto forma una matriz fundamental de soluciones al sistema.
  • Considera la ecuación $$\ddot{y}+p(t)\dot{y}+q(t)y=0$$ y su sistema de ecuaciones correspondiente $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1 \\ -q(t) & -p(t) \end{pmatrix} \textbf{X}.$$ Prueba que si $\textbf{X}_{1}(t)$, $\textbf{X}_{2}(t)$ son soluciones linealmente independientes al sistema de ecuaciones, y si $y_{1}(t)$, $y_{2}(t)$ forman un conjunto fundamental de soluciones a la ecuación de segundo orden, entonces se satisface la identidad $$W[y_{1}, y_{2}](t)=cW[\textbf{X}_{1}, \textbf{X}_{2}](t)$$ para alguna constante $c \neq 0$.

Más adelante

En la siguiente entrada comenzaremos a resolver algunos sistemas lineales bastante sencillos. El método que estudiaremos será el de eliminación de variables, el cual consiste en eliminar variables dependientes hasta quedarnos con una ecuación diferencial de orden superior. Resolviendo esta última ecuación podremos encontrar la solución general al sistema original. Este método funciona para sistemas lineales con coeficientes constantes.

Hasta la próxima!

Entradas relacionadas

Geometría Moderna I: Paralelogramos

Introducción

En esta entrada presentamos a el primer tipo de cuadriláteros que estudiaremos, los paralelogramos, algunas de sus propiedades serán frecuentemente usadas durante el curso.

Definición 1. Un cuadrilátero es una figura geométrica que consiste en cuatro vértices y cuatro lados. Si los vértices de un cuadrilátero son $A$, $B$, $C$ y $D$ y los lados $\overline{AB}$, $\overline{BC}$, $\overline{CD}$ y $\overline{AD}$ entonces lo denotamos como $\square ABCD$.

Decimos que los lados de un cuadrilátero son adyacentes u opuestos de acuerdo a si tienen o no un vértice en común. Similarmente diremos que los vértices de un cuadrilátero son adyacentes u opuestos si son extremos de un mismo lado o no. Los segmentos que unen vértices opuestos son las diagonales del cuadrilátero.

Un cuadrilátero es convexo si sus diagonales se intersecan en el interior del cuadrilátero.

Figura 1

Proposición 1. La suma de los ángulos internos de todo cuadrilátero convexo es $2\pi$.

Demostración. Sea $\square ABCD$ convexo, consideremos $\overline{BD}$, entonces La suma de los ángulos internos del cuadrilátero será igual a la suma de los ángulos internos de los dos triángulos $\triangle ABD$ y $\triangle CBD$, esto es, $2\pi$.

$\blacksquare$

Algunas propiedades de paralelogramos

Definición 2. Un paralelogramo es un cuadrilátero convexo cuyos pares de lados opuestos son paralelos.

Teorema 1. En todo paralelogramo se cumple lo siguiente:

  • los lados opuestos y los ángulos opuestos son iguales,
  • los ángulos adyacentes son suplementarios,
  • cada diagonal divide al paralelogramo en dos triángulos congruentes,
  • las dos diagonales del paralelogramo lo dividen en dos parejas de triángulos congruentes,
  • las diagonales se intersecan en su punto medio.

Demostración. Sea $\square ABCD$ un paralelogramo, como la diagonal $\overline{BD}$ es transversal a $\overline{AB}$ y $\overline{DC}$ y estos son paralelos entonces $\angle DBA = \angle BDC$, similarmente $\overline{BD}$ es transversal a $\overline{AD}$ y a $\overline{BC}$ por lo que $\angle ADB = \angle CBD$.

Figura 2

$\triangle ABD$ y $\triangle CDB$ tienen en común al lado $\overline{BD}$ y por criterio ALA $\triangle ABD \cong \triangle CDB$ es decir $AB = CD$, $AD = CB$ y $\angle A = \angle C$, además $\angle D = \angle ADB + \angle BDC = \angle CBD + \angle DBA = \angle B$.

Así los lados y ángulos opuesto son iguales.

Veamos que los los ángulos adyacentes son suplementarios,
$\angle A +\angle B = \angle A + \angle CBD + \angle DBA = \angle A + \angle ADB + \angle DBA = \pi$.
Similarmente $\angle A + \angle D = \angle C + \angle B = \angle C + \angle D = \pi$.

Por otro lado, si consideramos la diagonal $\overline{AD}$, al igual que en el caso anterior, tendremos que $\angle BAC = \angle DCA$ y $\angle CAD = \angle ACB$.

Figura 3

Sea $E = \overline{AC} \cap \overline{BD}$, por criterio ALA $\triangle EAB \cong \triangle ECB$ y $\triangle EAD \cong \triangle ECB$ por lo que $AE = CE$ y $BE = DE$.

$\blacksquare$

Rectángulo

Definición 3. Un rectángulo es un cuadrilátero con cuatro ángulos rectos.

Proposición 2. Todo rectángulo es paralelogramo.

Demostración. Como dos lados opuestos son perpendiculares a un tercer lado entonces son paralelos entre sí. Similarmente los otros dos lados opuestos son paralelos entre sí. Por lo tanto, un rectángulo es paralelogramo.

Figura 4

$\blacksquare$

Proposición 3. Un paralelogramo es rectángulo si y solo si sus diagonales tienen la misma longitud.

Demostración. Sea $\square ABCD$ paralelogramo y supongamos que $AC = BD$, por el teorema anterior $AD = BC$, y los triángulos $\triangle ADC $ y $\triangle BCD$ comparten a $\overline{CD}$ como lado en común, por criterio LLL $\triangle ADC \cong \triangle BCD$, en particular $\angle C = \angle D$.

Figura 5

Pero por el teorema 1, $\angle A = \angle C$ y $\angle B = \angle D$, por tanto, $\angle A = \angle C = \angle D = \angle B$.

Por la proposición 1, $4\angle A = \angle A + \angle C + \angle B + \angle D = 2 \pi$
$\Rightarrow \angle A = \angle C = \angle B = \angle D = \dfrac{\pi}{2}$.

Así, $\square ABCD$ es rectángulo.

$\blacksquare$

Ahora supongamos que $\square ABCD$ es rectángulo y probemos que $AC = BD$.

Figura 6

Por hipótesis $\angle D = \angle C$, como $\square ABCD$ es paralelogramo entonces $AD = BC$, además $\overline{CD}$ es un lado en común de $\triangle ADC$ y $\triangle BCD$, por criterio LAL, $\triangle ADC \cong \triangle BCD$, por lo que $AC = BD$.

$\blacksquare$

Rombo

Definición 4. Un rombo es un cuadrilátero con cuatro lados iguales.

Proposición 4. Todo rombo es paralelogramo.

Demostración. Sea $\square ABCD$ un rombo, por criterio LLL $\triangle ABD \cong \triangle CDB$, en particular $\angle ADB = \angle CBD$, como $\overline{BD}$ es transversal a $\overline{AD}$ y a $\overline{BC}$ y los ángulos alternos internos son iguales entonces $\overline{AD} \parallel \overline{BC}$.

Figura 7

De manera similar se ve que $\overline{AB} \parallel \overline{CD}$. Concluimos que $\square ABCD$ es paralelogramo.

$\blacksquare$

Proposición 5. Un paralelogramo es un rombo si y solo si sus diagonales son perpendiculares.

Demostración. Sea $\square ABCD$ paralelogramo y supongamos que $\overline{AC} \perp \overline{BD}$, veamos que es rombo.

Figura 8

Sea $E = \overline{AC} \cap \overline{BD}$, por hipótesis $\angle DEA = \angle AEB$, como $\square ABCD$ es paralelogramo, por el teorema 1, $BE = DE$, además $\overline{AE}$ es un lado en común de $\triangle AED$ y $\triangle AEB$, por criterio LAL $\triangle AED \cong \triangle AEB$, en particular $AD = AB$.

Como $\square ABCD$ es paralelogramo los lados opuestos son iguales, por lo tanto, $CD = AB = AD = BC$

Así, $\square ABCD$ es rombo.

$\blacksquare$

Ahora supongamos que $\square ABCD$ es rombo veamos que $\overline{AC} \perp \overline{BD}$.

Figura 9

Sea $E = \overline{AC} \cap \overline{BD}$, como $\square ABCD$ es paralelogramo, $BE = DE$, por criterio LLL, $\triangle ABE \cong \triangle ADE$, por lo que $\angle AEB = \angle DEA$.

Por ser opuestos por el vértice, $\angle AEB = \angle CED$ y $\angle DEA = \angle BEC$, por lo que $\angle CED = \angle AEB = \angle DEA = \angle BEC$, y como $\angle CED + \angle AEB + \angle DEA + \angle BEC = 2\pi$ entonces $\angle CED = \angle AEB = \angle DEA = \angle BEC =\dfrac{\pi}{2}$.

Por lo tanto, $\overline{AC} \perp \overline{BD}$.

$\blacksquare$

Segmento medio del triángulo

Proposición 6. Si un cuadrilátero convexo tiene un par de lados opuestos paralelos e iguales entre si entonces los restantes lados opuestos son paralelos e iguales entre sí.

Demostración. Sea $\square ABCD$ convexo tal que $AD = BC$ y $\overline{AD} \parallel \overline{BC}$.

Tracemos $\overline{BD}$, como $\overline{AD} \parallel \overline{BC}$ entonces $\angle ADB = \angle CBD$, por criterio LAL, $\triangle ADB \cong \triangle CBD$, en particular $AB = CD$ y $\angle DBA = \angle BDC$.

Figura 10

Como $\overline{BD}$ es transversal a $\overline{AB}$ y a $\overline{CD}$ y $\angle DBA = \angle BDC$ entonces $\overline{AB} \parallel \overline{CD}$.

En consecuencia, $\square ABCD$ es paralelogramo.

$\blacksquare$

Teorema 2. Del segmento medio del triángulo. El segmento que une puntos medios de dos lados de un triángulo es paralelo e igual a la mitad del lado restante.

Demostración. Sean $\triangle ABC$, $M$ y $N$ los puntos medios de $\overline{AB}$ y $\overline{AC}$ respectivamente. Extendemos $\overline{MN}$ hasta un punto $O$ del lado de $N$ tal que $MN = NO$.

Figura 11

Como $N$ es punto medio de $\overline{AC}$ entonces $AN = CN$, por construcción $MN = NO$ y $\angle ANM = \angle CNO$ por ser opuestos por el vértice. Por criterio LAL $\triangle ANM \cong \triangle CNO$ por lo que $CO = AM = BM$ y $\angle NMA = \angle NOC$.

Como $\overline{MO}$ es transversal a $\overline{AB}$ y a $\overline{CO}$ y los ángulos alternos internos $\angle NMA$, $\angle NOC$ son iguales entonces $\overline{AB} \parallel \overline{CO}$.

En el cuadrilátero $\square MBCO$ los lados opuestos $\overline{MB}$ y $\overline{CO}$ son paralelos e iguales, por la proposición 6, $\overline{MO} \parallel \overline{BC}$ y $MO = BC$ pero $MN = \dfrac{MO}{2}$. Por lo tanto $MN = \dfrac{BC}{2}$ y $\overline{MN} \parallel \overline{BC}$.

$\blacksquare$

Problema de Thébault

Definición 5. Un cuadrado es un cuadrilátero con cuatro lados iguales y cuatro ángulos rectos. Decimos que la intersección de las diagonales de un cuadrado es el centro del cuadrado.

Teorema 3. Los centros de cuadrados construidos externamente sobre los lados de un paralelogramo son los vértices de un cuadrado y las diagonales del cuadrado y las del paralelogramo son concurrentes.

Demostración. Sea $\square ABCD$ paralelogramo y sean $\square ABB’’A’$, $\square BCC’’B’$, $\square CDD’’C’$ y $\square ADD’A’’$ cuadrados construidos sobre $\overline{AB}$, $\overline{BC}$, $\overline{CD}$ y $\overline{DA}$ respectivamente y $O_{1}$, $O_{2}$, $O_{3}$, $O_{4}$ sus respectivos centros.

Como un cuadrado es un caso particular de un rectángulo y un rombo, sus diagonales son perpendiculares y tienen la misma longitud, y como es un paralelogramo las diagonales se bisecan.

De esto concluimos que las diagonales de un cuadrado lo dividen en cuatro triángulos rectángulos, isósceles y congruentes entre sí.

Por otro lado, como $\square ABCD$ es paralelogramo entonces $AD = BC$ y $AB = CD$.

$\Rightarrow$
$\begin{equation} \triangle AA’O_{1} \cong \triangle ABO_{1} \cong \triangle CDO_{3} \cong \triangle CC’O_{3} \end{equation}$
$\begin{equation} \triangle AA’’O_{4} \cong \triangle ADO_{4} \cong \triangle BCO_{2} \cong \triangle CC’’O_{2} \end{equation}$

Figura 12

Por ser $\square ABCD$ paralelogramo entonces $\angle A = \angle C$, $\angle B = \angle D$, $\angle A + \angle B = \pi$.

Veamos que $\triangle AO_{1}O_{4}$ y $\triangle CO_{3}O_{2}$ son congruentes.

Por $(1)$ $\overline{AO_{1}} = \overline{CO_{3}}$, por $(2)$ $\overline{AO_{4}} = \overline{CO_{2}}$,
notemos que $\angle A’’AA’ = \pi – \angle A = \angle B = \angle D = \pi – \angle C = \angle C’’CC’$,
$\Rightarrow \angle O_{4}AO_{1} = \angle O_{4}AA’’ + \angle A’’AA’ + \angle A’AO_{1}$
$= \angle O_{2}CC’’ + \angle C’’CC’ + \angle C’CO_{3} = \angle O_{2}CO_{3}$

Por criterio LAL $\triangle AO_{1}O_{4} \cong \triangle CO_{3}O_{2}$ por lo que $\overline{ O_{1}O_{4}} = \overline{O_{2}O_{3}}$.

De manera similar se muestra que $\triangle AO_{1}O_{4} \cong \triangle BO_{1}O_{2} \cong \triangle DO_{3}O_{4}$, y así
$\begin{equation} O_{2}O_{3} = O_{1}O_{4} = O_{1}O_{2} = O_{3}O_{4} \end{equation}$

Como $\triangle AO_{1}O_{4} \cong \triangle BO_{1}O_{2}$ entonces $\angle AO_{1}O_{4} = \angle BO_{1}O_{2}$.

$\Rightarrow \angle O_{2}O_{1}O_{4} = \angle BO_{1}O_{4} – \angle BO_{1}O_{2}$
$= \angle BO_{1}A + \angle AO_{1}O_{4} – \angle BO_{1}O_{2} = \angle BO_{1}A = \dfrac{\pi}{2}$.

De manera similar se ve que
$\begin{equation} \angle O_{1}O_{4}O_{3} = \angle O_{4}O_{3}O_{2} = \angle O_{3}O_{2}O_{1} = \angle AO_{1}O_{4} = \dfrac{\pi}{2} \end{equation}$.

Como $\square O_{1}O_{2}O_{3}O_{4}$ tienen cuatro lados iguales por $(3)$, y cuatro ángulos rectos por $(4)$, entonces es un cuadrado.

Veamos que las cuatro diagonales son concurrentes, consideremos $\overline{O_{2}O_{4}}$ diagonal del cuadrado y $\overline{BD}$ diagonal del paralelogramo. Sea $E = \overline{O_{2}O_{4}} \cap \overline{BD}$.

En $\triangle EBO_{2}$ y $\triangle EDO_{4}$ tenemos que $\angle BEO_{2} = \angle DEO_{4}$ por ser opuestos por el vértice, $\angle O_{2}BE = \angle O_{2}BC + \angle CBD = \angle O_{4}DA + \angle ADB$, por lo tanto $\angle EO_{2}B = \angle EO_{4}D$, además $BO_{2} = DO_{4}$.

Por criterio LAL $\triangle EBO_{2} \cong \triangle EDO_{4}$, por lo que $BE = DE$ y $O_{2}E = O_{4}E$
$\Rightarrow O_{2}O_{4}$ y $BD$ se intersecan en su punto medio.

Como $\square ABCD$ y $\square O_{1}O_{2}O_{3}O_{4}$ son paralelogramos sus diagonales se intersecan en su punto medio y por lo anterior todas concurren en $E$.

$\blacksquare$

Tarea moral

  1. Muestra que si un cuadrilátero convexo tiene alguna de las siguientes características entonces es un paralelogramo.
    $i)$los dos pares de lados opuestos son iguales,
    $ii)$los dos pares de ángulos opuestos son iguales,
    $iii)$los ángulos adyacentes son suplementarios,
    $iv)$las diagonales se bisecan.
  2.  Construye un cuadrado sobre un segmento dado.
  3. Si trazamos rectas paralelas a los lados de un paralelogramo por un punto de una de sus diagonales se forman 4 cuadriláteros, muestra que los dos cuadriláteros por donde no pasa la diagonal tienen la misma área.
Figura 13
  1. Demuestra que si una recta biseca a un lado de un triangulo y es paralela a otro de los lados del triangulo entonces biseca al lado restante.
  2. $i)$ Muestra que el punto medio de la hipotenusa de un triangulo rectángulo equidista a los tres vértices del triangulo.
    $ii)$ Recíprocamente prueba que si en un triangulo un punto en uno de sus lados equidista a los tres vértices entonces el triángulo es rectángulo.
  3. Prueba que si construimos triángulos equiláteros exteriormente sobre los lados de un paralelogramo, entonces los cuatro vértices construidos son los vértices de un paralelogramo, y muestra que las diagonales de los dos paralelogramos son concurrentes.
Figura 14

Más adelante…

En la siguiente entrada veremos un resultado muy importante de las matemáticas, el teorema de Pitágoras y algunas aplicaciones.

Entradas relacionadas