Archivo de la etiqueta: números complejos

Álgebra lineal II: Formas sesquilineales y matrices

Introduccíon

Como en las entradas anteriores, una vez que estudiamos formas bilineales y cuadráticas, intentamos expandir esta definición a los números complejos con las formas sesquilineales y hermitianas cuadráticas, esta vez será lo mismo, una vez que entendemos la relación entre matrices y formas bilineales, ahora intentaremos entender la relación que existe entre matrices y formas sesquilineales.

En esta entrada veremos que gran parte de la relación que había para el caso real se mantiene al pasar a los complejos, si es que, agregando una condición, por lo que veremos el análogo a la gran mayoría de resultados vistos en las últimas dos entradas, por lo que te recomendamos tener a la mano las entradas sobre formas bilineales y matrices (Ambas partes) y formas sesquilineales.

Matriz asociada

De aquí en adelante, asumiremos que $V$ siempre es un espacio vectorial sobre $\mathbb{C}$ de dimensión finita y $\mathcal{B}=\{u_1, \cdots u_n\}$ una base de $V$. Tambien recordemos que $S(V)$ se definió como el espacio de formas sesquilineales en V.

Definición

Sea $\mathcal{B}$ base de $V$ y $\varphi: V \times V \rightarrow \mathbb{C}$ una forma sesquilineal en $V$. La matriz de $\varphi$ con respecto $\mathcal{B}$ es la matriz
\begin{align*} A=[a_{ij}] \qquad \text{con} \qquad a_{ij}=\varphi(u_i,u_j)\end{align*}
Para todo $i,j$ tal que $1 \leq i,j \leq n$.

Notemos que a las formas sesquilineales no se les pidió ser simétricas. (¿por qué?)

Veamos primero como escribir $\varphi(x,y)$ en su forma matricial.

Proposición

Sea $\mathcal{B}$ base de $V$ y $\varphi: V \times V \rightarrow \mathbb{C}$ una forma sesquilineal en $V$. Prueba que $\forall x,y \in V$
\begin{align*} \varphi(x,y)=X^*AY\end{align*}
Con $X,Y$ los vectores columna con coordenadas $x_1, \cdots x_n$ y $y_1, \cdots y_n$ respectivamente tales que $x=\sum_{i=1}^nu_1x_1$ y $y=\sum_{j=1}^nu_jy_j$ y $X^*=\text{ }^t\overline{X}$.

Demostración

Calculemos $\varphi(\sum_{i=1}^nu_1x_1, \sum_{j=1}^nu_jy_j)$ como sabemos que $\varphi$ es sesquilineal, tenemos
\begin{align*}\varphi(\sum_{i=1}^nu_1x_1, \sum_{j=1}^nu_jy_j)=\sum_{i=1}^n\sum_{j=1}^n \overline{x_1} y_j\varphi(u_i,u_j)\end{align*}
Donde notemos que la única diferencia con las funciones bilineales es que en la primera coordenada, las $x_i$ salen como conjugadas.

Y notemos que esto es efectivamente igual a
\begin{align*} X^*AY\end{align*}
Por lo que tenemos la igualdad buscada.

$\square$

Proposición

Con la notación de arriba, $A$ es la unica matriz que cumple
\begin{align*} \varphi(x,y)=X^*AY.\end{align*}

Demostración

La demostración es completamente análoga a la vista aquí, (la primera proposición bajo Preparaciones para el teorema de Sylvester) , por lo que revisemosla rápidamente

Si suponemos que existe $A’$ tal que
\begin{align*} \varphi(x,y)=X^*A’Y\end{align*}
Entonces
\begin{align*} X^*A’Y=X^*AY\end{align*}
Por lo que
\begin{align*} A’=A\end{align*}
Por lo tanto $A$ es única.

$\square$

Proposición

Sea $ \mathcal{B}$ base de $V$, la función $\psi: S(V) \rightarrow M_n(\mathbb{C})$ que envía una forma sesquilineal simétrica a su matriz con respecto a $ \mathcal{B} $ establece un isomorfismo entre $\mathbb{C}$-espacios vectoriales.

Demostración

Primero revisemos que $\varphi$ y $\varphi’$ dos formas sesquilineales son iguales si y solo si para cualesquiera $x,y \in V$
\begin{align*} \varphi(x,y)= \varphi'(x,y)\end{align*}
dada $B$ una base, utilizando
\begin{align*}\varphi(x, y)=\sum_{i=1}^n\sum_{j=1}^n\overline{x_1}y_j\varphi(u_i,u_j)\end{align*}
tenemos que
\begin{align*}\sum_{i=1}^n\sum_{j=1}^n\overline{x_1}y_j\varphi(u_i,u_j)=\sum_{i=1}^n\sum_{j=1}^n\overline{x_1}y_j\varphi'(u_i,u_j)\end{align*}
y notemos que la igualdad se cumple si y solo si
\begin{align*} \varphi(u_i,u_j)=\varphi'(u_i,u_j). \end{align*}
De esta manera, hagamos otra demostración completamente análoga a la vista a entradas anteriores sean $\varphi, \varphi’$ dos formas sesquilineales, con $A $ y $A’$ sus matrices asociadas respectivamente, si suponemos que $A=A’$ entonces $\varphi(u_i,u_j)=\varphi'(u_i,u_j)$ por lo que $\psi$ es inyectiva.

Para la suprayectividad, sea $A=[a_{ij}]$ y $x,y \in V$ tales que $x=\sum_{i=1} ^nx_iu_i$ y $y=\sum_{j=1} ^ny_ju_j$ definamos
\begin{align*} \varphi(x,y) =\sum_{i,j=1}^na_{ij}\overline{x_i}y_j \end{align*}.
También hemos visto anteriormente que esto define una forma sesquilineal.
Por lo que $b$ es tal que $\psi(b)=A$, esto implica que $\varphi$ es suprayectiva.

Finalmente, para mostrar que esto es efectivamente un isomorfismo, sea $A =\psi(\varphi+c\varphi’)$ para algún $c \in \mathbb{C}$, sabemos entonces que
\begin{align*} A=[a_{ij}] \end{align*}
Con $a_{ij}=(\varphi+c\varphi’)(u_i,u_j)=\varphi(u_i,u_j) + c \cdot \varphi'(u_i,u_j) $ así.
\begin{align*} A=[\varphi(u_i,u_j) + c \cdot \varphi'(u_i,u_j)] \end{align*}
Por los que
\begin{align*} A=[\varphi(u_i,u_j)] + c \cdot [\varphi'(u_i,u_j)] \end{align*}
y por como definimos $\psi$
\begin{align*} \psi(\varphi+c\varphi’)= \psi(\varphi) + c \cdot \psi(\varphi) \end{align*}

Por lo que $\psi$ es un isomorfismo.

$\square$

Proposición

Sea $\varphi \in S(V)$ y $A$ su matriz asociada respecto a $\mathcal{B}$. Prueba que $\varphi$ es hermitiana si y solo si $A=A^*$.

Demostración

Sea $\varphi$ hermitiana, esto pasa si y solo si
\begin{align*}\varphi(x,y)=\overline{\varphi(y,x)} \end{align*}
Para cualesquiera $x,y \in V $. Notemos que esto pasa si y solo si
\begin{align*}\varphi(u_i,u_j)=\overline{\varphi(u_j,u_i)} \end{align*}
Para todo $e_i, e_j \in \mathcal{B}$, continuando esto es equivalente a
\begin{align*} a_{ij}=\overline{a_{ji}} \end{align*}
con $a_{ij}$ las entradas de la matriz $A$, finalmente esta última igualdad sucede si y solo si
\begin{align*} A=\overline{\text{ }^tA}=A^*.\end{align*}

$\square$

Esta última equivalencia da pie a definir una matriz hermitiana.

Definición

Sea $\varphi \in S(V)$ y $A$ su matriz asociada respecto a $\mathcal{B}$. Diremos que $A$ es conjugada simétrica o hermitiana si
\begin{align*} A=A^*.\end{align*}
De esta manera una matriz es hermitiana si y solo si su forma sesquilineal asociada lo es.

Proposición

Sean $\mathcal{B}$ y $\mathcal{B}’$ dos bases de $V$ y $P$ la matríz de cambio de base de $\mathcal{B}$ a $\mathcal{B}’$, sean $X$ el vector columna con coordenadas $x_1, \cdots , x_n$ tales que $x=\sum_{i=1}^nx_iu_i$, análogamente definamos $Y,X’,Y’$. Prueba que si $A$ es la matriz correspondiente a una forma sesquilineal en la base $\mathcal{B}$, entonces
\begin{align*} A’=P^*AP.\end{align*}
Demostración

Al $P$ ser la matriz de cambio de base, tenemos las siguientes igualdades
\begin{align*} X=PX’ \qquad \text{y} \qquad Y=PY’ \end{align*}
Además
\begin{align*} (X’)^*A’Y’=X^*AY\end{align*}
Sustituyendo $X,Y$ en esta igualdad
\begin{align*} (X’)^*A’Y’=X^*AY=(PX’)^*A(PY’)=(X’)^*(P^*AP)Y’\end{align*}
Revisando los extremos de esta igualdad
\begin{align*} (X’)^*A’Y’=(X’)^*(P^*AP)Y’\end{align*}
Esto implica que
\begin{align*} A’=P^*AP.\end{align*}

$\square$

Finalmente, revisemos la última definición que se vio en con formas bilineales.

Definición

Una matriz hermitiana $A \in M_n(\mathbb{C})$ es positiva si $X^*AX \geq 0$ para cualquier $X \in \mathbb{C}^n$, será definida positiva si la igualdad únicamente se cumple para el $0$.

Más adelante

Tras revisar esta serie bastante larga de resultados, tanto para formas bilineales como sesquilineales, enfocaremos nuestro estudio a algo que hemos utilizado, un par de veces en la demostración de estos resultados, pero nunca hemos abundado en su utilidad, esto es la dualidad.

Más aún, veremos otro concepto igual visto anteriormente, la ortogonalidad, pero esta vez definida con respecto a una forma bilineal y probaremos varios resultados antes vistos desde un enfoque de las formas bilineales, terminaremos esta unidad haciendo un repaso de bases ortogonales y el teorema de Gram-Schmidt, así como su análogo complejo.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. En la tercera proposición ¿Por qué $A=A’$ implica que $\varphi(u_i,u_j)=\varphi'(u_i,u_j)$?
  2. En esa misma proposición definimos una nueva forma que afirmamos era sesquilineal para demostrar la suprayectividad. Demuestra que $\varphi$ así definida es sesquilineal.
  3. Demuestra que para cualesquiera dos matrices $A,B \in M_n(\mathbb{C})$
    \begin{align*} (AB)^*=B^*A^*.\end{align*}
  4. Demuestra que para cualquier matriz $B \in M_n(\mathbb{C})$ $B^*B$ y $BB^*$ son hermitianas positivas.
  5. Demuestra que para cualquier matriz $A \in M_n(\mathbb{C})$ hermitiana positiva, esta puede ser escrita como
    \begin{align*} A=BB^*\end{align*}
    para alguna $B \in M_n(\mathbb{C})$.

Entradas relacionadas

Álgebra lineal II: Formas hermitianas cuadráticas

Introducción

Continuando con la entrada anterior, revisaremos las formas hermitianas cuadráticas siendo estas el equivalente a las formas cuadráticas, para números complejos, así como algunas de sus propiedades.

Análogamente a lo que vimos con formas cuadráticas y bilineales, definiremos también una forma polar y terminaremos enunciando un análogo al teorema de Gauss.

Formas hermitianas cuadráticas

Definición

Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y $\varphi$ una forma sesquilineal en $V$ hermitiana.

Llamaremos forma hermitiana cuadrática a la función $\Phi: V \rightarrow \mathbb{C}$ tal que para cualquier $x \in V$
\begin{align*} \Phi(x)=\varphi (x,x) \end{align*}
Llamaremos a la función $\varphi $ la forma polar de $\Phi$.

Ejemplo

Sea $V=\mathbb{C}^n$ y $\Phi : V \rightarrow \mathbb{C}$ definida por
\begin{align*} \Phi(x_1 \cdots x_n)= |x_1|^2 + \cdots + |x_n|^2 \end{align*}
Para cualquier $(x_1, \cdots x_n) \in V$.

Solución

En este caso, recordando un poco la definición de norma en el campo de los complejos nos puede dar una buena idea, recordemos que para cualquier $z \in \mathbb{C}$ se tiene $|z|^2=z \overline{z}$.
Así propongamos $\varphi$ como sigue
\begin{align*} \varphi(x,y)= (\overline{x_1})(y_1) + \cdots + (\overline{x_n})(y_n) \end{align*}
Para cualquier par $x,y \in V$ con $x=(x_1, \cdots x_n)$ y $y=(y_1, \cdots y_n)$.

Ejemplo

Sea $V$ el espacio de funciones continuas $f: [ 0, 1] \rightarrow \mathbb{C}$ y $\Phi: V \rightarrow \mathbb{C}$ definida por
\begin{align*} \Phi(f)= \int_0^1|f(t)|^2 dt \end{align*}
Para cualquier $f \in V$.

Solución

Para este caso la solución es bastante análoga
Porpongamos $\varphi$ como sigue
\begin{align*} \varphi(f_1,f_2)= \int_0^1\overline{f_1(t)} f_2(t) dt \end{align*}
Para cualquier par $f_1,f_2 \in V$.

Cabe aclarar que para terminar de demostrar que estos ejemplos son formas hermitianas cuadráticas, habría que demostrar que $\varphi$ definida en cada uno es sesquilineal hermitiana.

Así, para demostrar que una función es una forma hermitiana cuadrática necesitamos encontrar su forma polar, veremos una forma para hacerlo en la siguiente proposición.

Proposición (Identidad de polarización)

Sea $\Phi: V \rightarrow \mathbb{C}$ una forma hermitiana cuadrática, existe una única forma sesquilineal hermitiana $\varphi: V \times V \rightarrow \mathbb{C}$ tal que $\Phi(x)=\varphi(x,x)$ para todo $x \in V$.

Más aún, esta se puede encontrar de la siguiente manera:
\begin{align*} \varphi(x,y)=\frac{ \Phi (y+x) – \Phi (y-x) + i [ \Phi(y+xi) – \Phi(y-ix)]}{4}.\end{align*}.

Demostración

Por definición, como $\Phi$ es una forma hermitiana cuadrática, existe $s$ una forma sesquilineal hermitiana tal que $s(x,x)=\Phi(x)$ así, definamos una función
\begin{align*} \varphi(x,y)=\frac{ \Phi (y+x) – \Phi (y-x) + i [ \Phi(y+xi) – \Phi(y-ix)]}{4} \end{align*}
Además, como $\Phi(x)=s(x,x)$ podemos calcular $\varphi$ como sigue
\begin{align*} \varphi(x,y)=\frac{ s(y+x,y+x) – s(y-x,y-x) + i [ s(y+xi,y+xi) – s(y-ix,y-xi)]}{4} \end{align*}
Desarrollando los primeros dos sumandos tenemos que
\begin{align*} s(y+x,y+x) – s(y-x,y-x) =2s(y,x) + 2s(x,y)\end{align*}
Por otro lado, desarrollemos los últimos dos sumandos
\begin{align*} i [ s(y+xi,y+xi) – s(y-ix,y-xi)]= 2s(x,y) – 2s(y,x) \end{align*}
Sustituyendo esto en la función original tenemos que
\begin{align*} \varphi(x,y)=\frac{ 2s(y,x) + 2s(x,y) + 2s(x,y) – 2s(y,x) }{4}=s(x,y). \end{align*}

De esta igualdad podemos concluir varias cosas.

Primero, $\varphi = s$ por lo que $\varphi$ es efectivamente la forma polar de $\Phi$.

La forma polar en única ya que si existiera otra función $s’$ tal que $s'(x,x)=\Phi(x)$ para toda $x \in V$ sustituyendo en la identidad de polarización y repitiendo los pasos llegariamos a que $s’=\varphi$.

$\square$

Propiedades de formas hermitianas cuadráticas

Veamos algunas otras propiedades que nos pueden resultar útiles en entradas siguientes.

En las siguientes tres proposiciones, sea $V$ es un espacio vectorial sobre $\mathbb{C}$, $\Phi$ una forma hermitiana cuadrática con $\varphi$ su polar y $x,y \in V$ elementos cualesquiera.

Proposición

$\Phi(x) \in \mathbb{R}$.

Demostración

Sabemos que $\Phi(x)=\varphi(x,x)$ y como $\varphi$ es hermitiana por definición, tenemos que \begin{align*} \varphi(x,x)=\overline{\varphi(x,x)} \end{align*}
Y sabemos que esto pasa si y solo si $\Phi(x)=\varphi(x,x) \in \mathbb{R}$.

$\square$

Proposición

Sea $a \in \mathbb{C}$, entonces $\Phi(ax)=|a|^2\Phi(x)$.

Demostración

Utilizando de nuevo que $\Phi(x)=\varphi(x,x)$
\begin{align*} \varphi(ax,ax)=\overline{a}a\varphi(x,x)=|a|^2 \Phi(x). \end{align*}

$\square$

Proposición

$\Phi(x+y) = \Phi(x) + \Phi(y) +2Re(x,y)$.

Demostración

Como en las anteriores usemos que $\Phi(x+y)=\varphi(x+y,x+y)$
\begin{align*} \varphi(x+y,x+y)=\varphi(x,x)+\varphi(x,y)+ \varphi(y,x)+ \varphi(y,y) \end{align*}
como $\varphi$ es hermitiana, tenemos que $\varphi(y,x)=\overline{\varphi(x,y)}$ por lo que
\begin{align*} \varphi(x+y,x+y)=\Phi(x)+\varphi(x,y)+ \overline{\varphi(x,y)}+ \Phi(y) \end{align*}
Y recordemos que
\begin{align*} \varphi(x,y)+ \overline{\varphi(x,y)} = 2 Re(\varphi (x,y)) \end{align*}
Por lo tanto
\begin{align*} \Phi(x+y) = \Phi(x) + \Phi(y) +2Re(x,y). \end{align*}

$\square$

Para concluir, también enunciaremos el análogo de el teorema de Gauss para formas cuadráticas.

Teorema de Gauss

Sea $\Phi$ una función hermitiana cuadrática en $\mathbb{C}^n$, existen $\alpha_1, \cdots , \alpha_r \in \{ -1, 1 \}$ y funciones linealmente independientes $l_1, \cdots l_r$ en $\mathbb{C}^n$ tal que, $\forall x \in \mathbb{C}^n$
\begin{align*} \Phi(x_1, \cdots , x_n ) = \sum_{i=1}^r \alpha_i |l_i(x)|^2. \end{align*}

Más adelante

Con esto concluimos nuestro pequeño repaso de formas bilineales y sesquilineales, basándonos en esto, veremos una aplicación de estas que te puede resultar bastante más familiar, los productos internos.

Al repasar productos internos concluiremos revisando dos desigualdades sumamente importantes para cualquier teoría en donde se utilicen espacios con producto interno (no abundaremos en este curso sobre este concepto, pero seguro conoces un par de espacios vectoriales que tienen definido un producto interno) siendo estas las desigualdades de Cauchy-Schwarz y de Minkowski, cuyas aplicaciones se extienden desde la geometría, el análisis e incluso la mecánica cuántica.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{C}^n$ y definamos $\varphi$
    \begin{align*} \varphi(x,y)= (\overline{x_1})(y_1) + \cdots + (\overline{x_n})(y_n) \end{align*}
    para cualquier par $x,y \in V$ con $x=(x_1, \cdots x_n)$ y $y=(y_1, \cdots y_n)$.
    Demuestra que $\varphi$ es una forma sesquilineal hermitiana.
  2. Sea $V$ el espacio de funciones continuas $f: [ 0, 1] \rightarrow \mathbb{C}$ y $\varphi$ definida como sigue $\varphi$ como sigue
    \begin{align*} \varphi(f_1,f_2)= \int_0^1\overline{f_1(t)} f_2(t) dt \end{align*}
    Para cualquier par $f_1, f_2 \in V$.
    Demuestra que $\varphi$ es una forma sesquilineal hermitiana.
  3. Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y $\Phi$ una forma hermitiana cuadrática, prueba la siguiente identidad (identidad del paralelogramo)
    \begin{align*} \Phi(x+y) + \Phi(x-y) = 2(\Phi(x) + \Phi(y)) \end{align*}.
  4. ¿Como definirías el concepto de producto interno en $\mathbb{R}$ utilizando formas cuadráticas o hermitianas cuadráticas?
  5. Demuestra el Teorema de Gauss para formas hermitianas cuadráticas.

Entradas relacionadas

Álgebra Lineal I: Matrices simétricas reales y sus eigenvalores

Introducción

Hemos llegado a la cima del curso. En estas últimas entradas probaremos uno de los teoremas más bellos en álgebra lineal: el teorema espectral para matrices simétricas reales. También hablaremos de varias de las consecuencias que tiene.

Hay dos formas equivalentes de enunciar el teorema.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Teorema. Sea $A$ una matriz simétrica en $\mathbb{R}^n$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $\mathbb{R}^n$, tales que $$A=P^{-1}DP.$$

Para hablar de la demostración y de las consecuencias del teorema espectral para matrices simétricas reales, necesitaremos usar teoría de todas las unidades del curso. En particular, usaremos las siguientes definiciones:

  • Una matriz $A$ en $M_n(F)$ es simétrica si es igual a su transpuesta.
  • Una matriz $A$ en $M_n(F)$ es ortogonal si es invertible y $A^{-1}= {^tA}$.
  • Si $T:V\to V$ es una transformación lineal de un espacio vectorial $V$ a sí mismo y $W$ es un subespacio de $V$, entonces decimos que $W$ es estable bajo $T$ si $T(W)\subseteq W$.
  • Un producto interior es una forma bilineal simétrica y positiva definida.
  • Un espacio Euclideano es un espacio vectorial de dimensión finita con un producto interior.
  • Si $W$ es un subespacio de un espacio Euclideano $V$, entonces $W^\bot$ es el conjunto de todos los vectores que de $V$ que son ortogonales a todos los vectores de $W$.
  • Una matriz $A$ en $M_n(F)$ es diagonalizable si existen matrices $P$ y $D$ en $M_n(F)$ con $P$ invertible, $D$ diagonal y tales que $A=P^{-1}DP$.

Y los siguientes resultados principales:

En esta entrada enunciaremos tres resultados auxiliares de interés propio. A partir de estos resultados, la demostración del teorema espectral para matrices simétricas reales y la equivalencia entre ambas versiones será mucho más limpia.

Los eigenvalores de matrices simétricas reales

El polinomio característico de una matriz $A$ en $M_n(\mathbb{R})$ tiene coeficientes reales. Por el teorema fundamental del álgebra, debe tener exactamente $n$ raíces en $\mathbb{C}$, contando multiplicidades. Si alguna de estas raíces $r$ no es real, entonces $A$ no puede ser diagonalizable en $M_n(\mathbb{R})$. La razón es que $A$ sería similar a una matriz diagonal $D$, y los eigenvalores de las matrices diagonales (incluso triangulares) son las entradas de la diagonal principal. Como $A$ y $D$ comparten eigenvalores (por ser similares), entonces $r$ tendría que ser una entrada de $D$, pero entonces $D$ ya no sería una matriz de entradas reales.

Lo primero que veremos es que las matrices simétricas reales «superan esta dificultad para poder diagonalizarse». Esta va a ser nuestra primer herramienta para demostrar el teorema espectral.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$ y $\lambda$ una raíz del polinomio característico de $A$. Entonces, $\lambda$ es un número real.

Demostración. El polinomio característico de $A$ es un polinomio con coeficientes reales, así que por el teorema fundamental del álgebra se tiene que $\lambda$ debe ser un número en $\mathbb{C}$. Así, podemos escribirlo de la forma $\lambda = a+ib$, con $a$ y $b$ números reales. Lo que mostraremos es que $b=0$.

Se tiene que $\lambda$ es un eigenvalor de $A$ vista como matriz en $M_n(\mathbb{C})$, y por lo tanto le corresponde un eigenvector $U$ en $\mathbb{C}^n$, es decir, un $U\neq 0$ tal que $$AU=\lambda U.$$ Este vector $U$ lo podemos separar en partes reales e imaginarias con vectores $V$ y $W$ en $\mathbb{R}^n$ tales que $$U=V+iW.$$

En estos términos,
\begin{align*}
AU&=A(V+iW)=AV+iAW \quad\text{y}\\
\lambda U &= (a+ib)(V+iW)\\
&=(aV-bW) + i (aW+bV),
\end{align*}

de modo que igualando partes reales e imaginarias en la expresión $AU=\lambda U$ tenemos que
\begin{align*}
AV&=aV-bW\quad\text{y}\\
AW&=aW+bV.
\end{align*}

Como $A$ es simétrica, tenemos que

\begin{equation}
\langle AV,W \rangle=\langle {^tA}V,W \rangle= \langle V, AW\rangle.
\end{equation}

Estudiemos las expresiones en los extremos, reemplazando los valores de $AV$ y $AW$ que encontramos arriba y usando la bilinealidad del producto interior. Se tiene que

\begin{align*}
\langle AV,W \rangle &= \langle aV-bW,W \rangle\\
&=a\langle V,W \rangle – b \langle W,W \rangle\\
&=a \langle V,W \rangle – b \norm{W}^2,
\end{align*}

y que

\begin{align*}
\langle V,AW \rangle &= \langle V,aW+bV \rangle\\
&=a\langle V,W \rangle + b \langle V,V \rangle\\
&=a \langle V,W \rangle + b \norm{V}^2.
\end{align*}

Substituyendo estos valores en la expresión (1), obtenemos la igualdad

$$a \langle V,W \rangle – b \norm{W}^2 = a \langle V,W \rangle + b \norm{V}^2,$$

que se simplifica a $$b(\norm{V}^2+\norm{W}^2)=0.$$

Estamos listos para dar el argumento final. Como $U=V+iW$ es un eigenvector, entonces no es nulo, de modo que no es posible que $V$ y $W$ sean ambos el vector $0$ de $\mathbb{R}^n$. Como el producto interior es positivo definido, entonces alguna de las normas $\norm{V}$ o $\norm{W}$ no es cero, de modo que $$\norm{V}^2+\norm{W}^2\neq 0.$$

Concluimos que $b=0$, y por lo tanto que $\lambda$ es un número real.

$\square$

La demostración anterior es ejemplo de un truco que se usa mucho en las matemáticas. Aunque un problema o un teorema no hablen de los números complejos en su enunciado, se puede introducir a $\mathbb{C}$ para usar sus propiedades y trabajar ahí. Luego, se regresa lo obtenido al contexto real. Aquí en el blog hay otra entrada en donde damos más ejemplos de «brincar a los complejos».

Un resultado auxiliar de transformaciones simétricas

A continuación damos la segunda herramienta que necesitaremos para probar el teorema espectral. Recuerda que si $V$ es un espacio Euclideano y $T:V\to V$ es una transformación lineal, entonces decimos que $T$ es simétrica si para todo par de vectores $u$ y $v$ en $V$ se tiene que $$\langle T(u),v\rangle = \langle u, T(v) \rangle.$$ Enunciamos el resultado en términos de transformaciones, pero también es válido para las matrices simétricas asociadas.

Teorema. Sea $V$ un espacio Eucideano y $T:V\to V$ una transformación lineal simétrica. Sea $W$ un subespacio de $V$ estable bajo $T$. Entonces:

  • $W^\bot$ también es estable bajo $T$ y
  • Las restricciones de $T$ a $W$ y a $W^\bot$ son transformaciones lineales simétricas en esos espacios.

Demostración. Para el primer punto, lo que tenemos que mostrar es que si $w$ pertenece a $W^\bot$, entonces $T(w)$ también, es decir, que $T(w)$ es ortogonal a todo vector $v$ en $W$.

Tomemos entonces un vector $v$ en $W$. Como $W$ es estable bajo $T$, tenemos que $T(v)$ está en $W$, de modo que $\langle w, T(v) \rangle =0$. Como $T$ es simétrica, tenemos entonces que $$\langle T(w),v \rangle = \langle w, T(v) \rangle = 0.$$ Esto es lo que queríamos probar.

Para la segunda parte, si $T_1$ es la restricción de $T_1$ a $W$ y tomamos vectores $u$ y $v$ en $W$, tenemos que
\begin{align*}
\langle T_1(u), v \rangle &= \langle T(u), v \rangle\\
&=\langle u, T(v) \rangle \\
&=\langle u, T_1(v) \rangle,
\end{align*}

lo cual muestra que $T_1$ es simétrica. La prueba para $W^\bot $ es análoga y queda como tarea moral.

$\square$

Matrices diagonalizables y bases ortonormales de eigenvectores

El tercer y último resultado enuncia una equivalencia entre que una matriz en $M_n(F)$ sea diagonalizable, y que exista una base especial para $F^n$. Es lo que usaremos para probar la equivalencia entre ambas formulaciones del teorema espectral para matrices simétricas reales.

Teorema. Sea $A$ una matriz en $M_n(F)$. Las siguientes dos afirmaciones son equivalentes:

  • $A$ es diagonalizable, es decir, existen matrices $P$ y $D$ en $M_n(F)$, con $P$ invertible y $D$ diagonal tales que $A=P^{-1}DP.$
  • Existe una base para $F^n$ que consiste de eigenvectores de $A$.

Demostración. Antes de comenzar la demostración, recordemos que si tenemos una matriz $B$ en $M_n(F)$ de vectores columna $$C_1,\ldots,C_n,$$ entonces los vectores columna del producto $AB$ son $$AC_1,\ldots AC_n.$$ Además, si $D$ es una matriz diagonal en $M_n(F)$ con entradas en la diagonal $d_1,\ldots,d_n$, entonces los vectores columna de $BD$ son $$d_1C_1,\ldots,d_nC_n.$$

Comencemos la prueba del teorema. Supongamos que $A$ es diagonalizable y tomemos matrices $P$ y $D$ en $M_n(F)$ con $P$ invertible y $D$ diagonal de entradas $d_1,\ldots,d_n$, tales que $A=P^{-1}DP$. Afirmamos que los vectores columna $C_1,\ldots,C_n$ de $P^{-1}$ forman una base de $F^n$ que consiste de eigenvectores de $A$.

Por un lado, como son los vectores columna de una matriz invertible, entonces son linealmente independientes. En total son $n$, como la dimensión de $F^n$. Esto prueba que son una base.

De $A=P^{-1}DP$ obtenemos la igualdad $AP^{-1}=P^{-1}D$. Por las observaciones al inicio de la prueba, tenemos al igualar columnas que para cada $j=1,\ldots,n$ se cumple $$AC_j = d_j C_j.$$ Como $C_j$ forma parte de un conjunto linealmente independiente, no es el vector $0$. Así, $C_j$ es un eigenvector de $A$ con eigenvalor $d_j$. Con esto terminamos una de las implicaciones.

Supongamos ahora que existe una base de $F^n$ que consiste de eigenvectores $C_1,\ldots,C_n$ de $A$. Para cada $j=1,\ldots,n$, llamemos $\lambda_j$ al eigenvalor correspondiente a $C_j$, y llamemos $D$ a la matriz diagonal con entradas $\lambda_1,\ldots,\lambda_n$.

Como $C_1,\ldots,C_n$ son vectores linealmente independientes, la matriz $B$ cuyas columnas son $C_1,\ldots, C_n$ es invertible. Además, por las observaciones al inicio de la prueba, se tiene que la columna $j$ de la matriz$AB$ es $AC_j$ y la columna $j$ de la matriz $BD$ es $\lambda_j C_j$. Entonces, por construcción, estas matrices son iguales columna a columna, y por lo tanto lo son iguales. De esta forma, tenemos que $AB=BD$, o bien, reescribiendo esta igualdad, que $$A=BDB^{-1}.$$ Así, la matriz invertible $P=B^{-1}$ y la matriz diagonal $D$ diagonalizan a $A$.

$\square$

Las matrices simétricas reales serán todavía más especiales que simplemente las matrices diagonalizables. Lo que asegura el teorema espectral es que podremos encontrar no sólo una base de eigenvectores, sino que además podemos garantizar que esta base sea ortonormal. En términos de diagonalización, la matriz $P$ no sólo será invertible, sino que además será ortogonal.

Tarea moral

Los siguientes ejercicios y problemas te ayudarán a reforzar lo aprendido en esta entrada.

  • Encuentra un ejemplo de una matriz simétrica en $M_n(\mathbb{C})$ cuyos eigenvalores no sean reales.
  • En el contexto del segundo teorema, muestra que la restricción de $T$ a $W^\bot$ es simétrica.
  • Realiza la demostración de que si $A$ y $B$ son matrices en $M_n(F)$ y los vectores columna de $B$ son $C_1,\ldots,C_n$, entonces los vectores columna de $AB$ son $AC_1,\ldots,AC_n$. También, prueba que si $D$ es diagonal de entradas $d_1,\ldots,d_n$, entonces las columnas de $BD$ son $d_1C_1,\ldots,d_nC_n$.
  • Encuentra una matriz $A$ con entradas reales similar a la matriz $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3 \end{pmatrix},$$ tal que ninguna de sus entradas sea igual a $0$. Encuentra una base ortogonal de eigenvectores de $A$ para $\mathbb{R}^3$.
  • Diagonaliza la matriz $$\begin{pmatrix}-2 & 0 & 0 & 0\\0 & 2 & 0 & 0\\ \frac{19}{7} & \frac{30}{7} & \frac{65}{7} & \frac{24}{7}\\ \frac{6}{7} & – \frac{20}{7} & – \frac{48}{7} & – \frac{23}{7}\end{pmatrix}.$$

Más adelante…

En esta entrada enunciamos dos formas del teorema espectral y hablamos de algunas consecuencias que tiene. Además, repasamos un poco de la teoría que hemos visto a lo largo del curso y vimos cómo nos ayuda a entender mejor este teorema.

En la siguiente entrada, que es la última del curso, demostraremos las dos formas del teorema espectral que enunciamos en esta entrada y haremos un pequeño comentario sobre qué hay más allá del teorema espectral en el álgebra lineal.

Entradas relacionadas

Álgebra Superior II: Ejercicios de conjugados complejos

Aquí van los videos de hoy, en donde vemos ejemplos resueltos de conjugación compleja. Expliqué con un poco más de detalle el ejemplo 132 del libro de Bravo, Rincón y Rincón. Resolví el ejercicio 325 completo, así como otros 3 ejercicios de conjugados complejos del libro Álgebra Superior II de Antonio Lascurain. Más adelante les pondré en foto para los que no tengan facilidad para ver los videos de YouTube.

Ejemplos y ejercicios de conjugados complejos del Bravo, Rincón, Rincón

Primero, resolvemos el ejemplo 132 del libro:

Problema. Calcular $z$ si $iz+(2-i)\overline{z}=10+6i$.

Ejemplo 132 detallado

Inciso 1 del ejercicio 325:

Problema. Resuelve $(1+i)z+(1-i)\overline{z}=4$.

Inciso 1 del ejercicio 325

Inciso 2 del ejercicio 325:

Problema. Resuelve $z\overline{z}+3(z+\overline{z})=7$

Inciso 2 del ejercicio 325

Inciso 3 del ejercicio 325. Nota importante de este ejercicio: Alrededor del 7:09 me equivoqué en un signo, el término $6d$ de la parte imaginaria debería ser negativo. Eso puede que cambie el resultado final, pero esa es la idea de la resolución del problema.

Problema. Resuelve el sistema \begin{align*}iz+(1+i)&=3+i\\ (1+i)\overline{z}-(6+i)\overline{w}&=4\end{align*}

Ejercicios del libro de Lascurain

Los siguientes ejercicios fueron tomados del libro de Álgebra Superior II de Antonio Lascurain.

Problema. Realiza la siguiente operación de números complejos: $$\overline{\left(\frac{2-4i}{5-5i}\right)}$$.

Una división con conjugados complejos

Problema. Encuentra las parejas $u,v$ de números complejos para las cuales sucede que $u \overline{\overline{v}u}=v$.

Problema 1 de conjugación compleja

Problema. Encuentra las parejas $u,v$ de números complejos para las cuales sucede que $v+iu=-\overline{v}+i\overline{u}$.

Problema 2 de conjugación compleja

Álgebra Superior II: Construcción de números complejos

[latexpage]

Introducción

En una entrada anterior esbozamos las construcciones de los números racionales y los números reales. Es hora de construir los números complejos. Para ello, definiremos primero el conjunto, $\mathbb{C}$, sobre el que trabajaremos, después definiremos sus operaciones.

Una forma intuitiva de visualizar a $\mathbb{C}$ es tomar el conjunto de los números reales ($\mathbb{R}$) y en ellos introducir un nuevo elemento, $i$, el cual satisface que $i^2=-1$. Este es, realmente, un nuevo elemento, pues en $\mathbb{R}$ siempre se tiene que $x^2\geq 0$.

Una vez que introducimos a $i$, queremos que las operaciones de suma y producto estén definidas en $\mathbb{C}$ y que, además este conjunto, sea cerrado bajo estas operaciones. Es decir, es necesario que para cualquier número real $b$ se tenga $bi\in \mathbb{C}$ y que para cualesquiera números reales $a$ y $b$ tengamos, también, $a+bi\in \mathbb{C}$. Resulta que esto «es suficiente», en el sentido de que ya no hay que meter más números para que las operaciones estén bien definidas. Veamos como es esto, si tenemos los números de la forma $a+bi$ y $c+di$ con $a,b,c,d\in \mathbb{R}$ y los sumamos y multiplicamos como sigue: $$(a+bi)+(c+di)=(a+c)+(b+d)i$$, vemos que, la suma, «tiene la misma forma» (ya que $a+c$ y $b+d$ son números reales) así como su producto:
\begin{align*}
(a+bi)(c+di)&=ac+bci+adi+bdi^2\\
&=(ac-bd)+(ad+bc)i.
\end{align*}
Desde luego que lo anterior es soló una discusión informal. En las siguientes secciones veremos cómo formalizar estas ideas.

Los números complejos se comportan muy bien en términos algebraicos y en términos de análisis. En términos algebraicos, esto se comenzará a notar en la última parte del curso en donde veremos que cualquier polinomio tiene por lo menos una raíz compleja. En cursos posteriores, como el de álgebra lineal, verás otras de las propiedades algebraicas de los polinomios. Más adelante, si llevas un curso de variable compleja verás las bellas propiedades analíticas que tienen los números complejos.

El campo de los números complejos

La construcción del conjunto de números complejos es bastante sencilla. Para hacerla, simplemente consideraremos las parejas de números reales $$\mathbb{C}=\{(a,b): a,b\in \mathbb{R}\}.$$

Por el momento a cada $(a,b)$ lo puedes pensar de manera informal como el complejo $a+bi$. Lo interesante del conjunto de los números complejos no son sus elementos en sí, sino las siguientes operaciones que están definidas en él.

Definición. Para $(a,b)$ y $(c,d)$ en $\mathbb{C}$, definimos su suma como $$(a,b)+(c,d)=(a+c,b+d).$$

Recordemos que dentro del paréntesis se usa la suma de $\mathbb{R}$ ya que $a$, $b$, $c$ y $d$ son números reales.

Definición. Para $(a,b)$ y $(c,d)$ en $\mathbb{C}$, definimos su producto como $$(a,b)(c,d)=(ac-bd,ad+bc).$$

Igualmente dentro del paréntesis se usan la suma y producto de $\mathbb{R}$. La definición de producto está motivada por la discusión que hicimos en la introducción.

Teorema. El conjunto $\mathbb{C}$, junto con las operaciones de suma y producto que definimos, es un campo.

Demostración. La suma es conmutativa y asociativa ya que cada entrada pertenece a $\mathbb{R}$ y en $\mathbb{R}$ la suma es conmutativa y asociativa. El neutro es $(0,0)$ pues $$(a,b)+(0,0)=(a+0,b+0)=(a,b)$$ y para $(a,b)$ su inverso aditivo es $(-a,-b)$.

Veamos ahora el producto. Probemos que es conmutativo. Para dos complejos $(a,b)$ y $(c,d)$ tenemos que $$(a,b)(c,d)=(ac-bd,ad+bc)$$ y que $$(c,d)(a,b)=(ca-db,cb+da).$$

Ambos resultados son iguales ya que cada entrada pertenece a $\mathbb{R}$ y la suma y el producto son conmutativos en $\mathbb{R}$.

Probemos que el producto es asociativo. Para ello tomemos tres complejos $(a,b)$, $(c,d)$ y $(e,f)$. Tenemos que
\begin{align*}
[(a,b)(c,d)](e,f)&=(ac-bd,ad+bc)(e,f)\\
&=(ace-bde-adf-bcf,acf-bdf+ade+bce),
\end{align*} y que
\begin{align*}
(a,b)[(c,d)(e,f)]&=(a,b)(ce-df,cf+de)\\
&=(ace-adf-bcf-bde,acf+ade+bce-bdf),
\end{align*}

Ambas expresiones son iguales ya que cada entrada pertenece a $\mathbb{R}$ y la suma es conmutativa en $\mathbb{R}$.

El complejo $(1,0)$ actúa como neutro multiplicativo, pues $$(a,b)(1,0)=(a\cdot 1 – b\cdot 0, a\cdot 0 + b\cdot 1)=(a,b).$$ Además, si tomamos un complejo $(a,b)\neq (0,0)$ y lo multiplicamos por $\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)$ obtenemos \begin{align*}
(a,b)\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)&= \left(\frac{a^2+b^2}{a^2+b^2}, \frac{-ab}{a^2+b^2}+\frac{ba}{a^2+b^2}\right)\\ &= (1,0),
\end{align*} lo cual muestra que tenemos inversos multiplicativos.

Sólo falta demostrar la propiedad distributiva. Su verificación se deja como tarea moral.

$\square$

La copia de los reales en los números complejos

Dentro de $\mathbb{C}$ hay una copia de los números reales. Esta consiste en asociarle, a cada número real $a$, el número complejo $\varphi(a)=(a,0)$. Esta asociación es claramente biyectiva. Además, si $a$ y $b$ son números reales, tenemos que $$(a,0)+(b,0)=(a+b,0)=\varphi(a+b)$$ y
\begin{align*}
(a,0)(b,0) &= (ab-0\cdot 0, a\cdot 0 + b\cdot 0)\\
&= (ab,0) = \varphi(ab).
\end{align*}
Además los neutros se van a neutros y los inversos a inversos. Esto muestra que $\varphi$ es una asociación biyectiva entre $\mathbb{R}$ y los complejos de la forma $(a,0)$ y que respeta la estructura de campo de $\mathbb{R}$.

Por otro lado, notemos que $$(0,1) (0,1)= (0\cdot 0 – 1\cdot 1, 0\cdot 1 + 1\cdot 0)= (-1, 0).$$

En otras palabras, al elevar el complejo $(0,1)$ al cuadrado obtenemos el número $(-1,0)$, que es precisamente $\varphi(-1)$.

Tras toda esta discusión, estamos justificados entonces en llamar simplemente $1$ al complejo $(1,0)$, en llamar $i$ al complejo $(0,1)$, y por lo tanto en llamar $a+bi$ al complejo $(a,b)$. A partir de aquí ya podemos olvidar la notación de parejas y tratar a los números complejos como lo discutimos en la introducción.

Operaciones en la notación $a+bi$

La notación $a+bi$ para números complejos es bastante práctica. Podemos trabajar con los complejos «igualito que en $\mathbb{R}$, pero, además, con la propiedad de que $i^2=-1$».

Como $i^4=(-1)^2=1$, tenemos que las potencias de $i$ se ciclan cada cuatro: $$1, i, i^2, i^3, i^4, i^5, i^6, \ldots$$ son $$1,i, -1, -i, 1, i,\ldots .$$ Ya mencionamos en la introducción que para complejos $a+bi$ y $c+di$ se tiene que $$(a+bi)+(c+di)=(a+c)+(b+d)i$$ y que $$(a+bi)(c+di)=(ac-bd)+(ad+bc)i,$$ de modo que cualquier composición de sumas y productos de números complejos se puede simplificar a la forma $x+yi$ con $x$ y $y$ reales.

Ejemplo. Simplifica la expresión $$(1+i)(1-i)+(2+i)(3-4i).$$ Solución. Haciendo el producto del primer sumando tenemos $(1+i)(1-i)=1^2-i^2=1-(-1)=2$. Haciendo el producto del segundo sumando tenemos \begin{align*}
(2+i)(3-4i)&=6+3i-8i-4i^2\\
&=6-5i+4\\
&=10-5i.
\end{align*}
De esta forma, el resultado de la operación es $$2+(10-5i)=12-5i.$$

$\square$

En complejos también podemos usar expresiones fraccionales, como $\frac{3+2i}{5-i}$. Si queremos pasar estas expresiones a la forma $x+yi$ con $x$ y $y$ reales, tenemos que pensar a $\frac{1}{5-i}$ como «el inverso multiplicativo de $5-i$», que como vimos en la demostración de que $\mathbb{C}$ es un campo, es $$\frac{5}{5^2+(-1)^2}+\frac{1}{5^2+(-1)^2}i=\frac{5}{26}+\frac{1}{26} i.$$ Una vez hecho esto, tenemos que \begin{align*}
\frac{3+2i}{5-i}&=(3+2i)\left( \frac{5}{26}+\frac{1}{26} i \right)\\
&=\frac{13}{26} + \frac{13}{26} i\\
&=\frac{1}{2}+\frac{1}{2} i.
\end{align*}

Otra forma de pensarlo es que a una expresión de la forma $\frac{a+bi}{c+di}$ la podemos simplificar «multiplicando arriba y abajo» por $c-di$. De esta forma, obtenemos
\begin{align*}
\frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{bc-ad}{c^2+d^2}\right)i.
\end{align*}

Ambos métodos dan el mismo resultado.

Lo que viene

Al tomar un número complejo $z=a+bi$ y calcular su inverso, aparecen de manera natural las expresiones $a-bi$ y $a^2+b^2$. Estas expresiones son fundamentales.

  • A $a-bi$ se le conoce como el conjugado de $z$, y se denota por $\overline{z}$.
  • A $\sqrt{a^2+b^2}$ se le conoce como la norma de $z$ y se denota por $|z|$.

En la siguiente ocasión hablaremos de las propiedades de estas dos operaciones y cómo están relacionadas entre sí. Más adelante veremos su utilidad al resolver ecuaciones cuadráticas en los números complejos.

Si quieres, puedes revisar esta entrada sobre aplicaciones interesantes de los números complejos en la resolución de problemas. Tiene teoría que no hemos visto, pero te puede servir de motivación para aprender lo que veremos a continuación.

Tarea moral

Los siguientes ejercicios y problemas te ayudarán a reforzar lo aprendido en esta entrada.

  • Demuestra que en los complejos se satisface la ley distributiva.
  • Verifica que bajo la asociación $\varphi$ en efecto los neutros se van a los neutros y los inversos a inversos.
  • Realiza la operación $(1+i)(2+i)(1+2i)(2+2i)$ y expresa el resultado de la forma $x+yi$ con $x$ y $y$ reales.
  • Realiza la operación $$\frac{3+5i}{2+i}-\frac{1+2i}{4-3i}$$ y expresa el resultado de la forma $x+yi$ con $x$ y $y$ reales.
  • Realiza la operación $$1+(1+i)+(1+i)^2+(1+i)^3+(1+i)^4$$ y expresa el resultado de la forma $x+yi$ con $x$ y $y$ reales.