MATERIAL EN REVISIÓN
En esta sección estudiaremos brevemente dos ejemplos importantes de medidas «inducidas», es decir, que se definen en términos de otras medidas.
Medida inducida por una función
Definición. Sea $(X,\mathcal{M},\mu)$ un espacio de medida y $f:X\to [0,\infty]$ una función $\mathcal{M}$-medible no negativa. Definimos la medida inducida por $f$, $\mu_f$ como:
$$\mu_f(E)=\int_Ef \ \mathrm{d}\mu \ \ \ \ \ \forall E\in \mathcal{M}.$$
$\mu_f$ es efectivamente una medida pues $\mu_f(\emptyset)=\int_{\emptyset} f \ \mathrm{d}\mu=0$. Además, dados $A_1,A_2,\dots \in \mathcal{M}$ ajenos, se sigue por el teorema de la convergencia monótona:
\begin{align*}
\mu_f(\bigcup_{k=1}^{\infty}A_k)&= \int_{\bigcup_{k=1}^{\infty}A_k} f \ \mathrm{d}\mu \\
&= \int f\chi_{\bigcup_{k=1}^{\infty}A_k} \ \mathrm{d}\mu \\
&= \int f\left( \sum_{k=1}^{\infty}\chi_{A_k}\right) \ \mathrm{d}\mu \\
&= \sum_{k=1}^{\infty}\int f\chi_{A_k} \ \mathrm{d}\mu\\
&= \sum_{k=1}^{\infty} \int_{A_k}f \ \mathrm{d}\mu \\
&= \sum_{k=1}^{\infty}\mu_f(A_k).
\end{align*}
Observación. $\mu_f$ es una medida finita si y sólo si $f\in L^1(X)$.
La integral respecto a la medida inducida por una función tiene una forma muy particular, en las que por supuesto aparece la función $f$.
Teorema (Integral respecto a la medida inducida). Sea $(X,\mathcal{M},\mu)$ un espacio de medida, $f:X\to [0,\infty]$ una función $\mathcal{M}$-medible y $\mu_f$ la medida inducida por $f$. Entonces para cualquier función $\mathcal{M}$-medible no negativa $g:X\to[0,\infty]$: $$\int g \ \mathrm{d}\mu_f=\int gf \ \mathrm{d}\mu.$$
Demostración. Veamos primero el caso en el que $g=\sum_{k=1}^{m}\alpha_k\chi_{E_k}\in S$ es una función simple:
$$\int g \ \mathrm{d}\mu_f= \sum_{k=1}^{m}\alpha_k\mu_f(E_k)=\sum_{k=1}^{m}\left(\alpha_k \int_{E_k} f \ \mathrm{d}\mu \right) = \int \left( \sum_{k=1}^{m}\alpha_k \chi_{E_k}\right)f \ \mathrm{d}\mu=\int gf \ \mathrm{d}\mu.$$
Ahora, para el caso general con $g:X\to [0,\infty]$ $\mathcal{M}$-medible, tomemos una sucesión de funciones simples ${s_k }_{k=1}^{\infty}$ tales que $s_k\uparrow g$ (y en particular $s_kf\uparrow gf$). Aplicando el teorema de la convergencia monótona y el caso anterior:
\begin{align*}
\int g \ \mathrm{d}\mu_f &= \lim_{k\to \infty} \int s_k \ \mathrm{d}\mu_f \\
&= \lim_{k\to \infty} \int s_kf \ \mathrm{d}\mu \\
&= \int gf \ \mathrm{d}\mu.
\end{align*}
Es inmediato generalizar el toerema anterior para funciones en $L^1$. Esto se queda como tarea moral.
La proposición anterior motiva una notación muy sugerente. A la medida $\mu_f$ se le denota comúnmente como $f\mathrm{d}\mu$. La proposición anterior toma la forma: $$\int g \ (f\mathrm{d}\mu )=\int gf \ \mathrm{d}\mu.$$
Observación. Es claro que si $\mu(E)=0$ $\implies$ $\mu_f(E)=(f\mathrm{d}\mu)(E)=\int_Ef \ \mathrm{d}\mu=0$. Esto es precisamente que la medida $\mu_f$ sea absolutamente continua respecto a la medida $\mu$:
Definición. Sean $\mu$ y $\nu$ medidas sobre el mismo espacio $(X,\mathcal{M})$. Decimos que $\nu$ es absolutamente continua respecto a $\mu$ si $\mu(E)=0$ $\implies$ $\nu(E)=0$ y lo denotamos por $$\nu<<\mu.$$
Sorprendentemente, la observación anterior tiene un regreso parcial: El teorema de Radon-Nikodym. Es un resultado técnico por lo que omitimos la demostración.
Teorema (Radon-Nikodym). Sean $\mu$ y $\nu$ medidas $\sigma$-finitas sobre $(X,\mathcal{M})$. Si $\nu << \mu$, entonces existe una función $\mathcal{M}$-medible $f:X\to[0,\infty]$ tal que $$\nu=\mu_f.$$
Definición. Dadas dos medidas $\nu<<\mu$ sobre $(X,\mathcal{M})$ tales que existe una función medible $f:X\to[0,\infty]$ tal que $\nu=\mu_f=f\mathrm{d}\mu$ (por ejemplo, en el contexto del teorema de Radon-Nikodym), entonces decimos que $f$ es la derivada de Radon-Nikodym de $\nu$ respecto a $\mu$ y la denotamos como $$f=\frac{\mathrm{d}\nu}{\mathrm{d}\mu}.$$
En este caso, el toerema de integral respecto a la medida inducida toma la forma: $$\int g \ \mathrm{d}\nu=\int \left(g\cdot \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \right) \ \mathrm{d}\mu .$$
Medida Pushforward
Definición. Sean $X,Y$ conjuntos y $\mathcal{M},\mathcal{N}$ $\sigma$-álgebras sobre $X$ y $Y$ respectivamente. Diremos que una función $F:X\to Y$ es $(X,Y)$-medible si $F^{-1}(E)\in \mathcal{M}$ $\forall E\in \mathcal{N}$.
Definición. Sea $(X,\mathcal{M},\mu)$ un espacio de medida, $Y$ un conjunto con una $\sigma$-álgebra $\mathcal{N}$ y $F:X\to Y$ una función $(\mathcal{M},\mathcal{N})$-medible. Definimos la medida imágen (o Pushforward) de $\mu$ bajo $F$, $F_*\mu$ por $$F_*\mu (E)=\mu(F^{-1}(E)) \ \ \ \ \ \ \ \forall E\in \mathbb{N} .$$
Es un ejercicio sencillo ver que $F_*\mu$ es efectivamente una medida sobre $Y$ y se queda como tarea moral.
Teorema (Cambio de Variable). Sean $(X,\mathcal{M},\mu)$, $(Y,\mathcal{N})$ y $F:X\to Y$ como antes. Sea $g:Y\to[0,\infty]$ una función $\mathcal{N}$-medible no negativa. Entonces $$\int_Yg \ \mathrm{d}F_*\mu=\int_X g\circ F \ \mathrm{d}\mu.$$
Demostración. Veamos primero el caso de funciones simples. Sea $s=\sum_{k=1}^{N}\alpha_k\chi_{E_k}\in S$ simple sobre $Y$. Observemos que $s\circ F(x)=\sum_{k=1}^{N}\alpha_k\chi_{E_k}(F(x))=\sum_{k=1}^{N}\alpha_k\chi_{F^{-1}(E_k)}(x)$. Luego:
$$\int_Y s \ \mathrm{d}F_*\mu=\sum_{k=1}^{N}\alpha_k \ F_*\mu(E_k)=\sum_{k=1}^{N}\alpha_k \mu(F^{-1}(E_k))=\int_X s\circ F \ \mathrm{d}\mu.$$
Veamos ahora el caso general. Sea $g:Y\to[0,\infty]$ una función $\mathcal{N}$-medible. Como ya sabemos, podemos encontrar una sucesión de funciones simples ${ s_k}_{k=1}^{\infty}$ tales que $s_k\uparrow g$. Es claro que $s_k\circ F \uparrow g\circ F$, así que por el teorema de la convergencia monótona:
$$\int_Y g \ \mathrm{d}F_*\mu=\lim_{k\to \infty} \int s_k \ \mathrm{d}F_*\mu=\lim_{k\to \infty} \int_X s_k\circ F \ \mathrm{d}\mu =\int_X g\circ F \ \mathrm{d}\mu.$$
Corolario. Con las hipótesis del teorema anterior, si $g\in L^1(Y,\mathcal{N},F_*\mu)$, entonces: $$\int_Yg \ \mathrm{d}F_*\mu=\int_X g\circ F \ \mathrm{d}\mu.$$
Más adelante…
Definiremos los espacios $L^p$, uno de los espacios normados más importantes que surgen en la teoría de integración.