Archivo de la etiqueta: forma canónica

Investigación de Operaciones: Forma canónica y forma estándar de un problema lineal

Por Aldo Romero

Introducción

En las entradas anteriores hemos dado ejemplos de varios problemas de aplicación que pueden ser planteados mediante un problema de programación lineal. Una vez que llegamos a un modelo, se pueden tener restricciones de los tipos $\leq$, $=$ y $\geq$. Además, puede haber restricciones de signo sobre las variables. Puede que se les pida ser no positivas, no negativas o irrestrictas (no restringidas) en signo. Lo que haremos ahora es ver cómo podemos llegar a un cierto formato (forma estándar o forma canónica).

Forma canónica de un problema lineal

A continuación introducimos el primer formato que nos facilitará el trabajo.

Definición. Se dice que un problema de programación lineal está en forma canónica si cumple simultáneamente las siguientes tres propiedades:

  1. El problema es de maximización.
  2. Las restricciones del problema son todas del tipo $\leq$ (menor o igual).
  3. Las variables de decisión son no negativas.

Así, tenemos entonces que un problema en forma canónica se ve como sigue:

\begin{align*}
Max \quad z &= c_1x_1+\ldots+c_nx_n\\
s.a.&\\
&\left\{\begin{matrix} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \leq b_1\\
a_{21}x_1+a_{22}x_2+\ldots + a_{2n}x_n \leq b_2\\
\vdots \\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n\leq b_n. \\
x_1\geq 0, x_2\geq 0, \ldots, x_n\geq 0.\end{matrix}\right.
\end{align*}

En términos matriciales, esto podemos reescribirlo de manera mucho más compacta como sigue:

\begin{align*}
Max \quad z &= c\cdot x\\
s.a.&\\
Ax &\leq b\\
x &\geq 0,\\
\end{align*}

en donde:

  • $c=(c_1,\ldots,c_n)\in \mathbb R^n$ es el vector de costos (vector renglón)
  • $x = (x_1,\ldots,x_n)\in \mathbb R^n$ es el vector de variables de decisión (vector columna),
  • $A=[a_{ij}]$ es la matriz de restricciones, que es una matriz de $m \times n$ y
  • $b=(b_1,\ldots,b_m) \in \mathbb R^m$ es el vector de constantes que acotan las combinaciones lineales de variables.

Todo problema de programación lineal puede ser expresado en forma canónica; es decir, puede definirse un problema en forma canónica equivalente a él. En efecto:

  • Si el problema es de minimización, puede considerarse en vez de $z$ la función $z’ = -z$ y en el problema equivalente se busca maximizar $z’$.
  • Si una restricción es del tipo $\geq$ puede ser mutiplicada por -1 para obtener una del tipo $\leq$.
  • Una ecuación puede ser substituida por una desigualdad del tipo $\leq$ y otra del tipo $\geq$. Luego, la del tipo $\geq$ puede ser substituida por una del tipo $\leq$ como en el punto anterior.
  • Para una variable $x_i\leq 0$ puede definirse $x_i’ = -x_i$, resultando $x_i’ \geq 0$. Claramente hay una biyección entre elegir el valor de $x_i$ y $x_i’$.
  • Para una $x_i$ no restringida pueden ser definidas dos variables no negativas $x_i’$ y $x_i^\ast$ tales que $x_i’-x_i^\ast = x_i$. Para cualquier $x_i$ dado podemos construir dichas variables, y viceversa, para $x_i’$ y $x_i^\ast$ se puede construir $x_i$.

Ejemplo de pasar un problema a forma canónica

Transformaremos el siguiente modelo a su forma canónica
\begin{align*}
Min \quad z &= x_1-3x_2+7x_3\\
&s.a.\\
3x_1+&x_2+3x_3 &\leq 40\\
x_1+&9x_2-7x_3 &\geq 50\\
5x_1+&3x_2 &= 20\\
&5x_2 + 8x_3 &\leq 80\\
x_1, x_2 &\geq 0, \quad x_3 \quad libre.\\
\end{align*}

Primeramente se definen las variables no negativas $x_3’$ y $x_3^{\ast}$, tales que $x’_3-x_3^{\ast} = x_3$, con objeto de satisfacer el punto (3) de la definición. Para satisfacer el punto (1) se considera la función:
\begin{align*}
z’ &= -z \\&= -x_1+3x_2-7x_3\\&=-x_1+3 x_2-7 x’_3+7x_3^{\ast}
\end{align*}

y se busca maximiza ésta (equivalente a minimizar $z$). Finalmente se realizan cambios en las restricciones para satisfacer el punto (2). La primera y cuarta desigualdad cumplen con la definición por lo que no se modifican (más allá de la sustitución de $x_3$ por $x’_3-x_3^{\ast}$); la segunda desigualdad se multiplica por $-1$ para obtener una del tipo $\leq$: $$ x_1 + 9x_2 – 7x_3 \geq 50 \quad \Leftrightarrow \quad -x_1 – 9x_2 + 7x_3 \leq -50.$$

Substituyendo las nuevas variables se obtiene: $$-x_1-9x_2+7x’_3-7x_3^{\ast}\leq -50.$$

Para la tercera desigualdad se tiene lo siguiente:

\begin{align*}
5x_1+3x_2 &= 20\\
&\Leftrightarrow\\
5x_1 + 3x_2 \leq 20 \quad& y \quad 5x_1 + 3x_2 \geq 20\\
&\Leftrightarrow\\
5x_1 + 3x_2 \leq 20 \quad& y \quad -5x_1 – 3x_2 \leq -20.\\
\end{align*}

Finalmente el problema queda expresado en forma canónica como:

\begin{align*}
Max \quad z’ &= -x_1+3x_2-7x’_3+7x_3^{\ast}\\
&s.a.\\
3x_1+&x_2+3x’_3-3x_3^{\ast} &\leq 40\\
-x_1-&9x_2+7x’_3-7x_3^{\ast} &\leq -50\\
5x_1+&3x_2 &\leq 20\\
-5x_1-&3x_2 &\leq -20\\
&5x_2+8x’_3-8x_3^{\ast} &\leq 80\\
x_1, x_2&, x’_3, x_3^{\ast} \geq 0.\\
\end{align*}

Forma estándar de un problema lineal

Definición. Se dice que un problema de programación lineal está en forma estándar si

  1. Todas las restricciones son ecuaciones.
  2. Todas las variables son no negativas.
  3. La función objetivo puede pedirse que se optimice maximizándola, o minimizándola.

De esta manera, un problema en forma estándar se ve como sigue:

\begin{align*}
Max\, (\text{o } Min) \quad z &= c_1x_1+\ldots+c_nx_n\\
s.a.&\\
&\left\{\begin{matrix} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+\ldots + a_{2n}x_n = b_2\\
\vdots \\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n= b_n\\
x_1\geq 0, x_2\geq 0, \ldots, x_n\geq 0.
\end{matrix}\right.\\
\end{align*}

En notación matricial, el problema en forma canónica queda expresado de la siguiente manera:

\begin{align*}
Max\, (\text{o } Min) \quad z &= cx\\
&s.a.\\
Ax &= b\\
x &\geq 0\\
\end{align*}

en donde $c, x, A$ y $b \geq 0$ son como se mencionó antes.

Así como cualquier problema de programación lineal puede ser expresado en forma canónica, también cualquier problema de programación lineal puede expresarse en forma estándar. Una restricción del tipo $\leq$ ($\geq$) puede ser transformada en una ecuación sumando (o restando) una variable no negativa que recibe el nombre de variable de holgura.

Ejemplo de pasar un problema a forma estándar

Retomemos el problema ejemplo anterior, antes de expresarlo en forma canónica.

\begin{align*}
Min \quad z &= x_1-3x_2+7x_3\\
&s.a.\\
3x_1+&x_2+3x_3 &\leq 40\\
x_1+&9x_2-7x_3 &\geq 50\\
5x_1+&3x_2 &= 20\\
&5x_2 + 8x_3 &\leq 80\\
x_1, x_2 &\geq 0, \quad x_3 \quad libre.\\
\end{align*}

Vamos a expresarlo ahora en forma estándar. Como lo hicimos anteriormente, hacemos la sustitución $x=x’_3-x_3^\ast$ para que la variable libre se convierta en dos con restricciones de ser no negativas.

Para satisfacer (1) se introducen las variables de holgura, $x_4$, $x_5$ y $x_6$ que pediremos que sean no negativas. A la primera desigualdad le sumamos $x_4$. A la quinta le sumamos $x_6$. Y finalment, a la segunda le restamos $x_5$. Esto transforma las desigualdades en igualdades. De esta manera, el problema queda expresado de la siguiente manera:

\begin{align*}
Min \quad z &= x_1 – 3x_2+7x’_3-7x_3^\ast\\
&s.a.\\
3x_1 + &x_2 + 3x’_3 – 3x_3^\ast + x_4 &= 40\\
x_1 + &9x_2 – 7x’_3 + 7x_3^\ast – x_5 &= 50\\
5x_1 + &3x_2 &= 20\\
&5x_2 + 8x’_3 – 8x_3^\ast + x_6 &= 80\\
x_1,&x_2,x’_3,x_3^\ast,x_4,x_5,x_6 \geq 0.\\
\end{align*}

Más adelante…

Las formas que estudiamos en esta entrada nos ayudarán posteriormente para plantear soluciones para problemas de programación lineal.

Mientras tanto, en la siguiente entrada hablaremos de algunos otros conceptos relativos a la teoría de problemas lineales y posibles propiedades que puede tener una asignación de variables. Diremos qué es una solución básica, una solución factible y un punto extremo para un problema lineal.

Tarea moral

  1. ¿Cuál sería la forma estándar del problema de maximizar $x+y$ sujeto a $x-y\leq 8$ y $y\leq 0$? ¿Y su forma canónica?
  2. Transforma el siguiente problema de programación lineal a su forma canónica y a su forma estándar:
    \begin{align*}
    Max \quad z &= -2x_1 + 3x_2 – 2x_3\\
    &s.a.\\
    4x_1 – &x_2 – 5x_3 &= 10\\
    2x_1 + &3x_2 + 2x_3 &\geq 12\\
    x_1 &\geq 0, \quad x_2, x_3 \quad irrestrictas\\
    \end{align*}
  3. Revisa nuevamente las entradas anteriores y encuentra las formas canónicas y formas estándar de los problemas que hemos planteado hasta ahora.
  4. La forma estándar (o bien la forma canónica) de un programa lineal «es equivalente» al problema original. Justifica esta afirmación formalmente. Es decir, explica por qué una solución $x_1,\ldots,x_n$ que optimiza el problema original está asociada a una solución de su forma estándar (o canónica) y viceversa.
  5. Imagina que tenemos un sistema de ecuaciones de la forma $Ax=B$ con $A$ matriz en $M_{m,n}(\mathbb{R})$ y $b$ vector en $\mathbb{R}^m$. Queremos encontrar de todas las posibles soluciones al sistema aquella que minimiza la suma de las entradas de $x$. Plantea esto como un problema lineal y transfórmalo a su forma canónica y a su forma estándar.

Entradas relacionadas

Álgebra Lineal II: Unicidad de la forma de Jordan para nilpotentes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan para matrices nilpotentes. Demostramos una parte: la existencia de la forma canónica de Jordan. Para ello, nos enfocamos en el teorema en su versión en términos de transformaciones lineales. En esta entrada nos enfocaremos en demostrar la unicidad de la forma canónica de Jordan. Curiosamente, en este caso será un poco más cómodo trabajar con la forma matricial del teorema. Para recordar lo que queremos probar, volvemos a poner el enunciado del teorema a continuación. Lo que buscamos es ver que los enteros $k_1,\ldots, k_d$ que menciona el teorema son únicos.

Teorema. Sea $A$ una matriz nilpotente en $M_n(F)$. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales $A$ es similar a la siguiente matriz de bloques: $$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Nuestra estrategia para mostrar la unicidad será el estudio del rango de las potencias de $A$. Si $A$ es similar a $B$, entonces existe $P$ invertible tal que $A=P^{-1}BP$, de donde se puede mostrar indutivamente que $A^k=P^{-1}B^kP$, mostrando que $A^k$ y $B^k$ son similares. Además, matrices similares tienen el mismo rango. De modo que si $A$ es similar a $B$ entonces todas las potencias de $A$ tienen el mismo rango que todas las potencias de $B$. Con esta idea en mente, ¿cómo son las potencias de las matrices hechas por bloques de Jordan? Comenzaremos estudiando esto.

Rango de potencias de bloques de Jordan

Claramente el rango del bloque de Jordan $J_{0,n}$ es $n-1$, pues ya está en forma escalonada reducida y tiene $n-1$ vectores distintos de cero. El siguiente resultado generaliza esta observación.

Proposición. Sea $n$ un entero positivo, $F$ un campo y $J_{0,n}$ el bloque de Jordan de eigenvalor $0$ y tamaño $n$ en $M_n(F)$. Para $k=1,\ldots,n$ se tiene que el rango de $J_{0,n}^k$ es igual a $n-k$. Para $k$ más grandes, el rango es igual a cero.

Demostración. Si $e_1,\ldots,e_n$ es la base canónica de $F^n$, tenemos que $J_{0,n}e_i=e_{i-1}$ para $i=2,\ldots,n$ y $J_{0,n}e_1=0$. De manera intuitiva, la multiplicación matricial por $J_{0,n}$ va «desplazando los elementos de la base $e_1,\ldots,e_n$ a la izquierda, hasta sacarlos». De este modo, $J_{0,n}^k$ para $k=1,\ldots,n$ hace lo siguiente:

$$J_{0,n}^k e_i=\begin{cases} 0 & \text{para $i\leq k$}\\ e_{i-k} & \text{para $i\geq k+1$.}\end{cases}$$

Así, $J_{0,n}^k$ manda a la base $e_1,\ldots,e_n$ a los vectores $e_1,\ldots,e_{n-k}$ y a $k$ copias del vector cero. Como los primeros son $n-k$ vectores linealmente independientes, obtenemos que el rango de $J_{0,n}^k$ es $n-k$.

Para varlores de $k$ más grandes la potencia se hace la matriz cero, así que su rango es cero.

$\square$

Rango de potencias de matrices diagonales por bloques de Jordan

¿Qué sucede si ahora estudiamos el rango de las potencias de una matriz diagonal por bloques hecha por puros bloques de Jordan? Consideremos, por ejemplo, la siguiente matriz, con $k_1\leq \ldots \leq k_d$ de suma $n$:

$$J=\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Por un lado, es sencillo elevar esta matriz a potencias, pues simplemente los bloques se elevan a las potencias correspondientes. En símbolos:

$$J^r=\begin{pmatrix} J_{0,k_1}^r& 0 & \cdots & 0 \\ 0 & J_{0,k_2}^r& \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}^r\end{pmatrix}.$$

¿Cuál es el rango de esta potencia? Nos conviene cambiar un poco de notación. En vez de considerar a los $k_i$ por separado, los agruparemos de acuerdo a su valor, que puede ir de $1$ a $n$. Así, para cada $j=1,\ldots,n$ definimos $m_j$ como la cantidad de valores $k_i$ iguales a $j$. Bajo esta notación, la igualdad $k_1+\ldots+k_d=n$ se puede reescribir como $$m_1+2m_2+3m_3+\ldots+nm_n=n.$$

Una primera observación es que el rango de $J$ es simplemente la suma de los rangos de cada una de las $J_{0,k_i}$. Cada una de estas contribuye con rango $k_i-1$. Así, en términos de las $m_i$ tenemos lo siguiente:

\begin{align*}
\text{rango}(J)&=\sum_{i=1}^d (k_i-1)\\
&=\sum_{j=1}^n (j-1) m_j \\
&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n.
\end{align*}

De manera similar,

\begin{align*}
\text{rango}(J^r)&=\sum_{i=1}^d \text{rango}(J_{0,k_i}^r)\\
&=\sum_{j=1}^n m_j \text{rango}(J_{0,j}^r).
\end{align*}

El término $\text{rango}(J_{0,j}^r)$ lo podemos calcular con la proposición de la sección anterior, cuidando la restricción entre el tamaño y las potencias que queremos. De aquí y de la restricción original para la las $m_i$ salen todas las siguientes igualdades:

\begin{align*}
n&= 1\cdot m_1 + 2\cdot m_2 + 3 \cdot m_3 + \ldots + n \cdot m_n\\
\text{rango}(J)&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n\\
\text{rango}(J^2)&= 0 \cdot m_1 + 0 \cdot m_2 + 1 \cdot m_3 + \ldots + (n-2)\cdot m_n\\
\text{rango}(J^3)&= 0 \cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + (n-3)\cdot m_n\\
&\vdots\\
\text{rango}(J^{n-1})&= 0\cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + 1 \cdot m_n.
\end{align*}

A partir de aquí el rango de $J^n$ es $0$. Esto nos da una manera de entender con mucha precisión el rango de cualquier potencia de una matriz diagonal por bloques hecha con bloques de Jordan.

Unicidad de la forma canónica de Jordan

Estamos listos para justificar la unicidad de la forma canónica de Jordan. Una matriz diagonal por bloques hecha por bloques de Jordan queda totalmente determinada por los valores de $m_j$ de la sección anterior. Supongamos que $A$ tiene como forma canónica de Jordan tanto a una matriz $J$ con valores $m_j$, como a otra matriz $J’$ con valores $m_j’$.

Como dos matrices similares cumplen que las sus potencias son todas del mismo rango, entonces para cualquier $r$ de $1$ a $n-1$ se cumple que $$\text{rango}(J^r)=\text{rango}(A^r)=\text{rango}(J’^r).$$ Así, tanto $(m_1,\ldots,m_n)$ como $(m_1′,\ldots,m_n’)$ son soluciones al siguiente sistema de ecuaciones en variables $x_1,\ldots,x_n$.

\begin{align*}
n&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + n \cdot x_n\\
\text{rango}(A)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (n-1) \cdot x_n\\
\text{rango}(A^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (n-2)\cdot x_n\\
\text{rango}(A^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (n-3)\cdot x_n\\
&\vdots\\
\text{rango}(A^{n-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_n.
\end{align*}

Pero este es un sistema de ecuaciones de determinante $1$, así que su solución es única. Esto muestra que $(m_1,\ldots,m_n)=(m’_1,\ldots,m’_n)$, con lo cual se deduce que $J=J’$.

Como consecuencia de toda esta discusión, obtenemos de hecho lo siguiente.

Corolario. Dos matrices nilpotentes son semejantes si y sólo si tienen la misma forma canónica de Jordan. Distintas formas canónicas de Jordan dan distintas clases de semejanza.

Una receta para encontrar la forma canónica de Jordan de nilpotentes

La demostración anterior no sólo demuestra la unicidad de la forma canónica de Jordan. Además, nos dice exactamente cómo obtenerla. Para ello:

  1. Calculamos todas las potencias de $A$ hasta $n-1$.
  2. Usando reducción gaussiana (o de otro modo), calculamos el rango de cada una de estas potencias.
  3. Resolvemos el sistema de ecuaciones en variables $x_i$ de la sección anterior.
  4. La forma canónica de Jordan de $A$ tiene $x_i$ bloques de tamaño $i$.

Ejemplo. Consideremos la siguiente matriz en $M_7(\mathbb{R})$: $$C=\begin{pmatrix}-27 & 266 & 1 & -37 & 135 & -125 & 53\\217 & -1563 & 118 & 33 & -1251 & 1020 & 361\\236 & -1784 & 188 & 16 & -1512 & 1234 & 585\\11 & -10 & -25 & 12 & 28 & -29 & -80\\-159 & 1133 & -114 & -98 & 878 & -690 & -232\\197 & -1409 & 88 & -19 & -1151 & 952 & 348\\-230 & 1605 & -179 & -100 & 1316 & -1031 & -440\end{pmatrix}$$

Sus números son muy complicados, sin embargo, nos podemos auxiliar de herramientas computacionales para encontrar sus potencias. Soprendenemente esta es una matriz nilpotente de índice $3$ pues:

$$C^2=\begin{pmatrix}0 & -10209 & -3403 & -6806 & -6806 & 10209 & 0\\0 & 14691 & 4897 & 9794 & 9794 & -14691 & 0\\0 & 2739 & 913 & 1826 & 1826 & -2739 & 0\\0 & 7221 & 2407 & 4814 & 4814 & -7221 & 0\\0 & -14193 & -4731 & -9462 & -9462 & 14193 & 0\\0 & 10956 & 3652 & 7304 & 7304 & -10956 & 0\\0 & -11952 & -3984 & -7968 & -7968 & 11952 & 0\end{pmatrix}$$

y

$$C^3=\begin{pmatrix}0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\end{pmatrix}.$$

Usando reducción gaussiana, o herramientas computacionales, obtenemos que el rango de $C$ es $4$ y que el rango de $C^2$ es $2$. A partir de $j\geq 3$ obtenemos que $\text{rango}(C^j)=0$. Si quieremos encontrar la forma canónica de Jordan de $C$, necesitamos entonces resolver el siguiente sistema de ecuaciones, que nos dirá cuántos bloques $x_i$ de tamaño $i$ hay:

\begin{align*}
7&= x_1+2x_2+3x_3+4x_4+5x_5+6x_6+7x_7\\
4&=x_2 + 2x_3 + 3x_4+4x_5+5x_6+6x_7\\
2&= x_3 + 2x_4+3x_5+4x_6+5x_7 \\
0&= x_4+2x_5+3x_6+4x_7\\
0&= x_5+2x_6+3x_7\\
0&= x_6+2x_7\\
0&= x_7
\end{align*}

Para resolverlo lo mejor es proceder «de abajo hacia arriba». Las últimas cuatro ecuaciones nos dicen que $x_7=x_6=x_5=x_4=0$. Así, el sistema queda un poco más simple, como:

\begin{align*}
7&= x_1+2x_2+3x_3\\
4&=x_2 + 2x_3\\
2&= x_3.
\end{align*}

De la última igualdad, tenemos $x_3=2$, lo que nos dice que la forma canónica de Jordan tendría dos bloques de tamaño $3$. Sustituyendo en la penúltima igualdad obtenemos que $4=x_2+4$, de donde $x_2=0$. Así, no tendremos ningún bloque de tamaño $2$. Finalmente, sustituyendo ambos valores en la primera igualdad obtenemos que $7=x_1+0+6$. De aquí obtenemos $x_1=1$, así que la forma canónica de Jordan tendrá un bloque de tamaño $1$. En resumen, la forma canónica de Jordan es la matriz $$\begin{pmatrix} J_{0,1} & 0 & 0 \\ 0 & J_{0,3} & 0 \\ 0 & 0 & J_{0,3}\end{pmatrix}.$$ Explícitamente, esta es la siguiente matriz:

$$\begin{pmatrix} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Para verla un poco más «como de bloques» la podemos reescribir de la siguiente manera:

$$\left(\begin{array}{c|ccc|ccc} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

$\square$

Más adelante…

Hemos demostrado la existencia y unicidad de la forma canónica de Jordan para matrices nilpotentes. Este es un resultado interesante por sí mismo. Sin embargo, también es un paso intermedio para un resultado más general. En las siguientes entradas hablaremos de una versión más general del teorema de Jordan, para matrices tales que su polinomio característico se descomponga totalmente en el campo en el que estemos trabajando.

Tarea moral

  1. Considera la siguiente matriz: $$M=\begin{pmatrix}11 & 11 & -11 & -11\\-1 & -1 & 1 & 1\\3 & 3 & -3 & -3\\7 & 7 & -7 & -7\end{pmatrix}.$$
    1. Muestra que $M$ es una matriz nilpotente y determina su índice.
    2. ¿Cuál es la forma canónica de Jordan de $M$?
  2. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{5}(F)$ de índice $2$.
  3. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{7}(F)$ de rango $5$.
  4. Encuentra de manera explícita la inversa de la siguiente matriz en $M_n(\mathbb{R})$ y usa esto para dar de manera explícita la solución al sistema de ecuación en las variables $x_i$ que aparece en la entrada: $$\begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 0 & 0 & 1 & \cdots & n-3 & n-2 \\ & \vdots & & \ddots & & \vdots\\ 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & \cdots & 0 & 1\end{pmatrix}.$$
  5. Sea $A$ una matriz nilpotente en $M_n(\mathbb{R})$. Muestra que las matrices $A$ y $5A$ son similares entre sí.

Entradas relacionadas

Álgebra Lineal II: Introducción al curso

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta serie de entradas continuaremos platicando acerca de álgebra lineal. Son una continuación a las entradas de Álgebra Lineal I que también se encuentran disponibles en el blog. En el transcurso de ellas, cubriremos los temas que establece el temario de la materia Álgebra Lineal II de la Licenciatura en Matemáticas de la UNAM.

Primero comenzaremos dando un pequeño repaso de lo que se ha visto en Álgebra Lineal I y después daremos un pequeño panorama de lo que se cubrirá en este curso.

Algunos recordatorios de Álgebra Lineal I

En el primer curso de álgebra lineal se establecieron muchos fundamentos del área, relacionados con espacios vectoriales, transformaciones lineales, matrices y más. A continuación damos un breve recordatorio de cada unidad temática. Usaremos letras cursivas para mencionar términos que ya deberías conocer. Si algunos de ellos no los recuerdas. Usaremos letras negritas para hacer énfasis en resultados fundamentales del primer curso, que es muy importante que recuerdes qué dicen y cómo se usan. Todo esto lo puedes encontrar en las notas anteriores.

En la primer parte de ese curso, recordamos las definiciones básicas de vector, matriz y transformación lineal, pero únicamente nos enfocamos en un espacio vectorial muy sencillo: $F^n$, que consiste de todos los vectores con $n$ entradas en un campo $F$. Se definieron operaciones de suma y producto escalar en este espacio. También hablamos de cómo multiplicar matrices. Esto fue suficiente para plantear la idea de resolver sistemas de ecuaciones lineales. Primero estudiamos los sistemas de ecuaciones lineales homogéneos, pues de acuerdo al principio de superposición, esto es suficiente. Luego, vimos el algoritmo de reducción gaussiana, que nos permite llevar cualquier matriz a su forma escalonada reducida. Esto resulta fundamental para calcular todo tipo de cosas en álgebra lineal: resolver sistemas de ecuaciones, invertir matrices, encontrar determinantes, encontrar espacios generados, etc.

En la segunda parte introdujimos el concepto de espacio vectorial en general. Hablamos de $F^n$, pero también del espacio de matrices $M_{m,n}(F)$, del espacio de polinomios $F[x]$, de los espacios de polinomios de grado a lo más $n$, $F_n[x]$, y de algunos otros como los de funciones con ciertas propiedades (continuas, diferenciables, limitadas a un intervalo, acotadas, etc.) A partir de las nociones de combinación lineal, independencia lineal y generadores, desarrollamos la teoría de dimensión. Un resultado crucial en dimensión finita es el lema de Steinitz. Tras hablar de un espacio vectorial, comenzamos a hablar de «funciones bonitas» entre ellos. Las primeras que tratamos fueron las transformaciones lineales. Un resultado crucial es que, en dimensión finita y tras elegir una base cada transformación lineal corresponde a una matriz y viceversa. Como bases distintas dan matrices distintas, fue necesario discutir qué sucede al cambiar de base, por lo que se introdujeron matrices de cambio de base. Otro resultado crucial es el teorema rango-nulidad.

La tercera parte fue mucho más geométrica. En ella hablamos de las formas lineales y de las formas bilineales. A partir de las formas lineales construimos a los espacios duales y desarrollamos la teoría de dualidad. Definimos el concepto de hiperplano. Una de las principales aplicaciones de la teoría de dualidad fue mostrar que en dimensión finita todo subespacio es intersección de hiperplanos. En el caso de formas bilineales, nos enfocamos mucho más en aquellas que van a $\mathbb{R}$. A partir de ellas definimos formas cuadráticas. Estudiamos el caso muy especial de espacios euclideanos, que son, a grandes rasgos espacios vectoriales reales con una forma bilineal «bonita». En este tipo de espacios se puede hablar de normas, distancias y ángulos. Los resultados cruciales fueron la desigualdad de Cauchy-Schwarz y la existencia de bases ortonormales. Para encontrarlas, hablamos del proceso de Gram-Schmidt.

Finalmente, vino la unidad 4 en la que se desarrolló de manera formal el concepto de determinante, tanto para vectores, como para matrices y transformaciones lineales. Para ello fue importante hablar de formas $n$-lineales (que en cierta forma generalizan a las bilineales) con propiedades especiales, como ser alternantes. Se vieron muchas propiedades de los determinantes para entenderlos a profundidad de manera teórica y práctica, en particular la expansión de Laplace. Se vio cómo los determinantes pueden ayudar a resolver sistemas de ecuaciones mediante las fórmulas de Cramer. También, con toda la teoría desarrollada hasta aquí pudimos finalmente entender con mucha profundidad los sistemas de ecuaciones lineales mediante el teorema de Rouché-Capelli. Para cerrar el curso, vimos muy por encima las ideas de eigenvalores, eigenvectores y polinomio característico. Esto nos llevó a la idea de diagonalización. Juntando toda la teoría del curso, llegamos a la cereza del pastel: el teorema espectral para matrices simétricas reales.

La idea general del segundo curso

El teorema espectral para matrices simétricas reales es un resultado precioso: bajo ciertas condiciones nos permite «llevar» una transformación (o matriz) a una «forma sencilla». Nos debe de dar la intuición de que toda la teoría que se desarrolló anteriormente la podemos utilizar para demostrar muchos otros resultados lindos de ese estilo. En Álgebra Lineal II haremos precisamente esto.

En la primer parte del curso profundizaremos en la teoría de eigenespacios, que nos permitirán entender mucho mejor cómo son los eigenvectores. Para hacer eso, será importante introducir un nuevo polinomio: el polinomio mínimo. Mostraremos muchas más propiedades de eigenvectores, eigenvalores, polinomios mínimos y característicos. Usaremos estas ideas para profundizar en las nociones de diagonalización y triangulización y enunciaremos teoremas que nos permitirán saber cuándo una matriz (o transformación) se puede llevar mediante un cambio de base a una forma más sencilla. En esta primer parte también demostraremos el bello teorema de Cayley-Hamilton, que afirma que cualquier matriz se anula en su polinomio característico.

Después de esto, en la segunda parte del curso trabajaremos para entender mejor a las formas bilineales que introdujimos en el primer curso. Ya no sólo nos limitaremos a aquellas que caen a los reales, sino que hablaremos también de aquellas que caen al campo $\mathbb{C}$ de los números complejos. Uno podría pensar que el tratamiento es análogo, pero esto dista mucho de la realidad: se requiere pensar en nuevas definiciones que involucren a los conjugados de las entradas de las matrices.

Tras establecer las propiedades principales que nos interesan en espacios vectoriales sobre $\mathbb{R}$ y $\mathbb{C}$, retomaremos la idea de demostrar teoremas de diagonalización. Ahora tendremos el teorema espectral para matrices reales y el teorema espectral para matrices complejas. Además de garantizarnos una diagonalización, estos teoremas nos garantizan que esa diagonalización es de una forma muy especial. Veremos las consecuencias teóricas que esto tiene.

Finalmente, en la última unidad temática, veremos que aunque las matrices no sean diagonalizables, en realidad no todo está perdido. Hablaremos de la forma canónica de Jordan, que es algo así como una versión débil de diagonalizar. Terminaremos el curso aprovechando todo lo visto hasta ahora para ver que cualquier matriz, sin importar sobre qué campo esté, siempre podrá ser llevada a esta forma tras un cambio de base.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Recuerda el algoritmo de reducción gaussiana y úsalo para determinar si la matriz $\begin{pmatrix} 1 & 5 & 0 \\ 0 & 1 & 2 \\ 5 & 3 & -1\end{pmatrix}$ es invertible y, en caso de que sí, encontrar su inversa. Hazlo a mano y comprueba tu respuesta con alguna calculadora de forma escalonada reducida en línea.
  2. Encuentra una base ortogonal para el espacio de polinomios $\mathbb{R}_4[x]$ de grado a lo más $4$ con producto bilineal $\langle p, q \rangle = \sum_{j=0}^4 p(j)q(j)$. Encuentra la forma matricial de la transformación «derivar» en esta base y da su determinante.
  3. Escribe al subespacio de matrices antisimétricas en $M_3(\mathbb{R})$ como intersección de hiperplanos. ¿Qué dimensión tiene?
  4. Encuentra un sistema de $4$ ecuaciones lineales en $5$ variables cuyo espacio de soluciones tenga dimensión $2$. Después, resuélvelo usando los siguientes dos métodos: reducción gaussiana y fórmulas de Cramer.
  5. Explica qué nos garantiza el teorema espectral visto en el curso anterior para las matrices $A=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 4 \end{pmatrix}$ y $B=\begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & -4 \\ 0 & 0 & 2 \end{pmatrix}$. Encuentra el polinomio característico de cada una de estas matrices. Esboza (sin hacerlo) cómo encontrarías los valores y vectores propios de $A$ y $B$.

Más adelante…

En la siguiente entrada ya comenzaremos con el contenido teórico del curso. Lo primero que haremos es formalizar qué quiere decir «aplicar un polinomio a una transformación lineal» y qué qué quiere decir aplicarlo a una matriz.

Entradas relacionadas