Archivo de la etiqueta: eigenvalores

Cálculo Diferencial e Integral III: Formas cuadráticas

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior hablamos de formas bilineales. A partir de esta noción podemos introducir otra más: la de formas cuadráticas. Las formas cuadráticas son cruciales, pues es a partir de ellas que podemos hacer geometría en espacios vectoriales.

Formas bilineales simétricas

Hay unas formas bilineales que son especiales pues al intercambiar los vectores argumento no cambian de valor.

Definición. Una forma bilineal $b\in B(\mathbb{R}^n)$ es simétrica si $b(u,v)=b(v,u)$ para todos los $u,v\in \mathbb{R}^n$.

Cuando una forma bilineal es simétrica, la matriz que la representa también. En efecto, si $A$ es una representación matricial de la forma bilineal $b$ en la base $\beta$, podemos escribir: \[b(u,v)=[u]^{t}A[v]=\left( [u]^{t}A[v] \right) ^{t}=[v]^{t}A^{t}[u].\]

En la igualdad de enmedio usamos que $[u]^{t}A[v] \in \mathbb{R}$ para obtener que este producto matricial es igual a su transpuesta (¿por que?). Así pues, si $b$ es simétrica: \[ [v]^{t}A^{t}[u]=b\left( u,v \right)=b\left( v,u\right)=[v]^{t}A[u],\]

para todo $u,v\in \mathbb{R}^n$. En particular, al evaluar $b(e_i,e_j)$ para $e_i,e_j$ una pareja de elementos de la base $\beta$ obtenemos que $A$ y $A^{t}$ coinciden en cualquier entrada $(i,j)$. Por lo tanto $A=A^{t}$, entonces $A$ es simétrica.

Formas cuadráticas y su forma polar

Una forma cuadrática se obtiene de evaluar una forma bilineal usando el mismo vector para ambas entradas. Formalmente, tenemos lo siguiente.

Definición. Una función $q:\mathbb{R}^n \to \mathbb{R}$ es una forma cuadrática si existe una forma bilineal $b:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}$ tal que $q(v)=b(v,v)$ para todo $v$ en $\mathbb{R}^n$. A $q$ le llamamos la forma cuadrática asociada a $b$.

Es posible que una misma forma cuadrática pueda ser creada por dos formas bilineales distintas.

Ejemplo. Tomemos la forma bilineal $b_1((x_1,x_2),(y_1,y_2))=0$ para todos $u,v\in \mathbb{R}^2$ y la forma bilineal $b_1((x_1,x_2),(y_1,y_2))=x_1y_2-x_2y_1$. Si $q_1$ es la forma cuadrática asociada a $b_1$ y $q_2$ es la forma cuadrática asociada a $b_2$, se tiene que $q_1((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$, y también se tiene que $q_2((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$ (verifícalo). Así, aunque $b_1\neq b_2$, se tiene que $q_1=q_2$.

$\triangle$

Si agregamos la hipótesis adicional que la forma bilineal que se usa sea simétrica, entonces sí tenemos unicidad. De hecho, podemos saber exactamente de qué forma bilineal simétrica $b$ viene una forma cuadrática dada $q$. Este es el contenido del siguiente teorema, que se llama el teorema de la identidad de polarización.

Teorema. Si $q$ es una forma cuadrática en $\mathbb{R}^n$, entonces existe una única forma bilineal $b$ simétrica tal que $q(v)=b(v,v)$ para todo $v\in \mathbb{R}^n$. Más aún, \[ \begin{equation} b(u,v)=\frac{1}{2}\left(q(u+v)-q(u)-q(v)\right). \end{equation}.\]

Demostración. Haremos sólo parte de la demostración: la de la unicidad. El resto puede consultarse, por ejemplo, en la entrada Formas cuadráticas, propiedades, polarización y teorema de Gauss. Supongamos que $q$ es forma cuadrática y que viene de la forma bilineal simétrica $B$. Desarrolando el lado derecho de la ecuación tenemos

\begin{align*}
\frac{1}{2}\left( q(u+v)-q(u)-q(v)\right) &= \frac{1}{2}\left( B(u+v,u+v)-B(u,u)-B(v,v)\right)\\&=\frac{1}{2}\left(B(u+v,u)+B(u+v,v)-B(u,u)-B(v,v)\right)\\
&=\frac{1}{2}\left(B(u,u)+B(v,u)+B(u,v)+B(v,v)-B(u,u)-B(v,v)\right)\\
&=\frac{1}{2}\left(2B(u,v)\right)=B(u,v).
\end{align*}

Esto muestra que la expresión del teorema es la única que podría servir para obtener la forma bilineal simétrica de la que viene $q$. El resto de la demostración consiste en ver que, en efecto, la expresión propuesta es bilineal y es simétrica.

$\square$

Por el teorema de la identidad de polarización, podemos siempre suponer que una forma cuadrática viene de una forma bilineal simétrica $b$, a la que le llamaremos su forma polar.

Forma matricial de una forma cuadrática

Definición. Sea $q$ una forma cuadrática de $\mathbb{R}^n$ y $\beta$ una base de $\mathbb{R}^n$. La forma matricial de $q$ en la base $\beta$ será la forma matricial de su forma polar en la base $\beta$.

Por lo visto anteriormente, si $b$ es simétrica, se representa por una matriz simétrica $A=a_{ij}$. Así, las formas matriciales de formas cuadráticas siempre son simétricas. Para evaluar $q$, podemos hacer lo siguiente:

\begin{align*}
q(v)&=b(v,v)\\
&=[v]^{t}A[v]\\
&=\begin{pmatrix}x_{1} & \dots & x_{n}\end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}
\end{align*}

Desarrollando el producto obtenemos $$q(v)=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}+2\sum_{i<j}a_{ij}x_{i}x_{j}.$$

Esta última ecuación en las variables $x_{i}$ se denomina el polinomio cuadrático correspondiente a la matriz simétrica $A$.

Nota que si la matriz $A$ es diagonal, entonces $q$ tendrá el siguiente polinomio cuadratico: \[ \begin{equation} q(v)=[v]^{t}A[v]=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}. \end{equation} \]

Este es un polinomio muy sencillo: no tendrá términos con «productos cruzados».

Teorema de Gauss para formas cuadráticas

Enseguida presentamos un teorema muy importante de formas cuadráticas. Su importancia radica en que siempre deseamos simplificar los objetos que tenemos.

Teorema. Sea $b$ una forma bilineal simétrica en $V$, un espacio vectorial de dimensión finita $n$ sobre $\mathbb{R}$. Entonces $V$ tiene una base $\{v_{1},\dots ,v_{n}\}$ en la que $b$ se representa por una matriz diagonal, es decir, $b(v_{i},v_{j})=0$ para $i\neq j$.

Demostración. Procederemos por inducción en $n=\dim V$. Si $\dim V=1$, se cumple claramente (¿Por que?). Por tanto, podemos suponer $\dim V>1$. Si $b=0$, también la afirmación es cierta inmediatamente, pues $b$ se representa por una matriz de puros ceros. Si $q(v)=b(v,v)=0$ para todo $v\in V$, al escribir $b$ en su forma polar se obtiene que $b=0$ . Por esta razón se puede suponer que existe un vector $v_{1}\in V$ tal que $b(v_{1},v_{1})\neq0$. Sean $U$ el subespacio generado por $v_{1}$ y $W$ el conjunto de aquellos vectores $v\in V$ para los que $b(v_{1},v)=0$. Afirmamos que $V=U\oplus W$.

  1. $U\cap W=\{0 \}$. Supongamos $u\in U\cap W$. Como $u\in U$, $u=kv_{1}$ para algún escalar $k\in \mathbb{R}$. Como $u\in W$, $0=b(v_{1},u)=b(v_{1},kv_{1})=kb(v_{1},v_{1})$. Pero $b(v_{1},v_{1})\neq 0$; luego $k=0$ y por consiguiente $u=0$. Así $U\cap W=\{ 0\}$.
  2. Veamos que $V=U+W$. Sea $v\in V$. Consideremos $w$ definido como: \[ w=v-\frac{b(v_{1},v)}{b(v_{1},v_{1})}v_{1}.\] Entonces \[ b(v_{1},w)=b(v_{1},v)-\frac{b(v_{1},v)}{b(v_{1},v_{1})}b(v_{1},v_{1})=0. \] Así $w\in W$. Por tanto $v$ es la suma de un elemento de $U$ y uno de $W$. Entonces se cumple $V=U+W$.
    Ahora $b$ restringida a $W$ es una forma bilineal simétrica en $W$. Pero $\dim W=n-1$, luego existe una base $\{ v_{2},\dots ,v_{n} \}$ de $W$ tal que $b(v_{i},v_{j})=0$ para $i\neq j$ y $2\leq i,j\leq n$. Por la propia definición de $W$, $b(v_{1},v_{j})=0$ para $j=2,\dots n$. Por tanto, la base $\{v_{1},\dots ,v_{n} \}$ de $V$ tiene la propiedad requerida de que $b(v_{i},v_{j})=0$ para $i\neq j$.

$\square$

Tenemos pues que para toda forma bilineal simétrica tenemos una representación matricial diagonal. Dicho en otras palabras, para cualquier matriz simétrica $A$ en $M_n(\mathbb{R})$, se tiene que es congruente a alguna matriz diagonal. También de aquí se tiene que para toda forma cuadrática tenemos una representación matricial diagonal.

Formas cuadráticas positivas y positivas definidas

Otra noción importante para formas cuadráticas es la siguiente.

Definición. Diremos que una forma cuadrática $q:\mathbb{R}^n\to \mathbb{R}$ es positiva si se cumple que $q(x)\geq 0$ para todo $x\in \mathbb{R}^n$. Diremos que es positiva definida si se cumple que $q(x)>0$ para todo $x\in \mathbb{R}^n \setminus \{0\}$.

Si $b$ es la forma bilineal simétrica que define a $q$ y $A$ es una matriz que represente a $b$ en alguna base $\beta$, se puede ver que $q$ es positiva si y sólo si $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Así mismo, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$. Esto motiva la siguiente definición para matrices.

Definición. Sea $A\in \mathbb{R}^n$ una matriz simétrica. Diremos que es positiva si se cumple que $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Diremos que es, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$.

Una propiedad importante que queda como tarea moral es que la propiedad de ser positiva (o positiva definida) es invariante bajo congruencia de matrices.

Hay otras maneras de saber si una matriz es positiva, o positiva definida. De hecho, en la entrada de Matrices positivas y congrunecia de matrices de nuestro curso de Álgebra Lineal II puedes encontrar la siguiente caracterización:

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. $A$ es congruente a una matriz diagonal con puras entradas mayores o iguales a cero.
  3. $A$ puede ser escrita de la forma $B^{t}B$ para alguna matriz $B\in M_n(\mathbb{R})$.

Hay otro resultado más que relaciona a las matrices positivas definidas con sus eigenvalores.

Teorema. Si $A$ es una matriz simétrica en $M_n(\mathbb{R})$ y es positiva definida, entonces todos sus eigenvalores son positivos.

Matriz Hessiana

Veamos cómo se aplican algunas de las ideas vistas en cálculo. Retomemos la discusión de la entrada Polinomio de Taylor para campos escalares. Hacia el final de la entrada enunciadmos el teorema de Taylor en el caso especial de grado $2$. Al tomar un campo escalar $f$ y un punto $a$, el polinomio de Taylor de grado $2$ estaba dado como sigue:

$$T_{2,a}(a+v)=f(a)+\frac{(v\cdot \triangledown )f(a)}{1!}+\frac{(v\cdot \triangledown)^{2}f(a)}{2!}.$$

Donde

$$\frac{(v\cdot \triangledown)^{2}f(a)}{2!}=\sum_{i=1}^{n}\sum_{j=1}^n v_{i}v_{j}\frac{\partial ^{2}f}{\partial x_{j}\partial x_{i}}(a).$$

Observa que este sumando se puede pensar como una forma cuadrática:

\[ q(v)=\begin{pmatrix}v_{1} & \dots & v_n\end{pmatrix}\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(a) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(a)\\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(a) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(a) \end{pmatrix}\begin{pmatrix} v_{1} \\ \vdots \\ v_n\end{pmatrix}\]

La matriz de esta forma cuadrática tiene una importancia especial en el cálculo de varias variables, y por ello tiene su propia definición.

Definición. Sea $f$ un campo escalar definido sobre algún subconjunto abierto de $\mathbb{R}^{n}$. Si $f$ tiene derivadas parciales de segundo orden en el punto $a$, a la siguiente matriz la llamamos la matriz hessiana de $f$ en $a$:

\[ H_f(a)=\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(a) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(a) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(a)\end{pmatrix}.\]

Cuando hablemos de optimización, esta matriz tomará un significado especial. Por ahora, enfoquémonos en entender cómo obtenerla.

Ejemplo. Encontraremos la matriz Hessiana del campo escalar $f(x,y)=\sin(xy)$ en el punto $\left( 1,\frac{\pi}{4} \right)$. Para ello, calculamos las siguientes derivadas parciales de orden $1$ y $2$:

\[ \frac{\partial f}{\partial x}=y\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x^{2}}=-y^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y\partial x}=\cos(xy)-xy\sin(xy) \]

\[ \frac{\partial f}{\partial y}=x\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y^{2}}=-x^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x\partial y}=\cos(xy)-xy\sin(xy).\]

Por lo tanto

\[ H(x,y)=\begin{pmatrix} -y^{2}\sin(xy) &\cos(xy)-xy\sin(xy) \\ \cos(xy)-xy\sin(xy) & -x^{2}\sin(xy) \end{pmatrix}.\]

Evaluando en el punto $\left(1,\frac{\pi}{4} \right),$

\[ H\left(1,\frac{\pi}{4} \right)=\begin{pmatrix} -\frac{\pi ^{2}}{16}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) \\ \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) & -\frac{\sqrt{2}}{2} \end{pmatrix}.\]

$\triangle$

Mas adelante…

Con esto terminamos nuestro repaso de álgebra lineal, y con ello tenemos las herramientas necesarias para poder retomar nuestro estudio de las funciones en varias variables. En la siguiente entrada comenzaremos con el concepto de diferenciabilidad. A lo largo de las siguientes entradas, iremos viendo por qué las herramientas de álgebra lineal que desarrollamos son importantes.

Así mismo, cuando lleves un curso de Cálculo Diferencial e Integral IV también retomaras una parte importante de la teoría que hemos repasado.

Tarea moral

  1. Responder en la primer definición porque $[u]^{t}A[v]\in \mathbb{R}$.
  2. Demostrar que el espacio $W$ del último teorema es un subespacio vectorial de $V$.
  3. Explicar en la demostración del último teorema porque este se cumple cuando $b=0$ o $\dim V=1$.
  4. Explicar porque $\dim W=n-1$.
  5. Verifica que si una matriz $A$ es positiva definida, entonces cualquier matriz $B$ congruente a $A$ también es positiva definida.
  6. Demuestra el último teorema de esta entrada, es decir, que las matrices simétricas positivas definidas tienen eigenvalores positivos.

Entradas relacionadas

Cálculo Diferencial e Integral III: Polinomio característico

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior estudiamos las representaciones matriciales de una transformación lineal. Vimos cómo dadas ciertas bases del espacio dominio y codominio, existe un isomorfismo entre matrices y transformaciones lineales. Así mismo, planteamos la pregunta de cómo encontrar bases para que dicha forma matricial sea sencilla. Vimos que unos conceptos cruciales para entender esta pregunta son los de eigenvalor, eigenvector y eigenespacio. Lo que haremos ahora es introducir una nueva herramienta que nos permitirá encontrar los eigenvalores de una transformación: el polinomio característico.

A partir del polinomio característico daremos un método para encontrar también a los eigenvectores y, en algunos casos especiales, encontrar una representación de una transformación lineal como matriz diagonal. Todo lo que hacemos es una versión resumida de lo que se puede encontrar en un curso más completo de álgebra lineal. Dentro del blog, te recomendamos consultar las siguientes entradas:

Polinomio característico

Pensemos en el problema de hallar los eigenvalores de una transformación lineal $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$. Si $\lambda \in \mathbb{R}$ es uno de estos eigenvalores, queremos poder encontrar vectores $v\neq 0$ tales que $T(v)=\lambda v$. Esto sucede si y sólo si $\lambda v-T(v)=0$, lo cual sucede si y sólo si $(\lambda \text{Id}-T)(v)=0$, en donde $\text{Id}:\mathbb{R}^n\to \mathbb{R}^n$ es la transformación identidad de $\mathbb{R}^n$ en $\mathbb{R}^n$. Tenemos de esta manera que $v$ es un eigenvector si y sólo si $v\in \ker(\lambda\text{Id}-T)$.

Si existe $v\neq 0$ tal que $v\in \ker(\lambda \text{Id}-T)$; entonces $\ker(\lambda \text{Id}-T)\neq \{ 0\}$ por lo cual la transformación $\lambda \text{Id}-T$ no es invertible, pues no es inyectiva. Así, en ninguna base $\text{Mat}_\beta(\lambda \text{Id}-T)$ es invertible, y por tanto su determinante es $0$. Estos pasos son reversibles. Concluimos entonces que $\lambda\in \mathbb{R}$ es un eigenvalor de $T$ si y sólo si en alguna base $\beta$ se cumple que $\det(\text{Mat}_\beta(\lambda \text{Id} – T))=0.$ Esto motiva la siguiente definición.

Definición. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal. Llamamos a $\det(\text{Mat}_\beta(\lambda \text{Id} – T))$ el polinomio característico de $T$ en la base $\beta$.

Por la discusión anterior, los escalares que cumplen $\det(\text{Mat}_\beta(\lambda \text{Id} – T))=0$ son los eigenvalores $T$. Para obtener los correspondientes eigenvectores, basta con resolver $\text{Mat}_\beta(T)X=\lambda X$, lo cual es un sistema de ecuaciones en el vector de variables $X$. Las soluciones $X$ nos darán las representaciones matriciales de vectores propios $v\in \mathbb{R}^n$ en la base $\beta$.

Por el momento parece ser que cargamos mucha notación, pues debemos considerar la base en la que estamos trabajando. Un poco más adelante veremos que en realidad la base no importa mucho para determinar el polinomio característico. Pero por ahora, veamos un ejemplo concreto de las ideas platicadas hasta ahra.

Ejemplo: Consideremos $T:\mathbb{R}^{3}\rightarrow \mathbb{R}^{3}$ dada por $T(x,y,z)=(2x+z,y+x,-z)$. Calculemos su representación matricial con respecto a la base canónica $\beta$. Para ello, realizamos las siguientes evaluaciones:
\begin{align*}
T(1,0,0)&=(2,1,0)\\
T(0,1,0)&=(0,1,0)\\
T(0,0,1)&=(1,0,-1),
\end{align*}

de donde: $$\text{Mat}_\beta=\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Calculando el polinomio característico obtenemos: \[ det\begin{pmatrix} \lambda-2 & 0 & -1 \\ -1 & \lambda-1 & 0 \\ 0 & 0 & \lambda+1 \end{pmatrix}= (\lambda-2)(\lambda-1)(\lambda+1). \]

Las raíces de $(\lambda-2)(\lambda-1)(\lambda+1)$ son $\lambda_{1}=2$, $\lambda_{2}=1$, y $\lambda_{3}=-1$. Pensemos ahora en quiénes son los eigenvectores asociados a cada eigenvalor. Tomemos como ejemplo el eigenvalor $\lambda=2$. Para que $(x,y,z)$ represente a un eigenvector en la base canónica, debe pasar que:

\[ \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2\begin{pmatrix} x \\ y \\ z \end{pmatrix},\]

lo cual sucede si y sólo si:

\[\begin{pmatrix} 0 & 0 & 1 \\ 1 & -1& 0 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.\]

De aquí, podemos llegar a la siguiente forma escalonada reducida del sistema de ecuaciones:

\[\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.\]

En esta forma es sencillo leer las soluciones. Tenemos que $z$ es variable pivote con $z=0$, que $y$ es variable libre, y que $x$ es variable pivote dada por $x=-y$. Concluimos entonces que todos los posibles eigenvectores para el eigenvalor $2$ son de la forma $(-y,y,0)$, es decir $E_2=\{(-y,y,0): y \in \mathbb{R}\}$.

Queda como tarea moral que encuentres los eigenvectores correspondientes a los eigenvalores $1$ y $-1$.

$\triangle$

Matrices similares

En la sección anterior definimos el polinomio de una transformación lineal en términos de la base que elegimos para representarla. En realidad, la base elegida no es muy importante. Demostraremos un poco más abajo que dos representaciones matriciales cualesquiera de una misma transformación lineal tienen el mismo polinomio característico. Para ello, comencemos con la siguiente discusión.

Comencemos con lo siguiente. Sea $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ una transformación lineal y sean $\beta_1=\{ e_{1}, \dots , e_{n}\}$, $\beta_2=\{ u_{1}, \dots , u_{n}\}$ dos bases (ordenadas) de $\mathbb{R}^n$. Supongamos que:

\begin{align*}
A&=\text{Mat}_{\beta_1}(T)=[a_{ij}]\\
B&=\text{Mat}_{\beta_2}(T)=[b_{ij}].
\end{align*}

Por cómo se construyen las matrices $A$ y $B$, tenemos que:

\begin{align*}
T(e_j)&=\sum_{i=1}^n a_{ij} e_i\quad\text{para $j=1,\ldots,n$}\\
T(u_k)&=\sum_{j=1}^n b_{jk} u_j\quad\text{para $k=1,\ldots,n$}.
\end{align*}

Como $\beta$ es base, podemos poner a cada un de los $u_k$ de $\beta’$ en términos de la base $\beta$ mediante combinaciones lineales, digamos:

\begin{equation}
u_{k}=\sum_{j=1}^{n}c_{jk}e_{j}
\label{eq:valor-u}
\end{equation}

en donde los $c_{jk}$ son escalares para $j=1,\ldots, n$ y $k=1,\ldots,n$. La matriz $C$ de $n\times n$, con entradas $c_{jk}$ representa a una transformación lineal invertible, ya que es una transformación que lleva uno a uno los vectores de una base a otra. Afirmamos que $CB=AC$. Para ello, tomaremos una $k$ en $[n]$ y expresaremos $T(u_k)$ de dos formas distintas.

Por un lado, usando \eqref{eq:valor-u} y cómo es cada $T(e_k)$ en la base $\beta$ tenemos que:

\begin{align*}
T(u_k)&=\sum_{j=1}^n c_{jk} T(e_j)\\
&=\sum_{j=1}^n c_{jk} \sum_{i=1}^n a_{ij} e_i\\
&=\sum_{j=1}^n \sum_{i=1}^n (c_{jk} a_{ij} e_i)\\
&=\sum_{i=1}^n \sum_{j=1}^n (c_{jk} a_{ij} e_i)\\
&=\sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} c_{jk}\right) e_i.
\end{align*}

Por otro lado, usando $\eqref{eq:valor-u}$ y cómo es cada $T(u_k)$ en la base $\beta’$:

\begin{align*}
T(u_k)&=\sum_{j=1}^nb_{jk} u_j\\
&=\sum_{j=1}^n b_{jk} \sum_{i=1}^{n}c_{ji}e_{j} \\
&=\sum_{j=1}^n \sum_{i=1}^n (b_{jk} c_{ij} e_i)\\
&=\sum_{i=1}^n \sum_{j=1}^n (b_{jk} c_{ij} e_i)\\
&=\sum_{i=1}^n \left(\sum_{j=1}^n c_{ij} b_{jk} \right) e_i.
\end{align*}

Comparemos ambas expresiones para $T(u_k)$. La primera es una combinación lineal de los $e_i$ y la segunda también. Como $T(u_k)$ tiene una única expresión como combinación lineal de los $e_i$, entonces los coeficientes de la combinación lineal deben coincidir. Concluimos que para cada $i$ se cumple:

$$\sum_{j=1}^n a_{ij} c_{jk}=\sum_{j=1}^n c_{ij} b_{jk}.$$

Pero esto precisamente nos dice que la entrada $(i,k)$ de la matriz $AC$ es igual a la entrada $(i,k)$ de la matriz $CB$. Con esto concluimos que $AC=CB$, como queríamos.

En resumen, obtuvimos que para dos matrices $A$ y $B$ que representan a la misma transformación lineal, existe una matriz invertible $C$ tal que: $B=C^{-1}AC$. Además $C$ es la matriz con entradas dadas por \eqref{eq:valor-u}.

Introduciremos una definición que nos permitirá condensar en un enunciado corto el resultado que hemos obtenido.

Definición. Dos matrices $A$ y $B$ se llamarán similares (o semejantes), cuando existe otra matriz $C$ invertible tal que $B=C^{-1}AC$.

Sintetizamos nuestro resultado de la siguiente manera.

Proposición. Si dos matrices representan a la misma transformación lineal, entonces estas matrices son similares.

El converso de la proposición también se cumple, tal y como lo afirma el siguiente resultado.

Proposición. Sean $A$ y $B$ matrices similares. Entonces $A$ y $B$ representan a una misma transformación lineal $T$, quizás bajo distintas bases.

Demostración: Supongamos que las matrices $A$ y $B$ son similares con $B=C^{-1}AC$, donde las matrices $A$, $B$, $C$ están dadas por entradas $A=[a_{ij}]$ $B=[b_{ij}]$, $C=[c_{jk}]$. Tomemos una base ordenada $\beta=\{e_{1}, \dots ,e_{n}\}$ de $\mathbb{R}^n$. Consideremos la transformación lineal $T\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^n)$ dada por $$T(e_j)=\sum_{i=1}^n a_{ij} e_i.$$

De esta manera $T$ tiene forma matricial $A$ en la base $\beta$.

Construyamos ahora una nueva base ordenada de $\mathbb{R}^n$ dada por vectores $u_k$ para $k=1,\ldots,n$ construidos como sigue:

$$u_{k}=\sum_{j=1}^{n}c_{jk}e_{j}.$$

Como $C$ es invertible, en efecto tenemos que $\beta’:=\{u_1,\ldots,u_n\}$ también es base de $\mathbb{R}^n$. Además, de acuerdo a las cuentas que hicimos anteriormente, tenemos que precisamente la forma matricial de $T$ en la base $\beta’$ será $B$.

Así, hemos exhibido una transformación $T$ que en una base tiene representación $A$ y en otra tiene representación $B$.

$\square$

Juntando ambos resultados en uno solo, llegamos a lo siguiente.

Teorema. Dos matrices $A$ y $B$ en $M_n(\mathbb{R})$ son similares si y sólo si representan a una misma transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$, quizás bajo distintas bases.

El polinomio característico no depende de la base

Si dos matrices son similares, entonces comparten varias propiedades relevantes para el algebra lineal. Veamos un ejemplo de esto.

Teorema. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal en un espacio sobre $\mathbb{R}$ de dimensión finita. Sean $\beta$ y $\beta’$ bases de $\mathbb{R}^n$. Entonces se obtiene lo mismo calculando el polinomio característico de $T$ en la base $\beta$, que en la base $\beta’$.

Demostración. Tomemos $A=\text{Mat}_{\beta}(T)$ y $B=\text{Mat}_{\beta’}(T)$. Como $A$ y $B$ representan a la misma transformación lineal $T$, entonces son similares y por lo tanto existe $C$ invertible con $B=C^{-1}AC$.

Para encontrar el polinomio característico de $T$ en la base $\beta$, necesitamos $\Mat_{\beta}(\lambda\text{Id}-T)$, que justo es $\lambda I -A$. Así mismo, en la base $\beta’$ tenemos $\lambda I – B$. Debemos mostrar que el determinante de estas dos matrices es el mismo. Para ello, procedemos como sigue:

\begin{align*}
\det(\lambda I -B) &= \det (\lambda C^{-1}C – C^{-1} A C)\\
&=\det(C^{-1}(\lambda I – A) C)\\
&=\det(C^{-1})\det(\lambda I – A) \det(C)\\
&=\det(C^{-1})\det(C)\det(\lambda I-A)\\
&=\det(I)\det(\lambda I-A)\\
&=\det(\lambda I-A).
\end{align*}

Aquí estamos usando que el determinante es multiplicativo. Cuando reordenamos expresiones con $\det$, lo hicimos pues los determinantes son reales, cuyo producto es conmutativo.

$\square$

Este teorema nos permite hablar de el polinomio característico de una transformación lineal.

Concluimos esta entrada con un resultado que relaciona al polinomio característico de una transformación lineal, con la posibilidad de que exista una base cuya representación matricial sea diagonal.

Teorema. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal. Supongamos que el polinomio característico de $T$ tiene raíces distintas $\lambda_{1}, \dots ,\lambda_{n}$. Entonces se cumple lo siguiente:

  1. Si tomamos un eigenvector $u_i$ para cada eigenvalor $\lambda_i$, entonces $u_{1},\dots ,u_{n}$ forman una base $\beta$ para $\mathbb{R}^n$.
  2. Con dicha base $\beta$, se cumple que $\text{Mat}_\beta(T)$ es una matriz diagonal con entradas $\lambda_{1},\dots ,\lambda_{n}$ en su diagonal.
  3. Si $\beta’$ es otra base de $\mathbb{R}^n$ y $A=\text{Mat}_{\beta’}(T)$, entonces $\text{Mat}_\beta(T) = C^{-1}AC$ para una matriz invertible $C$ con entradas dadas por \eqref{eq:valor-u}.

La demostración de este resultado queda como tarea moral.

Más adelante…

En la entrada planteamos entonces un método para encontrar los eigenvectores de una transformación $T$: 1) la transformamos en una matriz $A$, 2) encontramos el polinomio característico mediante $\det(\lambda I – A)$, 3) encontramos las raíces de este polinomio, 4) cada raíz es un eigenvalor y las soluciones al sistema lineal de ecuaciones $(\lambda I – A) X=0$ dan los vectores coordenada de los eigenvectores.

Como platicamos en la entrada, una condición suficiente para que una transformación de $\mathbb{R}^n$ a sí mismo sea diagonalizable es que tenga $n$ eigenvalores distintos. Otro resultado muy bonito de álgebra lineal es que si la transformación tiene alguna forma matricial simétrica, entonces también es diagonalizable. A esto se le conoce como el teorema espectral para matrices simétricas reales. En otros cursos de álgebra lineal se estudia la diagonalizabilidad con mucho detalle. Aquí en el blog puedes consultar el curso de Álgebra Lineal II.

Otra herramienta de álgebra lineal que usaremos en el estudio de la diferenciabilidad y continuidad de las funciones de $\mathbb{R}^{n}$ a $\mathbb{R}^{m}$ son las formas bilineales y las formas cuadráticas. En la siguiente entrada comenzaremos con estos temas.

Tarea moral

  1. Encuentra los eigenvectores faltantes del ejemplo de la sección de polinomio característico.
  2. Considera la transformación lineal $T(x,y,z)=(2x+z,y+x,-z)$ de $\mathbb{R}^3$ en $\mathbb{R}^3$. Nota que es la misma que la del ejemplo de la entrada. Encuentra su representación matricial con respecto a la base $\{(1,1,1),(1,2,3),(0,1,1)\}$ de $\mathbb{R}^3$. Verifica explícitamente que, en efecto, al calcular el polinomio característico con esta base se obtiene lo mismo que con la dada en el ejemplo.
  3. Demuestra que si $A$ y $B$ son dos representaciones matriciales de una misma transformación lineal $T$, entonces $\det(A)=\det(B)$.
  4. Sea $T:\mathbb{R}^{3}\to \mathbb{R}^{3}$ dada por $T(x,y,z)=(x+y+z,x,y)$. Encuentra los eigenvalores correspondientes a la transformación, y responde si es posible representarla con una matriz diagonal. En caso de que sí, encuentra explícitamente la base $\beta$ en la cual $\text{Mat}_{\beta}(T)$ es diagonal.
  5. Demuestra el último teorema de la entrada. Necesitarás usar resultados de la entrada anterior.

Entradas relacionadas

Cálculo Diferencial e Integral III: Representaciones matriciales, eigenvalores y eigenvectores

Por Alejandro Antonio Estrada Franco

Introducción

Como se ha mencionado anteriormente el objetivo de introducir ideas de álgebra lineal en cálculo diferencial es poder establecer una transformación lineal que sea la mejor aproximación lineal en un punto a una función dada. Esto nos ayudará a entender a la función dada en el punto términos de otra funcion «más simple». Pero así mismo, las transformaciones lineales pueden ellas mismas pensarse en términos de transformaciones más sencillas. En esta entrada revisaremos esta idea y la conectaremos con la noción de eigenvectores.

Por un lado, recordaremos cómo es que una transformación lineal puede ser representada mediante una matriz una vez que se ha elegido una base del espacio vectorial. Luego, hablaremos de cómo elegir, de entre todas las bases, aquella que nos de una representación matricial lo más sencilla posible.

Representación matricial de las transformaciones lineales

Comencemos esta entrada repasando la importante relación entre transformaciones lineales y matrices. Denotaremos como $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ al espacio vectorial de transformaciones lineales de $\mathbb{R}^n$ a $\mathbb{R}^m$.

Si tomamos cualquier transformación lineal $T\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, entonces los valores de $T$ en cualquier vector de $\mathbb{R}^n$ quedan totalmente determinados por los valores de $T$ en los elementos de alguna base $\beta$ para $\mathbb{R}^n$. Tomemos $\gamma=\{w_{1},\dots ,w_{m}\}$ una base ordenada para $\mathbb{R}^m$, y $\beta=\{e_{1},\dots ,e_{n}\}$ una base ordenada para $\mathbb{R}^n$. Para cada $e_{k}$ tenemos:

$$\begin{equation} T(e_{k})=\sum_{i=1}^{m}t_{ik}w_{i} \end{equation},$$

para algunos escalares $t_{1k},\dots ,t_{mk}$ que justo son las componentes de $T(e_{k})$ en la base $\gamma$. Con estos escalares, podemos considerar la matriz: \[ \text{Mat}_{\gamma,\beta}(T)= \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \]

Esta es llamada la representación matricial de la transformación $T$ con respecto a las bases $\beta$ y $\gamma$. Esta matriz ayuda a calcular $T$ en cualquier vector de $\mathbb{R}^n$ como explicamos a continuación.

Para cada $v\in \mathbb{R}^n$, podemos expresarlo como combinación lineal de elementos de la base $\beta$ digamos que $v=\sum_{i=1}^{n} v_{i}e_{i}$. Mediante estos coeficientes, podemos entonces asociar a $v$ al siguiente vector columna de $\mathbb{R}^n$ \[ [v]_{\beta}=\begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}, \]

al que llamamos el vector de coordenadas de $v$ con respecto a la base $\beta$.

Realicemos por un lado el siguiente cálculo:

\[ \text{Mat}_{\gamma,\beta}(T)[v]_{\beta}=\begin{pmatrix} t_{11} & \dots & t_{1n}\\ \vdots & \ddots & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}=\begin{pmatrix} \displaystyle\sum_{k=1}^{n}t_{1k}v_{k} \\ \vdots \\ \displaystyle\sum_{k=1}^{n}t_{mk}v_{k}.\end{pmatrix} \]

Por otro lado tenemos lo siguiente:

\begin{align*}
T(v)&=T \left( \sum_{k=1}^{n}v_{k}e_{k} \right)\\&=\sum_{k=1}^{n}v_{k}T(e_{k})\\&=\sum_{k=1}^{n}v_{k}T\left( \sum_{i=1}^{m}t_{ik}w_{i} \right)\\&=\sum_{i=1}^{m}\left( \sum_{k=1}^{n}v_{k}t_{ik} \right)w_{i}.
\end{align*}

Juntando ambos cálculos: \[ [T(v)]_{\gamma}=\begin{pmatrix} \sum_{k=1}^{n}v_{k}t_{1k} \\ \vdots \\ \sum_{k=1}^{n}v_{k}t_{mk} \end{pmatrix} = \text{Mat}_{\gamma,\beta}(T)[v]_{\beta}.\]

En otras palabras, aplicar $T$ a un vector $v$ equivale a multiplicar $\text{Mat}_{\gamma,\beta}$ por el vector columna asociado a $v$ en la base $\beta$, en el sentido de que tras hacer este producto recuperamos el vector de coordenadas para $T(v)$ en la base $\gamma$.

Isomorfismo entre transformaciones lineales y matrices

Con las operaciones de suma y multiplicación por escalar que vimos en la entrada de Matrices, se tiene que $M_{m,n}\left( \mathbb{R} \right)$ es un espacio vectorial sobre $\mathbb{R}$. De igual manera $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ es un espacio vectorial sobre $\mathbb{R}$ con las siguientes operaciones:

  • Si $T$ y $U$ son dos transformaciones, la transformación $T+U$ es aquella que envía a todo vector $v\in \mathbb{R}^n$ al vector $T(v)+U(v)$.
  • Si $r\in \mathbb{R}$ la transformación $rT$ es la que a todo $v\in \mathbb{R}^n$ lo envía al vector $rT(v)$.

Queda como ejercicio que verifiques que esto dota efectivamente a $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ de estructura de espacio vectorial.

A continuación veremos que estos dos espacios vectoriales son, prácticamente, el mismo. Lo que haremos es construir una función $$\Phi :M_{m,n}\left( \mathbb{R} \right) \to\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$$ que sea biyectiva y que preserve las operaciones de suma y de producto escalar.

Para ello, tomemos una base $\beta=\{e_1,\ldots,e_n\}$ de $\mathbb{R}^{n}$ y una base $\gamma=\{u_1,\ldots,u_m\}$ de $\mathbb{R}^m$. Tomemos una matriz $A\in M_{m,n}(\mathbb{R})$. Explicaremos a continuación cómo construir la transformación $\Phi(A)$, para lo cual diremos qué hace en cada elemento de la base $\beta$. Tomaremos aquella transformación lineal $T_A\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ tal que

$$T_A(e_j)=\sum_{i=1}^n a_{ij} u_i.$$

Tomamos entonces $\varphi(A)=T_A$. Veamos que $\varphi$ tiene todas las propiedades que queremos.

  • $\Phi$ es suprayectiva. Si tenemos una transformación $T:\mathbb{R}^n\to \mathbb{R}^m$, entonces por la construcción anterior se tiene que su forma matricial $A:=\text{Mat}_{\gamma,\beta}(T)$ justo cumple $T_A=T$, de modo que $\Phi(A)=T$.
  • $\Phi$ es inyectiva. Si $A$ y $B$ son matrices distintas, entonces difieren en alguna entrada, digamos $(i,j)$. Pero entonces $T_A$ y $T_B$ difieren ya que $T_A(e_j)\neq T_B(e_j)$ ya que en las combinaciones lineadas creadas hay un coeficiente distinto. Así, $\Phi(A)\neq \Phi(B)$.
  • $\Phi $ es lineal. Para $r\in \mathbb{R}$, $A$ y $B$ matrices con entradas $a_{ij}$ y $b_{ij}$, respectivamente, se cumple que $\Phi \left( rA+B \right)=T_{(rA+B)}$ y entonces se satisface para cada $j=1,\dots ,n$ lo siguiente:
    \begin{align*}
    (rA+B)[e_{j}]_{\beta}&=rA[e_{j}]_{\beta}+B[e_{j}]_{\beta}\\&=r[T_A(e_{i})]_{\gamma}+[T_{B}(e_{i})]_{\gamma}.
    \end{align*}
    Por tanto para cada $e_{i}$ tenemos que $$T_{(rA+B)}(e_{i})=rT_{A}(e_{i})+T_{B}(e_{i})$$ y en consecuencia $$T_{(rA+B)}=rT_{A}+T_{B}.$$ Así $$\Phi (rA+B)=r\Phi (A)+\Phi(B).$$

Todo lo anterior implica que $M_{m,n}\left( \mathbb{R} \right)\simeq \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, es decir, que ambos espacios vectoriales son isomorfos.

En búsqueda de una matriz sencilla

Por lo que hemos platicado hasta ahora, a cada transformación lineal le corresponde una matriz, y viceversa. De hecho, esta asociación respeta operacionescomo la suma y el producto escalar. Esta equivalencia está dada a partir de la función $\Phi$ encontrada en la sección anterior.

Si $\Phi $ es biyectiva, ¿por qué hablamos entonces de encontrar una representación matricial simple para una transformación lineal $T$? Esto parecería no tener sentido, pues a cada transformación le corresponde una y sólo una matriz. Sin embargo, esto es cierto únicamente tras haber fijado las bases $\beta$ y $\gamma$ para $\mathbb{R}^n$ y $\mathbb{R}^m$, respectivamente. Así, dependiendo de la elección de las bases las representaciones matriciales cambian y si tenemos una transformación lineal $T$, es posible que querramos encontrar bases $\beta$ y $\gamma$ en donde la representación matricial sea sencilla.

Nos enfocaremos únicamente en transformaciones lineales que van de un espacio vectorial a sí mismo. Tomemos entonces $T:\mathbb{R}^n\to \mathbb{R}^n$ y una base $\beta$ de $\mathbb{R}^n$. Por simplicidad, escribiremos $\text{Mat}_{\beta, \beta}(T)$ simplemente como $\text{Mat}_{\beta}(T)$. Hay propiedades de $T$ que podemos leer en su matriz $\text{Mat}_{\beta}(T)$ y que no dependen de la base $\beta$ que hayamos elegido. Si con una base $\beta$ especial resulta que $\text{Mat}_{\beta}(T)$ es muy sencilla, entonces podremos leer estas propiedades de $T$ muy fácilmente. Un ejemplo es la siguiente proposición, la cual queda como tarea moral.

Proposición. La transformación lineal $T:\mathbb{R}^n\to\mathbb{R}^n$ es invertible si y sólo si $\text{Mat}_{\beta}(T)$ es invertible.

Si $A=\text{Mat}_{\beta}(T)$ fuera muy muy sencilla, por ejemplo, si fuera una matriz diagonal, entonces podríamos saber la invertibilidad de $T$ sabiendo la invertibilidad de $A$, y la de $A$ sería muy fácil de ver pues por ser matriz diagonal bastaría hacer el producto de las entradas de su diagonal para obtener su determinante y estudiar si es distinto de cero.

Motivados por el ejemplo anterior, estudiemos la siguiente pregunta: ¿toda transformación lineal se puede representar con una matriz diagonal? Si una transformación lineal se puede representar de esta manera, diremos que es diagonalizable.

Eigenvalores, eigenvectores y eigenespacios

En lo que sigue repasaremos el aparato conceptual que nos permitirá dar una respuesta parcial de cuándo una matriz es diagonalizable. Un tratamiento mucho más detallado se puede encontrar aquí en el blog, en el curso de Álgebra Lineal II, comenzando con la entrada Eigenvectores y eigenvalores.

Para nuestro repaso, debemos introducir algunos conceptos y estudiarlos.

Definición. Sea $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ una transformación lineal. Diremos que un escalar $r \in \mathbb{R}$ es un eigenvalor de $T$ si existe $v\in \mathbb{R}^n\setminus\{ 0 \}$ tal que $T(v)=rv$. A dicho vector $v$ le llamaremos un eigenvector de $T$ con eigenvalor asociado $r$.

Dado un eigenvector $v\in \mathbb{R}^n$, sólo hay un eigenvalor correspondiente a este. Si $T(v)=rv$ y $T(v)=tv$, entonces $rv=tv$ de donde $(r-t)v=0$. Como $v\neq 0$, se sigue que $r=t$.

Por otro lado, para un eigenvalor $r$ puede haber más de un eigenvector con eigenvalor asociado $r$. Consideremos para un eigenvalor $r$ el conjunto $E(r)=\{ v\in V |T(v)=rv\}$. Notemos que $0\in E(r)$ y también todos los eigenvectores de $r$ están en $E(r)$. Además, $E(r)$ es un subespacio de $\mathbb{R}^n$, pues si $u,v \in E(r)$, y $a\in \mathbb{R}$, tenemos

\begin{align*}
T(au+v)&=aT(u)+T(v)\\
&=a(ru)+(rv)\\
&=r(au+v),
\end{align*}

lo cual implica que $au+v \in E(r)$.

Definición. Para una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$ y un eigenvalor $r$ de $T$ llamaremos a

$$E(r)=\{ v\in V |T(v)=rv\}$$

el eigenespacio de $T$ correspondiente a $r$.

Cuando tenemos eigenvectores correspondientes a eigenvalores distintos, cumplen algo especial.

Proposición. Si $v_{1}, \dots ,v_{l}$ son eigenvectores de una transformación lineal $T:\mathbb{R}^n \rightarrow \mathbb{R}^n$ con eigenvalores correspondientes $r_{1}, \dots ,r_{l}$ distintos entonces $v_{1}, \dots ,v_{l}$ son linealmente independientes.

Demostración. La ruta para establecer la demostración de este teorema será por inducción sobre $l$. Para un conjunto con solo un eigenvector el resultado es evidente (¿por que?). Supongamos cierto para cualquier subconjunto de $l-1$ eigenvectores que pertenecen a eigenespacios distintos. Sean $v_{1}, \dots ,v_{l}$ eigenvectores en distintos eigenespacios y consideremos $\alpha _{1}, \dots ,\alpha_{l}$ escalares tales que:

\begin{equation}
\label{eq:comb-cero}
\sum_{k=1}^{l}\alpha _{k}v_{k}=0.
\end{equation}

Aplicamos $T$ a la igualdad anterior. Usando que cada $v_{k}$ es eigenvector correspondiente al eigenvalor $r_{k}$ obtenemos:

\begin{align*}
0=T(0)&=T\left(\sum_{k=1}^{l}\alpha _{k}v_{k} \right)\\&=\sum_{k=1}^{l}\alpha _{k}T(v_{k})\\&=\sum_{k=1}^{l}\alpha _{k}r_{k}v_{k}.
\end{align*}

Es decir,

\begin{equation}
\label{eq:aplicarT}
0=\sum_{k=1}^{l}\alpha _{k}r_{k}v_{k}
\end{equation}

Multipliquemos \eqref{eq:comb-cero} por $r_{l}$ y restemos el resultado de \eqref{eq:aplicarT} para obtener que

\begin{align*}
0=0-0&=\sum_{k=1}^{l}\alpha _{k}r_{k}v_{k}-r_{l}\sum_{k=1}^{l}\alpha _{k}v_{k}\\&=\sum_{k=1}^{l-1}\alpha _{k}(r_{k}-r_{l})v_{k}.
\end{align*}

Tenemos entonces:

\[ \sum_{k=1}^{l-1}\alpha _{k}(r_{k}-r_{l})v_{k}=0.\]

Ya que por hipótesis de inducción $v_{1}, \dots ,v_{l-1}$ son linealmente independientes entonces $\alpha _{k}(r_{k}-r_{l})=0$ para todo $k$, pero los eigenvalores son todos distintos entre sí por lo tanto para todo $k$ de $1$ a $l-1$ se tiene $r_{k}-r_{l}\neq 0$ y así $\alpha _{k}=0$. Finalmente, usando \eqref{eq:comb-cero} obtenemos $\alpha_l=0$. Por lo tanto $v_{1}, \dots ,v_{l}$ son linealmente independientes.

$\square$

Eigenvectores y transformaciones diagonalizables

Recuerda que dijimos que una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$ es diagonalizable si existe una base $\beta$ de $\mathbb{R}^n$ tal que $\text{Mat}_{\beta}(T)$ es matriz diagonal. El siguiente resultado conecta las dos ideas que hemos estado explorando: los eigenvectores y la representabilidad sencilla de $T$.

Teorema. Sea $T:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ transformación lineal. Una matriz $T$ es diagonalizable si y sólo si existe una base de $\mathbb{R}^n$ conformada por eigenvectores de $T$.

En realidad la demostración consiste únicamente en entender correctamente cómo se construyen las matrices para una base dada.

Demostración. $\Rightarrow )$ Supongamos que $T$ tiene una representación matricial que es una matriz diagonal $A:=\text{Mat}_{\beta}(T)=\text{diag}(r_{1}, \dots ,r_{n})$ con respecto a la base $\beta=\{ v_{1}, \dots ,v_{n}\}$. Afirmamos que para cada $j=1,\ldots,n$ se tiene $v_j$ es eigevector de eigenvalor $r_j$. En efecto, la forma en la que se construyó la matriz $A$ nos dice que

\begin{align*}
T(e_j)&=\sum_{i=1}^n a_{ij} e_i \\&= a_{jj} e_j \\&= r_j e_j,
\end{align*}

en donde estamos usando que las entradas $a_{ij}$ de la matriz son cero si $i\neq j$ (por ser diagonal), y son $r_j$ si $i=j$. Por supuesto, como $e_j$ forma parte de una base, tampoco es el vector cero. Así, $e_j$ es eigenvector de eigenvalor $e_j$.

$\Leftarrow )$ Supongamos ahora que $v_{1},\dots ,v_{n}$ son una base $\beta$ de $\mathbb{R}^n$ conformada por eigenvectores de $T$ con eigenvalores asociados, digamos, $r_{1},\dots ,r_{n}$. Aquí se puede mostrar que $\text{Mat}_\beta(T)$ es diagonal. Queda como tarea moral hacer las cuentas.

$\square$

Hay una situación particular en la que podemos aprovechar el teorema anterior de manera inmediata: cuando la transformación tiene $n$ eigenvalores distintos. Esta consecuencia queda establecida en el siguiente resultado.

Corolario. Toda transformación lineal $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ tiene a lo más $n$ eigenvalores distintos. Si $T$ tiene exactamente $n$ eigenvalores distintos, entonces los eigenvectores correspondientes forman una base para $\mathbb{R}^n$ y la matriz de $T$ relativa a esa base es una matriz diagonal con los eigenvalores como elementos diagonales.

Demostración. Queda como tarea moral. Como sugerencia, recuerda que mostramos arriba que eigenvectores de eigenvalores distintos son linealmente independientes.

$\square$

Al parecer los eigenvalores, eigenvectores y eigenespacios de una transformación lineal son cruciales para poder expresarla de manera sencilla. ¿Cómo los encontramos? Esto lo veremos en la siguiente entrada.

Antes de concluir, mencionamos que hay otro teorema crucial sobre diagonalización de matrices. Diremos que una matriz $P\in M_n(\mathbb{R})$ es ortogonal si $P^tP=I$.

Teorema (el teorema espectral). Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces, existe una matriz ortogonal $P$ tal que $PAP^t$ es una matriz diagonal.

El teorema anterior nos dice no únicamente que la matriz $A$ es diagonalizable, sino que además es diagonalizable mediante un tipo muy especial de matrices. Un estudio y demostración de este teorema queda fuera de los alcances de nuestro curso, pero puedes revisar, por ejemplo la entrada teorema espectral del curso de Álgebra Lineal I que tenemos en el blog.

Más adelante

Lo que haremos en la siguiente entrada es desarrollar un método para conocer los eigenvalores de una matriz. A partir de ellos podremos encontrar sus eigenvectores. Y en ciertos casos especiales, esto nos permitirá mostrar que la transformación es diagonalizable y, de hecho, nos dará la base para la cual la matriz asociada es diagonal.

Tarea moral

  1. Considera la transformación lineal de $\mathbb{R}^{3}$ en $\mathbb{R}^{2}$, dada como $T(x,y,z)=(x+y,z+y)$. Encuentra su representación matricial con las bases canónicas de $\mathbb{R}^3$ y $\mathbb{R}^2$. Luego, encuentra su representación matricial con las bases $\{(1,2,3),(1,0,1),(0,-1,0)\}$ de $\mathbb{R}^3$ y $\{(1,1),(1,-1)\}$ de $\mathbb{R}^2$.
  2. Considera la siguiente matriz: \[ \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & -1 & 0 & 2 \\ \end{pmatrix}\] Da una transformación lineal $T:\mathbb{R}^4\to \mathbb{R}^2$ y ciertas bases $\beta$ de $\mathbb{R}^4$ y $\gamma$ de $\mathbb{R}^2$ para las cuales esta matriz sea la representación matricial de $T$ en las bases $\beta$ y $\gamma$.
  3. Fija bases $\beta$, $\gamma$ y $\delta$ para $\mathbb{R}^n$, $\mathbb{R}^m$ y $\mathbb{R}^l$. Considera dos transformaciones lineales $T:\mathbb{R}^n\to \mathbb{R}^m$ y $S:\mathbb{R}^m\to \mathbb{R}^l$. Demuestra que:
    $$\text{Mat}_{\delta, \beta} (S \circ T) = \text{Mat}_{\delta,\gamma}(S) \text{Mat}_{\gamma, \beta} (T).$$
    En otras palabras que la «composición de transformaciones corresponde al producto de sus matrices».
  4. Sea $T:\mathbb{R}^n\to\mathbb{R}^n$ una transformación lineal y $\beta$ una base de $\mathbb{R}^n$. Demuestra que $T$ es biyectiva si y sólo si $\text{Mat}_{\beta}(T)$ es invertible.
  5. Verifica que los vectores $v_1,\ldots,v_n$ dados en el último teorema en efecto ayudan a dar una representación matricial diagonal para $T$.
  6. La demostración del último corolario es un conjunto de sencillas consecuencias de las definiciones y teoremas desarrollados en esta entrada con respecto a los eigenvalores y eigenvectores. Realiza esta demostración.

Entradas relacionadas

Álgebra Lineal II: El teorema de descomposición polar real

Por Ayax Calderón

Introducción

En la entrada anterior enunciamos y demostramos el teorema espectral para matrices simétricas reales. Una de las consecuencias de este teorema es el teorema de descomposición polar. Se puede pensar en el teorema de descomposición polar como al análogo a un resultado muy conocido de números complejos: cualquier número complejo se puede pensar de la forma $z=e^{i\theta}r$ con $r\geq 0$ real. Geométricamente, el complejo se obtiene «rotando tanto como el argumento y luego alargando de acuerdo a la norma».

Así mismo, veremos que toda matriz $A$ tendrá una expresión de la forma $A=US$ donde $U$ es una matriz ortogonal (que juega el papel de «la rotación») y $S$ es una matriz simétrica positiva (que por el teorema espectral recordemos que es básicamente «alargar en varias direcciones»). Este resultado es increíble: ¡nos dice cómo son todas, todas las matrices reales en términos de matrices muy sencillas: las ortogonales (que conocemos muy bien) y las simétricas (que por el teorema espectral también conocemos muy bien)!

Caso invertible del teorema de descomposición polar

Recordemos un resultado de la entrada anterior, que era una de las partes de nuestro teorema de clasificación de matrices positivas. Nos dice que las matrices simétricas positivas «tienen raíz cuadrada».

Proposición. Sea $A$ una matriz simétrica positiva. Entonces existe una matriz simétrica $B$ tal que $B^2=A$.

Como recordatorio, para obtener a $B$ lo que hicimos fue diagonalizar a $A$ de la forma $A=P^{-1}DP$ con $D$ matriz diagonal cuyas entradas eran $\lambda_1,\ldots,\lambda_n$ los eigenvalores de $A$. Como $A$ era positiva, sus eigenvalores eran no negativos, así que podíamos construir $D’$ con entradas $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}$. Después, vimos que $B=P^{-1}D’P$ servía para que $B^2=A$. Observa que además $B$ es positiva pues sus eigenvalores son no negativos.

Como observación adicional, si $A$ fuera positiva definida entonces sus eigenvalores serían positivos, y entonces $B$ también tendría eigenvalores positivos. Así, $B$ sería positiva definida también. De hecho, se puede demostrar que en este caso la matriz $B$ es única (bajo la condición de ser simétrica positiva definida y raíz de $A$). Para un esbozo de esta pruba, revisa los ejercicios de la entrada.

Estamos listos para enunciar y demostrar el teorema de descomposición polar en el caso de matrices invertibles.

Teorema (De descomposición polar, caso invertible). Sea $A\in M_n(\mathbb{R})$ una matriz invertible. Entonces existe una única pareja $(U,S)$ con $U$ una matriz ortogonal y $S$ una matriz simétrica positiva definida para la que se cumple que $A=US$.

Demostración. Tomemos $A\in M_n(\mathbb{R})$ una matriz invertible. La matriz $^tAA$ es simétrica y positiva definida. Por la discusión anterior, existe una única matriz simétrica positiva definida $S$ tal que $^tAA=S^2$. Como $A$ es invertible, $S$ también lo es, así que definamos $$U=AS^{-1}.$$

Afirmamos que $(U,S)$ cumplen con lo requerido. Ya justificamos que $S$ es simétrica positiva definida. Además, de $U=AS^{-1}$ se obtiene inmediatamente $US=A$. Sólo falta verificar que $U$ es ortogonal. Para ello, al multiplicarla con su transpuesta obtenemos lo siguiente:
\begin{align*}
^tUU&=\hspace{.5mm}^tS^{-1}\hspace{.5mm}^tAAS^{-1}\\
&=S^{-1}S^2S^{-1}\\
&=I_n.
\end{align*}

Veamos ahora la unicidad. Supongamos que $A=U’S’$ con $U’$ ortogonal y $S’$ simétrica positiva definida, Entonces
$$^tAA=S’\hspace{.5mm}^tU’U’S’={S’}^2.$$

De esta manera, $S’$ es precisamente la raíz cuadrada de $^tAA$, que por la discusión anterior es única. Deducimos entonces que $S’=S$ y por lo tanto $U’=A{S’}^{-1}=AS^{-1}=U$.

$\square$

Caso general del teorema de descomposición polar

Es natural preguntarse qué sucede cuando la matriz $A$ no es invertible. Resulta que en ese caso aún podemos encontrar una descomposición, aunque perdemos un poco de las propiedades de las matrices y la unicidad. Por ejemplo, si $A=O_n$, entonces $A=UO_n$ para culaquier matriz ortogonal $U$ y entonces tenemos muchas posibles descomposiciones.

Teorema (De descomposición polar, caso general). Cualquier matriz $A\in M_n(\mathbb{R})$ se puede escribir de la forma $A=US$ con $U$ una matriz ortogonal y $S$ una matriz simétrica positiva.

¿Por qué falla nuestra demostración? Todavía temeos que $^tAA$ es positiva, así que podríamos tomar una raíz cuadrada $S$. El problema es que como $A$ no es invertible, entonces $S$ tampoco lo es. Por ello, no podemos definir $U=AS^{-1}$ como lo hicimos con anterioridad. Sin embargo, podemos ser astutos y «cambiar tantito» a $A$ para que sí se vuelva invertible. De hecho, podemos tomar muchas matrices que se acercan a $A$ y sí son invertibles. Con ello podemos usar un «argumento al límite». Formalicemos estas ideas.

Demostración. Consideremos las matrices $A_k=A+\frac{1}{k}I_n$. Recordemos que $\det(A+\lambda I_n)$ es un polinomio de grado $n$ así que tiene a lo más $n$ raíces. Por ello, existe un $k_0$ tal que para toda $k>k_0$ la matriz $A_k$ es invertible. Al aplicar el teorema de descomposición polar a cada una de dichas $A_k$, obtenemos una matriz ortogonal $U_k$ y una simétrica positiva definida $S_k$ tales que

$$A_k=U_kS_k.$$

Las entradas de cada $U_k$ cumplen que están en el intervalo $[-1,1]$ (pues la suma de las entradas de cada fila es igual a $1$). Así, $U_k$ es una sucesión de matrices en el compacto de matrices con entradas $[-1,1]$. En un compacto toda sucesión tiene una subsucesión convergente, así que podemos elegir una subsucesión de estas matrices, digamos $U_{k_1}, U_{k_2},\ldots$ que converge a una matriz $U$.

Se puede ver que el producto de matrices es contínuo y obtener inversas de matrices también es continuo (por ejemplo, por las fórmulas de inversa por matriz de adjuntos). De este modo, aplicando límite $j\to \infty$ a la igualdad $^tU_{k_j}U_{k_j}=I_n$ obtenemos que $^UU=I_n$, de modo que $U$ es ortogonal.

Del mismo modo, como trasponer es continuo, $S_{k_1}, S_{k_2},\ldots$ converge a una matriz simétrica $S$. Finalmente, usando nuevamente la continuidad del producto de matrices obtenemos

\begin{align*}
A&=\lim_{j\to \infty} A_{k_j}\\
&=\lim_{j\to \infty} U_{k_j} S_{k_j}\\
&=US.
\end{align*}

Sólo nos falta demostrar que $S$ es positiva, pero si tomamos $X\in\mathbb{R}^n$, entonces pasando al límite $j\to \infty$ en la desigualdad $^tXS_{k_j}X > 0$ obtenemos $^tXSX\geq 0$. Aquí es donde se podría perder que $S$ es positiva definida, pero seguimos teniendo que $S$ es positiva.

$\square$

Más adelante…

Tanto el teorema espectral como el teorema de descomposición polar son resultados de caracterización fundamentales en álgebra lineal y finalmente nos dan una respuesta a la pregunta de, geométricamente, cómo son todas las posibles transformaciones lineales. En las siguientes secciones se esbozarán los resultados análogos para el caso complejo.

Después de ello, en la cuarta unidad del curso cubriremos otro teorema que nos permitirá decir «cómo son todas las matrices». Quizás no todas las matrices sean directamente similares a una matriz diagonal. Pero enunciaremos y demostraremos el teorema de Jordan que dirá que cualquier matriz es similar a una «casi diagonal», a la que llamaremos diagonal por bloques.

Tarea moral

  1. Sean que $A$ y $B$ son matrices simétricas. Demuestra que $A$ y $B$ conmutan si y sólo si existe una misma matriz $P$ tal que $PAP^{-1}$ y $PBP^{-1}$ son diagonales (a esto se le conoce como que $A$ y $B$ sean «simultáneamente diagonalizables»)
  2. Usando el ejercicio anterior, demuestra que si $A$ es simétrica positiva definida, y se cumple $B^2=A=C^2$ con $B$ y $C$ matrices simétricas positivas definidas, entonces $B=C$.
  3. Sean $A,B\in M_n(\mathbb{R})$ matrices tales que $^tAA=^tBB$. Demuestra que existe una matriz ortogonal $U\in M_n(\mathbb{R})$ tal que $B=UA$.
  4. Encuentra la descomposición polar de $$\begin{pmatrix}
    11 & -5\\
    -2 & 10 \end{pmatrix}.$$
  5. Sea $A$ una matriz cuadrada con descomposición polar $A=WP$. Demuestra que $A$ es normal si y sólo si $WP^2=P^2W$.

Entradas relacionadas

Álgebra Lineal II: El teorema espectral real

Por Ayax Calderón

Introducción

Por lo que estudiamos en la primera parte de este curso, ya sabemos cuándo una matriz arbitraria es diagonalizable. Lo que haremos ahora es enunciar y demostrar el teorema espectral en el caso real. Una de las cosas que nos dice es que las matrices simétricas reales son diagonalizables. Pero nos dice todavía más. También nos garantiza que la manera en la que se diagonalizan es a través de una matriz ortogonal. Esto combina mucho de la teoría que hemos cubierto. Además, gracias al teorema espectral podremos, posteriormente, demostrar el famoso teorema de descomposicion polar que nos dice cómo son todas las matrices.

Resultados preliminares para el teorema espectral real

Comencemos enunciando algunas propiedades que tienen las matrices y transformaciones simétricas. El primero habla de cómo son los eigenvalores de las matrices simétricas.

Lema. Sea $A\in M_n({\mathbb{R}})$ una matriz simétrica. Entonces todas las raíces del polinomio característico de $A$ son números reales.

Demostración. Tomemos $A\in M_n(\mathbb{R})$ y sea $\lambda$. Su polinomio característico está en $\mathbb{R}[x]$, así que por el teorema fundamental del álgebra todas sus raíces están en $\mathbb{C}$. Sea $t$ una raíz del polinomio característico de $A$.

Pensemos a $A$ como un elemento de $M_n(\mathbb{C})$. Como $\det (tI_n-A)=0$, entonces $t$ es eigenvalor y por lo tanto hay un eigenvector $X\in\mathbb{C}^n$ no nulo tal que $AX=tX$. Como el vector tiene entradas complejas, lo podemos escribir como $X=Y+iZ$ para dos vectores $Y,Z\in \mathbb{R}^n$. Así mismo, podemos escribir a $t$ como $t=a+ib$ con $a$ y $b$ números reales.

Con esta notación, de la igualdad $AX=tX$ se sigue que

\begin{align*}
AY+iAZ&=AX\\
&=(a+ib)(Y+iZ)\\
&=aY-bZ+i(aZ+bY).
\end{align*}

Igualando las partes imaginarias y las partes reales obtenemos que

\begin{equation}\label{1}
AY=aY-bZ, \hspace{4mm} AZ=aZ+bY.
\end{equation}

Usemos ahora que $A$ es simétrica. Tenemos que
\begin{equation}\label{2}
\langle AY,Z \rangle=\langle Y, AZ \rangle.
\end{equation}

Sustituyendo la primera igualdad de \eqref{1} en el lado izquierdo de \eqref{2}, y la segunda igualdad de \eqref{1} en el lado derecho de \eqref{2}, obtenemos que:

\begin{equation*}
\langle aY-bZ,Z \rangle=\langle Y, aZ+bY \rangle,
\end{equation*}

y usando la linealidad del producto interior, se obtiene que

\begin{equation*}
a\langle Y,Z \rangle – b\langle Z,Z\rangle =a\langle Y, Z \rangle + b \langle Y , Y \rangle.
\end{equation*}

Se sigue que
$$b(||Y||^2+||Z||^2)=0$$ y como $Y$ o $Z$ es distinto de cero (de lo contrario tendríamos que $X=0$), entonces concluimos que $b=0$ y con ellos que $t$ es un número real.

$\square$

El segundo lema que veremos nos dice qué sucede cuando una transformación lineal es simétrica y tomamos un subespacio estable bajo ella. Recuerda que un subespacio $W$ de un espacio vectorial $V$ es estable bajo una transformación lineal $T:V\to V$ si $T(W)\subseteq W$.

Lema. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal simétrica sobre $V$. Sea $W$ un subespacio de $V$ estable bajo $T$. Entonces

  1. $W^\bot$ también es estable bajo $T$.
  2. Las restricciones de $T$ a $W$ y $W^\bot$ son transformaciones lineales simétricas sobre estos espacios.

Demostración.

1. Tomemos $x\in W^\bot$. Nos gustaría ver que $T(x)\in W^\bot$. Para ello, tomemos $y\in W$. Como $W$ es estable bajo $T$, tenemos $T(y)\in W$. Como $x\in W^\bot$, tenemos que $\langle x,T(y) \rangle =0$. Usando esto y la simetría de $T$, obtenemos entonces
$$\langle T(x),y \rangle = \langle x,T(y) \rangle=0,$$
que es lo que queríamos probar.

2. Sea $T_1$ la restricción de $T$ a$W$. Para $x,y\in W$ tenemos que
$$\langle T_1(x),y \rangle=\langle T(x),y \rangle=\langle x,T(y) \rangle =\langle x,T_1(y) \rangle ,$$ por lo tanto $T_1$ es simétrica sobre $W$. Análogamente se ve que el resultado se cumple para $W^\bot$.

$\square$

El teorema espectral real

Los dos lemas anteriores son lo que necesitamos para demostrar el teorema principal de esta entrada.

Teorema (el teorema espectral real). Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal simétrica. Entonces existe una base ortonormal de $V$ conformada por eigenvectores de $T$.

Demostración. Procederemos por inducción fuerte sobre $n=\dim V$. Si $n=1$, entonces el polinomio característico de $T$ es de grado $1$ y tiene coeficientes reales, por lo que tiene una raíz real $t$. Si $v$ es un eigenvector de $T$ con eigenvalor $t$, entonces $\frac{v}{||v||}$ también es eigenvector de $T$ y forma una base ortonormal de $V$. Esto termina el caso $n=1$.

Ahora supongamos que el resultado se satisface hasta dimensión $n-1$ y tomemos $V$ de dimensión $n$. Sea $B=\{e_1,e_2,\dots e_n\}$ una base ortonormal de $V$. Sea $A$ la matriz asociada a $T$ con respecto a $B$. Como $T$ es simétrica, entonces $A$ también lo es. Su polinomio característico no es constante, de modo que por el teorema fundamental del álgebra tiene por lo menos una raíz $t$, y por el primer lema de la sección anterior, se tiene que $t$ es real y por lo tanto es un eigenvalor.

Sea $W=\ker (t\text{id} -T)$ el $t$-eigenespacio de $T$. Si $W=V$, entonces $T=t\text{id}$ y así $B$ es una base ortonormal de $V$ compuesta por eigenvectores de $T$. De otro modo, $W\neq V$ y por lo tanto $k:=\dim W<n$. Tenemos que $V=W\oplus W^\bot$ y sabemos que los eigenespacios son estables bajo la transformación correspondiente. Así, por el segundo lema de la sección anterior $W^\bot$ también es estable bajo $T$ y la restricción de $T$ a $W^\bot$ es simétrica.

Podemos entonces aplicar la hipótesis inductiva a $T_{|W^\bot}$ para encontrar una base ortonormal $C=\{f_1^\bot,f_2^\bot\dots,f_{n-k}^\bot\}$ de $W^\bot$ compuesta por eigenvectores de $T$. Escogiendo una base ortonormal $D=\{f_1,f_2,\dots,f_k\}$ de $W$ (que automaticamente está formada por eigenvectores de $T$). La base $C\cup D$ de $V$ es entonces la base de eigenvectores que buscábamos.

$\square$

El teorema espectral también puede enunciarse en términos de matrices. Hacemos esto a continuación.

Observación. Si $A\in M_n(\mathbb{R})$ es una matriz simétrica, entonces la transformación lineal $T:X\mapsto AX$ sobre $\mathbb{R}^n$ es simétrica. Aplicando el teorema anterior, podemos encontrar una base ortonormal de $V$ con respecto a la cual la matriz asociada a $T$ es diagonal. Como la base canónica de $V$ es ortonormal, y como la matriz de cambio de pase entre dos bases ortonormlaes es ortogonal, obtenemos el siguiente resultado fundamental.

Teorema (el teorema espectral para matrices reales). Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces $A$ es diagonalizable y, más específicamente, existen una matriz ortogonal $P\in M_n(\mathbb{R})$ y una matriz diagonal $D\in M_n(\mathbb{R})$ tales que $$A=P^{-1}DP.$$

Así, $A$ es simultaneamente, mediante una misma matriz $P$, tanto similar como congruente a una matriz diagonal.

Aplicación a caracterizar las matrices simétricas positivas

Ya hemos dado algunas caracterizaciones para las matrices simétricas positivas. Veamos algunas caracterizaciones adicionales.

Teorema. Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B\in M_n(\mathbb{R})$.
  4. $A=\hspace{.5mm}^tCC$ para alguna matriz $C\in M_n(\mathbb{R})$.

Demostración. 1) implica 2). Supongamos que $A$ es positiva y que $t$ es un eigenvalor de $A$ con eigenvector $v$. Como $Av=tv$, obtenemos que

\begin{align*}
t||v||^2&= t\langle v,v \rangle\\
&= \langle v, tv \rangle\\
&= \langle v, Av \rangle\\
&= \hspace{.5mm}^tvAv\\
&\geq 0,
\end{align*}
por lo tanto $t\geq 0$.

2) implica 3). Sean $t_1,\dots, t_n$ todas las raíces del polinomio característico de $A$, escritos con su multiplicidad correspondiente. Por el primer lema de la sección anterior, todos ellos son reales, y estamos suponiendo que son no negativos. Por el teorema espectral podemos encontrar una matriz $P$ y una diagonal $D$ tal que $A=P^{-1}DP$, y por lo que vimos de teoría de diagonalización, $D$ precisamente tiene como entradas en su diagonal a $t_1,t_2,\dots,t_n$. Sea $D’$ la matriz diagonal con entradas $c_i=\sqrt{t_i}$ y sea $B=P^{-1}D’P$. Como $P$ es ortogonal, $B$ es simétrica

Y además, por construcción, $B^2=P^{-1}{D’}^2P=P^{-1}DP=A$, como queríamos.

3) implica 4). Basta con tomar la matriz $B$ de (3) y tomar $C=B$. Como $B$ es simétrica, $A=B^2=\hspace{.5mm}^tBB$.

4) implica 1). Esto ya lo habíamos demostrado en un resultado anterior de caracterización de matrices simétricas.

$\square$

Más adelante…

Hemos enunciado y demostrado el teorema espectral. Lo que nos dice es muy interesante: una matriz simétrica básicamente consiste en cambiar de base a una base muy sencilla $e_1,\ldots,e_n$ (ortonormal) a traves de la matriz $P$. Luego, en esa base pasa algo muy simple: en la dirección de $e_i$, simplemente alargamos de acuerdo al eigenvalor $\lambda_i$.

Como consecuencia, veremos en la siguiente entrada que esto nos permite entender no sólo a las matrices simétricas, sino a todas, todas las matrices. Al teorema que veremos a continuación se le conoce como el teorema de descomposición polar.

Tarea moral

  1. La matriz $\begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin\theta \end{pmatrix}$ es real y simétrica, de modo que es diagonalizable. ¿Cuál es su diagonalización?
  2. Da un ejemplo de una matriz simétrica con coeficientes complejos que no sea diagonalizable.
  3. Sea $T$ una transformación lineal sobre un espacio euclidiano $V$, y supón que $V$ tiene una base ortonormal conformada por eigenvectores de $T$. Demuestra que $T$ es simétrica (por lo que el recíproco del teorema espectral se satisface).
  4. Considera la matriz $$A=\begin{pmatrix}
    1 & -2 & -2\\
    -2 & 1 & -2\\
    -2 & -2 &1\end{pmatrix}.$$
    Explica por qué $A$ es diagonalizable en $M_n(\mathbb{R})$ y encuentra una matriz $P$ tal que $P^{-1}AP$ es diagonal.
  5. Adapta el teorema de caracterización de matrices positivas visto en esta entrada a una versión para matrices positivas definidas.

Entradas relacionadas