Archivo de la etiqueta: matrices similares

Álgebra Lineal II: Clasificación de matrices por similaridad

Por Elizabeth Chalnique Ríos Alvarado

Introducción

En las notas anteriores hemos desarrollado el Teorema de Jordan, y ahora veremos cómo podemos clasificar matrices por similaridad.

Sección

Supongamos que $A$ es una matriz similar a $$\begin{pmatrix} J_{k_{1}}(\lambda_{1}) & 0 & \cdots & 0 \\ 0 & J_{k_{2}}(\lambda_{2}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k_{d}}(\lambda_{d}) \end{pmatrix}$$

Entonces el polinomio característico de $A$ es $$\chi_{A}(X) = \prod_{i=1}^{d}\chi_{J_{k_{i}}} (\lambda_{i})(X).$$

Ahora, dado que $J_{n}$ es nilpotente tenemos $\chi_{J_{k_{i}}}(X) = X^{n}$ y así $$\chi_{J_{n}(\lambda)}(X) = (X – \lambda)^{n}.$$

Se sigue que $$\chi_{A}(X) = \prod_{i=1}^{d} (X – \lambda_{i})^{k_{i}}$$ y así necesariamente $\lambda_{1}, \ldots, \lambda_{d}$ son todos eigenvalores de $A$. Nota que no asumimos que $\lambda_{1}, \ldots, \lambda_{d}$ sean distintos a pares, por lo que no podemos concluir de la igualdad anterior que $k_{1}, \ldots, k_{d}$ sean las multiplicidades algebráicas de los eigenvalores de $A$. Esto no es verdad en general: varios bloques de Jordan correspondientes a un dado eigenvalor pueden aparecer. El problema de la unicidad se resuelve completamente por el siguiente:

Teorema: Supongamos que una matriz $A \in M_{n}(F)$ es similar a $$\begin{pmatrix} J_{k_{1}}(\lambda_{1}) & 0 & \cdots & 0 \\ 0 & J_{k_{2}}(\lambda_{2}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k_{d}}(\lambda_{d}) \end{pmatrix}$$ para algunos enteros positivos $k_{1}, \ldots, k_{d}$ que suman $n$ y algunas $\lambda_{1}, \ldots, \lambda_{d} \in F$. Entonces

  1. Cada $\lambda_{i}$ es un eigenvalor de $A$.
  2. Para cada eigenvalor $\lambda$ de $A$ y cada entero positivo $m$, el número de bloques de Jordan $J_{m}(\lambda)$ entre $J_{k_{1}}(\lambda_{1}), \ldots, J_{k_{d}}(\lambda_{d})$ is $$N_{m}(\lambda) = rango(A – \lambda I_{n})^{m+1} – 2 rango(A – \lambda I_{n})^{m} + rango(A – \lambda I_{n})^{m-1}$$ y depende sólo en la clase de similaridad de $A$.

Demostración. Ya vimos el inciso 1. La prueba del inciso 2 es muy similar a la solución del Problema __. Más precisamente, sea $B = A – \lambda I_{n}$ y observa que $B^{m}$ es similar a $\begin{pmatrix} (J_{k_{1}}(\lambda_{1}) – \lambda I_{k_{1}})^{m} & 0 & \cdots & 0 \\ 0 & (J_{k_{2}}(\lambda_{2}) – \lambda I_{k_{2}})^{m} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (J_{k_{d}}(\lambda_{d}) – \lambda I_{k_{d}})^{m}\end{pmatrix}$, por lo que $\displaystyle rango(B^{m}) = \sum_{i=1}^{d} rango(J_{k_{i}} (\lambda_{i}) – \lambda I_{k_{i}})^{m}$.

Ahora, el rango de $(J_{n}(\lambda) – \mu I_{n})^{m}$ es

  • $n$ si $\lambda \neq \mu$, como en este caso $$J_{n}(\lambda) – \mu I_{n} = J_{n} + (\lambda – \mu) I_{n}$$ es invertible,
  • $n-m$ para $\lambda = \mu$ y $m \leq n$, como se sigue del Problema __.
  • 0 para $\lambda = \mu$ y $m > n$, dado que $J^{n}_{n} = O_{n}$.

De ahí, si $N_{m}(\lambda)$ es el número de bloques de Jordan $J_{m}(\lambda)$ entre $J_{k_{1}}(\lambda_{1}), \ldots, J_{k_{d}}(\lambda_{d})$, entonces $$rango(B^{m}) = \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} \geq m}} (k_{i} – m) + \sum_{\lambda_{i} \neq \lambda} k_{i},$$ luego sustrayendo esas igualdades para $m-1$ y $m$ se tiene que $$rango(B^{m-1}) – rango(B^{m}) = \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} \geq m}} 1$$ y finalmente \begin{align*} rango(B^{m-1}) – 2rango(B^{m}) + rango(B^{m+1}) = \\ (rango(B^{m-1}) – rango(B^{m})) – (rango(B^{m}) – rango(B^{m+1})) = \\ \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} = m}} 1 = N_{m}(\lambda) \end{align*} como queríamos.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Cuáles son las posibles formas canónicas de Jordan de una matriz cuyo polinomio característico es $(X-1)(X-2)^{2}$?
  2. Considera una matriz $A \in M_{6}(\mathbb{C}) de rango 4 cuyo polinomio mínimo es $X(X-1)(X-2)^{2}$.
    1. ¿Cuáles son los eigenvalores de $A$?
    2. ¿$A$ es diagonalizable?
    3. ¿Cuáles son las posibles formas canónicas de Jordan de $A$?

Más adelante…

En la siguiente nota veremos algunos ejemplos de cómo funciona todo esto.

Entradas relacionadas

Álgebra Lineal II: Triangularizar y descomposición de Schur

Por Julio Sampietro

Introducción

En esta entrada estudiaremos el concepto de triangularizar matrices. Esto simplemente quiere decir encontrar una base respecto a la cual podamos escribir a nuestra matriz como una matriz triangular superior. Esto tiene muchas ventajas, puesto que las matrices triangulares superiores son relativamente fáciles de calcular. Como veremos, el concepto de triangularización está íntimamente ligado con los ceros de polinomios.

Matrices triangulares

Recordamos que una matriz $A=[a_{ij}]\in M_n(F)$ se dice triangular superior si $a_{ij}=0$ siempre que $i>j$, es decir si todas las entradas por debajo de la diagonal son cero. Las matrices triangulares gozan de algunas propiedades que ya hemos explorado. Por ejemplo, sus valores propios son fácilmente calculables: ¡son precisamente las entradas de la diagonal! Más explícitamente su polinomio característico es exactamente

\begin{align*}
\chi_A(X)=\prod_{i=1}^{n}(X-a_{ii}).
\end{align*}

Además forman un subespacio cerrado bajo multiplicación del espacio de todas las matrices. Puesto que son matrices ‘sencillas’, es deseable poder escribir alguna otra matriz como una matriz triangular, tal vez mediante un cambio de base: esto es precisamente triangularizar. Tenemos entonces la siguiente definición.

Definición. Diremos que una matriz es triangularizable si es similar a una matriz triangular superior.

Primero, necesitaremos de un par de conceptos sobre polinomios.

Polinomios y sus raíces

Definición. Un polinomio $P\in F[X]$ se divide sobre F si es de la forma

\begin{align*}
P(X)=c(X-a_1)\cdots (X-a_n)
\end{align*}

para algunos escalares $c,a_1,\dots, a_n\in F$ no necesariamente distintos.

Por ejemplo el polinomio $X^2+1$ no se divide sobre $\mathbb{R}$ ya que sabemos que no tiene raíces reales. Sin embargo, el mismo polinomio si se divide sobre $\mathbb{C}$: en efecto

\begin{align*}
X^2+1=(X-i)(X+i).
\end{align*}

Por otro lado, el polinomio $X^2-3X+2$ si se divide sobre $\mathbb{R}$, puesto que lo podemos escribir como

\begin{align*}
X^2-3X+2=(X-1)(X-2).
\end{align*}

Nota que el polinomio también se divide sobre $\mathbb{C}$ puesto que $\mathbb{R}\subset \mathbb{C}$. De hecho, no existe ningún polinomio con coeficientes complejos que no se divida sobre $\mathbb{C}$, este es un sorprendente resultado de Gauss:

Teorema (fundamental del Álgebra). Cualquier polinomio $P\in \mathbb{C}[X]$ se divide sobre $\mathbb{C}$.

Este teorema también se enuncia diciendo que $\mathbb{C}$ es algebraícamente cerrado. Es decir, todo polinomio con coeficientes complejos tiene al menos una raíz compleja. Es un buen ejercicio verificar que ambas versiones son equivalentes.

Por lo que mencionamos al principio, el polinomio característico de una matriz triangular superior se divide sobre el campo. Como el polinomio de matrices similares es igual, se sigue que si una matriz es triangularizable, entonces su polinomio característico se divide sobre el campo.

Problema. Da un ejemplo de una matriz $A\in M_2(\mathbb{R})$ que no sea triangularizable en $M_2(\mathbb{R})$.

Solución. Puesto que el polinomio característico de una matriz triangularizable se divide sobre el campo, es suficiente con encontrar una matriz cuyo polinomio característico no se divida sobre $\mathbb{R}$: por ejemplo $X^2+1$. Enseguida proponemos la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 1 \\ -1 & 0 \end{pmatrix}.
\end{align*}

Entonces $\chi_A(X)=X^2+1$, que ya aclaramos que no se divide sobre $\mathbb{R}$. Por tanto $A$ no es triangularizable.

$\square$

Un teorema sobre triangularizar

Ya vimos que si $A$ es una matriz triangularizable su polinomio característico se divide sobre el campo. El siguiente teorema nos dice que el converso también es cierto.

Teorema. Sea $A\in M_n(F)$. Las siguientes afirmaciones son equivalentes:

  1. El polinomio característico de $A$ se divide sobre $F$.
  2. $A$ es similar a una matriz triangular superior.

Demostración. La discusión previa ya nos mostró que $2$ implica $1$. Probaremos el converso por inducción sobre $n$. El resultado se cumple para $n=1$ (pues toda matriz es triangular superior), así que podemos asumir que $n\geq 2$ y que el resultado se cumple para $n-1$.

Sea $\lambda\in F$ una raíz de $\chi_A$. Nota que dicha raíz existe pues estamos suponiendo que $\chi_A$ se divide sobre $F$. También escogemos un vector no-cero $v$ tal que $Av=\lambda v$, es decir, un eigenvector asociado a $\lambda$. Como $v\neq 0$, podemos completar a una base $v=v_1,\dots, v_n$ de $V=F^n$. La matriz asociada a la transformación lineal $T$ asociada a $A$ se ve entonces de la forma

\begin{align*}
\begin{pmatrix}
\lambda & \ast\\
0 & B
\end{pmatrix}
\end{align*}

para alguna $B\in M_{n-1}(F)$. Entonces podemos encontrar una matriz de cambio de base (y por tanto invertible) $P_1$ tal que

\begin{align*}
P_1 AP_1^{-1}=\begin{pmatrix}
\lambda & \ast\\
0 & B
\end{pmatrix}.
\end{align*}

Puesto que matrices similares comparten el mismo polinomio característico, tenemos que

\begin{align*}
\chi_A(X)=\chi_{P_1AP_1^{-1}}(X)=(X-\lambda)\chi_B(X).
\end{align*}

Se sigue que $\chi_B$ se divide sobre el campo. Además, $B\in M_{n-1}(F)$, por lo que podemos aplicar la hipótesis de inducción para afirmar que existe una matriz invertible $Q\in M_{n-1}(F)$ tal que $QBQ^{-1}$ es triangular superior. Luego definiendo

\begin{align*}
P_2=\begin{pmatrix}
1 & 0\\
0 & Q
\end{pmatrix},
\end{align*}

se cumple no solo que $P_2$ es invertible (¿por qué?) pero además que

\begin{align*}
P_2(P_1AP_1^{-1})P_2^{-1}=\begin{pmatrix}
\lambda & \ast\\
0 & QBQ^{-1}\end{pmatrix}.
\end{align*}

Notamos que esta última matriz es triangular superior, puesto que $QBQ^{-1}$ lo es. Esto completa la prueba.

$\square$

Un corolario importante

Combinando el teorema fundamental del álgebra junto con el teorema pasado obtenemos un corolario importante, conocido como el teorema de descomposición de Schur. Lo enunciamos como teorema.

Teorema (descomposición de Schur). Para cualquier matriz $A\in M_n(\mathbb{C})$ podemos encontrar una matriz invertible $P\in M_n(\mathbb{C})$ y una matriz triangular superior $T\in M_n(\mathbb{C})$ tal que $A=PTP^{-1}$. Por tanto toda matriz con entradas complejas es triangularizable.

Demostración. Por el teorema fundamental del álgebra, tenemos que $\chi_A$ se divide sobre $\mathbb{C}$. Luego usando el teorema anterior concluimos que $A$ es triangularizable.

$\square$

Más adelante…

En la próxima entrada veremos un concepto parecido a triangularizar pero más fuerte: diagonalizar, que consiste en llevar a una matriz a una matriz diagonal similar.

Tarea moral

A continuación presentamos algunos ejercicios que sirven para repasar los temas vistos en esta entrada.

  1. ¿Es la matriz
    \begin{align*}
    A=\begin{pmatrix}
    1 & 2 & 1\\ 3 & 2 & 2\\ 0 & 1 & 1\end{pmatrix}
    \end{align*}
    triangularizable sobre $\mathbb{R}$?
  2. Encuentra una matriz traingular superior similar a la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 2\\ 3 & 2\end{pmatrix}.
    \end{align*}
  3. Encuentra una matriz triangular superior similar a la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1\end{pmatrix}.
    \end{align*}
  4. ¿Por qué la matriz $P_2$ construida en la demostración del segundo teorema es invertible?
  5. Demuestra que una matriz $A\in M_n(F)$ es nilpotente si y sólo si es similar a una matriz triangular superior con entradas cero en la diagonal.

Entradas relacionadas

Álgebra Lineal I: Propiedades del polinomio característico

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuamos con el estudio de eigenvalores y eigenvectores de matrices y trasformaciones lineales. Para ello, estudiaremos más a profundidad el polinomio característico.

Como recordatorio, en una entrada pasada demostramos que si $A$ es una matriz en $M_n(F)$, entonces la expresión $\det (\lambda I_n – A)$ es un polinomio en $\lambda$ de grado $n$ con coeficientes en $F$. A partir de ello, definimos el polinomio característico de $A$ como $$\chi_A(\lambda)=\det(\lambda I_n – A).$$

En esta entrada probaremos algunas propiedades importantes del polinomio característico de matrices. Además, hablaremos de la multiplicidad algebraica de los eigenvalores. Finalmente enunciaremos sin demostración dos teoremas fundamentales en álgebra lineal: el teorema de caracterización de matrices diagonalizables y el teorema de Cayley-Hamilton.

Las raíces del polinomio característico son los eigenvalores

Ya vimos que las raíces del polinomio característico son los eigenvalores. Pero hay que tener cuidado. Deben ser las raíces que estén en el campo en el cual la matriz esté definida. Veamos un ejemplo más.

Problema. Encuentra el polinomio característico y los eigenvalores de la matriz \begin{align*}
\begin{pmatrix}
0&1&0&0\\
2&0&-1&0\\
0& 7 & 0 & 6\\
0 & 0 & 3 & 0
\end{pmatrix}.
\end{align*}

Solución. Debemos encontrar las raíces del polinomio dado por el siguiente determinante:
\begin{align*}
\begin{vmatrix}
\lambda&-1&0&0\\
-2&\lambda&1&0\\
0& -7 & \lambda & -6\\
0 & 0 & -3 & \lambda
\end{vmatrix}.
\end{align*}

Haciendo expansión de Laplace en la primer columna, tenemos que este determinante es igual a

\begin{align*}
\lambda\begin{vmatrix}
\lambda&1&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}
+2\begin{vmatrix}
-1&0&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}.
\end{align*}

Para calcular los determinantes de cada una de las matrices de $3\times 3$ podemos aplicar la fórmula por diagonales para obtener:
\begin{align*}
\lambda\begin{vmatrix}
\lambda&1&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}&=
\lambda(\lambda^3-18\lambda+7\lambda)\\
&=\lambda(\lambda^3-11\lambda)\\
&=\lambda^4-11\lambda^2
\end{align*}

y
\begin{align*}
2\begin{vmatrix}
-1&0&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}&=
2(-\lambda^2+18)\\
&=-2\lambda^2+36.
\end{align*}

Concluimos que el polinomio característico es
\begin{align*}
\lambda^4-13\lambda^2+36&=(\lambda^2-4)(\lambda^2-9)\\
&=(\lambda+2)(\lambda-2)(\lambda+3)(\lambda-3).
\end{align*}

De esta factorización, las raíces del polinomio (y por lo tanto los eigenvalores que buscamos) son $-2,2,-3,3$.

Si quisiéramos encontrar un eigenvector para, por ejemplo, el eigenvalor $-2$, tenemos que encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo $$(-2I_n-A)X=0.$$

$\square$

Propiedades del polinomio característico

Veamos ahora algunas propiedades importantes del polinomio característico. El primer resultado habla del polinomio característico de matrices triangulares superiores. Un resultado análogo se cumple para matrices inferiores, y su enunciado y demostración quedan como tarea moral.

Proposición. Si $A=[a_{ij}]$ es una matriz triangular superior en $M_n(F)$, entonces su polinomio característico es $$\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).$$

Demostración. Como $A$ es triangular superior, entonces $\lambda I_n -A$ también, y sus entradas diagonales son precisamente $\lambda-a_{ii}$ para $i=1,\ldots,n$. Como el determinante de una matriz triangular es el producto de sus entradas en la diagonal, tenemos que $$\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).$$

$\square$

Como el polinomio característico es un determinante, podemos aprovechar otras propiedades de determinantes para obtener otros resultados.

Proposición. Una matriz y su transpuesta tienen el mismo polinomio característico.

Demostración. Sea $A$ una matriz en $M_n(F)$. Una matriz y su transpuesta tienen el mismo determinante. Además, transponer es una transformación lineal. De este modo:
\begin{align*}
\chi_A(\lambda)&=\det(\lambda I_n – A)\\
&=\det({^t(\lambda I_n-A)})\\
&=\det(\lambda({^tI_n})-{^tA})\\
&=\det(\lambda I_n – {^tA})\\
&=\chi_{^tA}(\lambda).
\end{align*}

$\square$

Ya antes habíamos mostrado que matrices similares tienen los mismos eigenvalores, pero que dos polinomios tengan las mismas raíces no necesariamente implica que sean iguales. Por ejemplo, los polinomios $$(x-1)^2(x+1) \quad \text{y} \quad (x+1)^2(x-1)$$ tienen las mismas raíces, pero no son iguales.

De esta forma, el siguiente resultado es más fuerte de lo que ya habíamos demostrado antes.

Proposición. Sean $A$ y $P$ matrices en $M_n(F)$ con $P$ invertible. Entonces $A$ y $P^{-1}AP$ tienen el mismo polinomio característico.

Demostración. El resultado se sigue de la siguiente cadena de igualdades, en donde usamos que $\det(P)\det(P^{-1})=1$ y que el determinante es multiplicativo:

\begin{align*}
\chi_{P^{-1}AP}(\lambda) &= \det(P) \chi_{P^{-1}AP}(\lambda) \det(P)^{-1}\\
&=\det(P) \det(\lambda I_n – P^{-1}AP) \det(P^{-1})\\
&=\det(P(\lambda I_n – P^{-1}AP)P^{-1})\\
&=\det(\lambda PP^{-1}-PP^{-1}APP^{-1})\\
&=\det(\lambda I_n – A)\\
&=\chi_{A}(\lambda)
\end{align*}

$\square$

Ten cuidado. El determinante es multiplicativo, pero el polinomio característico no es multiplicativo. Esto es evidente por el siguiente argumento. Si $A$ y $B$ son matrices en $M_n(F)$, entonces $\chi_A(\lambda)$ y $\chi_B(\lambda)$ son cada uno polinomios de grado $n$, así que su producto es un polinomio de grado $2n$, que por lo tanto no puede ser igual al polinomio característico $\chi_{AB}(\lambda)$ pues este es de grado $n$. Así mismo, $\chi_{A^2}(\lambda)$ no es $\chi_{A}(\lambda)^2$.

Una última propiedad que nos interesa es mostrar que el determinante de una matriz y su traza aparecen en los coeficientes del polinomio característico.

Teorema. Sea $A$ una matriz en $M_n(F)$ y $\chi_A(\lambda)$ su polinomio característico. Entonces $\chi_{A}(\lambda)$ es de la forma $$\lambda^n-(\text{tr} A) \lambda^{n-1}+\ldots+(-1)^n \det A.$$

Demostración. Tenemos que mostrar tres cosas:

  • El polinomio $\chi_{A}$ es mónico, es decir, tiene coeficiente principal $1$,
  • que el coeficiente del término de grado $n-1$ es $-\text{tr} A$ y
  • el coeficiente libre es $(-1)^n \det A$.

El coeficiente libre de un polinomio es su evaluación en cero. Usando la homogeneidad del determinante, dicho coeficiente es:
\begin{align*}
\chi_A(0)&=\det(0\cdot I_n-A)\\
&=\det(-A)\\
&=(-1)^n\det(A).
\end{align*}

Esto muestra el tercer punto.

Para el coeficiente del término de grado $n-1$ y el coeficiente principal analicemos con más detalle la fórmula del determinante
\begin{align*}
\begin{vmatrix}
\lambda – a_{11} & -a_{12} & \ldots & -a_{1n}\\
-a_{21} & \lambda – a_{22} & \ldots & -a_{1n}\\
\vdots & & \ddots & \\
-a_{n1} & -a_{n2} & \ldots & \lambda – a_{nn}
\end{vmatrix}
\end{align*}
en términos de permutaciones.

Como discutimos anteriormente, la única forma de obtener un término de grado $n$ es cuando elegimos a la permutación identidad. Pero esto también es cierto para términos de grado $n-1$, pues si no elegimos a la identidad, entonces la permutación elige por lo menos dos entradas fuera de la diagonal, y entonces el grado del producto de entradas correspondiente es a lo más $n-2$.

De este modo, los únicos términos de grado $n$ y $n-1$ vienen del producto $$(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).$$

El único término de grado $n$ viene de elegir $\lambda$ en todos los factores, y se obtiene el sumando $\lambda^n$, lo cual muestra que el polinomio es mónico.

Los únicos términos de grado $n-1$ se obtienen de elegir $\lambda$ en $n-1$ factores y un término del estilo $-a_{ii}$. Al considerar todas las opciones, el término de grado $n-1$ es $$-(a_{11}+a_{22}+\ldots+a_{nn})\lambda^{n-1}=-(\text{tr} A) \lambda^{n-1},$$ que era lo último que debíamos mostrar.

$\square$

Ejemplo. El teorema anterior muestra que si $A$ es una matriz en $M_2(F)$, es decir, de $2\times 2$, entonces $$\chi_A(\lambda)=\lambda^2 – (\text{tr}A) \lambda +\det A.$$ De manera explícita en términos de las entradas tendríamos entonces que si $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, entonces su polinomio característico es $$\lambda^2-(a+d)\lambda+(ad-bc).$$

Como ejemplo, si $A=\begin{pmatrix} 5 & 2 \\ -8 & -3 \end{pmatrix}$, entonces su polinomio característico es $$\lambda^2 -2\lambda +1=(\lambda-1)^2.$$ Su único eigenvalor sería entonces $1$.

$\square$

Suma y producto de eigenvalores de matrices complejas

A veces queremos referirnos al conjunto de todos los eigenvalores de una matriz.

Definición. Para $A$ una matriz en $M_n(F)$, el espectro de $A$ es el conjunto de eigenvalores de $A$. Lo denotamos por $\text{spec} (A)$

Tenemos una definición análoga para el espectro de una transformación lineal. Esa definición da un poco de intuición de por qué los teoremas de diagonalización de matrices se llaman teoremas espectrales. La siguiente definición habla de un sentido en el cual un eigenvalor «se repite».

Definición. Sea $A$ una matriz en $M_n(F)$ y $\lambda$ un eigenvalor de $A$. La multiplicidad algebraica de $\lambda$ es el mayor entero $m_{\lambda}$ tal que $(x-\lambda)^{m_\lambda}$ divide a $\chi_A(x)$.

Cuando estamos en $\mathbb{C}$, por el teorema fundamental del álgebra todo polinomio de grado $n$ se puede factorizar en exactamente $n$ términos lineales. Además, los polinomios característicos son mónicos. De este modo, si tenemos una matriz $A$ en $M_n(\mathbb{C})$, su polinomio característico se puede factorizar como sigue:

$$\chi_A(\lambda) = \prod_{j=1}^n (\lambda-\lambda_j),$$

en donde $\lambda_1,\ldots,\lambda_n$ son eigenvalores de $A$, no necesariamente distintos, pero en donde cada eigenvalor aparece en tantos términos como su multiplicidad algebraica.

Desarrollando parcialmente el producto del lado derecho, tenemos que el coeficiente de $\lambda^{n-1}$ es $$-(\lambda_1+\ldots+\lambda_n)$$ y que el coeficiente libre es $$(-1)^n\lambda_1\cdot\ldots\cdot\lambda_n.$$ Combinando este resultado con el de la sección anterior y agrupando eigenvalores por multiplicidad, se demuestra el siguiente resultado importante. Los detalles de la demostración quedan como tarea moral.

Teorema. Sea $A$ una matriz en $M_n(\mathbb{C})$

  • La traza $A$ es igual a la suma de los eigenvalores, contando multiplicidades algebraicas, es decir: $$\text{tr} A = \sum_{\lambda \in \text{spec}(A)} m_{\lambda} \lambda.$$
  • El determinante de $A$ es igual al producto de los eigenvalores, contando multiplicidades algebraicas, es decir: $$\det A = \prod_{\lambda \in \text{spec} (A)} \lambda^{m_{\lambda}}.$$

Veamos un problema en donde se usa este teorema.

Problema. Sea $A$ una matriz en $M_n(\mathbb{C})$ tal que $A^2-4A+3I_n=0$. Muestra que el determinante de $A$ es una potencia de $3$.

Solución. Sea $\lambda$ un eigenvalor de $A$ y $v$ un eigenvector para $\lambda$. Tenemos que $$A^2v=A(\lambda v) = \lambda(Av)=\lambda^2 v.$$ De esta forma, tendríamos que
\begin{align*}
0&=(A^2-4A+3I_n)v\\
&=(\lambda^2 v – 4\lambda v + 3 v)\\
&=(\lambda^2-4\lambda+3) v.
\end{align*}

Como $v$ no es el vector $0$, debe suceder que $\lambda^2-4\lambda+3=0$. Como $\lambda^2-4\lambda+3 = (\lambda-3)(\lambda-1)$, entonces $\lambda=1$ ó $\lambda=3$. Con esto concluimos que los únicos posibles eigenvectores de $A$ son $1$ y $3$.

Como $A$ es una matriz en $\mathbb{C}$, tenemos entonces que su polinomio característico es de la forma $(x-1)^a(x-3)^b$ con $a$ y $b$ enteros no negativos tales que $a+b=n$. Pero entonces por el teorema de producto de eigenvalores, tenemos que el determinante es $1^a\cdot 3^b=3^b$, con lo que queda demostrado que es una potencia de $3$.

$\square$

Dos teoremas fundamentales de álgebra lineal (opcional)

Tenemos todo lo necesario para enunciar dos resultados de álgebra lineal. Sin embargo, las demostraciones de estos resultados requieren de más teoría, y se ven en un siguiente curso. No los demostraremos ni los usaremos en el resto de este curso, pero te pueden servir para anticipar el tipo de resultados que verás al continuar tu formación en álgebra lineal.

El primer resultado fundamental es una caracterización de las matrices que pueden diagonalizarse. Para ello necesitamos una definición adicional. Hay otro sentido en el cual un eigenvalor $\lambda$ de una matriz $A$ puede repetirse.

Definición. Sea $A$ una matriz en $M_n(F)$ y $\lambda$ un eigenvalor de $A$. La multiplicidad geométrica de $\lambda$ es la dimensión del kernel de la matriz $\lambda I_n -A$ pensada como transformación lineal.

En estos términos, el primer teorema al que nos referimos queda enunciado como sigue.

Teorema. Una matriz $A$ en $M_n(F)$ es diagonalizable si y sólo si su polinomio característico $\chi_A(\lambda)$ se puede factorizar en términos lineales en $F[\lambda]$ y además, para cada eigenvalor, su multiplicidad algebraica es igual a su multiplicidad geométrica.

Ejemplo. La matriz $$A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$ tiene como polinomio característico a $\chi_A(\lambda)=\lambda^2+1$. Este polinomio no se puede factorizar en $\mathbb{R}[x]$, así que $A$ no es diagonalizable con matrices de entradas reales.

Sin embargo, en $\mathbb{C}$ tenemos la factorización en términos lineales $\lambda^2+1=(\lambda+i)(\lambda-i),$ que dice que $i$ y $-i$ son eigenvalores de multiplicidad algebraica $1$. Se puede mostrar que la multiplicidad geométrica también es $1$. Así, $A$ sí es diagonalizable con matrices de entradas complejas.

$\square$

El segundo resultado fundamental dice que «cualquier matriz se anula en su polinomio característico». Para definir correctamente esto, tenemos que decir qué quiere decir evaluar un polinomio en una matriz. La definición es más o menos natural.

Definición. Si $A$ es una matriz en $M_n(F)$ y $p$ es un polinomio en $F[\lambda]$ de la forma $$p(\lambda)=a_0+a_1\lambda+a_2\lambda^2+\ldots+a_n\lambda^n,$$ definimos a la matriz $p(A)$ como la matriz $$a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.$$

En estos términos, el resultado queda enunciado como sigue.

Teorema (Cayley-Hamilton). Si $A$ es una matriz en $M_n(F)$ y $\chi_A(x)$ es su polinomio característico, entonces $$\chi_A(A)=O_n.$$

Ejemplo. Tomemos de nuevo a la matriz $$A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$ del ejemplo anterior. Su polinomio característico es $x^2+1$. En efecto, verificamos que se cumple el teorema de Cayley-Hamilton pues:
\begin{align*}
A^2+I_2 &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}+\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\end{align*}

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Enuncia y demuestra cómo es el polinomio característico de una matriz triangular inferior.
  • Completa los detalles de la demostración del teorema de suma y producto de eigenvalores. Úsalo para encontrar la suma y producto (con multiplicidades) de los eigenvalores de la matriz $$\begin{pmatrix}5 & 0 & -1 & 2 \\ 3 & -2 & 1 & -2 \\ 0 & 0 & 0 & 5\\ 0 & 2 & 4 & 0 \end{pmatrix}.$$
  • Sea $A$ una matriz en $M_n(F)$. ¿Cómo es el polinomio característico de $-A$ en términos del polinomio característico de $A$?
  • Tomemos $A$ una matriz en $M_n(F)$ y $k$ un entero positivo. Muestra que si $\lambda$ es un eigenvalor de la matriz $A$, entonces $\lambda^k$ es un eigenvalor de la matriz $A^k$.

De la sección opcional:

  • Demuestra, haciendo todas las cuentas, el caso particular del teorema de Cayley-Hamilton para matrices de $2\times 2$.
  • Ya sabemos calcular el polinomio característico de matrices diagonales. Muestra el teorema de Cayley-Hamilton en este caso particular.
  • Las matrices diagonales trivialmente son diagonalizables. Muestra que la multiplicidad algebraica de sus eigenvalores en efecto coincide con la multiplicidad geométrica.

Más adelante…

En esta entrada estudiamos algunas propiedades de los eigenvalores y eigenvectores de transformaciones lineales y matrices; vimos cómo obtener eigenvalores de una matriz a partir del polinomio característico y enunciamos dos teoremas muy importantes como parte opcional del curso.

En la siguiente entrada haremos varios ejercicios para desarrollar un poco de práctica al obtener los eigenvalores y eigenvectores de una transformación lineal y de una matriz.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Cambio de base de transformaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior definimos las matrices de cambio de base. Vimos algunas de sus propiedades básicas y mostramos cómo nos pueden ayudar para resolver el primero de los siguientes dos problemas.

  • Supongamos que tenemos dos bases $B_1$ y $B_2$ de un espacio vectorial $V$ y que tomamos un vector $v$ en $V$. Si ya sabemos la combinación lineal de elementos de $B_1$ que da $v$, ¿cómo podemos saber la combinación lineal de elementos de $B_2$ que da $v$? En otras palabras, ¿cómo podemos pasar a $v$ de su expresión en base $B_1$ a su expresión en base $B_2$?
  • Supongamos que tenemos una transformación lineal $T:V\to W$ entre dos espacios vectoriales $V$ y $W$, dos bases $B_1$ y $B_2$ de $V$ y dos bases $C_1$ y $C_2$ de $W$. Si ya sabemos qué le hace $T$ a los elementos de $V$ en términos de las bases $B_1$ y $C_1$, ¿cómo podemos saber qué hace $T$ en términos de las bases $B_2$ y $C_2$?

El objetivo de esta entrada es ver cómo con las matrices de cambio de base también podemos resolver el segundo problema. Después de hacer esto, hablaremos de una noción fundamental en álgebra lineal: la de matrices similares.

Matrices de cambio de base y transformaciones lineales

Las matrices de cambios de base nos ayudan a entender a las matrices de transformaciones lineales en bases diferentes.

Teorema. Sea $T:V\to W$ una transformación lineal entre espacios de dimensión finita $V$ y $W$. Sean $B_1$ y $B_2$ bases de $V$, y $C_1$ y $C_2$ bases de $W$. Entonces $$\Mat_{C_2,B_2}(T) = \Mat_{C_2}(C_1)\Mat_{C_1,B_1}(T)\Mat_{B_1}(B_2).$$

Observa cómo la elección de orden en la notación está rindiendo fruto. En el lado derecho «van apareciendo las bases» en el «orden natural» $C_2$, $C_1$, $B_1$, $B_2$.

Demostración. Sean $P=\Mat_{C_1}(C_2)$ y $Q=\Mat_{B_1}(B_2)$. Por un resultado de la entrada anterior, $P$ es la matriz que representa a la transformación identidad en $W$ con respecto a las bases $C_1$ y $C_2$, es decir, $P=\Mat_{C_1,C_2}(\text{id}_W)$.

Por cómo son las matrices de composiciones de transformaciones lineales, y usando que $\text{id}_W\circ T=T$, tenemos que $$\Mat_{C_1,C_2}(\text{id}_W)\Mat_{C_2,B_2}(T)=\Mat_{C_1,B_2}(T).$$

De manera análoga, $Q$ es la matriz que representa a la transformación identidad en $V$ con respecto a las bases $B_1$ y $B_2$, de donde tenemos que $$\Mat_{C_1,B_1}(T)\Mat_{B_1,B_2}(\text{id}_V)=\Mat_{C_1,B_2}(T).$$

De esta forma, $$P\Mat_{C_2,B_2}(T) = \Mat_{C_1,B_2}(T) = \Mat_{C_1,B_1}(T) Q.$$ El resultado se obtiene multiplicando por la izquierda ambos lados de esta ecuación por $P^{-1}=\Mat_{C_2}(C_1)$.

$\square$

En la siguiente entrada se verán varios ejemplos que involucran crear matrices para transformaciones lineales, matrices de cambios de base y multiplicarlas para entender una transformación lineal en distintas bases.

Por el momento, dejamos únicamente un corolario del teorema anterior, para el caso en el que tenemos una transformación lineal de un espacio vectorial a sí mismo expresado en términos de dos bases.

Corolario. Sea $T:V\to V$ una transformación lineal de un espacio vectorial $V$ de dimensión finita a sí mismo. Sean $B$ y $B’$ bases de $V$ y $P$ la matriz de cambio de base de $B$ a $B’$. Entonces $$\Mat_{B’}(T)=P^{-1}\Mat_{B}(T)P.$$

Matrices similares

Definición. Decimos que dos matrices $A$ y $B$ en $M_{n}(F)$ son similares o conjugadas si existe una matriz invertible $P$ en $M_n(F)$ tal que $B=P^{-1}AP$.

En otras palabras, $A$ y $B$ son matrices similares si representan a una misma transformación lineal en diferentes bases.

Proposición. La relación «ser similares» es una relación de equivalencia en $M_n(F)$.

Demostración. Toda matriz es similar a sí misma usando $P=I_n$, la identidad. Si $A$ y $B$ son similares con matriz invertible $P$, entonces $B$ y $A$ son similares con matriz invertible $P^{-1}$. Si $A$ y $B$ son similares con matriz invertible $P$ y $B$ y $C$ son similares con matriz invertible $Q$, notemos que $A=P^{-1}BP=P^{-1}(Q^{-1}CQ)P=(QP)^{-1}C(QP)$, de modo que $A$ y $C$ son similares con matriz invertible $QP$.

$\square$

¿Por qué es importante saber si dos matrices son similares? Resulta que dos matrices similares comparten muchas propiedades, como su traza, su determinante, su rango, etc. Para algunas matrices es más sencillo calcular estas propiedades. Así que una buena estrategia en álgebra lineal es tomar una matriz $A$ «complicada» y de ahí encontrar una matriz similar $B$ «más simple», y usar $B$ para encontrar propiedades de $A$.

Veamos un ejemplo de esto. Mediante un sencillo argumento inductivo se puede mostrar lo siguiente.

Proposición. Si $A$ y $B$ son matrices similares con $A=P^{-1}BP$, entonces $A^n=P^{-1}B^nP$.

Si $B$ fuera una matriz diagonal, entonces es fácil encontrar $B^n$: basta con elevar cada una de las entradas de su diagonal a la $n$ (lo cual es mucho más fácil que hacer productos de matrices). Así, esto da una forma muy fácil de encontrar $A^n$: basta con encontrar $B^n$, y luego hacer dos multiplicaciones de matrices más, por $P^{-1}$ a la izquierda y por $P$ a la derecha.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Deduce el corolario del teorema principal de esta entrada.
  • Considera $\mathbb{R}[x]_2$ de polinomios con coeficientes reales y grado a lo más dos. Sea $T: \mathbb{R}[x]_2$ la transformación tal qur $T(p)=p’$, el polinomio derivado. Encuentra la matriz que representa a la transformación en la base $\{1+x+x^2,1+2x,1\}$ y la matriz que representa a la transformación en la base $\{1,x,x^2\}$. Encuentra también la matriz de cambio de base de la primera a la segunda. Verifica que se cumple la conclusión del corolario.
  • Sean $A$ y $B$ matrices similares. Muestra que $A$ es invertible si y sólo si $B$ lo es.
  • Sean $A$ y $B$ matrices similares. Muestra que $A$ y $B$ tienen la misma traza.
  • Completa el argumento inductivo para demostrar la última proposición.
  • Considera la matriz con entradas complejas $A=\begin{pmatrix}1 & 0 & 0\\ 0 & i & 0\\ 0 & 0 & -1 \end{pmatrix}$. Encuentra $A^{105}$.

Más adelante…

En estas últimas dos entradas aprendimos a hacer «cambios de base», tanto para coordenadas, como para formas matriciales. También, introdujimos el concepto de similitud de matrices. Cuando $A$ es una matriz similar a una matriz diagonal, decimos que $A$ es diagonalizable. Que una matriz sea diagonalizable trae muchas ventajas. Como ya mencionamos, una de ellas es poder elevar la matriz a potencias de manera sencilla. Otra ventaja es que en las matrices diagonalizables es sencillo calcular rangos, determinantes y otras invariantes de álgebra lineal.

Una parte importante de lo que resta del curso consistirá en entender por qué las matrices simétricas con entradas reales son diagonalizables. El teorema principal del curso (el teorema espectral), consistirá en mostrar que toda matriz simétrica con entradas reales es diagonalizable mediante matrices ortogonales. Para poder demostrarlo, necesitaremos primero estudiar teoría geométrica de espacios vectoriales y teoría de determinantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»