Archivo de la etiqueta: factorización

Álgebra Superior II: El teorema de derivadas y multiplicidad

Introducción

En entradas anteriores definimos qué quiere decir que un real sea una raíz de un polinomio. Luego, vimos que mediante el teorema del factor se puede definir una relación entre las raíces de un polinomio y los polinomios lineales que lo dividen. Sin embargo, es posible que un real sea una raíz de un polinomio “más de una vez”, que fue un concepto que formalizamos en la entrada de desigualdades de polinomios. En esta entrada veremos que a través de las derivadas de polinomios, podemos determinar la multiplicidad de sus raíces.

Como recordatorio, la multiplicidad de una raíz r de un polinomio p(x) en \mathbb{R}[x] es el mayor entero m tal que (x-r)^m divide a p(x) en \mathbb{R}[x]. También, en esta entrada haremos uso de la regla del producto para derivadas.

El teorema de derivadas y multiplicidad

El siguiente resultado es fundamental para la detección de raíces múltiples. Su demostración es sencilla pues usamos varios de los resultados que hemos obtenido anteriormente.

Teorema (derivadas y multiplicidad). Sea r una raíz del polinomio p(x) en \mathbb{R}[x] de multiplicidad m. Si m>1, entonces r es una raíz de la derivada p'(x), y es de multiplicidad m-1. Si m=1, entonces r no es raíz de p'(x).

Demostración. Como r es una raíz de p(x) de multiplicidad m, entonces se puede escribir p(x)=(x-r)^m q(x), en donde q(x) es un polinomio que ya no es divisible entre x-r. Derivando, por regla del producto tenemos que

    \begin{align*}p'(x)&=m(x-r)^{m-1}q(x) + (x-r)^m q'(x)\\&=(x-r)^{m-1}(mq(x)+(x-r)q'(x)).\end{align*}

Afirmamos que x-r no divide a mq(x)+(x-r)q'(x). Si lo dividiera, como divide a (x-r)q'(x) entonces también tendría que dividir a mq(x) y por lo tanto a q(x). Pero esto sería una contradicción con la elección de q(x).

De esta forma, si m=1 entonces x-r no divide a p'(x) y por el teorema del factor entonces r no es raíz de p'(x). Y si m>1, entonces (x-r)^{m-1} divide a p'(x) por la expresión que encontramos de la derivada, pero (x-r)^m no pues x-r no divide al segundo factor. Esto termina la prueba.

\square

Ejemplo. Consideremos al polinomio p(x)=(x-3)^3(x+1). Tanto 3 como -1 son raíces de p(x). La multiplicidad de la raíz 3 es tres y la multiplicidad de la raíz -1 es uno. Si derivamos a p(x) usando la regla del producto, tenemos que

    \begin{align*}p'(x)&=3(x-3)^2(x+1)+(x-3)^3\\&=3(x-3)^2(x+1+x-3)\\&=3(x-3)^2(2x-2)\\&=6(x-3)^2(x-1)\end{align*}

Observa que p'(x) en efecto tiene a 3 como raíz de multiplicidad dos y ya no tiene a 1 como raíz.

\square

Es muy importante respetar la hipótesis de que r sea raíz de p(x). Por ejemplo, en el ejemplo anterior 1 es raíz de p'(x) de multiplicidad 1, pero 1 no es raíz de p(x) (y mucho menos de multiplicidad 2).

El teorema de derivadas y multiplicidad es interesante, pero todavía no es útil en aplicaciones prácticas. Sin embargo, tiene dos consecuencias que sí se pueden usar para estudiar polinomios concretos.

Encontrar la multiplicidad de una raíz

El teorema de derivadas y multiplicidad nos dice que la multiplicidad de una raíz “baja en uno” al pasar de un polinomio a su derivada, pero aún no nos dice cuál es esa multiplicidad. Sin embargo, lo podemos aplicar repetidamente para obtener esta información. Recuerda que para k un entero no negativo y p(x) en \mathbb{R}[x], usamos p^{(k)}(x) para denotar k-ésima derivada de un polinomio. Aquí p^{(0)}(x) es simplemente p(x).

Proposición. Sea r una raíz del polinomio p(x) en \mathbb{R}[x] de multiplicidad m. Si k el mayor entero positivo tal que r es raíz de

    \[p^{(0)}(x), p^{(1)}(x),\ldots,p^{(k)}(x),\]

entonces m=k+1.

Demostración. Usando el teorema anterior de manera inductiva, tenemos que para cada entero 0\leq \ell<m, se tiene que r es raíz de multiplicidad m-\ell de p^{(\ell)}(x) En particular, es raíz de todas estas derivadas. Además, por el mismo teorema, se tiene que r ya no es raíz de p^{(m)}(x). De esta forma, tenemos que k=m-1, de donde se obtiene el resultado deseado.

\square

La proposición anterior ahora sí nos da una manera de encontrar la multiplicidad de una raíz de un polinomio.

Ejemplo. Sabiendo que 3 es una raíz del polinomio

    \[p(x)=x^5-9x^4+28x^3-36x^2+27x-27,\]

vamos a encontrar su multiplicidad.

Para esto, vamos a calcular sus derivadas:

    \begin{align*}p'(x)&=5x^4-36x^3+84x^2-72x+27\\p''(x)&=20x^3-108x^2+168x-72\\p^{(3)}(x)&=60x^2-216x+168\\p^{(4)}(x)&=120x-216\\p^{(5)}(x)&=120\\p^{(6)}(x)&=0\end{align*}

Tenemos que

    \begin{align*}p'(3)&=5\cdot 81 - 36 \cdot 27 +84 \cdot 9 -72\cdot 3 + 27\\&=405-972+756-216+27\\&=0.\end{align*}

Hasta aquí, sabemos que 3 es raíz de multiplicidad al menos dos. Tenemos también que

    \begin{align*}p''(3)(3)&=20\cdot 27-108\cdot 9 +168 \cdot 3 - 72\\&=540-972+504-72\\&=0.\end{align*}

Hasta aquí, sabemos que 3 es raíz de multiplicidad al menos tres. Siguiendo,

    \begin{align*}p^{(3)}&=60\cdot 9-216\cdot 3 +168\\&=720-648+168\\&=240.\end{align*}

Como la tercera derivada ya no se anuló en 3, la multiplicidad de 3 como raíz es exactamente tres.

\square

Es importante que revisemos todas las derivadas, y que sea una por una. En el ejemplo anterior, p^{(6)}(3)=0, pero eso no quiere decir que 3 sea raíz de multiplicidad 7, pues la evaluación falla desde la tercera derivada.

Simplificar un polinomio para encontrarle sus raíces

Hay otra consecuencia práctica del teorema de multiplicidades y derivadas, que puede ser de utilidad en algunos problemas. Recuerda que para polinomios p(x) y q(x) en \mathbb{R}[x] usamos \MCD{p(x),q(x)} para denotar al máximo común divisor de dos polinomios. En particular, divide a p(x) en \mathbb{R}[x], de modo que

    \[\frac{p(x)}{\MCD{p(x),q(x)}}\]

es un polinomio en \mathbb{R}[x].

Proposición. Sea p(x) un polinomio en \mathbb{R}[x] y p'(x) su derivada. El polinomio

    \[q(x):=\frac{p(x)}{\MCD{p(x),p'(x)}}\]

es un polinomio en \mathbb{R}[x], con las mismas raíces reales que p(x), pero todas ellas tienen multiplicidad 1.

Demostración. Factoricemos a todas las raíces reales de p(x) con sus multiplicidades correspondientes para escribir

    \[p(x)=(x-r_1)^{m_1}\cdot \ldots \cdot (x-r_n)^{m_n} r(x),\]

en donde r(x) ya no tiene raíces reales. De acuerdo al teorema de derivadas y multiplicidad, podemos escribir

    \[p'(x)=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n)^{m_n-1} s(x),\]

en donde ningún x-r_i divide a s(x). Es sencillo entonces mostrar, y queda como tarea moral, que \MCD{p(x),p'(x)} es

    \[(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \cdot \MCD{r(x),s(x)}.\]

A partir de esto, concluimos que

    \begin{align*}q(x)&=\frac{p(x)}{\MCD{p(x),p'(x)}}\\&= (x-r_1)\cdot \ldots \cdot (x-r_n) \cdot \frac{r(x)}{\MCD{r(x),s(x)}}.\end{align*}

De aquí se ve que r_1,\ldots,r_n son raíces de multiplicidad 1 de q(x). No hay más raíces reales en \frac{r(x)}{\MCD{r(x),s(x)}}, pues si hubiera una raíz \alpha, entonces por el teorema del factor x-\alpha dividiría a este polinomio, y por lo tanto a r(x), de donde \alpha sería raíz de r(x), una contradicción.

\square

La proposición anterior se puede usar de manera práctica como sigue:

  • Para empezar, tomamos un polinomio arbitrario p(x).
  • Luego, lo derivamos para obtener p'(x).
  • Después, usando el algoritmo de Euclides, encontramos al polinomio \MCD{p(x),q(x)}.
  • Ya con el máximo común divisor, hacemos división polinomial para encontrar q(x)=\frac{p(x)}{\MCD{p(x),q(x)}}.
  • Si p(x) tenía raíces repetidas, entonces ahora q(x) será de grado menor, y quizás más fácil de estudiar. Encontramos las raíces de q(x). Estas son las raíces de f(x).
  • Finalmente, usamos el teorema de la sección anterior para encontrar la multiplicidad de cada raíz.

Veamos un problema interesante en el que se conjuntan varias ideas de esta entrada.

Problema. Factoriza en \mathbb{R}[x] al polinomio

    \[-x^5+5x^4+5x^3-45x^2+108.\]

Solución. Este es un polinomio de grado cinco, para el cual hasta antes de ahora no teníamos muchas herramientas para estudiarlo. Vamos a aplicar el método explicado arriba. Lo primero que haremos es factorizar un -1 para volver este polinomio mónico. Recordaremos poner este signo al final. Tomemos entonces

    \[p(x)=x^5-5x^4-5x^3+45x^2-108.\]

Su derivada es

    \[p'(x)=5x^4-20x^3+15x^2+90x,\]

Se puede verificar, y queda como tarea moral, que el máximo común divisor de p(x) y p'(x) es el polinomio

    \[M(x)=x^3-4x^2-3x+18.\]

Haciendo la división polinomial, tenemos que

    \[\frac{p(x)}{M(x)}=x^2-x-6=(x+2)(x-3).\]

Como este polinomio tiene las mismas raíces que p(x), concluimos que -2 y 3 son las raíces de p(x).

Usando la proposición para multiplicidades de raíces (que también queda como tarea moral), se puede verificar que -2 es raíz de multiplicidad dos y que 3 es raíz de multiplicidad 3. Como p(x) es un polinomio de grado 5 y es mónico, entonces se debe de dar la igualdad

    \[p(x)=(x+2)^2(x-3)^3.\]

Al regresar al polinomio original, debemos agregar un signo menos. Concluimos que la factorización del polinomio del problema es

    \[-(x+2)^2(x-3)^3.\]

\square

Esta proposición nos da una manera de encontrar raíces. En las siguientes dos entradas veremos otras dos formas de encontrarlas. Para cuando los polinomios son de grado 3 y 4, podemos encontrar las raíces de manera explícita. Para cuando los polinomios tienen coeficientes enteros, podemos encontrar una cantidad finita de candidatos a ser raíces racionales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que 1 es raíz del polinomio

        \[x^8-x^7-9x^6+19x^5+5x^4-51x^3+61x^2-31x+6\]

    y encuentra su multiplicidad.
  • En la demostración de la última proposición, muestra la igualdad

        \[\MCD{p(x),p'(x)}=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \MCD{r(x),s(x)}.\]

  • En el último ejemplo, aplica el algoritmo de Euclides a p(x) y p'(x) para mostrar que el máximo común divisor es el que se afirma.
  • Aplica la proposición de multiplicidad de raíces en el último ejemplo para verificar que en efecto las multiplicidades de 2 y 3 son las que se afirman.
  • Aplica el mismo método que en la última sección para factorizar el polinomio

        \[x^6+8x^5+18x^4-4x^3-47x^2-12x+36.\]

Álgebra Superior II: Desigualdades de polinomios reales

Introducción

En la entrada anterior mostramos el teorema de factorización para polinomios con coeficientes reales. Lo que haremos ahora es ver que podemos aplicarlo en la resolución de desigualdades de polinomios en \mathbb{R}[x]. El objetivo es que, al final de la entrada, entendamos cómo se pueden resolver problemas como los siguientes:

Problema. Determina todos los números x en \mathbb{R} para los cuales

    \[x^6-12x^4-49x^2-30 > 3x^5-48x^3-51x+6.\]

Problema. Determina todos los números x en \mathbb{R} para los cuales

    \[\frac{1}{x}>x^3-x^2+1.\]

Antes de hablar de resolución de desigualdades de polinomios, veremos una forma alternativa de factorizar en \mathbb{R}[x] usando potencias.

Teorema de factorización de polinomios reales con potencias

De acuerdo al teorema de factorización en \mathbb{R}[x], un polinomio p(x) se puede factorizar de manera única en factores lineales y factores cuadráticos con discriminante negativo. De ser necesario, podemos agrupar los factores lineales iguales y reordenarlos para llegar a una factorización de la forma

    \[a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),\]

en donde:

  • a es un real distinto de cero,
  • \alpha_1,\ldots,\alpha_m y n son enteros positivos tales que 2n+\sum_{i=1}^m \alpha_i es igual al grado de p(x),
  • para cada i en \{1,\ldots,m\} se tiene que r_i es raíz real de p(x) y r_1<r_2<\ldots<r_m
  • para cada j en \{1,\ldots,n\} se tiene que b_j,c_j son reales tales que b_j^2-4c_j<0.

Observa que los r_i son ahora distintos y que están ordenados como r_1<\ldots<r_m. De aquí, obtenemos que (x-r_i)^{\alpha_i} es la mayor potencia del factor lineal x-r_i que divide a p(x). Este número \alpha_i se usa frecuentemente, y merece una definición por separado.

Definición. Sea p(x) un polinomio en \mathbb{R}[x] y r una raíz de p(x). La multiplicidad de r como raíz de p(x) es el mayor entero \alpha tal que

    \[(x-r)^\alpha \mid p(x).\]

Decimos también que r es una raíz de multiplicidad \alpha.

Ejemplo. El polinomio k(x)=x^4-x^3-3x^2+5x-2 se factoriza como (x-1)^3(x+2). Así, la multiplicidad de 1 como raíz de k(x) es 3. Además, -2 es una raíz de k(x) de multiplicidad 1.

\square

Después hablaremos de una forma práctica en la que podemos encontrar la multiplicidad de una raíz, cuando hablemos de continuidad de polinomios y sus derivadas.

Desigualdades de polinomios reales factorizados

Supongamos que tenemos un polinomio p(x) no constante en \mathbb{R}[x] para el cual conocemos su factorización en la forma

    \[a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),\]

y que queremos determinar para qué valores reales r se cumple que

    \[p(r)>0.\]

Daremos por cierto el siguiente resultado, que demostraremos cuando hablemos de continuidad de polinomios.

Proposición. Las evaluaciones en reales de un polinomio cuadrático y mónico en \mathbb{R}[x] de discriminante negativo, siempre son positivas.

Lo que nos dice este resultado es que, para fines de la desigualdad que queremos resolver, podemos ignorar los factores cuadráticos en la factorización de p(x) pues

    \[a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n})\]

y

    \[a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}\]

tienen el mismo signo.

Por la miasma razón, podemos ignorar aquellos factores lineales con exponente par, y de los de exponente impar, digamos (x-r)^{2\beta +1} obtenemos una desigualdad equivalente si los remplazamos por exponente 1, pues (x-r)^{2\beta} es positivo y por lo tanto no cambia el signo de la desigualdad si lo ignoramos.

En resumen, cuando estamos resolviendo una desigualdad del estilo p(x)>0 podemos, sin cambiar el conjunto solución, reducirla a una de la forma

    \[q(x):=a(x-r_1)(x-r_2)\ldots(x-r_m)>0.\]

La observación clave para resolver desigualdades de este estilo está resumida en el siguiente resultado.

Proposición. Tomemos un polinomio q(x) en \mathbb{R}[x] de la forma

    \[q(x)=a(x-r_1)(x-r_2)\ldots(x-r_m)\]

con r_1<\ldots<r_m reales.

Si m es par:

  • Para reales r en la unión de intervalos

        \[(-\infty,r_1)\cup(r_2,r_3)\cup\ldots \cup (r_{m-2},r_{m-1})\cup (r_m,\infty),\]

    la evaluación q(r) tiene el mismo signo que a
  • Para reales r en la unión de intervalos

        \[(r_1,r_2)\cup(r_3,r_4)\cup\ldots \cup (r_{m-3},r_{m-2})\cup (r_{m-1},r_m),\]

    la evaluación q(r) tiene signo distinto al de a.

Si m es impar:

  • Para reales r en la unión de intervalos

        \[(r_1,r_2)\cup(r_3,r_4)\cup\ldots \cup (r_{m-2},r_{m-1})\cup (r_m,\infty),\]

    la evaluación q(r) tiene el mismo signo que a
  • Para reales r en la unión de intervalos

        \[(-\infty,r_1)\cup(r_2,r_3)\cup\ldots \cup (r_{m-3},r_{m-2})\cup (r_{m-1},r_m),\]

    la evaluación q(r) tiene signo distinto al de a.

Demostración. El producto (r-r_1)(r-r_2)\ldots(r-r_m) es positivo si y sólo si tiene una cantidad par de factores negativos. Si r>r_m, todos los factores son positivos, y por lo tanto q(r) tiene el mismo signo que a cuando r está en el intervalo (r_m,\infty).

Cada que movemos r de derecha a izquierda y cruzamos un valor r_i, cambia el signo de exactamente uno de los factores, y por lo tanto la paridad de la cantidad de factores negativos. El resultado se sigue de hacer el análisis de casos correspondiente.

\square

Veamos cómo podemos utilizar esta técnica para resolver desigualdades polinomiales que involucran a un polinomio que ya está factorizado en irreducibles.

Problema. Determina para qué valores reales x se tiene que

    \[-2(x-5)^7(x+8)^4(x+2)^3(x+10)(x^2-x+2)^3\]

es positivo.

Solución. Por la discusión anterior, podemos ignorar el polinomio cuadrático del final, pues es irreducible. También podemos ignorar los factores lineales con potencia par, y podemos remplazar las potencias impares por unos. Así, basta con encontrar los valores reales de x para los cuales

    \[q(x)=-2(x-5)(x+2)(x+10)\]

es positivo. Tenemos 3 factores, así que estamos en el caso de m impar en la proposición.

Las tres raíces, en orden, son -10, -2, 5. Por la proposición, para x en la unión de intervalos

    \[(-\infty,-10)\cup (-2,5)\]

se tiene que q(x) tiene signo distinto al de a=-2 y por lo tanto es positivo. Para x en el conjunto

    \[(10,-2)\cup (5,\infty)\]

se tiene que q(x) tiene signo igual al de a=-2, y por lo tanto es negativo. De esta forma, la respuesta es el conjunto

    \[(-\infty,-10)\cup (-2,5).\]

Puedes dar clic aquí para ver en GeoGebra las gráfica de q(x) y del polinomio original, y verificar que tienen el mismo signo en los mismos intervalos.

\square

Si estamos resolviendo una desigualdad y el valor de a en la factorización es positivo, es un poco más práctico ignorarlo desde el principio, pues no afecta a la desigualdad.

Problema. Determina para qué valores reales x se tiene que

    \[7(x+7)^{13}(x+2)^{31}(x-5)^{18}(x^2+1)\]

es positivo.

Solución. Tras las cancelaciones correspondientes, obtenemos la desigualdad equivalente

    \[(x+7)(x+2)>0.\]

Las raíces del polinomio que aparece son -7 y -2. De acuerdo a la proposición, estamos en el caso con m par. De esta forma, la expresión es negativa en el intervalo (-7,-2) y es positiva en la unión de intervalos

    \[(-\infty,-7)\cup (-2,\infty).\]

\square

Otras desigualdades de polinomios y manipulaciones algebraicas

Si tenemos otras expresiones polinomiales, también podemos resolverlas con ideas similares, solo que a veces se tienen que hacer algunas manipulaciones previas para llevar la desigualdad a una de la forma p(x)>0.

Problema. Determina todos los números x en \mathbb{R} para los cuales

    \[x^6-12x^4-49x^2-30 > 3x^5-48x^3-51x+6.\]

Solución. El problema es equivalente a encontrar los reales x para los cuales

    \[x^6-3x^5+12x^4+48x^3-29x^2+51x-36>0.\]

El polinomio del lado izquierdo se puede factorizar como (x-3)^2(x-1)(x+4)(x^2+1), así que obtenemos el problema equivalente

    \[(x-3)^2(x-1)(x+4)(x^2+1)>0,\]

que ya sabemos resolver. El resto de la solución queda como tarea moral.

Puedes ver la gráfica del polinomio

    \[(x-3)^2(x-1)(x+4)(x^2+1)\]

en GeoGebra si das clic aquí.

\square

Tener cuidado al multiplicar por denominadores

Hay que tener cuidado al realizar algunas manipulaciones algebraicas, pues pueden cambiar el signo de la desigualdad que estamos estudiando. Veamos un ejemplo donde sucede esto.

Problema. Determina todos los números x en \mathbb{R} para los cuales

    \[\frac{1}{x}>x^3-x^2+1.\]

Solución. La expresión no está definida en x=0, pues se anula un denominador. Supongamos entonces que x\neq 0, y recordémoslo al expresar la solución final. Vamos a multiplicar la desigualdad por x, pero tenemos que hacer casos.

Si x>0, entonces el signo de desigualdad no se altera y obtenemos la desigualdad equivalente

    \[0>x^4-x^3+x-1=(x-1)(x+1)(x^2-x+1).\]

El factor cuadrático es irreducible y lo podemos ignorar. Si estuviéramos trabajando en todo \mathbb{R}, el conjunto solución sería el intervalo (-1,1). Sin embargo, tenemos que restringir este conjunto solución sólo al caso en el que estamos, es decir, x>0. Así, para este caso sólo los reales en (0,1) son solución.

Si x<0, entonces el signo de la desigualdad sí se altera, y entonces obtenemos la desigualdad equivalente

    \[0<x^4-x^3+x-1=(x-1)(x+1)(x^2-x+1).\]

De nuevo podemos ignorar el factor cuadrático. La desigualdad tiene solución en todo \mathbb{R} al conjunto (-\infty,-1)\cup (1,\infty), pero en este caso debemos limitarlo adicionalmente con la restricción x<0. De este modo, las soluciones para este caso están en el intervalo (-\infty,-1).

Ahora sí, juntando ambos casos, tenemos que el conjunto solución final es

    \[(-\infty,-1)\cup(0,1).\]

Puedes ver la gráfica en GeoGebra de \frac{1}{x}-x^3+x^2-1 dando clic aquí. Ahí puedes verificar que esta expresión es positiva exactamente en el conjunto que encontramos.

\square

Reflexión final y lo que resta del curso

Como queda claro, resulta ser útil tener un polinomio en su forma factorizada para resolver desigualdades de polinomios reales. En los ejemplos que dimos en esta entrada, se dieron las factorizaciones de los polinomios involucrados. En el resto del curso veremos herramientas que nos permitirán encontrar la factorización de un polinomio o, lo que es parecido, encontrar sus raíces:

  • Veremos propiedades de continuidad de polinomios para mostrar la existencia de raíces para polinomios reales en ciertos intervalos.
  • El teorema del factor nos dice que si r es raíz de p(x), entonces x-r divide a p(x). Sin embargo, no nos dice cuál es la multiplicidad de r. Veremos que la derivada de un polinomio nos puede ayudar a determinar eso.
  • También veremos el criterio de la raíz racional, que nos permite enlistar todos los cantidatos a ser raíces racionales de un polinomio p(x) con coeficientes racionales.
  • Finalmente, veremos que para los polinomios de grado 3 y 4 hay formas de obtener sus raíces de forma explícita, mediante las fórmulas de Cardano y de Ferrari.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Completa la solución del problema enunciado en la sección de manipulaciones algebraicas.
  • Encuentra el conjunto solución de números reales x tales que

        \[(x+1)(x+2)^2(x+3)^3(x+4)^4>0.\]

  • Determina las soluciones reales a la desigualdad

        \[\frac{x-1}{x+2}>\frac{x+2}{x-1}.\]

    Ten cuidado con los signos. Verifica tu respuesta en este enlace de GeoGebra, que muestra la gráfica de f(x)=\frac{x-1}{x+2}-\frac{x+2}{x-1}.
  • Realiza las gráficas de otros polinomios de la entrada en GeoGebra para verificar las soluciones dadas a las desigualdades de polinomios.
  • Revisa esta entrada, en donde se hablan de aplicaciones de desigualdades polinomiales para un problema de un concurso de matemáticas.

Álgebra Superior II: Irreducibilidad y factorización en polinomios reales

Introducción

Los números enteros tiene un teorema de factorización en primos: el teorema fundamental de la aritmética. Los polinomios en \mathbb{R}[x] también. En esta entrada hablaremos de la irreducibilidad y factorización en polinomios reales. Lo primero lo haremos para decir “quiénes son los primos” en \mathbb{R}[x]. Para lo segundo usaremos el teorema del factor, que demostramos con anterioridad.

Resulta que el teorema de factorización en polinomios reales depende de un resultado importante de polinomios en \mathbb{C}[x], es decir, los de coeficientes complejos. Esto es algo que sucede con frecuencia: a veces para resolver un problema en los números reales, hay que dar un paso hacia los complejos y luego regresar. Por esa razón para esta entrada es importante que tengas en mente varias propiedades en los complejos, sobre todo cómo se hacen las operaciones y las propiedades de la conjugación compleja. Esto nos dará la oportunidad de enunciar (sin demostración) el teorema fundamental del álgebra.

Como recordatorio, un polinomio es irreducible en \mathbb{R}[x] si no es un polinomio constante y no se puede escribir como producto de dos polinomios no constantes en \mathbb{R}[x]. Además, el teorema del factor nos dice que si a es raíz de un polinomio p(x), entonces x-a divide a p(x). Diremos que un polinomio es lineal si es de grado 1 y cuadrático si es de grado 2.

El teorema fundamental del álgebra

Así como construimos a \mathbb{R}[x], se puede hacer algo análogo para construir a \mathbb{C}[x], los polinomios de coeficientes complejos. Puedes practicar todo lo que hemos visto haciendo la construcción formal. Por el momento, para fines prácticos, puedes pensarlos como expresiones de la forma

    \[a_0+a_1 x + \ldots + a_n x^n\]

con a_i complejos, digamos,

    \[(1+i)+2i x -3x^3+(5+2i)x^4.\]

Los polinomios en \mathbb{C}[x] cumplen todo lo que hemos dicho de \mathbb{R}[x]: se vale el lema de Bézout, el algoritmo de Euclides, el teorema del factor, el teorema del residuo, etc. Una copia de \mathbb{R}[x], con su estructura algebraica, “vive” dentro de \mathbb{C}[x], es decir, todo polinomio con coeficientes reales se puede pensar como uno con coeficientes complejos.

Sin embargo, los polinomios en \mathbb{R}[x] y en \mathbb{C}[x] son muy diferentes en términos de raíces. Esto se nota desde que el polinomio x^2+1 no tiene raíces en \mathbb{R}, pero sí en \mathbb{C}, donde la raíz es i. Resulta que esta i hace toda la diferencia. Al agregarla no solamente hacemos que x^2+1 tenga una raíz, sino que ya todo polinomio tiene raíz. Esto está enunciado formalmente por el teorema fundamental del álgebra.

Teorema (teorema fundamental del álgebra). Todo polinomio no constante en \mathbb{C}[x] tiene al menos una raíz en \mathbb{C}.

No vamos a demostrar este teorema durante el curso. Hay desde demostraciones elementales (como la que aparece en el bello libro Proofs from the book), hasta algunas muy cortas, pero que usan teoría un poco más avanzada (como las que se hacen en cursos de análisis complejo). Sin embargo, lo usaremos aquí para obtener algunas de sus consecuencias y, al final de esta entrada, demostrar los teoremas de irreducibilidad y factorización en polinomios reales.

Teorema de factorización en \mathbb{C}[x]

En la entrada anterior ya demostramos que los polinomios lineales son irreducibles. Veremos ahora que en \mathbb{C}[x] no hay ningún otro.

Proposición. Los únicos polinomios irreducibles en \mathbb{C}[x] son los de grado 1.

Demostración. Tomemos cualquier polinomio p(x) en \mathbb{C}[x] de grado al menos 2. Por el teorema fundamental del álgebra, p(x) tiene al menos una raíz z en \mathbb{C}. Por el teorema del factor,

    \[x-z \mid p(x),\]

así que podemos escribir p(x)=(x-z)q(x) con q(x) en \mathbb{C}[x] de grado \deg(p(x))-1\geq 1.

De esta forma, pudimos factorizar al polinomio p(x) en dos factores no constantes, y por lo tanto no es irreducible.

\square

Con esto podemos mostrar que en \mathbb{C}[x] todo polinomio es factorizable como producto de términos lineales.

Teorema (de factorización única en \mathbb{C}[x]). Todo polinomio p(x) en \mathbb{C}[x] distinto del polinomio cero se puede factorizar de manera única como

    \[p(x)=a(x-z_1)(x-z_2)\cdots(x-z_n)\]

en donde a es un complejo no cero, n es el grado de p(x) y z_1,\ldots,z_n son complejos que son raíces de p(x).

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Procedemos por inducción en el grado de p(x). Si p(x) es de grado cero, entonces es de la forma p(x)=a con a un complejo, y ya está en la forma que queremos.

Tomemos ahora un entero n\geq 1. Supongamos que el resultado es cierto para los polinomios de grado n-1 y consideremos un polinomio p(x) de grado n. Por el teorema fundamental del álgebra, p(x) tiene al menos una raíz, digamos z_n. Usando el teorema del factor, existe un polinomio q(x), que debe de ser de grado n-1, tal que

    \[p(x)=q(x)(x-z_n).\]

Aplicando la hipótesis inductiva a q(x), podemos factorizarlo de la forma

    \[q(x)=a(x-z_1)(x-z_2)\cdots(x-z_{n-1}),\]

con z_1,\ldots,z_{n-1} raíces de q(x) (y por lo tanto también raíces de p(x)). De esta forma,

    \[p(x)=(x-z_1)(x-z_2)\cdots(x-z_{n-1})(x-z_n)\]

es una factorización que cumple lo que queremos. Esto termina la hipótesis inductiva, y por lo tanto la parte de existencia de la demostración.

\square

Ejemplo. Consideremos al polinomio

    \[p(x)=x^4+5x^2+4\]

en \mathbb{R}[x]. Este polinomio no tiene raíces reales, pues sus evaluaciones siempre son positivas. Sin embargo, lo podemos pensar como un polinomio en \mathbb{C}[x]. Por el teorema fundamental del álgebra, este polinomio debe tener una raíz en \mathbb{C}.

Afortunadamente, podemos encontrarla por inspección. Una de estas raíces es i, pues

    \[i^4+5i^2+4=1-5+4=0.\]

Por el teorema del factor, x-i divide a p(x). Al realizar la división, obtenemos

    \[p(x)=(x-i)(x^3+ix^2+4x+4i).\]

De aquí, por inspección, obtenemos que -i es una raíz de x^3+ix^2+4x+4i, y realizando la división entre x+i, tenemos que

    \[p(x)=(x-i)(x+i)(x^2+4).\]

El polinomio x^2+4 claramente tiene como raíces a 2i y -2i. A partir de todo esto concluimos que

    \[p(x)=(x-i)(x+i)(x-2i)(x+2i)\]

es la factorización de p(x) en polinomios lineales en \mathbb{C}[x].

\square

En el ejemplo anterior podemos agrupar los factores (x-i) y (x+i) para obtener el polinomio x^2+1. De aquí obtenemos la factorización alternativa

    \[p(x)=(x^2+1)(x^2+2).\]

Esta factorización tiene puros coeficientes reales. Aquí hay que hacer una observación importante: esta no es una factorización en irreducibles en \mathbb{C}[x], pero sí es una factorización en irreducibles en \mathbb{R}[x]. Retomaremos varias de estas ideas más en general en las siguientes secciones.

Raíces complejas de polinomios en \mathbb{R}[x]

En el ejemplo de la sección anterior sucedió que i era una raíz de p(x), y que -i también. Cuando tenemos un polinomio de coeficientes reales y z es un complejo que es raíz, entonces su conjugado también.

Proposición. Tomemos p(x) un polinomio en \mathbb{R}[x] y z un número en \mathbb{C}. Si p(z)=0, entonces p(\overline{z})=0.

Demostración. Si p(x) es el polinomio cero, la afirmación es cierta. En otro caso, sea n el grado de p(x) y escribamos a p(x) como

    \[p(x)=a_0+a_1x+\ldots+a_nx^n,\]

donde a_i son números en \mathbb{R} para i=0,\ldots,n. Por lo que sabemos de la conjugación compleja, \overline{a_i}=a_i, y además abre sumas y productos. Así,

    \begin{align*}\overline{p(z)}&=\overline{a_0+a_1z+\ldots+a_nz^n}\\&=\overline{a_0}+\overline{a_1z}+\ldots  +\overline{a_nz^n}\\&=\overline{a_0} + \overline{a_1}\, \overline{z} + \ldots +\overline{a_n}\, \overline{z}^n\\&=a_0 + a_1 \overline{z} + \ldots + a_n \overline{z}^n\\&=p(\overline{z}). \end{align*}

Como p(z)=0, concluimos que

    \[p(\overline{z})=\overline{p(z)}=\overline{0}=0.\]

\square

El resultado anterior no es cierto en general para polinomios con coeficientes en \mathbb{C}[x]. Esto debe ser muy claro pues, por ejemplo, i es raíz de x-i, pero -i no.

Proposición. Tomemos p(x) un polinomio en \mathbb{R}[x] y una raíz z de p(x) en \mathbb{C}\setminus \mathbb{R}. Entonces el polinomio

    \[q(x)=x^2-(z+\overline{z})x+z\overline{z}\]

es un polinomio en \mathbb{R}[x] que divide a p(x) en \mathbb{R}[x].

Demostración. Observa que q(x)=(x-z)(x-\overline{z}). Recordemos que

    \begin{align*}z+\overline{z}&=\Rea{(z)} \\z\overline{z}&=\norm{z}^2 .\end{align*}

Esto muestra que los coeficientes de q(x) son reales. Usemos el algoritmo de la división en \mathbb{R}[x] para escribir

    \[p(x)=q(x)h(x)+r(x),\]

con r(x) el polinomio cero, o de grado a lo más 1.

Evaluando en z y en \overline{z}, se obtiene que r(z)=r(\overline{z})=0. Como z no es real, entonces z y \overline{z} son distintos. De este modo, r(x) es el polinomio cero. Así, p(x)=q(x)h(x) es una factorización de p(x) en \mathbb{R}[x] que usa a q(x).

\square

Nuevamente, hay que tener cuidado con las hipótesis del resultado anterior. Es muy importante que usemos que z es una raíz compleja y no real de un polinomio con coeficientes reales. En la tarea moral puedes encontrar un contraejemplo si no se satisfacen las hipótesis.

Ejemplo. Consideremos el polinomio

    \[p(x)=2x^3-16x^2+44x-40.\]

Una de sus raíces complejas es 3+i, como puedes verificar. Como es un polinomio con coeficientes reales, el conjugado 3-i también es una raíz. Tal como lo menciona la proposición anterior, el polinomio

    \begin{align*}q(x):&=(x-(3+i))(x-(3-i))\\&=x^2-(3+i+3-i)x+(3+i)(3-i)\\&=x^2-6x+10\end{align*}

es un polinomio de coeficientes reales. Además, divide a p(x) en \mathbb{R}[x] pues haciendo la división polinomial, tenemos que

    \[2x^3-16x^2+44x-40=(2x-4)(x^2-6x+10).\]

\square

Irreducibilidad y factorización en polinomios reales

Con todo lo que hemos hecho hasta ahora, estamos listos para probar los resultados que queremos en \mathbb{R}[x]. Observa que los enunciados de las secciones anteriores involucran a \mathbb{C}, pero los de esta sección ya no. Sin embargo, para hacer las demostraciones tenemos que dar un “brinco momentáneo a los complejos”.

Recuerda que para un polinomio cuadrático q(x)=ax^2+bx+c su discriminante es b^2-4ac.

Teorema (irreducibilidad en polinomios reales). Los únicos polinomios irreducibles en \mathbb{R}[x] son los lineales y los cuadráticos de discriminante negativo.

Demostración. Ya mostramos antes que los polinomios lineales son irreducibles. Si q(x)=ax^2+bx+c es un polinomio cuadrático y r es una raíz real, tenemos que

    \begin{align*}ar^2+br+c&=0\\r^2+\frac{b}{a}r+\frac{c}{a}&=0\\r^2+\frac{b}{a}r+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+\frac{c}{a}&=0\\\left(r+\frac{b}{2a}\right)^2&=\frac{b^2-4ac}{4a^2}.\end{align*}

De esta igualdad, obtenemos que \frac{b^2-4ac}{4a^2}\geq 0 y por lo tanto que b^2-4ac \geq 0. Dicho de otra forma, si b^2-4ac<0, entonces q(x) no tiene raíces reales. De esta misma equivalencia de igualdades se puede ver que si b^2-4ac\geq 0, entonces q(x) sí tiene por lo menos una raíz real.

Supongamos que q(x) es un polinomio cuadrático con discriminante negativo. Si existiera una factorización en \mathbb{R}[x] de la forma q(x)=a(x)b(x), con ninguno de ellos constante, entonces ambos deben tener grado 1. Podemos suponer que a es mónico. Pero entonces a(x)=x-r para r un real, y por el teorema del factor tendríamos que r sería raíz de q(x), una contradicción a la discusión anterior. Esto muestra que q(x) es irreducible.

Falta ver que no hay ningún otro polinomio irreducible en \mathbb{R}[x]. Cuando p(x) es cuadrático de discriminante no negativo, entonces por la fórmula cuadrática tiene al menos una raíz real r y por lo tanto x-r divide a p(x), mostrando que no es irreducible.

Si p(x) es de grado mayor o igual a 3 y tiene una raíz real r, sucede lo mismo. En otro caso, es de grado mayor o igual a 3 y no tiene raíces reales. Pero de cualquier forma tiene al menos una raíz compleja z. Usando la proposición de la sección anterior, tenemos que x^2-(z+\overline{z})x+z\overline{z} es un polinomio de coeficientes reales que divide a p(x) en \mathbb{R}[x], lo cual muestra que no es irreducible.

Concluimos entonces que los únicos polinomios irreducibles en \mathbb{R}[x] son los lineales y los cuadráticos de discriminante negativo.

\square

Ahora sí podemos enunciar el resultado estelar de esta entrada.

Teorema (factorización en polinomios reales). Todo polinomio p(x) en \mathbb{R}[x] distinto del polinomio cero se puede factorizar de manera única como

    \[a(x-r_1)\cdots(x-r_m)(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),\]

en donde:

  • a es un real distinto de cero,
  • m y n son enteros tales que m+2n es igual al grado de p(x),
  • para cada i en \{1,\ldots,m\} se tiene que r_i es raíz real de p(x) y
  • para cada j en \{1,\ldots,n\} se tiene que b_j,c_j son reales tales que b_j^2-4c_j<0.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Si p(x) es irreducible, entonces al factorizar su coeficiente principal a obtenemos la factorización deseada. Si p(x) no es irreducible, procedemos por inducción fuerte sobre el grado d de p(x). El menor grado que debe tener es 2 para no ser irreducible.

Si d=2 y es no irreducible, el resultado es cierto pues se puede factorizar como dos factores lineales y luego factorizar al término a los coeficientes principales de cada factor para que queden mónicos.

Sea d\geq 3 y supongamos el resultado cierto para todo polinomio de grado menor a d. Tomemos un polinomio p(x) de grado d. Por el teorema de irreducibilidad de polinomios reales, p(x) no es irreducible, así que se puede factorizar como p(x)=r(x)s(x) con r(x) y s(x) no constantes, y por lo tanto de grado menor al de p(x). Por hipótesis inductiva, tienen una factorización como la del teorema. La factorización de p(x) se obtiene multiplicando ambas. Esto termina la inducción.

\square

Veamos cómo podemos usar todas estas ideas en un problema en concreto de factorización en polinomios reales.

Problema. Factoriza al polinomio x^{12}-1 en polinomios irreducibles en \mathbb{R}[x].

Solución. Usando identidades de factorización, podemos avanzar bastante:

    \begin{align*}x^{12}-1&=(x^6-1)(x^6+1)\\&=(x^3-1)(x^3+1)(x^6+1)\\&=(x-1)(x^2+x+1)(x+1)(x^2-x+1)(x^2+1)(x^4-x^2+1).\end{align*}

Hasta aquí, x+1 y x-1 son factores lineales. Además, x^2+x+1, x^2-x+1 y x^2+1 son factores cuadráticos irreducibles pues sus discriminantes son, respectivamente, -3,-3,-4.

Aún queda un factor x^4-x^2+1 que por ser de grado 4 no es irreducible. Sumando y restando 2x^2, y luego factorizando la diferencia de cuadrados, tenemos:

    \begin{align*}x^4-x^2+1 &= x^4+2x^2+1-3x^2\\&=(x^2+1)^2-3x^2\\&=(x^2+1-\sqrt{3}x)(x^2+1+\sqrt{3}x).\end{align*}

Cada uno de estos factores cuadráticos tiene discriminante -1, y por lo tanto es irreducible. Concluimos entonces que la factorización en irreducibles de x^{12}-1 en \mathbb{R}[x] es

    \begin{align*}(x-1)(x&+1)(x^2+1)(x^2+x+1)\\&(x^2-x+1)(x^2+\sqrt{3}x+1)(x^2-\sqrt{3}x+1).\end{align*}

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Haz la construcción formal de \mathbb{C}[x] a partir de sucesiones de complejos. Muestra que se pueden expresar en la notación de x y sus potencias. Prueba los teoremas que hemos visto hasta ahora. Todo debe ser análogo y te servirá mucho para repasar los conceptos vistos hasta ahora.
  • Muestra la unicidad de la factorización en \mathbb{C}[x] y en \mathbb{R}[x].
  • Sea z un complejo no real. Muestra que que x-z y x-\overline{z} son polinomios primos relativos en \mathbb{C}[x].
  • Hay que tener cuidado en las hipótesis de los teoremas de esta entrada. Muestra que 3 es una raíz del polinomio x^3-6x^2+11x-6, pero que x^2-6x+9 no divide a este polinomio.
  • Argumenta por qué en el teorema de factorización en polinomios reales sucede que m+2n es el grado de p(x).

Álgebra Superior II: Algoritmo de la división, teorema del factor y teorema del residuo

Introducción

Tal vez te hayas dado cuenta de que ya hablamos de suma, producto y resta de polinomios, pero aún no hemos hablado de la división. Una razón es que no todos los polinomios tienen inverso multiplicativo. Sin embargo, los polinomios sí tienen un algoritmo de la división parecido al que estudiamos para el conjunto \mathbb{Z} de enteros. A partir de él podemos extender varios de los conceptos aritméticos de \mathbb{Z} a \mathbb{R}[x]: divisibilidad, máximo común divisor, factorización, etc. Luego, estos aspectos se pueden conectar a evaluación de polinomios mediante el un teorema clave: el teorema del factor.

Como recordatorio, hasta ahora, ya construimos el anillo \mathbb{R}[x] de polinomios con coeficientes reales y vimos que era un dominio entero. También, vimos que una copia de \mathbb{R} vive en \mathbb{R}[x], con lo justificamos pasar de la notación de sucesiones, a la notación usual de polinomios usando el símbolo x y sus potencias. En la entrada anterior también hablamos de del grado de un polinomio (cuando no es el polinomio cero), de la evaluación de polinomios y de raíces.

Algoritmo de la división

Recordemos que en \mathbb{Z} tenemos un algoritmo de la división que dice que para enteros a y b\neq 0 existen únicos enteros q y r tales que a=qb+r y 0\leq r < |b|.

En \mathbb{R}[x] hay un resultado similar. Pero hay que tener cuidado al generalizar. En \mathbb{R}[x] no tenemos una función valor absoluto que nos permita decir que encontramos un “residuo más chiquito”. Para la versión polinomial del algoritmo de la división tenemos que usar una función que diga “qué tan grande es un polinomio”: el grado.

Teorema (algoritmo de la división en \mathbb{R}[x]). Sean f(x) y g(x) polinomios en \mathbb{R}[x], donde g(x) no es el polinomio cero. Entonces, existen únicos polinomios q(x) y r(x) en \mathbb{R}[x] tales que

    \[f(x)=q(x)g(x)+r(x),\]

en donde r(x) es el polinomio cero, o \deg(r(x))<\deg(g(x)).

Demostración. Probaremos la parte de existencia. La parte de unicidad queda como tarea moral. Para probar la existencia, haremos inducción fuerte sobre el grado de f(x). Sin embargo, antes de poder hacer esto, necesitamos hacer el caso en el que f(x) no tiene grado, es decir, cuando es el polinomio cero.

Si f(x) es el polinomio cero, entonces g(x)=0 y r(x)=0 son polinomios que funcionan, pues 0=0\cdot 0 y r(x) es el polinomio cero.

Asumamos entonces a partir de ahora que f(x) no es el polinomio cero. Hagamos inducción sobre el grado de f(x). Si f(x) es de grado 0, entonces es un polinomio de la forma f(x)=a para a en \mathbb{R}. Hay dos casos de acuerdo al grado de g(x):

  • Si g(x) es de grado 0, es de la forma g(x)=b para un real no cero y podemos tomar q(x)=a/b y r(x)=0.
  • Si g(x) es de grado mayor a 0, entonces tomamos q(x)=0 y r(x)=f(x). Esta es una elección válida pues se cumple

        \begin{align*}\deg(r(x))&=\deg(f(x))\\& =0\\& <\deg(g(x)).\end{align*}

Esto termina la demostración de la base inductiva.

Supongamos que el resultado es cierto para cuando f(x) tiene grado menor a n y tomemos un caso en el que f(x) tiene grado n. Hagamos de nuevo casos con respecto al grado de g(x), al que llamaremos m. Si m>n, entonces tomamos q(x)=0 y r(x)=f(x), que es una elección válida pues

    \[\deg(r(x))=n<m.\]

En el caso de que m\leq n, escribamos explícitamente a f(x) y a g(x) en términos de sus coeficientes como sigue:

    \begin{align*}f(x)&=a_0+\ldots+a_nx^n\\g(x)&=b_0+\ldots+b_mx^m.\end{align*}

Consideremos el polinomio

    \[h(x):=f(x)-\frac{a_n}{b_m}x^{n-m}g(x).\]

En h(x) justo se cancela el término con x^n, así que su grado es menor al de f(x) y por lo tanto podemos usar la hipótesis inductiva para escribir

    \[h(x)=t(x)g(x)+u(x)\]

con u(x) el polinomio 0 o \deg(u(x))<\deg(g(x)). De esta forma,

    \begin{align*}f(x)&=t(x)g(x)+u(x)+\frac{a_n}{b_m}x^{n-m}g(x)\\&=\left(t(x)+\frac{a_n}{b_m}x^{n-m}\right)g(x)+u(x).\end{align*}

Así, eligiendo q(x)=t(x)+\frac{a_n}{b_m}x^{n-m} y r(x)=u(x), terminamos la hipótesis inductiva.

\square

Aplicando el algoritmo de la división de forma práctica

Veamos ahora un ejemplo de cómo se puede aplicar este teorema anterior de forma práctica. A grandes rasgos, lo que podemos hacer es “ir acumulando” en q(x) a los términos \frac{a_n}{b_m}x^{n-m} que van apareciendo en la inducción, y cuando h(x) se vuelve de grado menor a q(x), lo usamos como residuo. Hagamos un ejemplo concreto.

Ejemplo. Tomemos f(x)=x^5+x^4+x^3+x^2+2x+3 y g(x)=x^2+x+1. Vamos a aplicar iteradamente las ideas de la demostración del teorema anterior para encontrar los polinomios q(x) y r(x) tales que

    \[f(x)=q(x)g(x)+r(x),\]

con r(x) el polinomio 0 o de grado menor a g(x).

Como el grado de f(x) es 5, el de g(x) es 2 y 5>2, lo primero que hacemos es restar x^{5-2}g(x)=x^3g(x) a f(x) y obtenemos:

    \[h_1(x)=f(x)-x^3g(x)=x^2+2x+3.\]

Hasta ahora, sabemos que q(x)=x^3+\ldots, donde en los puntos suspensivos va el cociente que le toca a h_1(x)=x^2+2x+3. Como el grado de h_1(x) es 2, el de g(x) es 2 y 2\geq 2, restamos x^{2-2}g(x)=1\cdot g(x) a h_1(x) y obtenemos.

    \[h_2(x)=h_1(x)-g(x)=x+2.\]

Hasta ahora, sabemos que q(x)=x^3+1+\ldots, donde en los puntos suspensivos va el cociente que le toca a h_2(x)=x+2. Como el grado de h_2(x) es 1, el de g(x) es 2 y 2>1, entonces el cociente es 0 y el residuo es h_2(x)=x+2.

De esta forma, concluimos que

    \[q(x)=x^3+1\]

y

    \[r(x)=x+2.\]

En conclusión,

    \begin{align*}x^5+ & x^4+x^3+x^2+2x+3\\&= (x^3+1)(x^2+x+1) + x+2.\end{align*}

Esto se puede verificar fácilmente haciendo la operación polinomial.

\square

Hay una forma más visual de hacer divisiones de polinomios “haciendo una casita”. Puedes ver cómo se hace esto en el siguiente video en Khan Academy, y los videos que le siguen en la lista.

Divisibilidad en polinomios

Cuando trabajamos en \mathbb{Z}, estudiamos la noción de divisibilidad. Si en el algoritmo de la división obtenemos que r(x) es el polinomio 0, entonces obtenemos una noción similar para \mathbb{R}[x].

Definición. Sean f(x) y g(x) polinomios en \mathbb{R}[x]. Decimos que g(x) divide a f(x) si existe un polinomio q(x) tal que f(x)=q(x)g(x).

Ejemplo. El polinomio x^3-1 divide al polinomio x^4+x^3-x-1, pues

    \[x^4+x^3-x-1 = (x^3-1)(x+1).\]

\square

Ejemplo. Si g(x) es un polinomio no cero y constante, es decir, de la forma g(x)=a para a\neq 0 un real, entonces divide a cualquier otro polinomio en \mathbb{R}[x]. En efecto, si

    \[f(x)=a_0+a_1x+\ldots + a_nx^n\]

es cualquier polinomio y tomamos el polinomio

    \[q(x)=\frac{a_0}{a}+\frac{a_1}{a}x+\ldots + \frac{a_n}{a}x^n,\]

entonces f(x)=g(x)q(x).

\square

El último ejemplo nos dice que los polinomios constantes y no cero se comportan “como el 1 se comporta en los enteros”. También nos dice que cualquier polinomio tiene una infinidad de divisores. Eso nos pone en aprietos para definir algo así como los “polinomios primos” en términos del número de divisores. En la siguiente sección hablaremos de cómo hacer esta definición de manera adecuada.

Polinomios irreducibles

Cuando trabajamos con enteros, vimos que es muy útil poder encontrar la factorización en términos de números primos. En polinomios no tenemos “polinomios primos”, pero tenemos un concepto parecido.

Definición. Un polinomio p(x) en \mathbb{R}[x] es irreducible en \mathbb{R}[x] si no es un polinomio constante, y no es posible escribirlo como producto de dos polinomios en \mathbb{R}[x] no constantes.

Ejemplo. El polinomio

    \[x^4+x^2+1\]

no es irreducible en \mathbb{R}[x] pues

    \[x^4+x^2+1=(x^2+x+1)(x^2-x+1).\]

Los polinomios x^2+x+1 y x^2-x+1 sí son irreducibles en \mathbb{R}[x]. Más adelante veremos por qué.

\square

La razón por la cual quitamos a los polinomios constantes es parecida a la cual en \mathbb{Z} no consideramos que 1 sea primo: ayuda a enunciar algunos teoremas más cómodamente.

Hay unos polinomios que fácilmente se puede ver que son irreducibles: los de grado 1.

Proposición. Los polinomios de grado 1 en \mathbb{R}[x] son irreducibles.

Demostración. Si f(x) es un polinomio de grado 1, entonces no es constante. Además, no se puede escribir a f(x) como el producto de dos polinomios no constantes pues dicho producto tiene grado al menos 2.

\square

Hay otros polinomios en \mathbb{R}[x] que no son de grado 1 y que son irreducibles. Por ejemplo, con la teoría que tenemos ahora te debe ser fácil mostrar de tarea moral que x^2+1 es irreducible en \mathbb{R}[x].

La razón por la que siempre insistimos en que la irreducibilidad sea en \mathbb{R}[x] es por que a veces un polinomio no se puede factorizar en polinomios con coeficientes reales, pero sí con coeficientes complejos. Aunque x^2+1 sea irreducible en \mathbb{R}[x], si permitimos coeficientes complejos se puede factorizar como

    \[x^2+1=(x+i)(x-i).\]

Más adelante seguiremos hablando de irreducibilidad. Por ahora, nos enfocaremos en los polinomios de grado 1.

Teorema del factor

Una propiedad clave de los polinomios de grado 1 es que es que es lo mismo que x-a divida a un polinomio p(x), a que a sea una raíz de p(x).

Teorema (del factor). Sea a un real y p(x) un polinomio en \mathbb{R}[x]. El polinomio x-a divide a p(x) si y sólo si p(a)=0.

Demostración. De acuerdo al algoritmo de la división, podemos escribir

    \[p(x)=(x-a)q(x)+r(x),\]

en donde r(x) es 0 o un polinomio de grado menor estricto al de x-a. Como el grado de x-a es 1, la única posibilidad es que r(x) sea un polinomio constante r(x)=r. Así, p(x)=(x-a)q(x)+r, con r un real.

Si p(a)=0, tenemos que

    \[0=p(a)=(a-a)q(a)+r=r,\]

de donde r=0 y entonces p(x)=(x-a)q(x), lo que muestra que x-a divide a p(x).

Si x-a divide a p(x), entonces p(x)=(x-a)q(x), de donde p(a)=(a-a)q(a)=0, por lo que a es raíz de p(x).

\square

Ejemplo. Consideremos el polinomio p(x)=x^3-6x^2+11x-6. ¿Podremos encontrar algunos polinomios lineales que lo dividan? A simple vista, notamos que la suma de sus coeficientes es 1-6+11-6=0. Esto nos dice que p(1)=0. Por el teorema del factor, tenemos que x-1 divide a p(x). Tras hacer la división, notamos que

    \[p(x)=(x-1)(x^2-5x+6).\]

Veamos si podemos seguir factorizando polinomios lineales que no sean x-1. Si un polinomio x-a divide a p(x), por el teorema del factor debemos tener

    \[0=p(a)=(a-1)(a^2-5a+6).\]

Como a\neq 1, entonces a-1\neq 0, de modo que tiene que pasar

    \[a^2-5a+6=0,\]

en otras palabras, hay que encontrar las raíces de x^2-5x+6.

Usando la fórmula general cuadrática, tenemos que las raíces de x^2-5x+6 son

    \begin{align*}x_1&=\frac{5+\sqrt{25-24}}{2}=3\\x_2&=\frac{5-\sqrt{25-24}}{2}=2.\end{align*}

Usando el teorema del factor, concluimos que tanto x-2 como x-3 dividen a p(x). Hasta ahora, sabemos entonces que

    \[p(x)=(x-1)(x-2)(x-3)h(x),\]

donde h(x) es otro polinomio. Pero (x-1)(x-2)(x-3) ya es un polinomio de grado 3, como p(x) y su coeficiente de x^3 es 1, como el de p(x). Concluimos que h(x)=1 y entonces

    \[p(x)=(x-1)(x-2)(x-3).\]

\square

Teorema del residuo

En realidad, la técnica que usamos para el teorema del factor nos dice algo un poco más general. Cuando escribimos

    \[p(x)=(x-a)q(x)+r\]

y evaluamos en a, obtenemos que p(a)=r. Reescribimos esta observación como un teorema.

Teorema (del residuo). Sea a un real y p(x) un polinomio en \mathbb{R}[x]. El residuo de dividir p(x) entre x-a es p(a).

Problema. Encuentra el residuo de dividir el polinomio p(x)=x^8-x^5+2x^3+2x entre el polinomio x+1.

Solución. Se podría hacer la división polinomial, pero esto es largo y no nos piden el polinomio cociente, sólo el residuo. Así, podemos resolver este problema más fácilmente usando el teorema del residuo.

Como x+1=x-(-1), el residuo de la división de p(x) entre x+1 es p(-1). Este número es

    \begin{align*}p(-1)&=(-1)^8-(-1)^5+2(-1)^3+2(-1)\\&=1+1-2-2\\&=-2.\end{align*}

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que el polinomio x no tiene inverso multiplicativo.
  • Demuestra la parte de unicidad del algoritmo de la división.
  • Muestra que el polinomio x^2+1 es irreducible en \mathbb{R}[x]. Sugerencia. Procede por contradicción. Una factorización tiene que ser de la forma x^2+1=p(x)q(x) con p y q de grado 1.
  • Factoriza en términos lineales al polinomio p(x)=x^3-12x^2+44x-48. Sugerencia. Intenta enteros pequeños (digamos de -3 a 3) para ver si son raíces. Uno de ellos funciona. Luego, usa el teorema del factor para expresar a p(x) como un polinomio lineal por uno cuadrático. Para encontrar el resto de factores lineales, encuentra las raíces del cuadrático.
  • Encuentra el residuo de dividir el polinomio x^5-x^4+x^3-x^2+x-1 entre el polinomio x-2.

Seminario de Resolución de Problemas: Identidades algebraicas y binomio de Newton

Introducción a entradas de álgebra

Cuando en matemáticas hablamos de álgebra, se abarca una gran cantidad de ideas, que van desde el álgebra de secundaria, en la cual factorizamos, despejamos y usamos identidades algebraicas, hasta el álgebra abstracta, que estudia estructuras algebraicas más generales como grupos, anillos y campos. Todas estas ideas tienen amplias aplicaciones en la resolución de problemas. En esta entrada, y las que vendrán a continuación, veremos numerosos ejemplos de esto

Para empezar, hablaremos de álgebra en el sentido de secundaria y preparatoria. Veremos que estas ideas, aunque sencillas, son muy versátiles. Después hablaremos de polinomios y de dos resultados fundamentales en su teoría: el teorema de factorización única y el teorema de la identidad. Los polinomios abundan en las matemáticas, y un correcto entendimiento de ellos abre muchas puertas en la resolución de problemas. En una entrada final daremos algunas ideas de otras estructuras algebraicas como grupos, anillos y campos.

Más adelante en el curso hablaremos con detalle de otros dos temas relacionados con álgebra: desigualdades y álgebra lineal.

Como lo hemos hecho hasta ahora, la idea no es profundizar demasiado en el desarrollo de la teoría algebraica. Para eso, es más recomendable llevar buenos cursos de distintos tipos de álgebra a nivel superior. Aquí en el blog hay material de los cursos Álgebra Superior II y Álgebra Lineal I que imparto en la Facultad de Ciencias de la UNAM.

Identidades algebraicas

Comenzaremos hablando de identidades algebraicas. Una identidad algebraica es una igualdad que se satisface para ciertas variables, independientemente del valor que tomen. Algunos ejemplos son las igualdades que se aprenden a nivel secundaria y bachillerato:

    \begin{gather*}a^2-b^2=(a-b)(a+b),\\a^2+2ab+b^2=(a+b)^2,\\a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2,\\a^n-b^n = (a-b)(a^{n-1}+a^{n-2}b+\ldots+ab^{n-2}+b^{n-1}).\end{gather*}

Varias de las identidades algebraicas nos permiten desarrollar o factorizar una expresión. Factorizarla es bastante útil en problemas de teoría de números, en donde es importante conocer qué números dividen a la expresión. Desarrollarla a veces nos permite trabajar con una suma de términos simétricos, que podemos estudiar con técnicas de polinomios o con desigualdades.

Veamos algunos ejemplos.

Problema. Muestra que si n es un entero, entonces n^4-20n^2+4 no es un número primo.

Sugerencia pre-solución. Intenta formular un problema equivalente al factorizar la expresión. Hay más de un camino por el que puedes proceder para factorizar, pero no todos te llevan a una solución. Intenta completar cuadrados de distintas formas y ve si encuentras un patrón.

Solución. Reescribimos la expresión como sigue:

    \begin{align*}n^4-20n^2+4&=n^4-4n^2+4-16n^2\\&=(n^2-2)^2-(4n)^2\\&=(n^2-4n-2)(n^2+4n-2).\end{align*}

Para ver que la expresión no es un primo, basta con ver que ninguno de estos factores puede ser igual a 1 o -1. Si n^2-4n-2=1 o n^2+4n-2=1, entonces n^2=\pm 4n+3. Trabajando módulo 4, tendríamos n^2\equiv 3 \pmod{4}, lo cual es imposible.

Si n^2-4n-2=-1 o n^2+4n-2=-1, entonces sumando 6 de ambos lados tenemos

    \[(n\pm 2)^2=n^2\pm 4n+4=5.\]

Esto es imposible pues 5 no es el cuadrado de un entero. Así, n^4-20n^2+4 se puede factorizar en factores distintos de 1 y -1 y por lo tanto no es primo.

\square

El siguiente problema fue parte de la 1a Olimpiada Mexicana de Teoría de Números. Veremos dos soluciones. Ambas usan ideas algebraicas, pero son distintas entre sí.

Problema. Sean a,b,c,d enteros tales que

    \begin{align*}ab + bc + ca &= 1\\ ad + dc + ca &= 1\\ ab + bd + da &= 1.\end{align*}

Determina todos los valores posibles que puede tomar bc+cd+db.

Sugerencia pre-solución 1. Hay varias formas de aprovechar la simetría del problema. Intenta manipular las ecuaciones para obtener información y recuerda que es importante usar que a, b, c son enteros.

Solución 1. A partir de la primera y segunda ecuación, tenemos que

    \[ab+bc+ca=ad+dc+ca,\]

de donde 0=ad+dc-ab-bc=(a+c)(d-b). De aquí tenemos dos opciones: a=-c o b=d. Si a=-c, de la segunda ecuación obtenemos

    \[1=ad+dc+ca=-c^2,\]

lo cual es imposible. Así, concluimos que b=d.

Por simetría, concluimos que c=b, así que b=c=d. Tras esto, las tres ecuaciones se reducen a una sola

    \[1=2ab+b^2=b(2a+b).\]

Las únicas factorizaciones de 1 en enteros son 1=1\cdot 1 o 1=(-1)(-1), de modo que b=2a+b, de donde a=0 y b=\pm 1. De cualquier forma, la expresión que buscamos es bc+cd+db=3b^2=3.

\square

Sugerencia pre-solución 2. Formula un problema equivalente sumando a^2 en ambos lados en cada una de las ecuaciones.

Solución 2. Sumando a^2 en ambos lados de la primer ecuación obtenemos

    \[a^2+1=a^2+ab+bc+ca=(a+b)(a+c).\]

Las otras dos ecuaciones dan expresiones simétricas. Multiplicando las tres, tenemos

    \[(a^2+1)(a^2+1)^2=(a+b)^2(b+c)^2(c+a)^2.\]

El lado derecho es el cuadrado de un entero, así que el izquierdo también debe serlo, de modo que a^2+1 debe ser el cuadrado de un entero. Pero los únicos cuadrados a distancia 1 son 0 y 1, de donde a^2+1=1, y así a=0. Las ecuaciones se convierten entonces en bc=dc=bd=1, de donde la suma de las tres es 3.

\square

Demostraciones del binomio de Newton

La siguiente es una de las identidades algebraicas más importantes.

Teorema (binomio de Newton). Para a y b números reales y n un entero no negativo, se tiene que

    \begin{align*}(a+b)^n=\sum_{j=0}^n \binom{n}{j}a^{n-j}b^j\end{align*}

El término de la derecha es

    \[a^n+\binom{n}{1}a^{n-1}b+\ldots+\binom{n}{n-1}ab^{n-1} + b^n.\]

Veamos algunas demostraciones del teorema de binomio de Newton, que usan ideas un poco distintas. La primera usa ideas combinatorias. La segunda, ideas más algebraicas. La tercera es menos general, pero usa ideas geométricas.

Demostración combinatoria

Demostración 1. Pensemos al lado izquierdo como el producto

    \[(a+b)(a+b)\ldots(a+b)(a+b).\]

¿Cómo se obtienen factores al desarrollar esta expresión? En cada uno de los n paréntesis hay que elegir o un a, o un b. Así, cada sumando es producto de n letras.

Si elegimos j veces b, entonces elegimos n-j veces a. ¿De cuántas formas podemos elegir j veces b? Tantas como subconjuntos de tamaño j de un conjunto de n elementos, es decir, \binom{n}{j}.Así, el término a^{n-j}b^j aparece \binom{n}{j} veces.

Para terminar, notemos que j puede ir desde 0 (no elegir ningún b), hasta n (no elegir ningún a).

\square

La demostración anterior es combinatoria, pues está usando argumentos de conteo. Está contando de dos formas distintas los términos que aparecen en el producto desarrollado. Además, está usando la interpretación combinatoria de los coeficientes binomiales.

Demostración algebraica

Demostración 2. Si b=0, entonces en ambos lados tenemos a^n, ya que el único sumando en el que no aparece b es el primero. Tenemos algo análogo si a=0. De otra forma, podemos asumir que a y b no son cero y dividir ambos lados de la igualdad que queremos entre b^n. Definiendo x=a/b, tenemos que mostrar que:

    \[(x+1)^n= \sum_{j=0}^n \binom{n}{j}x^{n-j}.\]

Esta igualdad es claramente cierta para n=0, pues en ambos lados obtenemos 1, y para n=1, pues en ambos lados obtenemos x+1. Procediendo por inducción (explicamos cada paso con un poco de detalles más abajo):

    \begin{align*}(x+1)^{n+1}&=(x+1)(x+1)^n\\& = (x+1)\sum_{j=0}^n \binom{n}{j} x^{n-j}\\&=\sum_{j=0}^n \binom{n}{j} x^{n-j+1}+\sum_{j=0}^n \binom{n}{j}x^{n-j}\\&  = \sum_{j=0}^{n+1} \binom{n}{j-1} x^{n-j}+\sum_{j=0}^{n+1} \binom{n}{j}x^{n-j}\\&=\sum_{j=0}^{n+1}\left(\binom{n}{j-1}+\binom{n}{j}\right) x^{n-j}\\&=\sum_{j=0}^{n+1}\binom{n+1}{j} x^{n-j}.\end{align}

El primer paso es claro. En el segundo usamos hipótesis inductiva. Luego, hacemos la multiplicación por x+1. El siguiente paso puede ser un poco confuso, pues parece que “agregamos términos”, pero en la segunda suma sólo agregamos \binom{n}{n+1}x^{-1}=0. En la primer suma hicimos un shift o desfase: los términos que estaban antes para j de 0 a n, ahora están para j de 1 a n+1. Además, agregamos el término \binom{n}{-1}x^{n}=0. En el siguiente paso usamos la identidad de Pascal:

    \[\binom{n}{j-1}+\binom{n}{j}=\binom{n+1}{j},\]

que se puede demostrar combinatoriamente, o directamente de manera algebraica a partir de la fórmula para coeficientes binomiales.

Con esto termina la demostración por inducción.

\square

Esta segunda demostración es mucho más algebraica, es decir, usa ideas de cómo se manipulan las expresiones con variables. El primer paso, en el que reducimos el problema a cuando un término es 1, se llama homogenización. En realidad no era estrictamente necesario hacerlo, pero simplifica la notación. En las sumas hicimos un shift, que es otra técnica que se usa al estudiar sumas y series.

Demostración geométrica

Daremos una última demostración del teorema del binomio de Newton, pero sólo para el caso n=2. Lo que tenemos que demostrar es simplemente la identidad

    \[(a+b)^2=a^2+2ab+b^2.\]

Para este caso, hay una bonita “demostración sin palabras”:

Binomio al cuadrado mostrado geométricamente
Demostración visual del binomio al cuadrado

Esta demostración es geométrica, pues estamos interpretando a la igualdad como una igualdad de áreas. Estamos usando una fórmula de área para cuadrados y rectángulos. Además, estamos usando que el área de una figura es aditiva, es decir, que es igual a la suma de áreas de figuras en las que queda subdividida.

Puedes elegir tu demostración favorita del binomio de Newton. Sin embargo, en resolución de problemas es importante saber proceder con varios acercamientos. Hay problemas en los que el acercamiento combinatorio, el algebraico o el geométrico es ventajoso, y por ello es mejor tener buena práctica en todos ellos.

Una aplicación del binomio de Newton en teoría de números

En entradas anteriores ya hemos usado el teorema del binomio de Newton en repetidas ocasiones, por ejemplo, en la entrada de aritmética de números complejos. Veamos un ejemplo más.

Problema. Sean a y b enteros primos relativos. Muestra que para todo entero positivo n, se tiene que a^n y b^n son primos relativos.

Sugerencia pre-problema. Hay varias formas de dar una solución de esto. Una es analizando a los enteros primo por primo. Sin embargo, existe una solución usando binomio de Newton y la caracterización en términos de combinaciones lineales enteras para primos relativos.

Solución. Como a y b son primos relativos, existe una combinación lineal entera de ellos que da 1, digamos

    \[ax+by=1.\]

Elevando esta igualdad a la 2n-1 tenemos

    \[1=1^{2n-1}=(ax+by)^{2n-1}.\]

Abriendo el último término con binomio de Newton queda

    \[\sum_{j=0}^{n-1} \binom{2n-1}{j} a^{2n-1-j}b^j +  \sum_{j=n}^{2n-1}  \binom{2n-1}{j} a^{2n-1-j}b^j,\]

y factorizando a^n del primer sumando y b^n del segundo,

    \[a^n \sum_{j=0}^{n-1} \binom{2n-1}{j} a^{n-1-j}b^j + b^n  \sum_{j=n}^{2n-1}  \binom{2n-1}{j} a^{2n-1-j}b^{j-n}.\]

Lo que queda a la derecha es una combinación lineal entera de a^n y b^n igual a 1, y por lo tanto son primos relativos.

\square

Más problemas

En la siguiente entrada hablaremos de la identidad de Gauss para suma de cuadrados y de la identidad para x^3+y^3+z^3-3xyz, las cuales se usan frecuentemente en resolución de problemas. Además, puedes encontrar más problemas de identidades algebraicas en la Sección 4.1 del libro Problem Solving through Problems de Loren Larson.