Archivo de la etiqueta: factorización

Álgebra Superior II: Teorema fundamental de la aritmética e infinidad de números primos

Por Ana Ofelia Negrete Fernández

Introducción

En la entrada anterior comenzamos a hablar de los números primos. Lo que ahora veremos es que, en un sentido muy preciso, los números primos son los bloques con los cuales se construyen todos los demás enteros. El enunciado preciso estará dado por el teorema fundamental de la aritmética.

A grandes rasgos, el teorema fundamental de la aritmética afirma que todo entero se puede escribir como producto de primos, quizás algunos repetidos. Nos referimos a situaciones del tipo
\begin{align*}
8 &= 2 \cdot 2 \cdot 2 = 2^3,\\
13 &= 13^1,\\
152 &= 2^3\cdot 19, \enspace \text{etc.}
\end{align*}

Otro resultado que demostraremos en esta entrada es que hay una infinidad de primos. Euclides fue una de las primeras personas de quienes nos queda registro que lo notó. Veremos una demostración similar a la que él dió.

El teorema fundamental de la aritmética

El teorema fundamental de la artimética dice que cualquier número entero es producto de números primos. Pero, más aún, nos dice que este producto es único, bajo ciertas condiciones que le ponemos a la representación. Para simplificar la presentación, estudiaremos primero lo que dice el enunciado para enteros positivos.

Teorema. Sea $n$ un entero positivo. Entonces, existe un único entero $k$ y únicos números primos $p_1\leq p_2 \leq p_3 \leq \ldots \leq p_k$ tales que $$n=p_1\cdot p_2\cdot \ldots \cdot p_k.$$

Por ejemplo, consideremos el número $1060$. Notemos que en efecto se puede escribir como producto de primos de la siguiente manera: $1060=2\cdot 2 \cdot 5 \cdot 53$. El teorema fundamental de la aritmética nos dice que esta es la única manera en la que podemos ponerlo como producto de primos. Si lo piensas un poco, no es totalmente obvio. ¿Qué impide que, por ejemplo, no pase que $1060$ tenga otra posible representación en donde el $5$ aparezca más veces, o el $2$ menos veces? Es lo que debemos estudiar.

Demostración de la existencia

Vamos a partir la demostración del teorema fundamental de la aritmética en dos partes. Primero veremos la existencia, y después la unicidad. Así, nos enfocaremos primero en ver que cualquier entero positivo tiene una factorización en números primos.

La demostración será por inducción fuerte. Si $n=1$, la factorización es la factorización vacía, en donde $k=0$, y como no estamos multiplicando nada obtenemos $1$. Si $n=2$, entonces la factorización es precisamente $2=2$, pues $2$ es un número primo. Supongamos que el resultado es cierto hasta antes de cierto número fijo $n$ y veamos qué pasa con $n$. Si $n$ es un número primo, entonces $n=n$ ya es una factorización como las que buscamos. Si $n$ no es un número primo, entonces lo podemos factorizar como $n=ab$, en donde $a$ y $b$ son enteros positivos distintos de $1$. Por ello, cada uno de $a$ y $b$ son menores que $n$ y por hipótesis inductiva tienen una factorización en primos, digamos
\begin{align*}
a&=q_1\cdot q_2 \cdot \ldots\cdot q_l\\
b&=r_1\cdot r_2 \cdot \ldots \cdot r_m.
\end{align*}

Así, renombrando $q_1,\ldots,q_l,r_1,\ldots,r_m$ como $p_1\leq \ldots \leq p_k$ (donde $k=l+m$) para que queden en orden no decreciente obtenemos la factorización $$n=p_1\cdot p_2\cdot \ldots \cdot p_k $$ buscada. Esto termina la prueba de la primera parte.

Demostración de la unicidad

Veamos ahora que las factorizaciones en primos son únicas. Una vez más, procedemos por inducción fuerte. El resultado claramente es cierto para $n=1$ y $n=2$. Supongamos que el resultado es cierto hasta antes de cierto entero $n$ dado y supongamos que tenemos dos factorizaciones para $n$:

\begin{align*}
n&=p_1\cdot p_2 \cdot \ldots\cdot p_k\\
n&=q_1\cdot q_2 \cdot \ldots \cdot q_l.
\end{align*}

Notemos que $p_k$ es un divisor de $n$, así que debe dividir a $q_1\cdot\ldots\cdot q_l$. Por una propiedad de divisibilidad que vimos en la entrada pasada, debe suceder que o bien $p_k$ divide a $q_l$, o bien que divide a $q_1\cdot \ldots \cdot q_{l-1}$. Si pasa lo segundo, debe dividir o bien a $q_{l-1}$, o bien a $q_1\cdot \ldots \cdot q_{l-2}$. Y así sucesivamente, de modo que $p_k$ debe dividir a alguno de los $q_i$. Pero como $p_k$ y $q_i$ son primos, debe suceder entonces que $p_k=q_i$. Tras cancelar este término en ambas expresiones de $n$, llegamos a que:

$$p_1\cdot p_2 \cdot \ldots\cdot p_{k-1}=q_1\cdot \ldots \cdot q_{i-1} \cdot q_i \cdot \ldots \cdot q_l,$$

pero esto es una igualdad de factorizaciones en primos para un número menor estricto a $n$. Por hipótesis inductiva, ambas factorizaciones deben de ser la misma. Así, ambas factorizaciones de $n$ son la misma, pues se obtienen a partir de estas multiplicando por el número $p_k=q_i$.

$\square$

Otra forma de escribir el teorema fundamental de la aritmética

Hay otra manera de escribir el teorema fundamental de la aritmética, en donde los primos iguales se agrupan en un mismo término, y se coloca la potencia correspondiente.

Teorema. Sea $n$ un entero positivo. Existe un único entero no negativo $k$, únicos primos $p_1\leq \ldots \leq p_k$ y únicos exponentes $\alpha_1,\ldots,\alpha_k$ tales que:

$$n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot \ldots \cdot p_k^{\alpha_k}.$$

En realidad esta segunda versión del teorema se deduce de manera inmediata de la anterior.

Ejemplo. Consideremos el número $36$. El $2$ lo divide, así que $36=18\cdot 2$. Luego, el $3$ divide al $18$, de manera que $36=3\cdot 6\cdot 2$. Finalmente, notamos que $6=2\cdot 3$, de donde $36=3\cdot 2 \cdot 3 \cdot 2$. Para obtener la «forma estándar» de la factorización, agrupamos los primos iguales, les ponenmos el orden correspondiente y escribimos en orden creciente de primos. Así, la factorización de $36$ quedaría $36=2^2\cdot 3^2$.

$\square$

El conjunto de primos es infinito

En esta sección queremos demostrar otro resultado importante sobre el conjunto de los números primos.

Teorema. El conjunto de números primos es infinito.

Para dar la demostración, usaremos el método de demostración por contradicción, es decir, partiremos de que el conjunto de primos no es finito y, eventualmente se disparatará el asunto.

Este en efecto parece ser el método más conveniente. Sería difícil usar inducción dado que, si bien el conjunto de primos puede indexarse por $p_1, p_2, p_3, \ldots$, no es fácil determinar cuál es el primo que sigue en la lista. O bien, dado un entero $n$, no es fácil determinar si $n+1$ será o no un número primo. Resultaria igualmente difícil intentar la demostración por algún otro método directo.

La idea que usaremos es la siguiente. Si hay finitos primos, digamos $k$, significa que se puede crear una lista finita con ellos: $p_1, p_2, \ldots , p_k$. Veremos que siempre debe existir un primo distinto de los de la lista, lo que llevará a una contradicción con la hipótesis de que sólo existían $k$ primos.

Veamos primero unos casos partiulares del argumento que usaremos. Supongamos que sólo existieran $2$ primos, el $2$ y el $3$. Consideremos el número $z = 2\cdot 3 + 1$. De acuerdo al teorema fundamental de la aritmética, este número o bien es primo, o bien debe tener un divisor primo $p$. No puede ser primo, pues dijimos que los únicos primos eran $2$ y $3$. No puede ser divisible entre $2$ pues deja residuo $1$ al hacer la división. Tampoco puede ser divisible entre $3$ pues también deja residuo $1$ al hacer la división. Así, debe haber otro primo que no sea $2$ y $3$ y que divida a este número. Esto contradice que sólo existieran $2$ primos.

Veamos otro ejemplo. Supongamos que hay únicamente 4 primos: $2,3,5,7$. Consideremos el número $2 \cdot 3 \cdot 5 \cdot 7 + 1 = 211.$ Si dividimos este número entre $2$, nos da $211=105\cdot 2 +1$, así que $2\nmid 211$. Si lo dividimos entre $3$, nos da $211=70\cdot 3 + 1$, así que $3\nmid 211$. De manera similar, se puede ver que las divisiones entre $5$ y $7$ también dejan residuo $1$, así que $5 \nmid 211$ y $7\nmid 211$.

Por el teorema fundamental de la aritmética, debe haber algún primo que divida a $211$. Pero estamos suponiendo que los únicos primos que existen son $2,3,5,7$ y acabamos de ver que ninguno de estos funciona. ¡Esto es una contradicción! Lo mismo ocurrirá sin importar la cantidad de primos $p_1, p_2, \ldots , p_k$ inicial. El problema no es cuántos son exactamente, sino la suposición de que son una cantidad finita.

Demostración. Supongamos, para buscar una contradicción, que el conjunto de números primos es finito y que consiste de exactamente los $k$ números primos $p_1, p_2, \ldots , p_k$. Consideremos el número $$p_1\cdot p_2 \cdot \ldots \cdot p_k +1.$$

El anterior número no es divisible por ninguno de los primos $$p_1, p_2, \ldots , p_k,$$ pues precisamente al hacer la división el residuo que queda es igual a $1$.

Por el teorema fundamental de la aritmética, $$p_1\cdot p_2 \cdot \ldots \cdot p_k + 1$$ debe tener entonces un divisor primo $p$ diferente de $$p_1, p_2, \ldots , p_k. $$ Esto es una contradicción, pues supusimos que sólo existían los primos $p_1,\ldots,p_k$.

$\square$

Más adelante…

Con los dos teoremas de esta entrada hemos profundizando un poco más en por qué los números primos son interesantes e importantes. La exploración de los números primos en este curso no irá mucho más lejos, pues pronto comenzaremos a tratar otros temas de aritmética modular. Sin embargo, te dejamos algunos pocos párrafos más sobre los números primos.

Los números primos siguen siendo interesantes para los matemáticos hoy en día; primero por la irregularidad con que van apareciendo en la recta numérica y porque hay muchas cosas que aún no se sabe acerca de su raro comportamiento. Por ejemplo, se conjetura que hay infinitos «primos gemelos», es decir, se cree que siempre es posible encontrar dos primos $a$ y $b$ que estén distanciados en dos unidades; no importa qué tan alejados estén del cero. El $3$ y el $5$ son primos gemelos. También los son el $17$ y el $19$. Nadie sabe si esta conjetura es cierta o falsa.

Los números primos aparecen en patrones muy irregulares, pero sí es posible decir algunas cosas al respecto. Por ejemplo, después del $2$ todo número primo $p$, es de la forma $4n +1$ o de la forma $4n -1$ para alguna $n \in \mathbb{N}$. Un resultado lindo en teoría de números es que para aquéllos primos que pertenecen a la primera categoría, que son los de la forma $4n+1$, siempre existe su expresión como una suma de cuadrados: $p = 4n + 1 = m^2 + n^2$, $n, m \in \mathbb{Z}.$ Pero a los primos de la segunda categoría es imposible expresarlos como suma de cuadrados. Estos son dos de los muchos resultados que demostró Euler para números primos, y puedes ahondar en ello en un curso de teoría de números.

Los números primos también han encontrado aplicaciones en criptografía, pues es bien sabido que si se eligen dos primos $p_1$ y $p_2$ tales que al multiplicarlos se obtenga un número compuesto $z$ de más de 100 dígitos, y si luego se establece que $p_1$ y $p_2$ sean la «clave» de mi mensaje cifrado pero yo únicamente doy a conocer el número compuesto $z$ a otra persona, entonces a una computadora le resultaría imposible factorizar $z$ en un corto lapso de tiempo. ¡Le tomaría años! De ahí que la contraseña secreta sería indescifrable.

Ahora, lo que se conoce como el «teorema fundamental de la aritmética» también tiene varias extensiones interesantes en otras áreas de las matemáticas. De hecho, en algunas estructuras la unicidad deja de ser cierta. Si combinamos a los números enteros con los números complejos (que veremos después), tenemos algunos ejemplos como $$12 = (1 + \sqrt{-11})(1 – \sqrt{-11})$$ pero también $$12 = (2 + \sqrt{-8})(2 – \sqrt{-8}).$$

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Encuentra la factorización en primos de cada uno de los siguientes números 100, 170, 2022, 5000 y 713.
  2. Encuentra el menor entero positivo $k$ que haga que $775k$ sea un número cuadrado perfecto, es decir, de la forma $n^2$ para algún entero $n$.
  3. Halla el número de divisores de $2360$ y calcula la suma de todos ellos.
  4. ¿Cuál es el número entero de $1$ a $100$ que tiene la mayor cantidad posible de divisores?
  5. Demuestra que un entero tiene una cantidad impar de divisores si y sólo si es un número cuadrado.

Entradas relacionadas


Álgebra Superior II: Números primos y sus propiedades

Por Ana Ofelia Negrete Fernández

Introducción

En esta entrada hablaremos de los protagonistas de entre los números enteros: los números primos. Es difícil poder enunciar en palabras sencillas la importancia que tienen este tipo de números, así que haremos un recorrido que incluye lo siguiente. Comenzaremos dando la definición de qué es un número primo, y haremos algunas aclaraciones conceptuales. Luego, enunciaremos propiedades de divisibilidad que cumplen los números primos y que son muy únicas a ellos. Esto nos ayudará a entender un poco de las razones por las cuales son especiales.

Finalmente, dejaremos preparado el terreno para poder hablar de dos resultados fundamentales sobre los números primos en la próxima entrada: el teorema fundamental de la aritmética y la infinidad del conjunto de números primos. El primer resultado nos permitirá pensar a los números primos como los átomos de los números enteros, ya que a partir de multiplicarlos se obtendrá cualquier entero, sea éste primo o compuesto.

Definición de números primos

La definición con la que trabajaremos es la siguiente.

Definición. Un entero número entero $p$ es primo si y sólo si es positivo y tiene exactamente cuatro divisores: $1, \enspace -1, \enspace z \enspace \text{y } -z \text{.}$

De la definición hay algunos números que inmediatamente debemos descartar por no ser números primos. Por ejemplo, el $1$ no es un número primo pues tiene como divisores únicamente al $-1$ y al $1$, que son dos divisores, y no exactamente cuatro, como pide la definición. Del mismo modo, $-1$ tampoco es número primo pues tiene sólo dos divisores también y, para rematar, es negativo, lo cual no se vale.

Del mismo modo, concluimos que el $0$ no es número primo. Su problema es que tiene demasiados divisores. Cualquier número entero divide al $0$, así que tiene mucho más que cuatro divisores. Veamos nuestro primer ejemplo de un número que sí es primo.

Proposición. El entero $2$ es primo.

Demostración. Lo primero por notar es que $2$ es positivo. Supongamos que $x \in \mathbb{Z}$ divide a $2$. Por cómo se comparan en tamaños un número con un divisor, obtenemos que $|d|\leq 2$. Esto nos deja $5$ posibilidades para $d$: $-2,-1,0,1,2$. El $0$ nunca es divisor y se puede ver que cada uno de los otros cuatro números sí lo son. Así, el $2$ tiene exactamente cuatro divisores, que son $1$, $2$, $-1$ y $-2$. Concluimos entonces que $2$ es un número primo.

$\square$

Si bien el $-2$ también tiene exactamente esos mismos $4$ divisores, a $-2$ no le llamamos número primo porque es negativo. Recuerda que por definición sólo los números positivos pueden ser primos.

En la duda, si no sabemos si un número es primo, siempre podemos regresar a la definición.

Proposición. El entero $57$ no es primo.

Demostración. Notamos que $1$, $3$, $19$ y $57$ son todos ellos divisores de $57$, así como sus negativos. Por ello, el número $57$ tiene ocho divisores, y por lo tanto no es primo.

$\square$

Otras formas de pensar a los números primos

La definición de primos que dimos está en términos de la cantidad de divisores en total que se deben tener. Sin embargo, hay por lo menos otras dos formas de escribir esto mismo.

Proposición. Son equivalentes las siguientes tres afirmaciones para un número entero $p$:

  • El número $p$ es primo de acuerdo a nuestra definición de tener exactamente $4$ divisores.
  • El número $p$ es positivo y tiene exactamente $2$ divisores positivos.
  • El número $p$ es positivo y en cualquier forma de escribir $p=ab$ con $a$ y $b$ enteros positivos, sucede forzosamente que $a=1$ ó $b=1$.

Demostración. Los primeros dos puntos son equivalentes entre sí pues si $d$ es un divisor de $p$, entonces $-d$ también. Así, por cada divisor positivo hay uno negativo y viceversa. De hecho, los dos divisores positivos son, explícitamente, $1$ y $p$.

Si $p$ es primo con respecto a esta segunda definición, entonces el tercer inciso es claro, pues escribir $p=ab$ justo nos dice que $a|p$, de donde $a=1$ ó $a=p$, pues son sus únicos dos posibles divisores. Si $a=1$, tenemos lo que queremos. Y si $a=p$, entonces para que se de $p=ab$, debemos tener $b=1$, como queremos.

Finalmente, a partir del tercer inciso también se puede demostrar el segundo. Supongamos que $p$ cumple con el tercer inciso y supongamos que $d$ es divisor. ESto nos permite escribir $p=dr$ con $r$ algún entero. Por el tercer inciso, debemos tener $d=1$, o bien $r=1$, y entonces $d=p$, tal como nos pide el segundo inciso.

$\square$

Quizás no se ve tanto la ventaja entre distinguir entre las primeras dos versiones de la proposición anterior. De hecho, se parecen mucho. Sin embargo, sí vale la pena pensar en la tercera como algo diferente: nos dice que hay sólamente dos maneras de escribir a un primo como producto de números positivos. Esto nos ayuda, por ejemplo, a darnos cuenta rápidamente que un número no es primo aunque no tengamos todos sus divisores.

Ejemplo. El número $105$ no es primo pues se puede escribir como $5\cdot 21$. En esta expresión ninguno de los dos números es igual a $1$. Así, concluimos que $105$ no es primo.

$\square$

Propiedades de divisibilidad de los números primos

En el caso de los números primos, los máximos comunes divisores son asunto de todo o nada. Esto está escrito más formalmente en la siguiente definición.

Proposición. Sea $p$ un número primo y $a$ un entero. Si $p$ divide a $a$, tenemos $(a,p)=p$. Y si no, tenemos $(a,p)=1$.

Demostración. Sabemos que $(a,p)|p$ y que $(a,p)$ no es negativo. Así, $(a,p)$ debe ser uno de los dos divisores de $p$: $1$ ó $p$. Si $p$ divide a $a$, entonces $(a,p)=p$ pues $p$ es divisor común tanto de $p$ como de $a$. Pero si $p$ no divide a $a$, entonces a $(a,p)$ no le queda más que ser igual a $1$.

$\square$

La proposición anterior nos lleva a un lema de divisibilidad que nos resultará útil cuando enunciemos y probemos el teorema fundamental de la aritmética.

Proposición. Sea $p$ un número primo y $a,b$ números enteros. Si $p|ab$, entonces $p|a$ ó $p|b$.

Demostración. Si $p|a$, entonces ya terminamos. Si no, por la proposición anterior tenemos que $(p,a)=1$. Pero entonces por una propiedad anterior de divisibilidad con primos relativos obtenemos que $p|b$, como queríamos.

$\square$

Para la proposición anterior resultó crucial que $p$ fuera un número primo. Por ejemplo, tenemos que $9|180=15\cdot 12$, pero no es cierto ni que $9|15$, ni que $9|12$.

Más adelante…

En la siguiente entrada veremos dos teoremas importantes relacionados con los números primos: el teorema fundamental de la aritmética y el teorema de que existe una infinidad de primos.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Encuentra todos los números primos de $1$ a $20$.
  2. Sea $n$ un número entero que no sea un número primo, ni el negativo de un número primo. Demuestra $n$ que se puede expresar de la forma $ab$ con $a$ y $b$ enteros (positivos o negativos) de por lo menos ocho formas distintas.
  3. Sea $p>2$ un número tal que ninguno de los números $2,\ldots,\left\lfloor \sqrt{p}\right \rfloor$ lo divide. Muestra que $p$ es un número primo.
  4. Sea $n$ un número entero y $p$ un primo. Muestra que si $p|n^2$, entonces $p|n$. De hecho, muestra que en general, para un entero $k\geq 1$ se cumple que $p|n^k$ si y sólo si $p|n$.
  5. Sea $p$ un número primo. ¿Cuántos divisores tiene el número $p^{10}$? ¿Cuántos son positivos y cuántos negativos?

Entradas relacionadas

Álgebra Superior II: El teorema de derivadas y multiplicidad

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores definimos qué quiere decir que un real sea una raíz de un polinomio. Luego, vimos que mediante el teorema del factor se puede definir una relación entre las raíces de un polinomio y los polinomios lineales que lo dividen. Sin embargo, es posible que un real sea una raíz de un polinomio «más de una vez», que fue un concepto que formalizamos en la entrada de desigualdades de polinomios. En esta entrada veremos que a través de las derivadas de polinomios, podemos determinar la multiplicidad de sus raíces.

Como recordatorio, la multiplicidad de una raíz $r$ de un polinomio $p(x)$ en $\mathbb{R}[x]$ es el mayor entero $m$ tal que $(x-r)^m$ divide a $p(x)$ en $\mathbb{R}[x]$. También, en esta entrada haremos uso de la regla del producto para derivadas.

El teorema de derivadas y multiplicidad

El siguiente resultado es fundamental para la detección de raíces múltiples. Su demostración es sencilla pues usamos varios de los resultados que hemos obtenido anteriormente.

Teorema (derivadas y multiplicidad). Sea $r$ una raíz del polinomio $p(x)$ en $\mathbb{R}[x]$ de multiplicidad $m$. Si $m>1$, entonces $r$ es una raíz de la derivada $p'(x)$, y es de multiplicidad $m-1$. Si $m=1$, entonces $r$ no es raíz de $p'(x)$.

Demostración. Como $r$ es una raíz de $p(x)$ de multiplicidad $m$, entonces se puede escribir $p(x)=(x-r)^m q(x)$, en donde $q(x)$ es un polinomio que ya no es divisible entre $x-r$. Derivando, por regla del producto tenemos que
\begin{align*}
p'(x)&=m(x-r)^{m-1}q(x) + (x-r)^m q'(x)\\
&=(x-r)^{m-1}(mq(x)+(x-r)q'(x)).
\end{align*}

Afirmamos que $x-r$ no divide a $mq(x)+(x-r)q'(x)$. Si lo dividiera, como divide a $(x-r)q'(x)$ entonces también tendría que dividir a $mq(x)$ y por lo tanto a $q(x)$. Pero esto sería una contradicción con la elección de $q(x)$.

De esta forma, si $m=1$ entonces $x-r$ no divide a $p'(x)$ y por el teorema del factor entonces $r$ no es raíz de $p'(x)$. Y si $m>1$, entonces $(x-r)^{m-1}$ divide a $p'(x)$ por la expresión que encontramos de la derivada, pero $(x-r)^m$ no, pues $x-r$ no divide al segundo factor. Esto termina la prueba.

$\square$

Ejemplo. Consideremos al polinomio $p(x)=(x-3)^3(x+1)$. Tanto $3$ como $-1$ son raíces de $p(x)$. La multiplicidad de la raíz $3$ es tres y la multiplicidad de la raíz $-1$ es uno. Si derivamos a $p(x)$ usando la regla del producto, tenemos que
\begin{align*}
p'(x)&=3(x-3)^2(x+1)+(x-3)^3\\
&=3(x-3)^2(x+1+x-3)\\
&=3(x-3)^2(2x-2)\\
&=6(x-3)^2(x-1)
\end{align*}

Observa que $p'(x)$ en efecto tiene a $3$ como raíz de multiplicidad dos y ya no tiene a $1$ como raíz.

$\square$

Es muy importante respetar la hipótesis de que $r$ sea raíz de $p(x)$. Por ejemplo, en el ejemplo anterior $1$ es raíz de $p'(x)$ de multiplicidad $1$, pero $1$ no es raíz de $p(x)$ (y mucho menos de multiplicidad $2$).

El teorema de derivadas y multiplicidad es interesante, pero todavía no es útil en aplicaciones prácticas. Sin embargo, tiene dos consecuencias que sí se pueden usar para estudiar polinomios concretos.

Encontrar la multiplicidad de una raíz

El teorema de derivadas y multiplicidad nos dice que la multiplicidad de una raíz «baja en uno» al pasar de un polinomio a su derivada, pero aún no nos dice cuál es esa multiplicidad. Sin embargo, lo podemos aplicar repetidamente para obtener esta información. Recuerda que para $k$ un entero no negativo y $p(x)$ en $\mathbb{R}[x]$, usamos $p^{(k)}(x)$ para denotar $k$-ésima derivada de un polinomio. Aquí $p^{(0)}(x)$ es simplemente $p(x)$.

Proposición. Sea $r$ una raíz del polinomio $p(x)$ en $\mathbb{R}[x]$ de multiplicidad $m$. Si $k$ el mayor entero positivo tal que $r$ es raíz de $$p^{(0)}(x), p^{(1)}(x),\ldots,p^{(k)}(x),$$ entonces $m=k+1$.

Demostración. Usando el teorema anterior de manera inductiva, tenemos que para cada entero $0\leq \ell<m$, se tiene que $r$ es raíz de multiplicidad $m-\ell$ de $p^{(\ell)}(x)$ En particular, es raíz de todas estas derivadas. Además, por el mismo teorema, se tiene que $r$ ya no es raíz de $p^{(m)}(x)$. De esta forma, tenemos que $k=m-1$, de donde se obtiene el resultado deseado.

$\square$

La proposición anterior ahora sí nos da una manera de encontrar la multiplicidad de una raíz de un polinomio.

Ejemplo. Sabiendo que $3$ es una raíz del polinomio $$p(x)=x^5-9x^4+28x^3-36x^2+27x-27,$$ vamos a encontrar su multiplicidad.

Para esto, vamos a calcular sus derivadas:
\begin{align*}
p'(x)&=5x^4-36x^3+84x^2-72x+27\\
p^{(2)}(x)&=20x^3-108x^2+168x-72\\
p^{(3)}(x)&=60x^2-216x+168\\
p^{(4)}(x)&=120x-216\\
p^{(5)}(x)&=120\\
p^{(6)}(x)&=0
\end{align*}

Tenemos que
\begin{align*}
p'(3)&=5\cdot 81 – 36 \cdot 27 +84 \cdot 9 -72\cdot 3 + 27\\
&=405-972+756-216+27\\
&=0.
\end{align*}

Hasta aquí, sabemos que $3$ es raíz de multiplicidad al menos dos. Tenemos también que
\begin{align*}
p^{(2)}(3)&=20\cdot 27-108\cdot 9 +168 \cdot 3 – 72\\
&=540-972+504-72\\
&=0.
\end{align*}

Hasta aquí, sabemos que $3$ es raíz de multiplicidad al menos tres. Siguiendo,
\begin{align*}
p^{(3)}&=60\cdot 9-216\cdot 3 +168\\
&=720-648+168\\
&=240.
\end{align*}

Como la tercera derivada ya no se anuló en $3$, la multiplicidad de $3$ como raíz es exactamente tres.

$\square$

Es importante que revisemos todas las derivadas, y que sea una por una. En el ejemplo anterior, $p^{(6)}(3)=0$, pero eso no quiere decir que $3$ sea raíz de multiplicidad $7$, pues la evaluación falla desde la tercera derivada.

Simplificar un polinomio para encontrarle sus raíces

Hay otra consecuencia práctica del teorema de multiplicidades y derivadas, que puede ser de utilidad en algunos problemas. Recuerda que para polinomios $p(x)$ y $q(x)$ en $\mathbb{R}[x]$ usamos $\MCD{p(x),q(x)}$ para denotar al máximo común divisor de dos polinomios. En particular, divide a $p(x)$ en $\mathbb{R}[x]$, de modo que $$\frac{p(x)}{\MCD{p(x),q(x)}}$$ es un polinomio en $\mathbb{R}[x]$.

Proposición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ y $p'(x)$ su derivada. El polinomio $$q(x):=\frac{p(x)}{\MCD{p(x),p'(x)}}$$ es un polinomio en $\mathbb{R}[x]$, con las mismas raíces reales que $p(x)$, pero todas ellas tienen multiplicidad $1$.

Demostración. Factoricemos a todas las raíces reales de $p(x)$ con sus multiplicidades correspondientes para escribir $$p(x)=(x-r_1)^{m_1}\cdot \ldots \cdot (x-r_n)^{m_n} r(x),$$ en donde $r(x)$ ya no tiene raíces reales. De acuerdo al teorema de derivadas y multiplicidad, podemos escribir $$p'(x)=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n)^{m_n-1} s(x),$$ en donde ningún $x-r_i$ divide a $s(x)$. Es sencillo entonces mostrar, y queda como tarea moral, que $\MCD{p(x),p'(x)}$ es $$(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \cdot \MCD{r(x),s(x)}.$$

A partir de esto, concluimos que
\begin{align*}
q(x)&=\frac{p(x)}{\MCD{p(x),p'(x)}}\\
&= (x-r_1)\cdot \ldots \cdot (x-r_n) \cdot \frac{r(x)}{\MCD{r(x),s(x)}}.
\end{align*}

De aquí se ve que $r_1,\ldots,r_n$ son raíces de multiplicidad $1$ de $q(x)$. No hay más raíces reales en $\frac{r(x)}{\MCD{r(x),s(x)}}$, pues si hubiera una raíz $\alpha$, entonces por el teorema del factor $x-\alpha$ dividiría a este polinomio, y por lo tanto a $r(x)$, de donde $\alpha$ sería raíz de $r(x)$, una contradicción.

$\square$

La proposición anterior se puede usar de manera práctica como sigue:

  • Para empezar, tomamos un polinomio arbitrario $p(x)$.
  • Luego, lo derivamos para obtener $p'(x)$.
  • Después, usando el algoritmo de Euclides, encontramos al polinomio $\MCD{p(x),q(x)}$.
  • Ya con el máximo común divisor, hacemos división polinomial para encontrar $q(x)=\frac{p(x)}{\MCD{p(x),q(x)}}$.
  • Si $p(x)$ tenía raíces repetidas, entonces ahora $q(x)$ será de grado menor, y quizás más fácil de estudiar. Encontramos las raíces de $q(x)$. Estas son las raíces de $f(x)$.
  • Finalmente, usamos el teorema de la sección anterior para encontrar la multiplicidad de cada raíz.

Veamos un problema interesante en el que se conjuntan varias ideas de esta entrada.

Problema. Factoriza en $\mathbb{R}[x]$ al polinomio $$-x^5+5x^4+5x^3-45x^2+108.$$

Solución. Este es un polinomio de grado cinco, para el cual hasta antes de ahora no teníamos muchas herramientas para estudiarlo. Vamos a aplicar el método explicado arriba. Lo primero que haremos es factorizar un $-1$ para volver este polinomio mónico. Recordaremos poner este signo al final. Tomemos entonces $$p(x)=x^5-5x^4-5x^3+45x^2-108.$$ Su derivada es $$p'(x)=5x^4-20x^3+15x^2+90x,$$

Se puede verificar, y queda como tarea moral, que el máximo común divisor de $p(x)$ y $p'(x)$ es el polinomio $$M(x)=x^3-4x^2-3x+18.$$ Haciendo la división polinomial, tenemos que $$\frac{p(x)}{M(x)}=x^2-x-6=(x+2)(x-3).$$ Como este polinomio tiene las mismas raíces que $p(x)$, concluimos que $-2$ y $3$ son las raíces de $p(x)$.

Usando la proposición para multiplicidades de raíces (que también queda como tarea moral), se puede verificar que $-2$ es raíz de multiplicidad dos y que $3$ es raíz de multiplicidad $3$. Como $p(x)$ es un polinomio de grado $5$ y es mónico, entonces se debe de dar la igualdad $$p(x)=(x+2)^2(x-3)^3.$$

Al regresar al polinomio original, debemos agregar un signo menos. Concluimos que la factorización del polinomio del problema es $$-(x+2)^2(x-3)^3.$$

$\square$

Esta proposición nos da una manera de encontrar raíces. En las siguientes dos entradas veremos otras dos formas de encontrarlas. Para cuando los polinomios son de grado $3$ y $4$, podemos encontrar las raíces de manera explícita. Para cuando los polinomios tienen coeficientes enteros, podemos encontrar una cantidad finita de candidatos a ser raíces racionales.

Más adelante…

En esta entrada dimos varias herramientas para encontrar las raíces de un polinomio y por lo tanto, para poder factorizar los polinomios, nota que estas entradas dependieron fuertemente del uso del cálculo, y del concepto de la derivada. Sin embargo, regresaremos una última vez al terreno algebraico para poder dar más formas de poder encontrar raíces de un polinomio.

Sin embargo, en las entradas siguientes, pondremos a prueba todo lo aprendido en el curso, desde las propiedades de la teoría de los números enteros, hasta la de los números complejos, y obviamente seguiremos ocupando los teoremas que hemos desarrollado en esta sección de polinomios.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Verifica que $1$ es raíz del polinomio $$x^8-x^7-9x^6+19x^5+5x^4-51x^3+61x^2-31x+6$$ y encuentra su multiplicidad.
  2. En la demostración de la última proposición, muestra la igualdad $$\MCD{p(x),p'(x)}=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \MCD{r(x),s(x)}.$$
  3. En el último ejemplo, aplica el algoritmo de Euclides a $p(x)$ y $p'(x)$ para mostrar que el máximo común divisor es el que se afirma.
  4. Aplica la proposición de multiplicidad de raíces en el último ejemplo para verificar que en efecto las multiplicidades de $2$ y $3$ son las que se afirman.
  5. Aplica el mismo método que en la última sección para factorizar el polinomio $$x^6+8x^5+18x^4-4x^3-47x^2-12x+36.$$

Entradas relacionadas

Álgebra Superior II: Desigualdades de polinomios reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior mostramos el teorema de factorización para polinomios con coeficientes reales. Lo que haremos ahora es ver que podemos aplicarlo en la resolución de desigualdades de polinomios en $\mathbb{R}[x]$. El objetivo es que, al final de la entrada, entendamos cómo se pueden resolver problemas como los siguientes:

Problema. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$x^6-12x^4-49x^2-30 > 3x^5-48x^3-51x+6.$$

Problema. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$\frac{1}{x}>x^3-x^2+1.$$

Antes de hablar de resolución de desigualdades de polinomios, veremos una forma alternativa de factorizar en $\mathbb{R}[x]$ usando potencias.

Teorema de factorización de polinomios reales con potencias

De acuerdo al teorema de factorización en $\mathbb{R}[x]$, un polinomio $p(x)$ se puede factorizar de manera única en factores lineales y factores cuadráticos con discriminante negativo. De ser necesario, podemos agrupar los factores lineales iguales y reordenarlos para llegar a una factorización de la forma $$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ en donde:

  • $a$ es un real distinto de cero,
  • $\alpha_1,\ldots,\alpha_m$ y $n$ son enteros positivos tales que $2n+\sum_{i=1}^m \alpha_i$ es igual al grado de $p(x)$,
  • para cada $i$ en $\{1,\ldots,m\}$ se tiene que $r_i$ es raíz real de $p(x)$ y $r_1<r_2<\ldots<r_m$
  • para cada $j$ en $ \{1,\ldots,n\}$ se tiene que $b_j,c_j$ son reales tales que $b_j^2-4c_j<0$.

Observa que los $r_i$ son ahora distintos y que están ordenados como $r_1<\ldots<r_m$. De aquí, obtenemos que $(x-r_i)^{\alpha_i}$ es la mayor potencia del factor lineal $x-r_i$ que divide a $p(x)$. Este número $\alpha_i$ se usa frecuentemente, y merece una definición por separado.

Definición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ y $r$ una raíz de $p(x)$. La multiplicidad de $r$ como raíz de $p(x)$ es el mayor entero $\alpha$ tal que $$(x-r)^\alpha \mid p(x).$$ Decimos también que $r$ es una raíz de multiplicidad $\alpha$.

Ejemplo. El polinomio $k(x)=x^4-x^3-3x^2+5x-2$ se factoriza como $(x-1)^3(x+2)$. Así, la multiplicidad de $1$ como raíz de $k(x)$ es $3$. Además, $-2$ es una raíz de $k(x)$ de multiplicidad $1$.

$\square$

Después hablaremos de una forma práctica en la que podemos encontrar la multiplicidad de una raíz, cuando hablemos de continuidad de polinomios y sus derivadas.

Desigualdades de polinomios reales factorizados

Supongamos que tenemos un polinomio $p(x)$ no constante en $\mathbb{R}[x]$ para el cual conocemos su factorización en la forma $$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ y que queremos determinar para qué valores reales $r$ se cumple que $$p(r)>0.$$

Daremos por cierto el siguiente resultado, que demostraremos cuando hablemos de continuidad de polinomios.

Proposición. Las evaluaciones en reales de un polinomio cuadrático y mónico en $\mathbb{R}[x]$ de discriminante negativo, siempre son positivas.

Lo que nos dice este resultado es que, para fines de la desigualdad que queremos resolver, podemos ignorar los factores cuadráticos en la factorización de $p(x)$ pues

$$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n})$$ y $$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}$$ tienen el mismo signo.

Por la miasma razón, podemos ignorar aquellos factores lineales con exponente par, y de los de exponente impar, digamos $(x-r)^{2\beta +1}$ obtenemos una desigualdad equivalente si los remplazamos por exponente $1$, pues $(x-r)^{2\beta}$ es positivo y por lo tanto no cambia el signo de la desigualdad si lo ignoramos.

En resumen, cuando estamos resolviendo una desigualdad del estilo $p(x)>0$ podemos, sin cambiar el conjunto solución, reducirla a una de la forma $$q(x):=a(x-r_1)(x-r_2)\ldots(x-r_m)>0.$$ La observación clave para resolver desigualdades de este estilo está resumida en el siguiente resultado.

Proposición. Tomemos un polinomio $q(x)$ en $\mathbb{R}[x]$ de la forma $$q(x)=a(x-r_1)(x-r_2)\ldots(x-r_m)$$ con $r_1<\ldots<r_m$ reales.

Si $m$ es par:

  • Para reales $r$ en la unión de intervalos $$(-\infty,r_1)\cup(r_2,r_3)\cup\ldots \cup (r_{m-2},r_{m-1})\cup (r_m,\infty),$$ la evaluación $q(r)$ tiene el mismo signo que $a$
  • Para reales $r$ en la unión de intervalos $$(r_1,r_2)\cup(r_3,r_4)\cup\ldots \cup (r_{m-3},r_{m-2})\cup (r_{m-1},r_m),$$ la evaluación $q(r)$ tiene signo distinto al de $a$.

Si $m$ es impar:

  • Para reales $r$ en la unión de intervalos $$(r_1,r_2)\cup(r_3,r_4)\cup\ldots \cup (r_{m-2},r_{m-1})\cup (r_m,\infty),$$ la evaluación $q(r)$ tiene el mismo signo que $a$
  • Para reales $r$ en la unión de intervalos $$(-\infty,r_1)\cup(r_2,r_3)\cup\ldots \cup (r_{m-3},r_{m-2})\cup (r_{m-1},r_m),$$ la evaluación $q(r)$ tiene signo distinto al de $a$.

Demostración. El producto $(r-r_1)(r-r_2)\ldots(r-r_m)$ es positivo si y sólo si tiene una cantidad par de factores negativos. Si $r>r_m$, todos los factores son positivos, y por lo tanto $q(r)$ tiene el mismo signo que $a$ cuando $r$ está en el intervalo $(r_m,\infty)$.

Cada que movemos $r$ de derecha a izquierda y cruzamos un valor $r_i$, cambia el signo de exactamente uno de los factores, y por lo tanto la paridad de la cantidad de factores negativos. El resultado se sigue de hacer el análisis de casos correspondiente.

$\square$

Veamos cómo podemos utilizar esta técnica para resolver desigualdades polinomiales que involucran a un polinomio que ya está factorizado en irreducibles.

Problema. Determina para qué valores reales $x$ se tiene que $$-2(x-5)^7(x+8)^4(x+2)^3(x+10)(x^2-x+2)^3$$ es positivo.

Solución. Por la discusión anterior, podemos ignorar el polinomio cuadrático del final, pues es irreducible. También podemos ignorar los factores lineales con potencia par, y podemos remplazar las potencias impares por unos. Así, basta con encontrar los valores reales de $x$ para los cuales $$q(x)=-2(x-5)(x+2)(x+10)$$ es positivo. Tenemos $3$ factores, así que estamos en el caso de $m$ impar en la proposición.

Las tres raíces, en orden, son $-10, -2, 5$. Por la proposición, para $x$ en la unión de intervalos $$(-\infty,-10)\cup (-2,5)$$ se tiene que $q(x)$ tiene signo distinto al de $a=-2$ y por lo tanto es positivo. Para $x$ en el conjunto $$(-10,-2)\cup (5,\infty)$$ se tiene que $q(x)$ tiene signo igual al de $a=-2$, y por lo tanto es negativo. De esta forma, la respuesta es el conjunto $$(-\infty,-10)\cup (-2,5).$$

Puedes dar clic aquí para ver en GeoGebra las gráfica de $q(x)$ y del polinomio original, y verificar que tienen el mismo signo en los mismos intervalos.

$\square$

Si estamos resolviendo una desigualdad y el valor de $a$ en la factorización es positivo, es un poco más práctico ignorarlo desde el principio, pues no afecta a la desigualdad.

Problema. Determina para qué valores reales $x$ se tiene que $$7(x+7)^{13}(x+2)^{31}(x-5)^{18}(x^2+1)$$ es positivo.

Solución. Tras las cancelaciones correspondientes, obtenemos la desigualdad equivalente $$(x+7)(x+2)>0.$$

Las raíces del polinomio que aparece son $-7$ y $-2$. De acuerdo a la proposición, estamos en el caso con $m$ par. De esta forma, la expresión es negativa en el intervalo $(-7,-2)$ y es positiva en la unión de intervalos $$(-\infty,-7)\cup (-2,\infty).$$

$\square$

Otras desigualdades de polinomios y manipulaciones algebraicas

Si tenemos otras expresiones polinomiales, también podemos resolverlas con ideas similares, solo que a veces se tienen que hacer algunas manipulaciones previas para llevar la desigualdad a una de la forma $p(x)>0$.

Problema. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$x^6-12x^4-49x^2-30 > 3x^5-48x^3-51x+6.$$

Solución. El problema es equivalente a encontrar los reales $x$ para los cuales $$x^6-3x^5+12x^4+48x^3-29x^2+51x-36>0.$$ El polinomio del lado izquierdo se puede factorizar como $(x-3)^2(x-1)(x+4)(x^2+1)$, así que obtenemos el problema equivalente $$(x-3)^2(x-1)(x+4)(x^2+1)>0,$$ que ya sabemos resolver. El resto de la solución queda como tarea moral.

Puedes ver la gráfica del polinomio $$(x-3)^2(x-1)(x+4)(x^2+1)$$ en GeoGebra si das clic aquí.

$\square$

Tener cuidado al multiplicar por denominadores

Hay que tener cuidado al realizar algunas manipulaciones algebraicas, pues pueden cambiar el signo de la desigualdad que estamos estudiando. Veamos un ejemplo donde sucede esto.

Problema. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$\frac{1}{x}>x^3-x^2+1.$$

Solución. La expresión no está definida en $x=0$, pues se anula un denominador. Supongamos entonces que $x\neq 0$, y recordémoslo al expresar la solución final. Vamos a multiplicar la desigualdad por $x$, pero tenemos que hacer casos.

Si $x>0$, entonces el signo de desigualdad no se altera y obtenemos la desigualdad equivalente $$0>x^4-x^3+x-1=(x-1)(x+1)(x^2-x+1).$$ El factor cuadrático es irreducible y lo podemos ignorar. Si estuviéramos trabajando en todo $\mathbb{R}$, el conjunto solución sería el intervalo $(-1,1)$. Sin embargo, tenemos que restringir este conjunto solución sólo al caso en el que estamos, es decir, $x>0$. Así, para este caso sólo los reales en $(0,1)$ son solución.

Si $x<0$, entonces el signo de la desigualdad sí se altera, y entonces obtenemos la desigualdad equivalente $$0<x^4-x^3+x-1=(x-1)(x+1)(x^2-x+1).$$ De nuevo podemos ignorar el factor cuadrático. La desigualdad tiene solución en todo $\mathbb{R}$ al conjunto $(-\infty,-1)\cup (1,\infty)$, pero en este caso debemos limitarlo adicionalmente con la restricción $x<0$. De este modo, las soluciones para este caso están en el intervalo $(-\infty,-1)$.

Ahora sí, juntando ambos casos, tenemos que el conjunto solución final es $$(-\infty,-1)\cup(0,1).$$

Puedes ver la gráfica en GeoGebra de $\frac{1}{x}-x^3+x^2-1$ dando clic aquí. Ahí puedes verificar que esta expresión es positiva exactamente en el conjunto que encontramos.

$\square$

Más adelante…

Como queda claro, resulta ser útil tener un polinomio en su forma factorizada para resolver desigualdades de polinomios reales. En los ejemplos que dimos en esta entrada, se dieron las factorizaciones de los polinomios involucrados. En el resto del curso veremos herramientas que nos permitirán encontrar la factorización de un polinomio o, lo que es parecido, encontrar sus raíces:

  • Veremos propiedades de continuidad de polinomios para mostrar la existencia de raíces para polinomios reales en ciertos intervalos.
  • El teorema del factor nos dice que si $r$ es raíz de $p(x)$, entonces $x-r$ divide a $p(x)$. Sin embargo, no nos dice cuál es la multiplicidad de $r$. Veremos que la derivada de un polinomio nos puede ayudar a determinar eso.
  • También veremos el criterio de la raíz racional, que nos permite enlistar todos los cantidatos a ser raíces racionales de un polinomio $p(x)$ con coeficientes racionales.
  • Finalmente, veremos que para los polinomios de grado $3$ y $4$ hay formas de obtener sus raíces de forma explícita, mediante las fórmulas de Cardano y de Ferrari.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Completa la solución del problema enunciado en la sección de manipulaciones algebraicas.
  2. Encuentra el conjunto solución de números reales $x$ tales que $$(x+1)(x+2)^2(x+3)^3(x+4)^4>0.$$
  3. Determina las soluciones reales a la desigualdad $$\frac{x-1}{x+2}>\frac{x+2}{x-1}.$$ Ten cuidado con los signos. Verifica tu respuesta en este enlace de GeoGebra, que muestra la gráfica de $f(x)=\frac{x-1}{x+2}-\frac{x+2}{x-1}$.
  4. Realiza las gráficas de otros polinomios de la entrada en GeoGebra para verificar las soluciones dadas a las desigualdades de polinomios.
  5. Revisa esta entrada, en donde se hablan de aplicaciones de desigualdades polinomiales para un problema de un concurso de matemáticas.

Entradas relacionadas

Álgebra Superior II: Irreducibilidad y factorización en polinomios reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Los números enteros tiene un teorema de factorización en primos: el teorema fundamental de la aritmética. Los polinomios en $\mathbb{R}[x]$ también. En esta entrada hablaremos de la irreducibilidad y factorización en polinomios reales. Lo primero lo haremos para decir «quiénes son los primos» en $\mathbb{R}[x]$. Para lo segundo usaremos el teorema del factor, que demostramos con anterioridad.

Resulta que el teorema de factorización en polinomios reales depende de un resultado importante de polinomios en $\mathbb{C}[x]$, es decir, los de coeficientes complejos. Esto es algo que sucede con frecuencia: a veces para resolver un problema en los números reales, hay que dar un paso hacia los complejos y luego regresar. Por esa razón, para esta entrada es importante que tengas en mente varias propiedades en los complejos, sobre todo cómo se realizan las operaciones y cuales son las propiedades de la conjugación compleja. Esto nos dará la oportunidad de enunciar (sin demostración) el teorema fundamental del álgebra.

Como recordatorio, un polinomio es irreducible en $\mathbb{R}[x]$ si no es un polinomio constante y no se puede escribir como producto de dos polinomios no constantes en $\mathbb{R}[x]$. Además, el teorema del factor nos dice que si $a$ es raíz de un polinomio $p(x)$, entonces $x-a$ divide a $p(x)$. Diremos que un polinomio es lineal si es de grado $1$ y cuadrático si es de grado $2$.

El teorema fundamental del álgebra

Así como construimos a $\mathbb{R}[x]$, se puede hacer algo análogo para construir a $\mathbb{C}[x]$, los polinomios de coeficientes complejos. Puedes practicar todo lo que hemos visto haciendo la construcción formal. Por el momento, para fines prácticos, puedes pensarlos como expresiones de la forma $$a_0+a_1 x + \ldots + a_n x^n$$ con $a_i$ complejos, digamos, $$(1+i)+2i x -3x^3+(5+2i)x^4.$$

Los polinomios en $\mathbb{C}[x]$ cumplen todo lo que hemos dicho de $\mathbb{R}[x]$: se vale el lema de Bézout, el algoritmo de Euclides, el teorema del factor, el teorema del residuo, etc. Una copia de $\mathbb{R}[x]$, con su estructura algebraica, «vive» dentro de $\mathbb{C}[x]$, es decir, todo polinomio con coeficientes reales se puede pensar como uno con coeficientes complejos.

Sin embargo, los polinomios en $\mathbb{R}[x]$ y en $\mathbb{C}[x]$ son muy diferentes en términos de raíces. Esto se nota, pir ejemplo, en el hecho de que el polinomio $x^2+1$ no tiene raíces en $\mathbb{R}$, pero sí en $\mathbb{C}$, donde la raíz es $i$. Resulta que esta $i$ hace toda la diferencia. Al agregarla no solamente hacemos que $x^2+1$ tenga una raíz, sino que ya todo polinomio tiene raíz. Esto está enunciado formalmente por el teorema fundamental del álgebra.

Teorema (teorema fundamental del álgebra). Todo polinomio no constante en $\mathbb{C}[x]$ tiene al menos una raíz en $\mathbb{C}$.

No vamos a demostrar este teorema durante el curso. Hay desde demostraciones elementales (como la que aparece en el bello libro Proofs from the book), hasta algunas muy cortas, pero que usan teoría un poco más avanzada (como las que se hacen en cursos de análisis complejo). Sin embargo, lo usaremos aquí para obtener algunas de sus consecuencias y, al final de esta entrada, demostrar los teoremas de irreducibilidad y factorización en polinomios reales.

Teorema de factorización en $\mathbb{C}[x]$

En la entrada anterior ya demostramos que los polinomios lineales son irreducibles. Veremos ahora que en $\mathbb{C}[x]$ no hay ningún otro polinomio irreducible.

Proposición. Los únicos polinomios irreducibles en $\mathbb{C}[x]$ son los de grado $1$.

Demostración. Tomemos cualquier polinomio $p(x)$ en $\mathbb{C}[x]$ de grado al menos $2$. Por el teorema fundamental del álgebra, $p(x)$ tiene al menos una raíz $z$ en $\mathbb{C}$. Por el teorema del factor, $$x-z \mid p(x),$$ así que podemos escribir $p(x)=(x-z)q(x)$ con $q(x)$ en $\mathbb{C}[x]$ de grado $\deg(p(x))-1\geq 1$.

De esta forma, pudimos factorizar al polinomio $p(x)$ en dos factores no constantes, y por lo tanto no es irreducible.

$\square$

Con esto podemos mostrar que en $\mathbb{C}[x]$ todo polinomio es factorizable como producto de términos lineales.

Teorema (de factorización única en $\mathbb{C}[x]$). Todo polinomio $p(x)$ en $\mathbb{C}[x]$ distinto del polinomio cero se puede factorizar de manera única como $$p(x)=a(x-z_1)(x-z_2)\cdots(x-z_n)$$ en donde $a$ es un complejo no cero, $n$ es el grado de $p(x)$ y $z_1,\ldots,z_n$ son complejos que son raíces de $p(x)$.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Procedemos por inducción en el grado de $p(x)$. Si $p(x)$ es de grado cero, entonces es de la forma $p(x)=a$ con $a$ un complejo, y ya está en la forma que queremos.

Tomemos ahora un entero $n\geq 1$. Supongamos que el resultado es cierto para los polinomios de grado $n-1$ y consideremos un polinomio $p(x)$ de grado $n$. Por el teorema fundamental del álgebra, $p(x)$ tiene al menos una raíz, digamos $z_n$. Usando el teorema del factor, existe un polinomio $q(x)$, que debe de ser de grado $n-1$, tal que $$p(x)=q(x)(x-z_n).$$ Aplicando la hipótesis inductiva a $q(x)$, podemos factorizarlo de la forma $$q(x)=a(x-z_1)(x-z_2)\cdots(x-z_{n-1}),$$ con $z_1,\ldots,z_{n-1}$ raíces de $q(x)$ (y por lo tanto también raíces de $p(x)$). De esta forma, $$p(x)=(x-z_1)(x-z_2)\cdots(x-z_{n-1})(x-z_n)$$ es una factorización que cumple lo que queremos. Esto termina la hipótesis inductiva, y por lo tanto la parte de existencia de la demostración.

$\square$

Ejemplo. Consideremos al polinomio $$p(x)=x^4+5x^2+4$$ en $\mathbb{R}[x]$. Este polinomio no tiene raíces reales, pues sus evaluaciones siempre son positivas. Sin embargo, lo podemos pensar como un polinomio en $\mathbb{C}[x]$. Por el teorema fundamental del álgebra, este polinomio debe tener una raíz en $\mathbb{C}$.

Afortunadamente, podemos encontrarla por inspección. Una de estas raíces es $i$, pues $$i^4+5i^2+4=1-5+4=0.$$ Por el teorema del factor, $x-i$ divide a $p(x)$. Al realizar la división, obtenemos $$p(x)=(x-i)(x^3+ix^2+4x+4i).$$ De aquí, por inspección, obtenemos que $-i$ es una raíz de $x^3+ix^2+4x+4i$, y realizando la división entre $x+i$, tenemos que $$p(x)=(x-i)(x+i)(x^2+4).$$

El polinomio $x^2+4$ claramente tiene como raíces a $2i$ y $-2i$. A partir de todo esto concluimos que $$p(x)=(x-i)(x+i)(x-2i)(x+2i)$$ es la factorización de $p(x)$ en polinomios lineales en $\mathbb{C}[x]$.

$\square$

En el ejemplo anterior podemos agrupar los factores $(x-i)$ y $(x+i)$ para obtener el polinomio $x^2+1$. De aquí obtenemos la factorización alternativa $$p(x)=(x^2+1)(x^2+2).$$ Esta factorización tiene puros coeficientes reales. Aquí hay que hacer una observación importante: esta no es una factorización en irreducibles en $\mathbb{C}[x]$, pero sí es una factorización en irreducibles en $\mathbb{R}[x]$. Retomaremos varias de estas ideas más en general en las siguientes secciones.

Raíces complejas de polinomios en $\mathbb{R}[x]$

En el ejemplo de la sección anterior sucedió que $i$ era una raíz de $p(x)$, y que $-i$ también. Cuando tenemos un polinomio de coeficientes reales y $z$ es un complejo que es raíz, entonces su conjugado también.

Proposición. Tomemos $p(x)$ un polinomio en $\mathbb{R}[x]$ y $z$ un número en $\mathbb{C}$. Si $p(z)=0$, entonces $p(\overline{z})=0$.

Demostración. Si $p(x)$ es el polinomio cero, la afirmación es cierta. En otro caso, sea $n$ el grado de $p(x)$ y escribamos a $p(x)$ como $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ donde $a_i$ son números en $\mathbb{R}$ para $i=0,\ldots,n$. Por lo que sabemos de la conjugación compleja, $\overline{a_i}=a_i$, y además abre sumas y productos. Así,
\begin{align*}
\overline{p(z)}&=\overline{a_0+a_1z+\ldots+a_nz^n}\\
&=\overline{a_0}+\overline{a_1z}+\ldots +\overline{a_nz^n}\\
&=\overline{a_0} + \overline{a_1}\, \overline{z} + \ldots +\overline{a_n}\, \overline{z}^n\\
&=a_0 + a_1 \overline{z} + \ldots + a_n \overline{z}^n\\
&=p(\overline{z}).
\end{align*}

Como $p(z)=0$, concluimos que $$p(\overline{z})=\overline{p(z)}=\overline{0}=0.$$

$\square$

El resultado anterior no es cierto en general para polinomios con coeficientes en $\mathbb{C}[x]$. Esto debe ser muy claro pues, por ejemplo, $i$ es raíz de $x-i$, pero $-i$ no.

Proposición. Tomemos $p(x)$ un polinomio en $\mathbb{R}[x]$ y una raíz $z$ de $p(x)$ en $\mathbb{C}\setminus \mathbb{R}$. Entonces el polinomio $$q(x)=x^2-(z+\overline{z})x+z\overline{z}$$ es un polinomio en $\mathbb{R}[x]$ que divide a $p(x)$ en $\mathbb{R}[x]$.

Demostración. Observa que $q(x)=(x-z)(x-\overline{z})$. Recordemos que
\begin{align*}
z+\overline{z}&=2\Rea{(z)} \\
z\overline{z}&=\norm{z}^2 .
\end{align*}

Esto muestra que los coeficientes de $q(x)$ son reales. Usemos el algoritmo de la división en $\mathbb{R}[x]$ para escribir $$p(x)=q(x)h(x)+r(x),$$ con $r(x)$ el polinomio cero, o de grado a lo más $1$.

Evaluando en $z$ y en $\overline{z}$, se obtiene que $r(z)=r(\overline{z})=0$. Como $z$ no es real, entonces $z$ y $\overline{z}$ son distintos. De este modo, $r(x)$ es el polinomio cero. Así, $p(x)=q(x)h(x)$ es una factorización de $p(x)$ en $\mathbb{R}[x]$ que usa a $q(x)$.

$\square$

Nuevamente, hay que tener cuidado con las hipótesis del resultado anterior. Es muy importante que usemos que $z$ es una raíz compleja y no real de un polinomio con coeficientes reales. En la tarea moral puedes encontrar un contraejemplo si no se satisfacen las hipótesis.

Ejemplo. Consideremos el polinomio $$p(x)=2x^3-16x^2+44x-40.$$ Una de sus raíces complejas es $3+i$, como puedes verificar. Como es un polinomio con coeficientes reales, el conjugado $3-i$ también es una raíz. Tal como lo menciona la proposición anterior, el polinomio
\begin{align*}
q(x):&=(x-(3+i))(x-(3-i))\\
&=x^2-(3+i+3-i)x+(3+i)(3-i)\\
&=x^2-6x+10
\end{align*}

es un polinomio de coeficientes reales. Además, divide a $p(x)$ en $\mathbb{R}[x]$ pues haciendo la división polinomial, tenemos que $$2x^3-16x^2+44x-40=(2x-4)(x^2-6x+10).$$

$\square$

Irreducibilidad y factorización en polinomios reales

Con todo lo que hemos hecho hasta ahora, estamos listos para probar los resultados que queremos en $\mathbb{R}[x]$. Observa que los enunciados de las secciones anteriores involucran a $\mathbb{C}$, pero los de esta sección ya no. Sin embargo, para hacer las demostraciones tenemos que dar un «brinco momentáneo a los complejos».

Recuerda que para un polinomio cuadrático $q(x)=ax^2+bx+c$ su discriminante es $b^2-4ac$.

Teorema (irreducibilidad en polinomios reales). Los únicos polinomios irreducibles en $\mathbb{R}[x]$ son los lineales y los cuadráticos de discriminante negativo.

Demostración. Ya mostramos antes que los polinomios lineales son irreducibles. Si $q(x)=ax^2+bx+c$ es un polinomio cuadrático y $r$ es una raíz real, tenemos que
\begin{align*}
ar^2+br+c&=0\\
r^2+\frac{b}{a}r+\frac{c}{a}&=0\\
r^2+\frac{b}{a}r+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+\frac{c}{a}&=0\\
\left(r+\frac{b}{2a}\right)^2&=\frac{b^2-4ac}{4a^2}.
\end{align*}

De esta igualdad, obtenemos que $\frac{b^2-4ac}{4a^2}\geq 0$ y por lo tanto que $b^2-4ac \geq 0$. Dicho de otra forma, si $b^2-4ac<0$, entonces $q(x)$ no tiene raíces reales. De esta misma equivalencia de igualdades se puede ver que si $b^2-4ac\geq 0$, entonces $q(x)$ sí tiene por lo menos una raíz real.

Supongamos que $q(x)$ es un polinomio cuadrático con discriminante negativo. Si existiera una factorización en $\mathbb{R}[x]$ de la forma $q(x)=a(x)b(x)$, con ninguno de ellos constante, entonces ambos deben tener grado $1$. Podemos suponer que $a$ es mónico. Pero entonces $a(x)=x-r$ para $r$ un real, y por el teorema del factor tendríamos que $r$ sería raíz de $q(x)$, una contradicción a la discusión anterior. Esto muestra que $q(x)$ es irreducible.

Falta ver que no hay ningún otro polinomio irreducible en $\mathbb{R}[x]$. Cuando $p(x)$ es cuadrático de discriminante no negativo, entonces por la fórmula cuadrática tiene al menos una raíz real $r$ y por lo tanto $x-r$ divide a $p(x)$, mostrando que no es irreducible.

Si $p(x)$ es de grado mayor o igual a $3$ y tiene una raíz real $r$, sucede lo mismo. En otro caso, es de grado mayor o igual a $3$ y no tiene raíces reales. Pero de cualquier forma tiene al menos una raíz compleja $z$. Usando la proposición de la sección anterior, tenemos que $x^2-(z+\overline{z})x+z\overline{z}$ es un polinomio de coeficientes reales que divide a $p(x)$ en $\mathbb{R}[x]$, lo cual muestra que no es irreducible.

Concluimos entonces que los únicos polinomios irreducibles en $\mathbb{R}[x]$ son los lineales y los cuadráticos de discriminante negativo.

$\square$

Ahora sí podemos enunciar el resultado estelar de esta entrada.

Teorema (factorización en polinomios reales). Todo polinomio $p(x)$ en $\mathbb{R}[x]$ distinto del polinomio cero se puede factorizar de manera única como $$a(x-r_1)\cdots(x-r_m)(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ en donde:

  • $a$ es un real distinto de cero,
  • $m$ y $n$ son enteros tales que $m+2n$ es igual al grado de $p(x)$,
  • para cada $i$ en $\{1,\ldots,m\}$ se tiene que $r_i$ es raíz real de $p(x)$ y
  • para cada $j$ en $ \{1,\ldots,n\}$ se tiene que $b_j,c_j$ son reales tales que $b_j^2-4c_j<0$.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Si $p(x)$ es irreducible, entonces al factorizar su coeficiente principal $a$ obtenemos la factorización deseada. Si $p(x)$ no es irreducible, procedemos por inducción fuerte sobre el grado $d$ de $p(x)$. El menor grado que debe tener es $2$ para no ser irreducible.

Si $d=2$ y es no irreducible, el resultado es cierto pues se puede factorizar como dos factores lineales y luego factorizar al término $a$ los coeficientes principales de cada factor para que queden mónicos.

Sea $d\geq 3$ y supongamos el resultado cierto para todo polinomio de grado menor a $d$. Tomemos un polinomio $p(x)$ de grado $d$. Por el teorema de irreducibilidad de polinomios reales, $p(x)$ no es irreducible, así que se puede factorizar como $p(x)=r(x)s(x)$ con $r(x)$ y $s(x)$ no constantes, y por lo tanto de grado menor al de $p(x)$. Por hipótesis inductiva, tienen una factorización como la del teorema. La factorización de $p(x)$ se obtiene multiplicando ambas. Esto termina la inducción.

$\square$

Veamos cómo podemos usar todas estas ideas en un problema en concreto de factorización en polinomios reales.

Problema. Factoriza al polinomio $x^{12}-1$ en polinomios irreducibles en $\mathbb{R}[x]$.

Solución. Usando identidades de factorización, podemos avanzar bastante:
\begin{align*}
x^{12}-1&=(x^6-1)(x^6+1)\\
&=(x^3-1)(x^3+1)(x^6+1)\\
&=(x-1)(x^2+x+1)(x+1)(x^2-x+1)(x^2+1)(x^4-x^2+1).
\end{align*}

Hasta aquí, $x+1$ y $x-1$ son factores lineales. Además, $x^2+x+1$, $x^2-x+1$ y $x^2+1$ son factores cuadráticos irreducibles pues sus discriminantes son, respectivamente, $-3,-3,-4$.

Aún queda un factor $x^4-x^2+1$ que por ser de grado $4$ no es irreducible. Sumando y restando $2x^2$, y luego factorizando la diferencia de cuadrados, tenemos:
\begin{align*}
x^4-x^2+1 &= x^4+2x^2+1-3x^2\\
&=(x^2+1)^2-3x^2\\
&=(x^2+1-\sqrt{3}x)(x^2+1+\sqrt{3}x).
\end{align*}

Cada uno de estos factores cuadráticos tiene discriminante $-1$, y por lo tanto es irreducible. Concluimos entonces que la factorización en irreducibles de $x^{12}-1$ en $\mathbb{R}[x]$ es
\begin{align*}
(x-1)(x&+1)(x^2+1)(x^2+x+1)\\
&(x^2-x+1)(x^2+\sqrt{3}x+1)(x^2-\sqrt{3}x+1).
\end{align*}

$\square$

Más adelante…

El teorema fundamental del álgebra y sus consecuencias en $\mathbb{R}$ son los resultados algebraicos más importantes que obtendremos en el estudio de polinomios, ya que nos permite caracterizar, al menos en teoría a todos los polinomios a partir de sus raíces.

En las siguientes entradas ocuparemos las herramientas que hemos desarrollado hasta ahora, sin embargo cambiaremos el enfoque de estudio, usaremos también herramientas de los cursos de cálculo para poder dar un análisis más detallado del comportamiento de los polinomios, y que nos servirán para que en muchos casos podamos encontrar las raíces de un polinomio, o cuando menos tener una idea de cómo son.

Tarea moral

  • Haz la construcción formal de $\mathbb{C}[x]$ a partir de sucesiones de complejos. Muestra que se pueden expresar en la notación de $x$ y sus potencias. Prueba los teoremas que hemos visto hasta ahora. Todo debe ser análogo al caso real, por lo que te servirá mucho para repasar los conceptos vistos hasta ahora.
  • Muestra la unicidad de la factorización en $\mathbb{C}[x]$ y en $\mathbb{R}[x]$.
  • Sea $z$ un complejo no real. Muestra que que $x-z$ y $x-\overline{z}$ son polinomios primos relativos en $\mathbb{C}[x]$.
  • Hay que tener cuidado en las hipótesis de los teoremas de esta entrada. Muestra que $3$ es una raíz del polinomio $x^3-6x^2+11x-6$, pero que $x^2-6x+9$ no divide a este polinomio.
  • Argumenta por qué en el teorema de factorización en polinomios reales sucede que $m+2n$ es el grado de $p(x)$.

Entradas relacionadas