Archivo del Autor: Leonardo Ignacio Martínez Sandoval

Leonardo Ignacio Martínez Sandoval

Acerca de Leonardo Ignacio Martínez Sandoval

Hola. Soy Leonardo Martínez. Soy Profesor de Tiempo Completo en la Facultad de Ciencias de la UNAM. Hice un doctorado en Matemáticas en la UNAM, un postdoc en Israel y uno en Francia. Además, me gusta colaborar con proyectos de difusión de las matemáticas como la Olimpiada Mexicana de Matemáticas.

Álgebra Superior II: El algoritmo de Euclides

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores estudiamos los conceptos de máximo común divisor y de mínimo común múltiplo. Ahora nos enfocaremos en un aspecto un poco más práctico sobre el máximo común divisor que dejamos pendiente: ¿cómo lo calculamos? Para ello hablaremos de un procedimiento conocido como el algoritmo de Euclides, el cual afirma que afirma que podemos aplicar iteradas veces el algoritmo de la división en ciertos números específicos, comenzando con dos enteros $a$ y $b$ para encontrar su máximo común divisor de dos enteros positivos $a$ y $b$.

Lo primero que haremos es explicar el procedimiento mediante el cual podemos encontrar el máximo común divisor de dos números aplicando repetidamente el algoritmo de la división. En la siguiente sección daremos la demostración de por qué funciona este procedimiento. Hacia el final de la entrada también veremos que este mismo procedimiento nos permite también escribir al máximo común divisor de dos enteros $a$ y $b$ como combinación lineal de ellos, es decir, de la forma $ra+sb$ con $r$ y $s$ números enteros.

El procedimiento del algoritmo de Euclides

Sean $a, b$ cualesquiera enteros positivos, con $a \neq b$ y $a > b.$ Por el algoritmo de la división, sabemos que siempre existen $q, r \in \mathbb{Z}$ tales que podemos escribir $$a = bq + r, \enspace \text{con} \quad \quad 0 \leq r < b. $$

Luego, como $b$ y $r$ son enteros, también existen $q_1$ y $r_1$ tales que $$b = rq_1 + r_1,\enspace \text{con} \quad \quad 0 \leq r_1 < r.$$

Y como $r$ y $r_1$ son enteros, existen $q_2$ y $r_2 \in \mathbb{Z}^+$ tales que $$r = r_1q_2 + r_2,\enspace \text{con} \quad \quad 0 \leq r_2 < r_1.$$

Se puede continuar así sucesivamente. Pero este procedimiento debe de terminar, pues tenemos $b>r>r_1>r_2>\ldots \geq 0$, de modo que debe existir una $i$ tal que $r_i=0$. De esta forma, en el penúltimo paso tendremos que existen $q_{i-1}$ y $r_{i-1}$ enteros tales que $$r_{i-3} = r_{i-2}q_{i-1} + r_{i-1}, \enspace \text{con} \quad \quad 0 \leq r_{i-1} < r_{i-2}.$$

Y en el último paso tendríamos $q_i \in \mathbb{Z}^+$ y $r_i = 0$ tales que
$$r_{i-2} = r_{i-1}q_i + 0, \enspace \text{con} \quad \quad 0 = r_i < r_{i-1} .$$

Lo que nos dice el algoritmo de Euclides es que el último residuo no cero, en este caso $r_{i-1}$ es el máximo común divisor de $a$ y $b$.

Este procedimiento es particularmente útil cuando $a$ y $b$ son números tan grandes, tanto que determinar el máximo común divisor de ellos no sea inmediato. Aunque se comience con números muy grandes, el algoritmo de Euclides encuentra el MCD de manera rápida.

Ejemplo del algoritmo de Euclides

A continuación veremos el algoritmo de Euclides en acción.

Problema. Encuentra el máximo común divisor de $3456$ y $6524$.

Solución. Observamos que $6524 > 3456$. Así, $$6524 = 3456\cdot 1 + 3068, \quad \quad 0 \leq 3068 < 3456. $$
Aplicando nuevamente el algoritmo de la división, obtenemos
$$3456 = 3068 \cdot 1 + 388, \quad \quad 0 \leq 388 < 3068. $$
Aplicando una vez más el algoritmo de la división, se tiene
$$3068 = 388\cdot 7 + 352, \quad \quad 0 \leq 352 < 388. $$
Siguiendo este procedimiento,
$$388 = 352 \cdot 1 + 36, \quad \quad 0 \leq 36 < 352. $$
$$352 = 36 \cdot 9 + 28, \quad \quad 0 \leq 28 < 36. $$
$$36 = 28\cdot 1 + 8, \quad \quad 0 \leq 8 < 28.$$
$$28 = 8 \cdot 3 + 4, \quad \quad 0 \leq 4 < 8.$$
$$8 = 4\cdot 2 + 0.$$

Como el último residuo no cero es $4$, entonces $(6524, 3456)=4$.

$\square$

Observación. Aunque el algoritmo de Euclides requiere que los números $a$ y $b$ sean positivos, cuando ocurre el caso de que uno de ellos o los dos fueran negativos, no hay un gran obstáculo. Basta sacar el valor absoluto de ambos números al inicio, ya que los divisores de un número negativo son los mismos que los de su valor absoluto.

Veamos un ejemplo que usa esta observación.

Ejemplo. Obtén el máximo común divisor de $-100$ y $45$.

Solución. Como uno de los números es negativo, antes que nada sacamos valores absolutos: $|-100| = 100$ y $|45| = 45.$ Le aplicamos el algoritmo de Euclides a estos números:
$$ 100 = 45 \cdot 2 + 10, \quad \quad 0 \leq 10 < 45. $$
$$ 45 = 10 \cdot 4 + 5, \quad \quad 0 \leq 5 < 10. $$
$$10 = 5 \cdot 2 + 0.$$

Notemos que el último residuo no cero es $5$. Por lo tanto, $(-100, 45) = 5.$

$\square$

Demostración de la validez del algoritmo de Euclides

Ahora, veamos la demostración de que el algoritmo de Euclides funciona. El resultado clave para demostrarlo es la siguiente proposición.

Proposición. Sean $a,b \in \mathbb{Z}^+, $ tales que $a = bq + r.$ Entonces $(a,b) = (b,r).$

Demostración. Sean $a,b \in \mathbb{Z}^+$. Sea $d=(a,b)$ el máximo común divisor de $a$ y $b$, y sea $f=(b,r)$ el máximo común divisor de $b$ y $r$.

Tenemos que $d\mid a$. Además, $d \mid b,$ por lo que $d\mid bq$. Así, $d\mid a-bq=r$. De este modo, $d$ es un divisor común de $b$ y de $r$, de modo que $d\mid f$.

Por otro lado, $f\mid b$, de donde $f\mid bq$. Además, $f\mid r$. De este modo, $f\mid bq+r=a$. Concluimos entonces que $f$ es divisor común de $a$ y $b$. Pero entonces $f\mid d$.

Por propiedades de divisibilidad, tenemos entonces que $|f|=|d|$, pero como ambos son números no negativos concluimos entonces que $f=d$, como queríamos.

$\square$

Ya con este resultado demostrado, enunciemos formalmente el algoritmo de Euclides y demos su demostración.

Teorema. Empecemos tomando dos enteros positivos $a$ y $b$, con $a\geq b$. Usando el algoritmo de la división, definimos sucesivamente los números $r_0,r_1,\ldots,r_i$ y $q_0,q_1,\ldots,q_i$ de manera que se cumpla

\begin{align*}
b=aq_0+r_0\\
a=r_0q_1+r_1
\end{align*}

con $0\leq r_0<a$, y $0\leq r_1 < r_0$ y para $j=2,\ldots,i$ que se cumpla

\begin{align*}
r_{j-2}=r_{j-1}q_j+r_{j},
\end{align*}

con $0\leq r_j < r_{j-1}.$

Como $b\geq a > r_0 > r_1 > r_2 > \ldots > r_i$, entonces podemos suponer que $r_i=0$. Entonces $(a,b)=r_{i-1}$.

Demostración. Por la proposición anterior, tenemos que $(a,b)=(b,r_0)$. También por esa misma proposición, tenemos que $(b,r_0)=(r_0,r_1)$. Y, de hecho, aplicando repetidametne la proposición tenemos que:

$$(r_0,r_1)=(r_1,r_2)=\ldots=(r_{i-1},r_i)=(r_{i-1},0)=r_{i-1}.$$

La penúltima igualdad es porque $r_i=0$ y la última porque $(n,0)=n$ para cualquier entero positivo $n$.

$\square$

Máximo común divisor como combinación lineal entera

Una última consecuencia del algoritmo de Euclides es que nos ayuda a poner al máximo común divisor de dos números $a$ y $b$ como combinación lineal entera de ellos dos.

Una forma práctica de encontrar la combinación lineal correspondiente es mediante el siguiente procedimiento. Tomaremos como ejemplo el algoritmo de Euclides que ya habíamos hecho para encontrar $(6524,3456)$.

$$6524 = 3456\cdot 1 + 3068, \quad \quad 0 \leq 3068 < 3456. $$
$$3456 = 3068 \cdot 1 + 388, \quad \quad 0 \leq 388 < 3068. $$
$$3068 = 388\cdot 7 + 352, \quad \quad 0 \leq 352 < 388. $$
$$388 = 352 \cdot 1 + 36, \quad \quad 0 \leq 36 < 352. $$
$$352 = 36 \cdot 9 + 28, \quad \quad 0 \leq 28 < 36. $$
$$36 = 28\cdot 1 + 8, \quad \quad 0 \leq 8 < 28.$$
$$28 = 8 \cdot 3 + 4, \quad \quad 0 \leq 4 < 8.$$
$$8 = 4\cdot 2 + 0.$$

Lo que haremos es la siguiente tabla, en donde en la columna izquierda ponemos todos los residuos que vamos encontrando. Además, completaremos la primera fila con $1,0$ y la segunda con $0,1$.

$6524$$1$$0$
$3456$$0$$1$
$3068$
$388$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Vamos a ir llenando la tabla con lo que ya sabemos del algoritmo de Euclides. Por el algoritmo de Euclides, sabemos que $3456$ cabe $1$ vez en $6524$. Por esta razón, restamos $1$ vez la segunda fila de la primera, para obtener $1-0=1$ y $0-1=-1$. Estos son los números que van en la fila $3$, columnas $2$ y $3$:

$6524$$1$$0$
$3456$$0$$1$
$3068$$\mathbf{1}$$\mathbf{-1}$
$388$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

De nuevo, $3068$ cabe una vez en $3456$, así que de nuevo restamos una vez el tercer renglón del segundo. Nos queda $0-1=-1$ y $1-(-1)=2$ para las nuevas entradas:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$\mathbf{-1}$$\mathbf{2}$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Ahora cambia un poco, pues $388$ ya sabemos que cabe $7$ veces en $3068$ (por lo que hicimos del algoritmo de Euclides). Así, para la nueva fila restamos siete veces la cuarta fila de la tercera, para obtener como nuevos números $1-7\cdot (-1)=8$ y $-1-7\cdot (2)=-15$. La tabla queda así:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$-1$$2$
$352$$\mathbf{8}$$\mathbf{-15}$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Siguiendo este procedimiento repetidamente, llegamos a la siguiente tabla:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$-1$$2$
$352$$8$$-15$
$36$$-9$$17$
$28$$89$$-168$
$8$$-98$$185$
$4$$383$$-723$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Los últimos dos números que pusimos en la tabla nos dan la respuesta de cómo poner a $4$ como combinación lineal entera de $6524$ y de $3456$:

$$4=383 \cdot 6524 – 723 \cdot 3456.$$

Verifica que en efecto las cuentas son correctas, y que esta expresión final es válida.

¿Cómo se demuestra que este procedimiento siempre funciona? Se puede mostrar inductivamente que, de hecho, para cada uno de los renglones con entradas $a,b,c$ se cumple que $a=6524b+3456c$. Esto queda como uno de los problemas de tarea moral.

Más adelante…

Esta entrada termina nuestra exploración introductoria al mundo de la aritmética de los números enteros. Sin embargo, todavía hay otros lugares a los que nos llevará el algoritmo de la división. Hasta ahora hemos discutido mucho el caso de la divisibilidad, es decir, cuando el residuo de la división de un número entre otro es igual a cero. Pero también podemos encontrar estructuras matemáticas muy ricas si estudiamos al resto de los posibles residuos. A partir de la siguiente entrada hablaremos del anillo de enteros módulo $n$, lo cual nos ayudará a formalizar estas ideas.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Usa el algoritmo de Euclides para encontrar el máximo común divisor de las siguientes parejas de números, y para escribirlo como combinación lineal entera de ellos.
    1. $15$ y $35$
    2. $18$ y $92$
    3. $201$ y $153$
    4. $328$ y $528$
  2. ¿Cómo usarías el algoritmo de Euclides para encontrar el máximo común divisor de los números $91$, $105$ y $119$? Es decir, debes encontrar el mayor entero $d$ que divida a estos tres números de manera simultánea.
  3. Hay otra forma de encontrar el máximo común divisor de dos números si conocemos su factorización en números primos. Imagina que tenemos dos números $n$ y $m$ y que, conjuntamente, usan los números primos distintos $p_1,p_2,\ldots, p_k$ en su factorización en primos (quizás con exponente cero). Esto nos permite escribirlos como:
    \begin{align*} m=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_k^{\alpha_k} \\ n=p_1^{\beta_1}p_2^{\beta_2}\ldots p_k^{\beta_k}\ \end{align*}
    1. Demuestra que la máxima potencia de $p_1$ que divide tanto a $m$ como a $n$ es $p_1^{\text{min}(\alpha_1,\beta_1)}$
    2. Demuestra que el máximo común divisor de $m$ y $n$ es $$p_1^{\text{min}(\alpha_1,\beta_1)} p_2^{\text{min}(\alpha_2,\beta_2)}\cdots p_k^{\text{min}(\alpha_k,\beta_k)}.$$
  4. Demuestra un resultado análogo al del inciso anterior para el mínimo común múltiplo y úsa ambos resultados para dar otra demostración de que $(m,n)[m,n]=mn$.
  5. Verifica que, en efecto, el método explicado en la entrada ayuda a escribir al máximo común divisor de dos enteros como combinación lineal de ellos.

Entradas relacionadas

Álgebra Superior II: Ideales en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada pasada hablamos del concepto de divisibilidad en los números enteros. Enunciamos y demostramos varias de sus propiedades. La noción de divisibilidad da lugar a muchos otros conceptos importantes dentro de la teoría de los números enteros, como el máximo común divisor, el mínimo común múltiplo y los números primos. Así mismo, la noción de divisibilidad está fuertemente ligada con los ideales en los enteros.

En esta entrada hablaremos de este último concepto a detalle. Es una entrada un poco técnica, pero nos ayudará para asentar las bases necesarias para poder hablar de los máximos comunes divisores y los mínimos comunes múltiplos con comodidad un poco más adelante.

Ideales en los enteros y una equivalencia

Los ideales son ciertas estructuras importantes en matemáticas. En el caso particular de los números enteros, tenemos la siguiente definición

Definición. Un ideal de $\mathbb{Z}$ es un subconjunto $I$ de $\mathbb{Z}$ que cumple las siguientes dos propiedades:

  • No es vacío.
  • Es cerrado bajo restas, es decir, si $a$ y $b$ están en $I$, entonces $a-b$ también.

Veamos un ejemplo sencillo. Diremos que un número entero es par si es múltiplo de $2$ y que es impar si no es múltiplo de dos.

Ejemplo. El conjunto de todos los números pares son un ideal de $\mathbb{Z}$. Este conjunto claramente no es vacío, pues adentro de él está, por ejemplo, el $2$. Además, si tenemos que dos números $a$ y $b$ son pares, entonces por definición podemos encontrar enteros $k$ y $l$ tales que $a=2k$ y $b=2l$, de modo que $$a-b=2k-2l=2(k-l),$$ lo cual nos dice que $a-b$ también es par.

$\square$

Como veremos un poco más adelante, el ejemplo anterior se puede generalizar. Antes de ver esto, veremos una caracterización un poco distinta de lo que significa ser un ideal.

Proposición. Un subconjunto $I$ de $\mathbb{Z}$ es un ideal si y sólo si cumple las siguientes tres propiedaes:

  • No es vacío.
  • Es cerrado bajo sumas, es decir, si $a$ y $b$ están en $I$, entonces $a+b$ también.
  • Es absorbente, es decir, si $a$ está en $I$ y $b$ está en $\mathbb{Z}$, entonces $ab$ también está en $I$.

Demostración. Primero veremos que si $I$ es un ideal, entonces cumple las tres propiedades anteriores. Luego veremos que si $I$ cumple las tres propiedades anteriores, entonces es un idea.

Supongamos que $I$ es un ideal. Por definición, no es vacío, que es lo primero que queríamos ver. Veamos ahora que es cerrado bajo sumas. Supongamos que $a$ y $b$ están en $I$. Como $I$ es cerrado bajo restas y $b-b=0$, obtenemos que $b$ está en $I$. Usando nuevamente que $b$ es cerrado bajo restas para $0$ y $b$, obtenemos que $0-b=-b$ también está en $I$. Usando una última vez la cerradura de la resta, obtenemos ahora que $a+b=a-(-b)$ está en $I$, como queríamos.

La tercera propiedad la demostraremos primero para los $b\geq 0$ por inducción. Si $b=0$, debemos ver que $0\cdot a=0$ está en $I$. Esto es cierto pues en el párrafo anterior ya vimos por qué $0$ está en $I$. Supongamos ahora que para cierta $b$ fija se tiene que $ab$ está en $I$. Por la cerradura de la suma obtenemos que $$ab+a=ab+a\cdot 1=a(b+1)$$ también está en $I$, como queríamos. Aquí usamos que $1$ es identidad multiplicativa, la distributividad, la hipótesis inductiva y la cerradura de la suma.

Nos falta ver qué pasa con los $b<0$. Sin embargo, si $b<0$, tenemos que $a(-b)$ sí está en $I$ (pues $-b>0$). Así, por la cerradura de la resta tenemos que $0-a(-b)=ab$ está en $I$.

Apenas llevamos la mitad de la demostración, pues vimos que la definición de ideal implica las tres propiedades que se mencionan. Pero el regreso es más sencillo. Supongamos que un conjunto $I$ cumple las tres propiedades mencionadas. Como cumple la primera, entonces no es vacío. Ahora vemos que es cerrado bajo restas. Tomemos $a$ y $b$ en $I$. Como cumple la segunda propiedad, tenemos que $(-1)b=-b$ está en $I$. Como cumple la cerradura de la suma, tenemos que $a+(-b)=a-b$ está en $I$. Así, $I$ es cerrado bajo restas.

$\square$

La ventaja del resultado anterior es que nos permitirá pensar a los ideales de una o de otra forma, de acuerdo a lo que sea más conveniente para nuestros fines más adelante.

Clasificación de ideales

Veamos la generalización de nuestro ejemplo de números pares e impares.

Definición. Sea $n$ un entero. Al conjunto de todos los múltiplos de $n$ lo denotaremos por $n\mathbb{Z}$ y lo llamaremos el conjunto de los múltiplos de $n$, es decir:

$n\mathbb{Z}=\{nm: m\in \mathbb{Z}\}.$

Proposición. Si $n$ es cualquier entero, entonces $n\mathbb{Z}$ es un ideal de $\mathbb{Z}$.

Demostración. Claramente $n\mathbb{Z}$ no es vacío pues, por ejemplo, $0=0\cdot n$ está en $n\mathbb{Z}$. La demostración de la cerradura de la resta se sigue de un corolario de la entrada anterior. Si $a,b$ están en $n\mathbb{Z}$, entonces ambos son divisibles entre $n$, así que su resta $a-b$ también. Así, $a-b$ está en $n\mathbb{Z}$.

$\square$

El ejemplo anterior de hecho da todos los posibles ideales que existen en $\mathbb{Z}$. El siguiente teorema enuncia esto con precisión.

Teorema. Un conjunto $I$ de $\mathbb{Z}$ es un ideal si y sólo si existe un entero no negativo $n$ tal que $I=n\mathbb{Z}$.

Demostración. Tomemos $I$ un ideal de $\mathbb{Z}$. Existe la posibilidad de que $I=\{0\}$, pues en efecto este es un ideal: es no vacío (pues tiene a $0$) y es cerrado bajo restas (pues sólo hay que verificar que $0-0=0$ está en I). Si este es el caso, entonces $I=0\mathbb{Z}$, como queríamos. Así, a partir de ahora supondremos que $I$ no es este conjunto. Veremos que $I$ tiene por lo menos un elemento positivo.

Sea $a\in I$ cualquier elemento que no sea $0$. Si $a$ es positivo, entonces ya lo logramos. Si $a$ es negativo, entonces notamos que $0=a-a$ está en $I$, y que entonces $-a=0-a$ está en $I$. Pero entonces $-a$ es un número positivo en $I$.

Debido a esto, por el principio del buen orden podemos tomar al menor entero positivo $n$ que está en $I$. Afirmamos que $I=n\mathbb{Z}$. Por la caracterización de ideales que dimos en la sección anterior, todos los múltiplos de $n$ están en $I$, así que $I\supseteq n\mathbb{Z}$.

Veamos que $I\subseteq n\mathbb{Z}$ procediendo por contradicción. Supongamos que este no es el caso, y que entonces existe un $m\in I$ que no sea múltiplo de $n$. Por el algoritmo de la división, podemos escribir $m=qn+r$ con $0<r<n$. Como $m$ está en $I$ y $qn$ está en $I$, tendríamos entonces que $m-qn=r$ está en $I$. ¡Pero esto es una contradicción! Tendríamos que $r$ está en $I$ y que $0<r<n$, lo cual contradice que $n$ era el menor entero positivo en $I$ que tomamos con el principio del buen orden. Esta contradicción sólo puede evitarse si $m$ es múltiplo de $n$, como queríamos.

$\square$

Un teorema como el anterior se conoce como un teorema de clasificación pues nos está diciendo cómo son todas las posibles estructuras que definimos a partir de un criterio fácil de enunciar.

Ideal generado por dos elementos

Dado un conjunto de números enteros $S$, podríamos preguntarnos por el ideal más chiquito que contenga a $S$. Un ejemplo sencillo es tomar $S$ con sólo un elemento, digamos $S=\{n\}$. En este caso, es fácil convencerse de que el ideal más pequeño que contiene a $S$ es precisamente $n\mathbb{Z}$ (ve los problemas de la tarea moral).

Un caso un poco más interesante es, ¿qué sucede si tenemos dos elementos?

Ejemplo. ¿Cuál será el menor ideal posible $I$ que tiene a los números $13$ y $9$? Empecemos a jugar un poco con la propiedad de la cerradura de la resta. Como $13$ y $9$ están, entonces también está $4=13-9$. Como $9$ y $4$ están, entonces también está $5=9-4$. Así mismo, debe estar $1=5-4$. Pero aquí ya llegamos a algo especial: que el $1$ está. Recordemos los ideales también cumplen que una vez que está un número, están todos sus múltiplos. Así, $1\mathbb{Z}$ está contenido en $I$. Pero entonces $I=1\mathbb{Z}=\mathbb{Z}$.

$\square$

No siempre obtenemos $\mathbb{Z}$ como respuesta. Para un ejemplo en donde se obtiene $2\mathbb{Z}$, ve los problemas de la tarea moral. En la siguiente entrada hablaremos con más detalle de la respuesta, pero por el momento probaremos lo siguiente.

Proposición. Si $a$ y $b$ son enteros, entonces:

  • El conjunto $M=\{ra+sb: r,s\in \mathbb{Z}\}$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$.
  • Si $I$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$, entonces $M\subseteq I$.

En otras palabras, «$M$ es el ideal más pequeño (en contención) que tiene a $a$ y a $b$».

Demostración. Veamos primero que $M$ en efecto es un ideal. Para ello, notemos que no es vacío pues, por ejemplo, $0=0\cdot a+0\cdot b$ está en $M$. Además, es cerrado bajo restas pues si tenemos dos elementos en $M$, son de la forma $ra+sb$ y $ka+lb$, y su resta es $$(ra+sb)-(ka+lb)=(r-k)a+(s-l)b,$$ que vuelve a estar en $M$ pues $r-k$ y $s-l$ son enteros. Además, $a=1\cdot a+ 0\cdot b$, lo que muestra que $a$ está en $M$ y $b=0\cdot a + 1 \cdot b$, lo que muestra que $b$ está en $M$ también. Con esto demostramos el primer punto.

Para el segundo punto, supongamos que $a$ está en $I$ y que $b$ está en $I$ también. Como $I$ es idea, tiene a todos los múltiplos de $a$ y los de $b$, es decir, a todos los números de la forma $ra$ y $sb$. Como es ideal, también es cerrado bajo sumas, así que tiene todas las formas de números de este estilo. En particular, tiene a todos los números de la forma $ra+sb$ (variando $r$ y $s$), es decir, a todos los elementos de $I$, como queríamos.

$\square$

Quizás notaste algo raro. El conjunto $M$ es un ideal, pero se ve un poco distinto de los que obtuvimos con nuestra caracterización de la sección anterior. Parece más bien que «está hecho por dos enteros» en vez de estar hecho sólo por uno. Esto no es problema. Nuestra caracterización nos dice que debe existir un entero $d$ tal que $M=d\mathbb{Z}$. Esto nos llevará en la siguiente entrada a estudiar el máximo común divisor.

Intersección de ideales

Los ideales de $\mathbb{Z}$ son subconjuntos, así que podemos aplicarles operaciones de conjuntos. ¿Qué sucede si intersectamos dos ideales? La siguiente operación nos dice que

Proposición. Si $I$ y $J$ son ideales de $\mathbb{Z}$, entonces $I\cap J$ también.

Demostración. La demostración es sencilla. Como $I$ y $J$ son ideales, se puede ver que ambos tienen al $0$, y que por lo tanto su intersección también. Ahora veamos que $I\cap J$ es cerrada bajo restas. Si $a$ y $b$ están en $I\cap J$, entonces $a$ y $b$ están en $I$. Como $I$ es cerrado bajo restas, $a-b$ está en $I$. Análogamente, está en $J$. Así, $a-b$ está en $I\cap J$, como queríamos.

$\square$

Este resultado motivará nuestro estudio del mínimo común múltiplo un poco más adelante.

Más adelante…

Esta fue una entrada un poco técnica, pero ahora ya conocemos a los ideales en los enteros, algunas de sus propiedades y hasta los caraterizamos. La idea de tomar el ideal generado por dos elementos nos llevará a estudiar en la siguiente entrada el concepto de máximo común divisor. Y luego, la idea de intersectar ideales nos llevará en un par de entradas a explorar la noción de mínimo conún múltiplo

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Imagina que sabes que un ideal tiene al número $6$. Esto forza a que también tenga a $6-6=0$. Así, esto forza a que también tenga el $0-6=-6$. Sigue así sucesivamente, jugando con todas las nuevas restas que deben quedarse dentro del ideal. ¿Cuál es el menor ideal que puede tener al $6$?
  2. Repite lo anterior, pero ahora suponiendo que tu ideal tiene a los números $10$ y $12$. ¿Qué números puedes obtener si repetidamente puedes hacer restas? ¿Quién sería el menor ideal que tiene a ambos números?
  3. Sean $I_1,\ldots,I_k$ ideales de $\mathbb{N}$. Demuestra que $I_1\cap I_2 \cap \ldots \cap I_k$ también es un idea. Como sugerencia, usa inducción.
  4. Toma a los ideales $6\mathbb{Z}$ y $8\mathbb{Z}$. Por el resultado de la entrada, tenemos que su intersección $A$ también es un ideal. Intenta averiguar y demostrar quién es el $k$ tal que $A=k\mathbb{Z}$.
  5. ¿Es cierto que la unión de dos ideales siempre es un ideal? Si es falso, encuentra contraejemplos. Si es verdadero, da una demostración. Si es muy fácil, ¿puedes decir exactamente para qué enteros $m$ y $n$ sucede que $m\mathbb{Z}\cup n\mathbb{Z}$ es un ideal?

Entradas relacionadas

Álgebra Superior II: Divisibilidad en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos del algoritmo de la división. Dados dos números enteros $a$ y $b$, con $b\neq 0$, nos permite poner de manera única a $a$ de la forma $a=qb+r$, en donde $q$ y $r$ son enteros, y además $0\leq r < |b|$. En otras palabras, nos permite poner a un número como «copias de otro», más un residuo «chiquito». En esta entrada hablaremos de la divisibilidad en los enteros.

La divisibilidad se da cuando pasa una situación especial en el algoritmo de la división: cuando el residuo obtenido es igual a cero. Es decir, cuando podemos escribir $a=qb$. Cuando esto sucede, diremos que $b$ divide a $a$, o bien que $a$ es múltiplo de $b$. En esta entrada daremos una definición formal que contemple este caso y estudiaremos varias de sus propiedades.

Definición de divisibilidad

La noción fundamental que estudiaremos en esta entrada es la de divisibilidad. La definición crucial es la siguiente.

Definición. Sean $m$ y $n$ enteros. Diremos que $m$ divide a $n$ si existe un entero $k$ tal que $n=km$. En notación, escribiremos $m|n$. También diremos que $n$ es un múltiplo de $m$, o bien que $n$ es divisible entre $m$.

Ejemplo. El número $35$ es divisible entre $5$ pues podemos encontrar un entero $k$ tal que $35=k\cdot 5$. Concretamente, podemos escribir $35=7\cdot 5$. Así mismo, este número también es divisible entre $-7$ pues podemos encontrar un entero $k$ tal que $35=k\cdot (-7)$, en concreto, podemos escribir $35=(-5)(-7)$.

Por otro lado, el $35$ no es múltiplo de $8$. ¿Cómo sabemos esto? Al hacer el algoritmo de la división obtenemos que $35=4\cdot 8 + 3$. Como esta es la única forma de escribir a $35$ como un múltiplo de $8$ más un residuo entre $0$ y $7$, entonces es imposible escribirlo como un múltiplo de $8$ más residuo $0$. En otras palabras, no es múltiplo de $8$.

$\square$

Propiedades básicas de divisibilidad

La siguiente proposición habla de algunas de las propiedades básicas de la divisibilidad. Las enunciaremos y daremos sus demostraciones para poner en práctica nuestra definición de divisibilidad.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Los enteros $1$ y $-1$ dividen a cualquier otro entero.
  • El entero $0$ es divisible por cualquier entero.
  • Es reflexiva, es decir para cualquier entero $n$ se tiene que $n|n$.
  • Es transitiva, es decir si $l,m,n$ son enteros tales que $l|m$ y $m|n$, entonces $l|n$.

Demostración. A continuación demostramos la demostración, inciso por inciso.

  • Recordemos que si $n$ es un entero, entonces $n=n\cdot 1$. Esto nos dice que $1$ divide a $n$. Además, por las propiedades de las operaciones en los números enteros tenemos lo siguiente:
    \begin{align*}
    n&=n\cdot 1\\
    &=n\cdot ((-1)\cdot (-1))\\
    &=(n\cdot (-1))\cdot (-1)\\
    &=(-n)\cdot (-1).
    \end{align*}
    Aquí estamos usando que $(-1)(-1)=1$, la asociatividad del producto en los números enteros y que $(-1)n=-n$. En resumen, obtenemos que $n=(-n)(-1)$, lo cual nos dice que $-1|n$.
  • Aquí notamos que para cualquier entero $n$ tenemos que $0=0\cdot n$. Así, $n|0$.
  • Anteriormente usamos que $n=n\cdot 1$ para concluir $1|n$. Así mismo, al usar $n=1\cdot n$ obtenemos que $n|n$.
  • Veamos la transitividad. Supongamos que $l,m,n$ son enteros tales que $l|m$ y $m|n$. Por definición de divisibilidad podemos encontrar enteros $q$ y $r$ tales que $m=ql$ y $n=rm$. Substituyendo el valor de $m$ de la primera igualdad en la segunda y usando asociatividad obtenemos que: $$n=rm=r(ql)=(rq)l.$$ Esto precisamente nos dice que $l|n$.

$\square$

Divisibilidad y operaciones en los enteros

La divisibilidad se comporta bien con las operaciones en los números enteros. En la siguiente proposición encontramos algunas de las propiedades que vuelven esto un poco más preciso.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Para enteros $l,m,n$, si $l|m$ y $l|n$, entonces $l|m+n$.
  • Para enteros $l,m,n$, si $l|m$, entonces $l|mn$.
  • Para enteros $l$, $a$, $b$, $c$, $d$ se cumple que si $l|m$ y $l|n$, entonces $l|am+bn$.

Demostración. Daremos la demostración inciso por inciso:

  • Como $l|m$ y $l|n$, por definición existen enteros $r$ y $s$ tales que $m=rl$ y $n=sl$. Al hacer la suma y usar la distributividad del producto sobre la suma obtenemos que $$m+n=rl+sl=(r+s)l.$$ Esto por definición está diciendo que $l$ divide a $m+n$.
  • Aquí podemos utilizar una propiedad anterior. Tenemos que $mn=nm$, por lo cual $mn$ es divisible entre $m$. Es decir, tenemos $l|m$ y $m|mn$. Así, por la transitividad de la divisibilidad, que ya probamos anteriormente, tenemos que $l|mn$.
  • Este inciso es consecuencia de los dos anteriores y, de hecho, ya no tenemos que usar la definición. Por el segundo inciso, como $l|m$, entonces $l|am$. Así mismo, como $l|n$, entonces $l|bn$. Finalmente, por el primer inciso, como $l|am$ y $l|bn$, entonces $l|am+bn$.

$\square$

Observa que si ponemos $a=1$ y $b=-1$ en la última propiedad obtenemos el siguiente corolario: si $l|m$ y $l|n$, entonces $l|m-n$.

Divisibilidad y orden en los enteros

Hay una tercera clase de propiedades que cumple la noción de divisibilidad: aquellas relacionadas con el orden en los enteros. Veamos esto.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Si $m$ y $n$ son enteros distintos de cero tales que $m|n$, entonces $|m|\leq |n|$.
  • Si $m$ y $n$ son enteros positivos tales que $m|n$, entonces $m\leq n$.
  • Si $m$ y $n$ son enteros tales que $m|n$ y $n|m$, entonces $|m|=|n|$.

Demostración. Demostraremos la primera afirmación a detalle, pues a partir de ella salen las otras dos de manera prácticamente inmediata.

Tomemos dos enteros $m$ y $n$ tales que $m|n$. Por definición de divisibilidad, tenemos que existe un entero $k$ tal que $n=km$. Al tomar valor absoluto de esta expresión, obtenemos que $|n|=|km|$. Por propiedades del valor absoluto, tenemos que $|km|=|k||m|$. Como $n$ es distinto de cero, entonces $k$ también es distinto de cero, así que $|k|\geq 1$. De esta manera, tenemos la siguiente cadena de igualdades y desigualdades: $$|n|=|km|=|k||m|\geq 1\cdot |m| = |m|.$$

Esto es lo que queríamos demostrar.

Para el segundo inciso, como $m$ y $n$ son positivos, entonces entran en el caso del primer inciso. Además, por ser positivos tenemos $|m|=m$ y $|n|=n$. De este modo, por el primer inciso tenemos $m\leq n$.

En el tercer inciso primero tenemos que descartar algunos casos. Si $m=0$, entonces la divisibilidad $0|n$ nos dice que $n=k\cdot 0$ para alguna $k$ entera, pero entonces $n=0$ también, y entonces se cumple $|m|=0=|n|$. El caso $n=0$ es análogo. Ya descartados estos casos, podemos suponer que $m$ y $n$ son distintos de cero. Por el primer inciso tendríamos entonces $|m|\leq |n|$ y $|m|\geq |n|$. Así, $|m|=|n|$, como queríamos.

$\square$

Un ejemplo que usa varias propiedades de divisibilidad

¿Por qué es bueno recordar y saber cuándo usar propiedades de la divisibilidad? Porque nos permite simplificar ciertos problemas y resolverlos más fácilmente. Veamos un ejemplo.

Problema. Encuentra todos los divisores del número $12$.

Solución. Supongamos que $d$ es un divisor de $12$. Tenemos entonces que $|d|\leq |12|=12$, así, $d$ es un número entre $-12$ y $12$. Fuera de este rango no pueden existir divisores de $12$.

Por reflexividad tenemos que $12|12$. Por la propiedad de $1$ y $-1$ tenemos que $1|12$ y $-1|12$. Es fácil ver $12=2\cdot 6$ y $12=3\cdot 4$, así que $2$, $3$, $4$ y $6$ son todos ellos divisores de $12$. Los negativos de estos números también serán divisores entonces pues, por ejemplo, como $12=3\cdot 4$, también tenemos $12=(-3)(-4)$.

De este modo, hasta ahora hemos visto que $-12,-6,-4,-3,-2,-1,1,2,3,4,6,12$ son todos ellos divisores de $12$.

El $5$ claramente no es, pues al hacer el algoritmo de la división obtenemos $12=2\cdot 5 +2$, con residuo $2$. Entonces el $-5$ tampoco puede ser divisor.

Podríamos hacer lo mismo con $7,8,9,10,11$. Pero una forma fácil de ver que ninguno de ellos va a funcionar es que si intentáramos escribir $12=7k$, por ejemplo, se tiene que $k$ no puede ser $1$ (pues $12\neq 7$) y si ponemos $k\geq 2$ entonces el producto es al menos $14$, que ya se pasa de $12$. Así, ni estos números, ni $-7,-8,-9,-10,-11$ son divisores de $12$.

$\square$

Más adelante…

La noción de divisibilidad da pie a varios otros conceptos en la teoría de números enteros. Dentro de algunas entradas hablaremos de dos conceptos importantes: el de máximo común divisor y mínimo común múltiplo en los enteros. Sin embargo, antes de hacer esto tomaremos una pequeña desviación para hablar de un concepto un poco abstracto pero bastante útil: los ideales.

Tarea moral

  1. Encuentra todos los divisores del número $24$ (tanto los positivos, como los negativos) y verifica que en efecto cumplen con la definición dada en esta entrada.
  2. Encuentra contraejemplos para las siguientes afirmaciones:
    1. Si $l$, $m$ y $n$ son enteros tales que $l|m$ y $n|m$, entonces $l+n|m$.
    2. Si $l,m,n$ son enteros tales que $l|mn$, entonces o bien $l|m$ o bien $l|n$.
  3. Demuestra las siguientes dos propiedades de la noción de divisibilidad:
    1. Si $m$ y $n$ son enteros positivos tales que $m|n$ y $n|m$, entonces $m=n$.
    2. Si $m$ es divisor de $n$ con $n=km$, entonces $k$ también es divisor de $n$.
  4. Sean $m$ y $n$ enteros. Demuestra que $m$ divide a $n$ si y sólo si $m^2$ divide a $n^2$.
  5. Sea $n$ un entero positivo, $m$ un entero, $a_1,\ldots,a_n$ enteros y $b_1,\ldots,b_n$ enteros. Demuestra que si $m|b_i$ para todo $i=1,\ldots,n$, entonces $m| \sum_{i=1}^n a_ib_i$.

Entradas relacionadas

Álgebra Lineal I: Algunas aclaraciones sobre las formas lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Uno de los momentos del curso de Álgebra Lineal I en el que se da un brinco de abstracción es cuando se introduce el espacio dual. En ese momento, empiezan a aparecer objetos que tratamos simultáneamente como funciones y como vectores: las formas lineales. De repente puede volverse muy difícil trasladar incluso conceptos muy sencillos (como el de suma vectorial, o el de indepencia lineal) a este contexto. En esta entrada intentaremos dejar esto mucho más claro.

Igualdad de funciones

Para hablar del dual de un espacio vectorial $V$ sobre un campo $F$, necesitamos hablar de las funciones $l:V\to F$. Antes de cualquier cosa, debemos de ponernos de acuerdo en algo crucial. ¿Cuándo dos funciones son iguales?

Definición. Dos funciones $f:A\to B$ y $g:C\to D$ son iguales si y sólo si pasan las siguientes tres cosas:

  • $A=C$, es decir, tienen el mismo dominio.
  • $B=D$, es decir, tienen el mismo codominio
  • $f(a)=g(a)$ para todo $a\in A$, es decir, tienen la misma regla de asignación.

Los dos primeros puntos son importantes. El tercer punto es crucial, y justo es lo que nos permitirá trabajar y decir cosas acerca de las funciones. Implica dos cosas:

  • Que si queremos demostrar la igualdad de dos funciones, en parte necesitamos demostrar que se da la igualdad de las evaluaciones para todos los elementos del conjunto.
  • Que si ya nos dan la igualdad de las funciones, entonces nos están dando muchísima información, pues nos están diciendo la igualdad de todas las evaluaciones posibles.

Veamos algunos ejemplos.

Ejemplo. Tomemos las funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las reglas de asignación $f(x,y)=2x+3y$ y $g(x,y)=6x-y$. ¿Son iguales? Los primeros dos puntos en la definición de igualdad se cumplen, pues tienen el mismo dominio y codominio. Entonces, debemos estudiar si tienen la misma regla de asignación.

Al evaluar en $(1,1)$ obtenemos que $f(1,1)=2+3=5$ y que $g(1,1)=6-1=5$. Al evaluar en $(2,2)$ obtenemos que $f(2,2)=4+6=10$ y que $g(2,2)=12-2=10$. Hasta aquí parecería que todo va bien, pero dos ejemplos no son suficientes para garantizar que $f=g$. Necesitaríamos la igualdad en todos los valores del dominio, es decir, en todas las parejas $(x,y)$.

Al evaluar en $(2,0)$ obtenemos que $f(2,0)=4+0=4$ y que $g(2,0)=12-0=12$. Los valores de las funciones fueron distintos, así que las funciones son distintas.

$\square$

Ejemplo. Imagina que $A$ y $B$ son dos números tales que las dos funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las siguientes reglas de asignación son iguales:

\begin{align*}
f(x,y)&=2x-5y+A\\
g(x,y)&=Bx-5y+3.
\end{align*}

¿Cuáles tendrían que ser los valores de $A$ y $B$? Por supuesto, una exploración «a simple vista» sugiere que tendríamos que poner $B=2$ y $A=3$. Pero, ¿cómo vemos formalmente esto? ¿Cómo nos aseguramos de que sea la única posibilidad? Lo que tenemos que hacer es usar nuestra definición de igualdad de funciones. Para ello, podemos utilizar los valores $(x,y)$ que nosotros queremos pues la igualdad de funciones garantiza la igualdad en todas las evaluaciones. Así, podemos ponernos creativos y proponer $(3,5)$ para obtener que:

\begin{align*}
f(3,5)&=6-25+A=-19+A\\
g(3,5)&=3B-25+3=3B-22.
\end{align*}

Como las funciones son iguales, debe pasar que $f(3,5)=g(3,5)$, por lo que $-19+A=3B-22$. ¿Esto es suficiente para saber quién es $A$ y $B$? Todavía no, aún hay muchas posibiliades. Propongamos entonces otro valor de $(x,y)$ para evaluar. Veamos qué sucede con $(-2,1)$. Obtenemos:

\begin{align*}
f(-2,1)&=-4-5+A=-9+A\\
g(-2,1)&=-2B-5+3=-2B-2.
\end{align*}

Ahora tenemos más información de $A$ y $B$. Sabemos que $-9+A=-2B-2$. Reordenando ambas cosas que hemos obtenido hasta ahora, tenemos el siguiente sistema de ecuaciones:

\begin{align*}
A-3B=-3\\
A+2B=7.
\end{align*}

Restando la primera de la segunda obtenemos $5B=10$, de donde $B=2$. Sustituyendo en la segunda obtenemos $A+4=7$, de donde $A=3$, justo como queríamos.

$\square$

En el ejemplo anterior pudimos haber sido más astutos y evitarnos el sistema de ecuaciones. Recordemos que la igualdad $f(x,y)=g(x,y)$ se tiene para todas todas las parejas $(x,y)$, así que nos conviene usar parejas que 1) Sean sencillas de usar y 2) Nos den suficiente información.

Ejemplo. En el ejemplo anterior hicimos un par de sustituciones que finalmente sí nos llevaron a los valores que queríamos. Pero hay «mejores» sustituciones. Si hubiéramos usado la pareja $(0,0)$ obtendríamos inmediatemente $A$ pues: $$A=0-0+A=f(0,0)=g(0,0)=0-0+3=3,$$ de donde $A=3$. Ya sabiendo $A$, pudimos usar la pareja $(1,0)$ para obtener $$B+3=B-0+3=g(1,0)=2-0+3=5.$$ De aquí se obtene nuevamente $B=2$.

$\square$

Veamos un último ejemplo, en el que es imposible encontrar un valor fijo que haga que dos funciones que nos dan sean iguales.

Ejemplo. Veamos que es imposible encontrar un número real $A$ para el cual las dos funciones $f:\mathbb{R}^2\to\mathbb{R}$ y $g:\mathbb{R}^2\to \mathbb{R}$ con las siguientes reglas de asignación sean iguales:

\begin{align*}
f(x,y)&=x^2+Ay^2\\
g(x,y)&=Axy.
\end{align*}

Imaginemos, de momento, que esto sí es posible. Entonces, tendríamos la igualdad de funciones y por lo tanto tendríamos la igualdad para todas las evaluaciones. Evaluando en $(1,0)$ obtendríamos que $$0=A\cdot 1 \cdot 0 = g(1,0)=f(1,0)=1^2+A\cdot 0^2=1.$$ Esto nos lleva a la contradicción $0=1$, lo cual muestra que ningún valor de $A$ podría funcionar.

$\square$

La forma lineal cero

Otra noción básica, pero que es importante de entender, es la noción de la forma lineal cero.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $0$ el neutro aditivo del campo $F$. La forma lineal cero es la función $L_0:V\to F$ que manda a cualquier vector $v$ de $V$ a $0$, es decir, cuya regla de asignación es $L_0(v)=0$ para todo $v$ en $V$.

En álgebra lineal rápidamente nos queremos deshacer de notación estorbosa, pues muchas cosas son claras a partir del contexto. Pero esto tiene el problema de introducir amgüedades que pueden ser confusas para alguien que apenas está comenzando a estudiar la materia. Lo que prácticamente siempre se hace es que a la forma lineal cero le llamamos simplemente $0$, y dejamos que el contexto nos diga si nos estamos refiriendo al neutro aditivo de $F$, o a la forma lineal cero $L_0$.

En esta entrada intentaremos apegarnos a llamar a la forma lineal cero siempre como $L_0$, pero toma en cuenta que muy probablemente más adelante te la encuentres simplemente como un $0$. Combinemos esta noción con la de igualdad.

Ejemplo. ¿Cómo tienen que ser los valores de $A$, $B$ y $C$ para que la función $l:\mathbb{R}^3\to \mathbb{R}$ con la siguiente regla de asignación sea igual a la forma lineal cero $L_0$? $$f(x,y,z)=(A+1)x+(B+C)y+(A-C)z$$

Debemos aprovechar la definición de igualdad de funciones: sabemos que la igualdad se da para las ternas que nosotros queramos. Evaluando en $(1,0,0)$ obtenemos $$A+1 = f(1,0,0)=L_0(1,0,0)=0.$$

Aquí a la derecha estamos usando que la forma lineal cero siempre es igual a cero. De manera similar, evaluendo en $(0,1,0)$ y $(0,0,1)$ respectivamente obtenemos que \begin{align*}B+C&=f(0,1,0)=L_0(0,0,0)=0\\A-C&=f(0,0,1)=L_0(0,0,0)=0.\end{align*}

Ya tenemos información suficiente para encontrar $A$, $B$ y $C$. De la primer ecuación que obtuvimos, se tiene $A=-1$. De la tercera se tiene $C=A=-1$ y de la segunda se tiene $B=-C=1$.

Pero, ¡momento! Estos valores de $A$, $B$, $C$ funcionan para las tres ternas que dimos. ¿Funcionarán para cualquier otra terna? Si elebimos $A=-1$, $B=1$ y $C=-1$ entonces tendríamos $$f(x,y,z)=0\cdot x + 0\cdot y + 0\cdot z.$$ En efecto, sin importar qué valores de $(x,y,z)$ pongamos, la expresión anterior dará cero. Así, se daría la igualdad de reglas de correspondencia entre $f$ y $L_0$ y como tienen el mismo dominio y codominio concluiríamos que $f=L_0$.

$\square$

Suma y producto escalar de formas lineales

Otro aspecto que puede causar confusión es la suma de funciones y el producto escalar. En la duda, siempre hay que regresar a la definición. Enunciaremos los conceptos para formas lineales. Pero en realidad podemos definir la suma de funciones de manera similar siempre que el codominio sea un lugar en donde «se puede sumar». Similarmente, podríamos definir el producto escalar de un elemento con una función siempre que sepamos cómo multiplicar a ese elemento con cada elemento del codominio.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sean $l:V\to F$ y $m:V\to F$ formas lineales. Definimos la suma de $l$ con $m$, a la cual denotaremos por $l+m$, como la función $l+m:V\to F$ con la siguiente regla de asignación:$$(l+m)(v)=l(v)+m(v),$$ para cualquier $v$ en $V$.

De nuevo nos estamos enfrentando a un posible problema de ambigüedad de símbolos: por un lado estamos usando $+$ para referirnos a la suma en el campo $F$ y por otro lado para referirnos a la suma de funciones que acabamos de definir.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $l:V\to F$ una forma lineal y sea $r$ un elemento de $F$. Definimos el producto escalar de $r$ con $F$, al cual denotaremos por $r\cdot l$ como la función $r\cdot l:V\to F$ con la siguiente regla de asignación:$$(r\cdot l)(v)=r\cdot (l(v))$$ para cualquier $v$ en $V$.

Así, estamos usando tanto la suma en $F$ como el producto en $F$ para definir una nueva suma de funciones y un nuevo producto entre un real y una función. En el caso del producto escaler, como con muchos otros productos, usualmente quitamos el punto central y ponemos $rl$ en vez de $r\cdot l$.

Ejemplo. Tomemos las funciones $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3\to \mathbb{R}$ con las siguientes reglas de asignación:

\begin{align*}
f(x,y,z)&=2x-y+z\\
g(x,y,z)&=3x+y-5z.
\end{align*}

Mostraremos que la función $3f+(-2)g$ es igual a la función $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z)=-5y+13z$. Lo haremos con todo el detalle posible. Primero, notamos que las dos funciones tienen dominio $\mathbb{R}^3$ y codominio $\mathbb{R}$ así que nos podemos enfocar en la regla de asignación. Debemos ver que ambas coinciden para todas las ternas $(x,y,z)$ en $\mathbb{R}^3$. Tomemos entonces una de estas ternas $(x,y,z)$.

Por definición de producto escalar de funciones, tenemos que $$(3f)(x,y,z)=3(f(x,y,z))=3(2x-y+z)=6x-3y+3z.$$. Aquí estamos usando la distributividad en los reales. Por definición de producto escalar de funciones, tenemos que $$ ((-2)g)(x,y,z)=(-2)(g(x,y,z))=(-2)(3x+y-5z)=-6x-2y+10z.$$ Una vez más estamos usando distributividad. Luego, por definición de suma de funciones obtenemos que

\begin{align*}
(3f+(-2)g)(x,y,z)&=(3f)(x,y,z)+(-2g)(x,y,z)\\
&= (6x-3y+3z)+(-6x-2y+10z)\\
& = -5y+13z\\
&= h(x,y,z).
\end{align*}

$\square$

Usualmente tomamos atajos para seguir simplificando la notación. Por ello, típicamente a veces vemos escrito todo lo anterior simplemente como: $$3(2x-y+z)-2(2x+y-5z)=-5y+13z.$$ De hecho esto es muy práctico, pues se puede mostrar que las funciones «sí podemos operarlas como si fueran expresiones en $x$, $y$, $z$ y usáramos las reglas usuales». Así, podemos «trabajar simbólicamente» y concluir rápidamente que $$(x+y)+(3x+2z)-3(x+y-z)$$ en verdad tiene la misma regla de asignación que $-2y+5z$.

Ahora sí, ¿quién es el espacio dual?

Si tenemos un espacio vectorial $V$ sobre un campo $F$ podemos construirnos otro espacio vectorial con otro conjunto base y otras operaciones que no son las del espacio original. Una forma de hacer esto es construir el espacio dual, al que llamaremos $V^\ast$. Los elementos de $V^\ast$ son las formas lineales de $V$, es decir, funciones lineales con dominio $V$ y codominio $F$. Debemos acostumbrarnos a pensar simultáneamente a un elemento de $V^\ast$ tanto como un vector (de $V^\ast$) como una función (de $V$ a $F$).

Para verdaderamente pensar a $V^\ast$ como un espacio vectorial, debemos establecer algunas cosas especiales:

  • La suma vectorial de $V^\ast$ será la suma de funciones que platicamos en la sección anterior.
  • El producto escalar vectorial de $V^\ast$ será el producto escalar que platicamos en la sección anterior.
  • El neutro aditivo vectorial de $V^\ast$ será la forma lineal $L_0$, y se puede verificar que en efecto $l+L_0=l$ para cualquier forma lineal $l$.

Por supuesto, típicamente a la suma vectorial le llamaremos simplemente «suma» y al producto escalar vectorial simplemente «producto escalar». Aquí estamos haciendo énfasis en lo de «vectorial» sólo para darnos cuenta de que nuestras operaciones de funciones se transformaron en operaciones para el espacio vectorial que estamos definiendo.

El espacio dual cumple muchas propiedades bonitas, pero ahorita no nos enfocaremos en enunciarlas y demostrarlas. Esto se puede encontrar en la página del curso de Álgebra Lineal I en el blog. Lo que sí haremos es irnos a los básicos y entender cómo se verían algunas definiciones básicas de álgebra lineal en términos de lo que hemos discutido hasta ahora.

Combinaciones lineales de formas lineales

Para hablar de las nociones de álgebra lineal para formas lineales, hay que pensarlas como vectores y como funciones. ¿Qué sería una combinación lineal de las formas lineales $l_1,\ldots,l_r$ del espacio vectorial, digamos, $\mathbb{R}^n$. Debemos tomar elementos $\alpha_1,\ldots,\alpha_r$ en $\mathbb{R}$ y construir la función $\ell=\alpha_1l_1+\ldots+\alpha_rl_r$. Aquí estamos usando la suma vectorial y el producto escalar vectorial que quedamos que serían la suma como funciones y el producto escalar como funciones. Así, obtenemos un elemento $\ell$ que por un lado es un vector del espacio dual, y por otro es una función $\ell:\mathbb{R}^n\to \mathbb{R}$. ¿Cuál es la regla de asignación? Es precisamente la dada por las definiciones de suma y producto escalar para funciones. Para ser muy precisos, se puede mostrar inductivamente que su regla de asignación es:

\begin{align*}
(\alpha_1l_1+&\ldots+\alpha_rl_r)(x_1,\ldots,x_n)=\\
&\alpha_1(l_1(x_1,\ldots,x_n))+\ldots+\alpha_r(l_r(x_1,\ldots,x_n)).
\end{align*}

Entendiendo esto, ahora sí podemos preguntarnos si una forma lineal es combinación lineal de otras.

Ejemplo. La forma lineal $h:\mathbb{R}^2\to\mathbb{R}$ con regla de asignación $h(x,y)=2x-y$ es combinación lineal de las formas lineales $f(x,y):\mathbb{R}^2\to\mathbb{R}$ y $g(x,y):\mathbb{R}^2\to\mathbb{R}$ con reglas de asignación

\begin{align*}
f(x,y)&=x+y\\
g(x,y)&=x-y.
\end{align*}

En efecto, tenemos que es igual a la combinación lineal $\frac{1}{2}f + \frac{3}{2} g$, pues su regla de asignación es:

$$\left(\frac{1}{2}f + \frac{3}{2} g\right)(x,y)=\left(\frac{x+y}{2}\right)+\left(\frac{3x-3y}{2}\right)=2x-y,$$

que es justo la regla de asignación de $h$. Así, $h=\frac{1}{2}f+\frac{3}{2}g$.

$\square$

Independencia lineal de formas lineales

Veamos un ejemplo más de cómo entender nociones de álgebra lineal cuando hablamos de formas lineales (o funciones en general). ¿Cómo sería el concepto de independencia lineal para formas lineales $l_1,\ldots,l_r$? A partir de una combinación lineal de ellas igualada a la forma lineal cero $L_0$, debemos mostrar que todos los coeficientes son iguales a cero. Es decir, a partir de $$\alpha_1l_1+\ldots+\alpha_rl_r=L_0,$$ debemos mostrar que $\alpha_1=\ldots=\alpha_r=0.$$ Usualmente el truco en estas situaciones es que ya nos están dando una igualdad de funciones. Entonces, podemos evaluar en los valores que nosotros queramos de ambos lados de la igualdad pues funciones iguales tienen todas sus evaluaciones iguales. Esto se parece a los ejemplos de la sección de igualdad de funciones.

Ejemplo. Vamos a demostrar que las formas lineales de $\mathbb{R}^4$ dadas por $f(w,x,y,z)=4w+2x+z$, $g(w,x,y,z)=4w+2z+y$, $h(w,x,y,z)=4w+2y+x$, $k(w,x,y,z)=w+x+y+z$ son linealmente independientes. Tomemos una combinación lineal de ellas igualda a cero (¡recordemos que en este espacio vectorial el cero es la forma lineal $L_0$!):

$$Af+Bg+Ch+Dk=L_0.$$

Debemos demostrar que $A=B=C=D=0$. ¿Cómo hacemos esto? Lo que haremos es evaluar: pondremos valores convenientes de $(w,x,y,z)$ en la igualdad anterior para obtener información de $A$, $B$, $C$, $D$. Poniendo $(1,0,0,0)$ obtenemos que:

\begin{align*}
0&=L_0(1,0,0,0)\\
&= (Af+Bg+Ch+Dk)\\
&=Af(1,0,0,0)+ Bg(1,0,0,0) +Ch(1,0,0,0) +Dk(1,0,0,0) \\
&=4A + 4B + 4C + D.
\end{align*}

Así, $4A+4B+4C+D=0$. Usando esta ecuación y las evaluaciones $(0,1,0,0)$, $(0,0,1,0)$ y $(0,0,0,1)$, obtenemos todo lo siguiente:

\begin{align*}
4A+4B+4C+D&=0\\
2A+C+D&=0\\
B+2C+D&=0\\
A+2B+D&=0.
\end{align*}

De aquí se puede mostrar (como puedes verificar como ejercicio) que la única solución posible es $A=B=C=D=0$. De este modo, las formas lineales $f,g,h,k$ son linealmente independientes.

$\square$

Más adelante

Esta es más una entrada auxiliar que una entrada que forma parte del flujo de la teoría principal. Sin embargo, espero que te haya servido para dejar más claros los conceptos de cuándo tenemos formas lineales iguales, cómo se operan, cuándo varias formas lineales son linealmente independientes, etc.

Tarea moral…

  1. Verifica que para cualquier forma lineal $l:\mathbb{R}^n\to \mathbb{R}$ y la forma lineal cero $L_0:\mathbb{R}^n\to\mathbb{R}$ en efecto se tiene que $l+L_0=l$. Usa las definiciones de la forma lineal cero, de la igualdad de funciones y de la suma de funciones.
  2. Verifica que $V^\ast$ con las operaciones de suma, producto escalar y el neutro aditivo que dimos en efecto es un espacio vectorial. ¿Cómo tendrían que ser los inversos aditivos?
  3. Considera las formas lineales $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3 \to \mathbb{R}$ dadas por $f(x,y,z)=x+3y+z$ y $g(x,y,z)=-x+5y-z$.
    1. Demuestra que es imposible encontrar reales $A$ y $B$ ambos distintos de cero tales que $Af+Bg$ sea la forma lineal cero.
    2. Encuentra reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z) = -x + 21 – z$.
    3. Demuestra que es imposible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $j:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $j(x,y,z)= -2x + 4y -3z$.
    4. ¿Será posible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $k:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $k(x,y,z)=5x+5y+5z$?
  4. Para cada uno de los siguientes casos, determina si las formas lineales son linealmente independientes:
    1. $f(x,y)=5x+3y$, $g(x,y)=x-3y$.
    2. $f(x,y,z)=5x+2y-z$, $g(x,y,z)=z$, $h(x,y,z)=x-y-z$.
    3. $f(w,x,y,z)=w+y$, $g(w,x,y,z)=3x-2z$, $h(w,x,y,z)=x+y+z$, $k=(w,x,y,z)=w+2x-3z$.
  5. Considera el espacio vectorial de polinomios con coeficientes reales $\mathbb{R}[x]$. Considera la función $\text{ev}_k:\mathbb{R}[x]\to \mathbb{R}$ que a cada polinomio lo manda a su evaluación en $k$, es decir, con regla de asignación $\text{ev}_k(p)=p(k)$.
    1. Demuestra que cualquier $\text{ev}_k$ es una forma lineal.
    2. Sean $k_1,\ldots,k_r$ reales distintos. Muestra que $\text{ev}_{k_1},\ldots,\text{ev}_{k_r}$ son formas lineales linealmente independientes.

Entradas relacionadas

Álgebra Lineal II: Unicidad de la forma de Jordan para nilpotentes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan para matrices nilpotentes. Demostramos una parte: la existencia de la forma canónica de Jordan. Para ello, nos enfocamos en el teorema en su versión en términos de transformaciones lineales. En esta entrada nos enfocaremos en demostrar la unicidad de la forma canónica de Jordan. Curiosamente, en este caso será un poco más cómodo trabajar con la forma matricial del teorema. Para recordar lo que queremos probar, volvemos a poner el enunciado del teorema a continuación. Lo que buscamos es ver que los enteros $k_1,\ldots, k_d$ que menciona el teorema son únicos.

Teorema. Sea $A$ una matriz nilpotente en $M_n(F)$. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales $A$ es similar a la siguiente matriz de bloques: $$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Nuestra estrategia para mostrar la unicidad será el estudio del rango de las potencias de $A$. Si $A$ es similar a $B$, entonces existe $P$ invertible tal que $A=P^{-1}BP$, de donde se puede mostrar indutivamente que $A^k=P^{-1}B^kP$, mostrando que $A^k$ y $B^k$ son similares. Además, matrices similares tienen el mismo rango. De modo que si $A$ es similar a $B$ entonces todas las potencias de $A$ tienen el mismo rango que todas las potencias de $B$. Con esta idea en mente, ¿cómo son las potencias de las matrices hechas por bloques de Jordan? Comenzaremos estudiando esto.

Rango de potencias de bloques de Jordan

Claramente el rango del bloque de Jordan $J_{0,n}$ es $n-1$, pues ya está en forma escalonada reducida y tiene $n-1$ vectores distintos de cero. El siguiente resultado generaliza esta observación.

Proposición. Sea $n$ un entero positivo, $F$ un campo y $J_{0,n}$ el bloque de Jordan de eigenvalor $0$ y tamaño $n$ en $M_n(F)$. Para $k=1,\ldots,n$ se tiene que el rango de $J_{0,n}^k$ es igual a $n-k$. Para $k$ más grandes, el rango es igual a cero.

Demostración. Si $e_1,\ldots,e_n$ es la base canónica de $F^n$, tenemos que $J_{0,n}e_i=e_{i-1}$ para $i=2,\ldots,n$ y $J_{0,n}e_1=0$. De manera intuitiva, la multiplicación matricial por $J_{0,n}$ va «desplazando los elementos de la base $e_1,\ldots,e_n$ a la izquierda, hasta sacarlos». De este modo, $J_{0,n}^k$ para $k=1,\ldots,n$ hace lo siguiente:

$$J_{0,n}^k e_i=\begin{cases} 0 & \text{para $i\leq k$}\\ e_{i-k} & \text{para $i\geq k+1$.}\end{cases}$$

Así, $J_{0,n}^k$ manda a la base $e_1,\ldots,e_n$ a los vectores $e_1,\ldots,e_{n-k}$ y a $k$ copias del vector cero. Como los primeros son $n-k$ vectores linealmente independientes, obtenemos que el rango de $J_{0,n}^k$ es $n-k$.

Para varlores de $k$ más grandes la potencia se hace la matriz cero, así que su rango es cero.

$\square$

Rango de potencias de matrices diagonales por bloques de Jordan

¿Qué sucede si ahora estudiamos el rango de las potencias de una matriz diagonal por bloques hecha por puros bloques de Jordan? Consideremos, por ejemplo, la siguiente matriz, con $k_1\leq \ldots \leq k_d$ de suma $n$:

$$J=\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Por un lado, es sencillo elevar esta matriz a potencias, pues simplemente los bloques se elevan a las potencias correspondientes. En símbolos:

$$J^r=\begin{pmatrix} J_{0,k_1}^r& 0 & \cdots & 0 \\ 0 & J_{0,k_2}^r& \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}^r\end{pmatrix}.$$

¿Cuál es el rango de esta potencia? Nos conviene cambiar un poco de notación. En vez de considerar a los $k_i$ por separado, los agruparemos de acuerdo a su valor, que puede ir de $1$ a $n$. Así, para cada $j=1,\ldots,n$ definimos $m_j$ como la cantidad de valores $k_i$ iguales a $j$. Bajo esta notación, la igualdad $k_1+\ldots+k_d=n$ se puede reescribir como $$m_1+2m_2+3m_3+\ldots+nm_n=n.$$

Una primera observación es que el rango de $J$ es simplemente la suma de los rangos de cada una de las $J_{0,k_i}$. Cada una de estas contribuye con rango $k_i-1$. Así, en términos de las $m_i$ tenemos lo siguiente:

\begin{align*}
\text{rango}(J)&=\sum_{i=1}^d (k_i-1)\\
&=\sum_{j=1}^n (j-1) m_j \\
&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n.
\end{align*}

De manera similar,

\begin{align*}
\text{rango}(J^r)&=\sum_{i=1}^d \text{rango}(J_{0,k_i}^r)\\
&=\sum_{j=1}^n m_j \text{rango}(J_{0,j}^r).
\end{align*}

El término $\text{rango}(J_{0,j}^r)$ lo podemos calcular con la proposición de la sección anterior, cuidando la restricción entre el tamaño y las potencias que queremos. De aquí y de la restricción original para la las $m_i$ salen todas las siguientes igualdades:

\begin{align*}
n&= 1\cdot m_1 + 2\cdot m_2 + 3 \cdot m_3 + \ldots + n \cdot m_n\\
\text{rango}(J)&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n\\
\text{rango}(J^2)&= 0 \cdot m_1 + 0 \cdot m_2 + 1 \cdot m_3 + \ldots + (n-2)\cdot m_n\\
\text{rango}(J^3)&= 0 \cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + (n-3)\cdot m_n\\
&\vdots\\
\text{rango}(J^{n-1})&= 0\cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + 1 \cdot m_n.
\end{align*}

A partir de aquí el rango de $J^n$ es $0$. Esto nos da una manera de entender con mucha precisión el rango de cualquier potencia de una matriz diagonal por bloques hecha con bloques de Jordan.

Unicidad de la forma canónica de Jordan

Estamos listos para justificar la unicidad de la forma canónica de Jordan. Una matriz diagonal por bloques hecha por bloques de Jordan queda totalmente determinada por los valores de $m_j$ de la sección anterior. Supongamos que $A$ tiene como forma canónica de Jordan tanto a una matriz $J$ con valores $m_j$, como a otra matriz $J’$ con valores $m_j’$.

Como dos matrices similares cumplen que las sus potencias son todas del mismo rango, entonces para cualquier $r$ de $1$ a $n-1$ se cumple que $$\text{rango}(J^r)=\text{rango}(A^r)=\text{rango}(J’^r).$$ Así, tanto $(m_1,\ldots,m_n)$ como $(m_1′,\ldots,m_n’)$ son soluciones al siguiente sistema de ecuaciones en variables $x_1,\ldots,x_n$.

\begin{align*}
n&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + n \cdot x_n\\
\text{rango}(A)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (n-1) \cdot x_n\\
\text{rango}(A^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (n-2)\cdot x_n\\
\text{rango}(A^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (n-3)\cdot x_n\\
&\vdots\\
\text{rango}(A^{n-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_n.
\end{align*}

Pero este es un sistema de ecuaciones de determinante $1$, así que su solución es única. Esto muestra que $(m_1,\ldots,m_n)=(m’_1,\ldots,m’_n)$, con lo cual se deduce que $J=J’$.

Como consecuencia de toda esta discusión, obtenemos de hecho lo siguiente.

Corolario. Dos matrices nilpotentes son semejantes si y sólo si tienen la misma forma canónica de Jordan. Distintas formas canónicas de Jordan dan distintas clases de semejanza.

Una receta para encontrar la forma canónica de Jordan de nilpotentes

La demostración anterior no sólo demuestra la unicidad de la forma canónica de Jordan. Además, nos dice exactamente cómo obtenerla. Para ello:

  1. Calculamos todas las potencias de $A$ hasta $n-1$.
  2. Usando reducción gaussiana (o de otro modo), calculamos el rango de cada una de estas potencias.
  3. Resolvemos el sistema de ecuaciones en variables $x_i$ de la sección anterior.
  4. La forma canónica de Jordan de $A$ tiene $x_i$ bloques de tamaño $i$.

Ejemplo. Consideremos la siguiente matriz en $M_7(\mathbb{R})$: $$C=\begin{pmatrix}-27 & 266 & 1 & -37 & 135 & -125 & 53\\217 & -1563 & 118 & 33 & -1251 & 1020 & 361\\236 & -1784 & 188 & 16 & -1512 & 1234 & 585\\11 & -10 & -25 & 12 & 28 & -29 & -80\\-159 & 1133 & -114 & -98 & 878 & -690 & -232\\197 & -1409 & 88 & -19 & -1151 & 952 & 348\\-230 & 1605 & -179 & -100 & 1316 & -1031 & -440\end{pmatrix}$$

Sus números son muy complicados, sin embargo, nos podemos auxiliar de herramientas computacionales para encontrar sus potencias. Soprendenemente esta es una matriz nilpotente de índice $3$ pues:

$$C^2=\begin{pmatrix}0 & -10209 & -3403 & -6806 & -6806 & 10209 & 0\\0 & 14691 & 4897 & 9794 & 9794 & -14691 & 0\\0 & 2739 & 913 & 1826 & 1826 & -2739 & 0\\0 & 7221 & 2407 & 4814 & 4814 & -7221 & 0\\0 & -14193 & -4731 & -9462 & -9462 & 14193 & 0\\0 & 10956 & 3652 & 7304 & 7304 & -10956 & 0\\0 & -11952 & -3984 & -7968 & -7968 & 11952 & 0\end{pmatrix}$$

y

$$C^3=\begin{pmatrix}0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\end{pmatrix}.$$

Usando reducción gaussiana, o herramientas computacionales, obtenemos que el rango de $C$ es $4$ y que el rango de $C^2$ es $2$. A partir de $j\geq 3$ obtenemos que $\text{rango}(C^j)=0$. Si quieremos encontrar la forma canónica de Jordan de $C$, necesitamos entonces resolver el siguiente sistema de ecuaciones, que nos dirá cuántos bloques $x_i$ de tamaño $i$ hay:

\begin{align*}
7&= x_1+2x_2+3x_3+4x_4+5x_5+6x_6+7x_7\\
4&=x_2 + 2x_3 + 3x_4+4x_5+5x_6+6x_7\\
2&= x_3 + 2x_4+3x_5+4x_6+5x_7 \\
0&= x_4+2x_5+3x_6+4x_7\\
0&= x_5+2x_6+3x_7\\
0&= x_6+2x_7\\
0&= x_7
\end{align*}

Para resolverlo lo mejor es proceder «de abajo hacia arriba». Las últimas cuatro ecuaciones nos dicen que $x_7=x_6=x_5=x_4=0$. Así, el sistema queda un poco más simple, como:

\begin{align*}
7&= x_1+2x_2+3x_3\\
4&=x_2 + 2x_3\\
2&= x_3.
\end{align*}

De la última igualdad, tenemos $x_3=2$, lo que nos dice que la forma canónica de Jordan tendría dos bloques de tamaño $3$. Sustituyendo en la penúltima igualdad obtenemos que $4=x_2+4$, de donde $x_2=0$. Así, no tendremos ningún bloque de tamaño $2$. Finalmente, sustituyendo ambos valores en la primera igualdad obtenemos que $7=x_1+0+6$. De aquí obtenemos $x_1=1$, así que la forma canónica de Jordan tendrá un bloque de tamaño $1$. En resumen, la forma canónica de Jordan es la matriz $$\begin{pmatrix} J_{0,1} & 0 & 0 \\ 0 & J_{0,3} & 0 \\ 0 & 0 & J_{0,3}\end{pmatrix}.$$ Explícitamente, esta es la siguiente matriz:

$$\begin{pmatrix} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Para verla un poco más «como de bloques» la podemos reescribir de la siguiente manera:

$$\left(\begin{array}{c|ccc|ccc} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

$\square$

Más adelante…

Hemos demostrado la existencia y unicidad de la forma canónica de Jordan para matrices nilpotentes. Este es un resultado interesante por sí mismo. Sin embargo, también es un paso intermedio para un resultado más general. En las siguientes entradas hablaremos de una versión más general del teorema de Jordan, para matrices tales que su polinomio característico se descomponga totalmente en el campo en el que estemos trabajando.

Tarea moral

  1. Considera la siguiente matriz: $$M=\begin{pmatrix}11 & 11 & -11 & -11\\-1 & -1 & 1 & 1\\3 & 3 & -3 & -3\\7 & 7 & -7 & -7\end{pmatrix}.$$
    1. Muestra que $M$ es una matriz nilpotente y determina su índice.
    2. ¿Cuál es la forma canónica de Jordan de $M$?
  2. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{5}(F)$ de índice $2$.
  3. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{7}(F)$ de rango $5$.
  4. Encuentra de manera explícita la inversa de la siguiente matriz en $M_n(\mathbb{R})$ y usa esto para dar de manera explícita la solución al sistema de ecuación en las variables $x_i$ que aparece en la entrada: $$\begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 0 & 0 & 1 & \cdots & n-3 & n-2 \\ & \vdots & & \ddots & & \vdots\\ 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & \cdots & 0 & 1\end{pmatrix}.$$
  5. Sea $A$ una matriz nilpotente en $M_n(\mathbb{R})$. Muestra que las matrices $A$ y $5A$ son similares entre sí.

Entradas relacionadas