Archivo de la etiqueta: álgebra superior

Álgebra Superior II: Raíces de polinomios de grados 3 y 4

Introducción

Esta es la entrada final de la unidad de polinomios y del curso. En ella hablaremos acerca de las fórmulas para encontrar las raíces de polinomios de grado 3 y 4. Además, en la parte final, hablaremos de polinomios de grados más altos y cómo ellos te pueden llevar a cursos muy interesantes que puedes tomar para continuar tu formación matemática.

Existen métodos generales para encontrar las raíces de polinomios de grado 3 y 4, ya sea en \mathbb{R}[x] o en \mathbb{C}[x]. Para los polinomios de grado 3, se usa el método de Cardano. Para los polinomios de grado 4 se usa el método de Ferrari. Encontrar estas fórmulas tomó mucho tiempo. Ambas requieren de manipulaciones algebraicas muy creativas.

Raíces de polinomios de grado 3 y el método de Cardano

Tomemos un polinomio f(x) en \mathbb{R}[x] de grado 3. Si f(x) no es mónico, podemos multiplicarlo por el inverso de su coeficiente principal para obtener un polinomio con las mismas raíces. De esta forma, podemos suponer sin pérdida de generalidad que f(x) es de la forma

    \[f(x)=x^3+ax^2+bx+c.\]

Consideremos al polinomio

    \[g(x)=f\left(x-\frac{a}{3}\right).\]

Observa que r es una raíz de g(x) si y sólo si g(r)=0, si y sólo si f\left(r-\frac{a}{3}\right)=0, si y sólo si r-\frac{a}{3} es una raíz de f. De esta forma, si conocemos las raíces de g(x), podemos encontrar las de f(x), y viceversa.

Al hacer las cuentas (que quedan como tarea moral), se tiene que g(x) se simplifica a

    \begin{align*}g(x)&=f\left(x-\frac{a}{3}\right)\\&=x^3+\left(b-\frac{a^2}{3}\right)x+\left(-\frac{ba}{3}+c+\frac{2a^3}{27}\right),\end{align*}

que tiene la ventaja de ya no tener término cuadrático. En otras palabras, para encontrar las raíces de polinomio cúbico, basta con poder encontrar las de los polinomios de la forma

    \[g(x)=x^3+px+q.\]

Tomando x=u+v y haciendo las operaciones, se tiene que

    \[g(u+v)=u^3+v^3+(3uv+p)(u+v)+q.\]

Observa que si logramos encontrar u y v que satisfagan el sistema de ecuaciones

    \begin{align*}u^3+v^3&=-q\\uv&=-\frac{p}{3},\end{align*}

entonces tendríamos una raíz x=u+v.

La segunda ecuación implica u^3v^3=-\frac{p^3}{27}. Pero entonces conocemos la suma y el producto de las variables u^3 y v^3, con lo cual obtenemos que son las raíces del siguiente polinomio de grado 2 en la variable t:

    \begin{align*}(t-u^3)(t-v^3)&=t^2-(u^3+v^3)t+u^3v^3\\&=t^2+qt-\frac{p^3}{27}.\end{align*}

El discriminante de esta ecuación cuadrática es

    \[\Delta = q^2 + \frac{4p^3}{27}.\]

Si \Delta >0, esta ecuación cuadrática tiene las siguientes soluciones reales:

    \begin{align*}\sqrt[3]{-\frac q2 + \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}}\\\sqrt[3]{-\frac q2 - \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}}.\end{align*}

Sin pérdida de generalidad, u es la primera y v la segunda. De esta forma, una raíz real para g(x) es

    \[x= \sqrt[3]{-\frac q2 + \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}} + \sqrt[3]{-\frac q2 - \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}}.\]

Hasta aquí hay algunas cosas por notar:

  • Supusimos que el discriminante \Delta es positivo.
  • Sólo hemos encontrado una de las 3 raíces de p(x) que garantiza el teorema fundamental del álgebra.

Cuando el discriminante es positivo, las otras dos soluciones son \omega x y \omega^2 x, en donde \omega es una raíz cúbica primitiva de la unidad.

Cuando la cuadrática tiene discriminante \Delta<0, tenemos que u y v son complejos, y entonces al sacar raíz cúbica podemos tener tres opciones para cada uno, algo que parecería dar un total de 9 soluciones. Sin embargo, recordando que uv=-\frac{p}{3}, tenemos que u queda totalmente determinado por v, así que de ahí se obtienen las tres soluciones.

Raíces de polinomios de grado 4 y el método de Ferrari

El método de Ferrari está explicado a detalle en el libro de Álgebra de Bravo, Rincón y Rincón. Ahí están las ideas principales para encontrar una fórmula general para encontrar las raíces de un polinomio de grado 4, es decir, de la forma

    \[p(x)=ax^4+bx^3+cx^2+dx+e.\]

Recuerda que el libro está disponible para descarga gratuita.

Al igual que en el caso del método de Ferrari, los primeros pasos consisten en hacer simplificaciones algebraicas. Así como el método de Cardano usa la fórmula cuadrática, del mismo modo el método de Ferrari reduce el problema a encontrar soluciones a un polinomio de grado 3. Uno podría creer que este patrón se repite, y que se pueden encontrar métodos para polinomios de grado arbitrario. Esto no es así, y lo platicaremos en la siguiente sección.

Para otra derivación de la fórmula de Ferrari, compartimos el artículo “Identidades para la resolución de ecuaciones cúbicas y cuárticas” de José Leonardo Sáenz Cetina, que apareció en el número 24 de la revista Miscelánea Matemática de la Sociedad Matemática Mexicana:

Este documento también tiene otras dos formas de resolver ecuaciones cúbicas, así que es una lectura recomendada.

Finalmente, se recomienda también echarle un ojo a la página de Wikipedia acerca de la ecuación cuártica. La entrada en inglés es mucho mejor. Sobre todo la sección referente al método de Ferrari.

Raíces de polinomios de grado 5 y más

De acuerdo al teorema fundamental del álgebra, todo polinomio sobre los complejos tiene al menos una raíz. De hecho, se puede mostrar que si es de grado n, entonces tiene exactamente n raíces, contando multiplicidades.

Cuando tenemos polinomios de grados 2, 3 y 4 podemos usar la fórmula cuadrática, el método de Cardano y el método de Ferrari para encontrar una fórmula para las soluciones. ¿Hay algún método que tenga fórmulas similares para polinomios de grado más grande?

La respuesta es que no. Aunque el teorema fundamental del álgebra garantice la existencia de las raíces, hay un teorema de Abel y Ruffini que muestra que no es posible encontrar una fórmula general. Al menos no una que ayude a poner las raíces de cualquier polinomio de grado cinco (o más) usando únicamente sumas, restas, multiplicaciones, divisiones y raíces. Esto formalmente se enuncia como que hay ecuaciones de grado 5 y más que no son solubles por radicales.

Enunciar y demostrar este teorema formalmente requiere de herramientas que quedan fuera del alcance de este curso, sin embargo, se puede estudiar en un curso avanzado de álgebra, en donde se hable de extensiones de campo y teoría de Galois.

Por otro lado, podemos dejar de lado la exactitud y preguntarnos si, dado un polinomio, podemos acercarnos a sus raíces tanto como queramos. Hoy en día eso se hace mediante métodos computacionales. Aunque la computadora sea muy buena haciendo cuentas, hay que ser particularmente cuidadoso con los errores que comete al hacer aproximaciones.

Eso es otra de las cosas que quedan fuera del alcance de este curso, y que puedes estudiar en un buen curso de métodos numéricos. Si lo que buscar es saber cómo pedirle a la computados que haga los cálculos, eso lo puedes aprender en un buen curso de programación, en donde te enseñen a usar ambientes de computación científica.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Completa las cuentas faltantes en la discusión del método de Cardano.
  • Muestra que un polinomio de grado 3 y coeficientes reales tiene exactamente cero o dos raíces complejas distintas.
  • ¿Cuántas raíces complejas distintas puede tener un polinomio de grado 4 con coeficientes reales? Encuentra un ejemplo para cada una de las respuestas.
  • Encuentra las raíces del polinomio cuártico

        \[p(x)=x^4+2x^3-12x^2-10x+4.\]

    Después, compara tu respuesta con el Ejemplo 216 del libro de Álgebra de Bravo, Rincón, Rincón.
  • Lee las entradas en Wikipedia acerca de ecuaciones cúbicas y ecuaciones cuárticas.

Álgebra Superior II: El criterio de la raíz racional para polinomios de coeficientes enteros

Introducción

En esta entrada veremos el criterio de la raíz racional. Este es un método que nos permite determinar las únicas raíces racionales que puede tener un polinomio con coeficientes enteros. Es una más de las herramientas que podemos usar cuando estamos estudiando polinomios en \mathbb{R}[x].

Si encontramos una raíz con este método, luego podemos encontrar su multiplicidad mediante el teorema de derivadas y multiplicidad. Esto puede ayudarnos a factorizar el polinomio. Otras herramientas que hemos visto que nos pueden ayudar son el algoritmo de Euclides, la fórmula cuadrática, el teorema del factor y propiedades de continuidad y diferenciabilidad de polinomios.

El criterio de la raíz racional

Si un polinomio p(x) en \mathbb{R}[x] cumple que todos sus coeficientes son números enteros, entonces decimos que es un polinomio sobre los enteros. Al conjunto de polinomios sobre los enteros se le denota \mathbb{Z}[x].

Teorema (criterio de la raíz racional). Tomemos un polinomio p(x) en \mathbb{Z}[x] de la forma

    \[p(x)=a_0+a_1x+\ldots+a_nx^n.\]

Supongamos que el número \frac{p}{q} es número racional simplificado, es decir con p y q\neq 0 enteros primos relativos. Si \frac{p}{q} es raíz de p(x), entonces p divide a a_0, y q divide a a_n.

Demostración. Por definición, si \frac{p}{q} es una raíz, tenemos que

    \[0=a_0+a_1\cdot \frac{p}{q} + \ldots + a_n \cdot \frac{p^n}{q^n}.\]

Multiplicando ambos lados de esta igualdad por q^n, tenemos que

    \[0=a_0q^n+a_1pq^{n-1}+\ldots+a_{n-1}p^{n-1}q+a_np^n.\]

Despejando a_0q^n, tenemos que

    \begin{align*}a_0q^n&=-(a_1pq^{n-1}+\ldots+a_{n-1}p^{n-1}q+a_np^n)\\&=-p(a_1q^{n-1}+\ldots+a_{n-1}p^{n-2}q+a_np^{n-1})\end{align*}

Esto muestra que a_0q^n es múltiplo de p. Pero como \MCD{p,q}=1, tenemos que p debe dividir a a_0.

De manera similar, tenemos que

    \begin{align*}a_np^n&=-(a_0q^n+a_1pq^{n-1}+\ldots+a_{n-1}p^{n-1}q)\\&=-q(a_0q^{n-1}+a_1pq^{n-2}+\ldots+a_{n-1}p^{n-1}).\end{align*}

De aquí, q divide a a_np^n, y como \MCD{p,q}=1, entonces q divide a a_n.

\square

Como cualquier natural tiene una cantidad finita de divisores, el criterio de la raíz racional nos permite restringir la cantidad posible de raíces de un polinomio con coeficientes enteros a una cantidad finita de candidatos. Veamos un par de ejemplos.

Aplicación directa del criterio de la raíz racional

Ejercicio. Usa el criterio de la raíz racional para enlistar a todos los posibles números racionales que son candidatos a ser raíces del polinomio

    \[h(x)=2x^3-x^2+12x-6.\]

Después, encuentra las raíces racionales de p(x).

Solución. El polinomio h(x) tiene coeficientes enteros, así que podemos usar el criterio de la raíz racional. Las raíces racionales son de la forma \frac{p}{q} con p divisor de -6, con q divisor de 2 y además \MCD{p,q}=1. Los divisores enteros de -6 son

    \[-6,-3,-2,-1,1,2,3,6.\]

Los divisores enteros de 2 son

    \[-2,-1,1,2.\]

Pareciera que hay muchas posibilidades por considerar. Sin embargo, nota que basta ponerle el signo menos a uno de p o q para considerar todos los casos. Así, sin pérdida de generalidad, q>0. Si q=1, obtenemos a los candidatos

    \[-6,-3,-2,-1,1,2,3,6.\]

Si q=2, por la condición de primos relativos basta usar los valores -3,-1,1,3 para p. De aquí, obtenemos al resto de los candidatos

    \[-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}.\]

En el peor de los casos, ya solo bastaría evaluar el polinomio en estos 12 candidatos para determinar si son o no son raíz. Sin embargo, a veces podemos hacer algunos trucos para disminuir todavía más la lista.

Observa que si evaluamos

    \[h(x)=2x^3-x^2+12x-6\]

en un número negativo, entonces la expresión quedará estrictamente negativa, así que ninguno de los candidatos negativos puede ser raíz. De este modo, sólo nos quedan los candidatos

    \[1,2,3,6,\frac{1}{2},\frac{3}{2}.\]

Si evaluamos en x=2 o x=6, entonces la parte de la expresión 2x^3-x^2+12x es múltiplo de 4, pero -6 no. De esta forma, h(x) no sería un múltiplo de 4, y por lo tanto no puede ser 0. Si evaluamos en x=1 o x=3, tendríamos que la parte de la expresión 2x^3+12x-6 sería par, pero -x^2 sería impar, de modo que h(x) sería impar, y no podría ser cero. Así, ya sólo nos quedan los candidatos

    \[\frac{1}{2},\frac{3}{2}.\]

Para ellos ya no hagamos trucos, y evaluemos directamente. Tenemos que

    \begin{align*}h\left(\frac{1}{2}\right) &= 2\cdot \frac{1}{8} - \frac{1}{4} + 12 \cdot \frac{1}{2}-6\\&=\frac{1}{4}-\frac{1}{4}+6-6\\&=0.\end{align*}

y que

    \begin{align*}h\left(\frac{3}{2}\right) &= 2\cdot \frac{27}{8} - \frac{9}{4} + 12 \cdot \frac{3}{2}-6\\&=\frac{27}{4}-\frac{9}{4}+18-6\\&=\frac{9}{2}+12\\&=\frac{33}{2}.\end{align*}

Habiendo considerado todos los casos, llegamos a que la única raíz racional de h(x) es \frac{1}{2}.

\square

Aplicación indirecta del criterio de la raíz racional

El criterio de la raíz racional lo podemos usar en algunos problemas, aunque en ellos no esté escrito un polinomio de manera explícita.

Problema. Muestra que \sqrt[7]{13} no es un número racional.

Solución. Por definición, el número \sqrt[7]{13} es el único real positivo r que cumple que r^7=13. Se puede mostrar su existencia usando que la función f:\mathbb{R}\to\mathbb{R} dada por f(x)=x^7 es continua, que f(0)=0, que f(2)=128, y aplicando el teorema del valor intermedio. Se puede mostrar su unicidad mostrando que la función f es estrictamente creciente en los reales positivos. Lo que tenemos que mostrar es que este número real no es racional.

Si consideramos el polinomio p(x)=x^7-13, tenemos que p(r)=r^7-13=0, de modo que r es raíz de p(x). Así, para terminar el problema, basta mostrar que p(x) no tiene raíces racionales.

El polinomio p(x) tiene coeficientes enteros, así que podemos aplicarle el criterio de la raíz racional. Una raíz racional tiene que ser de la forma \frac{p}{q} con p divisor de -13 y q divisor de 1.

Sin perder generalidad, q>0, así que q=1. De esta forma, los únicos candidatos a ser raíces racionales de p(x) son -13,-1,1,13. Sin embargo, una verificación de cada una de estas posibilidades muestra que ninguna de ellas es raíz de p(x). Por lo tanto, p(x) no tiene raíces racionales, lo cual termina la solución del problema.

\square

Aplicación en polinomio con coeficientes racionales

A veces un polinomio tiene coeficientes racionales, por ejemplo,

    \[r(x)=\frac{x^3}{2}+\frac{x^2}{3}-4x-1.\]

A un polinomio con todos sus coeficientes en \mathbb{Q} se les conoce como polinomio sobre los racionales y al conjunto de todos ellos se le denota \mathbb{Q}[x]. Para fines de encontrar raíces racionales, los polinomios en \mathbb{Q}[x] y los polinomios en \mathbb{Z}[x] son muy parecidos.

Si tenemos un polinomio q(x) en \mathbb{Q}[x], basta con multiplicar por el mínimo común múltiplo de los denominadores de los coeficientes para obtener un polinomio p(x) con coeficientes enteros. Como q(x) y p(x) varían sólo por un factor no cero, entonces tienen las mismas raíces. Por ejemplo, el polinomio r(x) de arriba tiene las mismas raíces que el polinomio

    \[s(x)=6r(x)=3x^3+2x^2-24x-6.\]

A este nuevo polinomio se le puede aplicar el criterio de la raíz racional para encontrar todas sus raíces racionales.

Ejemplo. Consideremos el polinomio

    \[q(x)=x^3+\frac{x^2}{3}+5x+\frac{5}{3}.\]

Vamos a encontrar todos los candidatos a raíces racionales. Para ello, notamos que q(x) y p(x):=3q(x) varían sólo por un factor multiplicativo no nulo y por lo tanto tienen las mismas raíces. El polinomio

    \[p(x)=3x^3+x^2+15x+5\]

tiene coeficientes enteros, así que los candidatos a raíces racionales son de la forma \frac{a}{b} con a y b primos relativos, a\mid 5 y b\mid 3. Sin pérdida de generalidad b>0.

Los divisores de 5 son -5,-1,1,5. Los divisores positivos de 3 son 1 y 3. De esta forma, los candidatos a raíces racionales son

    \[-5,-1,1,5,-\frac{5}{3},-\frac{1}{3},\frac{1}{3},\frac{5}{3}.\]

Si ponemos un número positivo en p(x), como sus coeficientes son todos positivos, tenemos que la evaluación sería positiva, así que podemos descartar estos casos. Sólo nos quedan los candidatos

    \[-5,-1,-\frac{5}{3},-\frac{1}{3}.\]

La evaluación en -5 da

    \begin{align*}-3\cdot 125 + 25 - 15\cdot 5 +5&=-375+25-75+5\\&=-295,\end{align*}

así que -5 no es raíz.

La evaluación en -1 da

    \begin{align*}-3+1-15+5=-12,\end{align*}

así que -1 tampoco es raíz.

Como tarea moral, queda verificar que -\frac{5}{3} tampoco es raíz, pero que -\frac{1}{3} sí lo es.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Realiza las evaluaciones que faltan en el último ejemplo.
  • Determina las raíces racionales del polinomio

        \[x^7-6x^4+3x^3+18x-1.\]

  • Muestra que \sqrt[3]{12} no es un número racional.
  • Encuentra todos los candidatos a ser raíces racionales de

        \[x^3+\frac{2x^2}{3}-7x-\frac{14}{3}.\]

    Determina cuáles sí son raíces.
  • Puede que un polinomio en \mathbb{Z}[x] no tenga raíces racionales, pero que sí se pueda factorizar en \mathbb{Z}[x]. Investiga acerca del criterio de irreducibilidad de Eisenstein.

Álgebra Superior II: El teorema de derivadas y multiplicidad

Introducción

En entradas anteriores definimos qué quiere decir que un real sea una raíz de un polinomio. Luego, vimos que mediante el teorema del factor se puede definir una relación entre las raíces de un polinomio y los polinomios lineales que lo dividen. Sin embargo, es posible que un real sea una raíz de un polinomio “más de una vez”, que fue un concepto que formalizamos en la entrada de desigualdades de polinomios. En esta entrada veremos que a través de las derivadas de polinomios, podemos determinar la multiplicidad de sus raíces.

Como recordatorio, la multiplicidad de una raíz r de un polinomio p(x) en \mathbb{R}[x] es el mayor entero m tal que (x-r)^m divide a p(x) en \mathbb{R}[x]. También, en esta entrada haremos uso de la regla del producto para derivadas.

El teorema de derivadas y multiplicidad

El siguiente resultado es fundamental para la detección de raíces múltiples. Su demostración es sencilla pues usamos varios de los resultados que hemos obtenido anteriormente.

Teorema (derivadas y multiplicidad). Sea r una raíz del polinomio p(x) en \mathbb{R}[x] de multiplicidad m. Si m>1, entonces r es una raíz de la derivada p'(x), y es de multiplicidad m-1. Si m=1, entonces r no es raíz de p'(x).

Demostración. Como r es una raíz de p(x) de multiplicidad m, entonces se puede escribir p(x)=(x-r)^m q(x), en donde q(x) es un polinomio que ya no es divisible entre x-r. Derivando, por regla del producto tenemos que

    \begin{align*}p'(x)&=m(x-r)^{m-1}q(x) + (x-r)^m q'(x)\\&=(x-r)^{m-1}(mq(x)+(x-r)q'(x)).\end{align*}

Afirmamos que x-r no divide a mq(x)+(x-r)q'(x). Si lo dividiera, como divide a (x-r)q'(x) entonces también tendría que dividir a mq(x) y por lo tanto a q(x). Pero esto sería una contradicción con la elección de q(x).

De esta forma, si m=1 entonces x-r no divide a p'(x) y por el teorema del factor entonces r no es raíz de p'(x). Y si m>1, entonces (x-r)^{m-1} divide a p'(x) por la expresión que encontramos de la derivada, pero (x-r)^m no pues x-r no divide al segundo factor. Esto termina la prueba.

\square

Ejemplo. Consideremos al polinomio p(x)=(x-3)^3(x+1). Tanto 3 como -1 son raíces de p(x). La multiplicidad de la raíz 3 es tres y la multiplicidad de la raíz -1 es uno. Si derivamos a p(x) usando la regla del producto, tenemos que

    \begin{align*}p'(x)&=3(x-3)^2(x+1)+(x-3)^3\\&=3(x-3)^2(x+1+x-3)\\&=3(x-3)^2(2x-2)\\&=6(x-3)^2(x-1)\end{align*}

Observa que p'(x) en efecto tiene a 3 como raíz de multiplicidad dos y ya no tiene a 1 como raíz.

\square

Es muy importante respetar la hipótesis de que r sea raíz de p(x). Por ejemplo, en el ejemplo anterior 1 es raíz de p'(x) de multiplicidad 1, pero 1 no es raíz de p(x) (y mucho menos de multiplicidad 2).

El teorema de derivadas y multiplicidad es interesante, pero todavía no es útil en aplicaciones prácticas. Sin embargo, tiene dos consecuencias que sí se pueden usar para estudiar polinomios concretos.

Encontrar la multiplicidad de una raíz

El teorema de derivadas y multiplicidad nos dice que la multiplicidad de una raíz “baja en uno” al pasar de un polinomio a su derivada, pero aún no nos dice cuál es esa multiplicidad. Sin embargo, lo podemos aplicar repetidamente para obtener esta información. Recuerda que para k un entero no negativo y p(x) en \mathbb{R}[x], usamos p^{(k)}(x) para denotar k-ésima derivada de un polinomio. Aquí p^{(0)}(x) es simplemente p(x).

Proposición. Sea r una raíz del polinomio p(x) en \mathbb{R}[x] de multiplicidad m. Si k el mayor entero positivo tal que r es raíz de

    \[p^{(0)}(x), p^{(1)}(x),\ldots,p^{(k)}(x),\]

entonces m=k+1.

Demostración. Usando el teorema anterior de manera inductiva, tenemos que para cada entero 0\leq \ell<m, se tiene que r es raíz de multiplicidad m-\ell de p^{(\ell)}(x) En particular, es raíz de todas estas derivadas. Además, por el mismo teorema, se tiene que r ya no es raíz de p^{(m)}(x). De esta forma, tenemos que k=m-1, de donde se obtiene el resultado deseado.

\square

La proposición anterior ahora sí nos da una manera de encontrar la multiplicidad de una raíz de un polinomio.

Ejemplo. Sabiendo que 3 es una raíz del polinomio

    \[p(x)=x^5-9x^4+28x^3-36x^2+27x-27,\]

vamos a encontrar su multiplicidad.

Para esto, vamos a calcular sus derivadas:

    \begin{align*}p'(x)&=5x^4-36x^3+84x^2-72x+27\\p''(x)&=20x^3-108x^2+168x-72\\p^{(3)}(x)&=60x^2-216x+168\\p^{(4)}(x)&=120x-216\\p^{(5)}(x)&=120\\p^{(6)}(x)&=0\end{align*}

Tenemos que

    \begin{align*}p'(3)&=5\cdot 81 - 36 \cdot 27 +84 \cdot 9 -72\cdot 3 + 27\\&=405-972+756-216+27\\&=0.\end{align*}

Hasta aquí, sabemos que 3 es raíz de multiplicidad al menos dos. Tenemos también que

    \begin{align*}p''(3)(3)&=20\cdot 27-108\cdot 9 +168 \cdot 3 - 72\\&=540-972+504-72\\&=0.\end{align*}

Hasta aquí, sabemos que 3 es raíz de multiplicidad al menos tres. Siguiendo,

    \begin{align*}p^{(3)}&=60\cdot 9-216\cdot 3 +168\\&=720-648+168\\&=240.\end{align*}

Como la tercera derivada ya no se anuló en 3, la multiplicidad de 3 como raíz es exactamente tres.

\square

Es importante que revisemos todas las derivadas, y que sea una por una. En el ejemplo anterior, p^{(6)}(3)=0, pero eso no quiere decir que 3 sea raíz de multiplicidad 7, pues la evaluación falla desde la tercera derivada.

Simplificar un polinomio para encontrarle sus raíces

Hay otra consecuencia práctica del teorema de multiplicidades y derivadas, que puede ser de utilidad en algunos problemas. Recuerda que para polinomios p(x) y q(x) en \mathbb{R}[x] usamos \MCD{p(x),q(x)} para denotar al máximo común divisor de dos polinomios. En particular, divide a p(x) en \mathbb{R}[x], de modo que

    \[\frac{p(x)}{\MCD{p(x),q(x)}}\]

es un polinomio en \mathbb{R}[x].

Proposición. Sea p(x) un polinomio en \mathbb{R}[x] y p'(x) su derivada. El polinomio

    \[q(x):=\frac{p(x)}{\MCD{p(x),p'(x)}}\]

es un polinomio en \mathbb{R}[x], con las mismas raíces reales que p(x), pero todas ellas tienen multiplicidad 1.

Demostración. Factoricemos a todas las raíces reales de p(x) con sus multiplicidades correspondientes para escribir

    \[p(x)=(x-r_1)^{m_1}\cdot \ldots \cdot (x-r_n)^{m_n} r(x),\]

en donde r(x) ya no tiene raíces reales. De acuerdo al teorema de derivadas y multiplicidad, podemos escribir

    \[p'(x)=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n)^{m_n-1} s(x),\]

en donde ningún x-r_i divide a s(x). Es sencillo entonces mostrar, y queda como tarea moral, que \MCD{p(x),p'(x)} es

    \[(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \cdot \MCD{r(x),s(x)}.\]

A partir de esto, concluimos que

    \begin{align*}q(x)&=\frac{p(x)}{\MCD{p(x),p'(x)}}\\&= (x-r_1)\cdot \ldots \cdot (x-r_n) \cdot \frac{r(x)}{\MCD{r(x),s(x)}}.\end{align*}

De aquí se ve que r_1,\ldots,r_n son raíces de multiplicidad 1 de q(x). No hay más raíces reales en \frac{r(x)}{\MCD{r(x),s(x)}}, pues si hubiera una raíz \alpha, entonces por el teorema del factor x-\alpha dividiría a este polinomio, y por lo tanto a r(x), de donde \alpha sería raíz de r(x), una contradicción.

\square

La proposición anterior se puede usar de manera práctica como sigue:

  • Para empezar, tomamos un polinomio arbitrario p(x).
  • Luego, lo derivamos para obtener p'(x).
  • Después, usando el algoritmo de Euclides, encontramos al polinomio \MCD{p(x),q(x)}.
  • Ya con el máximo común divisor, hacemos división polinomial para encontrar q(x)=\frac{p(x)}{\MCD{p(x),q(x)}}.
  • Si p(x) tenía raíces repetidas, entonces ahora q(x) será de grado menor, y quizás más fácil de estudiar. Encontramos las raíces de q(x). Estas son las raíces de f(x).
  • Finalmente, usamos el teorema de la sección anterior para encontrar la multiplicidad de cada raíz.

Veamos un problema interesante en el que se conjuntan varias ideas de esta entrada.

Problema. Factoriza en \mathbb{R}[x] al polinomio

    \[-x^5+5x^4+5x^3-45x^2+108.\]

Solución. Este es un polinomio de grado cinco, para el cual hasta antes de ahora no teníamos muchas herramientas para estudiarlo. Vamos a aplicar el método explicado arriba. Lo primero que haremos es factorizar un -1 para volver este polinomio mónico. Recordaremos poner este signo al final. Tomemos entonces

    \[p(x)=x^5-5x^4-5x^3+45x^2-108.\]

Su derivada es

    \[p'(x)=5x^4-20x^3+15x^2+90x,\]

Se puede verificar, y queda como tarea moral, que el máximo común divisor de p(x) y p'(x) es el polinomio

    \[M(x)=x^3-4x^2-3x+18.\]

Haciendo la división polinomial, tenemos que

    \[\frac{p(x)}{M(x)}=x^2-x-6=(x+2)(x-3).\]

Como este polinomio tiene las mismas raíces que p(x), concluimos que -2 y 3 son las raíces de p(x).

Usando la proposición para multiplicidades de raíces (que también queda como tarea moral), se puede verificar que -2 es raíz de multiplicidad dos y que 3 es raíz de multiplicidad 3. Como p(x) es un polinomio de grado 5 y es mónico, entonces se debe de dar la igualdad

    \[p(x)=(x+2)^2(x-3)^3.\]

Al regresar al polinomio original, debemos agregar un signo menos. Concluimos que la factorización del polinomio del problema es

    \[-(x+2)^2(x-3)^3.\]

\square

Esta proposición nos da una manera de encontrar raíces. En las siguientes dos entradas veremos otras dos formas de encontrarlas. Para cuando los polinomios son de grado 3 y 4, podemos encontrar las raíces de manera explícita. Para cuando los polinomios tienen coeficientes enteros, podemos encontrar una cantidad finita de candidatos a ser raíces racionales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que 1 es raíz del polinomio

        \[x^8-x^7-9x^6+19x^5+5x^4-51x^3+61x^2-31x+6\]

    y encuentra su multiplicidad.
  • En la demostración de la última proposición, muestra la igualdad

        \[\MCD{p(x),p'(x)}=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \MCD{r(x),s(x)}.\]

  • En el último ejemplo, aplica el algoritmo de Euclides a p(x) y p'(x) para mostrar que el máximo común divisor es el que se afirma.
  • Aplica la proposición de multiplicidad de raíces en el último ejemplo para verificar que en efecto las multiplicidades de 2 y 3 son las que se afirman.
  • Aplica el mismo método que en la última sección para factorizar el polinomio

        \[x^6+8x^5+18x^4-4x^3-47x^2-12x+36.\]

Álgebra Superior II: Continuidad y diferenciabilidad de polinomios reales

Introducción

Al inicio de este unidad, hablamos de las propiedades algebraicas de \mathbb{R}[x], cuando definimos sus operaciones y argumentamos por qué se puede usar la notación de potencias. Luego hablamos de las propiedades aritméticas de los polinomios, cuando hablamos de divisibilidad, máximo común divisor y factorización en irreducibles. Vimos una aplicación de esto a solución de desigualdades. Lo que queremos hacer ahora es pensar a los polinomios como funciones de \mathbb{R} en \mathbb{R} y entender las propiedades analíticas que tienen, es decir en términos de cálculo. Nos interesa qué les sucede cuando su entrada es grande, la continuidad y la diferenciabilidad de polinomios.

Estas propiedades tienen consecuencias algebraicas importantes. La continuidad de polinomios nos permite encontrar raíces reales en ciertos intervalos. La diferenciabilidad de polinomios nos ayuda a encontrar la multiplicidad de las raíces. Supondremos que manejas conocimientos básicos de cálculo y de manipulación de límites, pero de cualquier forma recordaremos algunas definiciones y daremos esbozos de la demostración de algunos resultados.

Límites a reales y límites a infinito

Recordemos dos definiciones de cálculo, que se aplican para funciones arbitrarias definidas en todos los reales.

Definición. Sea f:\mathbb{R}\to \mathbb{R} una función y a, b reales. Decimos que

    \[\lim_{x\to a} f(x) = b\]

si para todo \epsilon >0 existe un \delta > 0 tal que cuando |x-a|<\delta, entonces |f(x)-b|<\epsilon. En palabras, decimos que el límite de f cuando x tiende a a es b.

Definición. Sea f:\mathbb{R}\to \mathbb{R} una función. Decimos que

    \[\lim_{x\to \infty} f(x) = \infty\]

si para todo M>0 existe un r > 0 tal que cuando x>r, entonces f(x)>M. En palabras, decimos que el límite de f cuando x tiende a infinito es infinito.

De manera análoga se pueden definir límites cuando x tiende a menos infinito, y definir qué quiere decir que el límite sea menos infinito. La siguiente proposición se prueba en textos de cálculo.

Proposición (propiedades de límites). Sean f:\mathbb{R}\to \mathbb{R} y g:\mathbb{R}\to \mathbb{R} funciones y a, b, c reales. Si

    \[\lim_{x\to a} f(x) = b \quad \text { y } \quad \lim_{x\to a} g(x)= c,\]

entonces:

  • “El límite de la suma es la suma de los límites”, en símbolos,

        \[\lim_{x\to a} (f+g)(x) = b+c.\]

  • “El límite del producto es el producto de los límites”, en símbolos,

        \[\lim_{x\to a} (fg)(x)=bc.\]

La proposición anterior es sólo para cuando los límites son reales. Hay resultados para cuando algunos de los límites son infinitos, pero en general hay que tener cuidado.

La primer propiedad analítica de los polinomios es saber cómo es su comportamiento cuando x se hace infinito o menos infinito. Si el polinomio es constante, entonces este límite es simplemente su valor en cualquier punto. Para polinomios de grado mayor o igual a 1, su comportamiento queda resumido en la siguiente proposición.

Proposición (límites a infinito). Tomemos al polinomio p(x) en \mathbb{R}[x] dado por

    \[p(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n,\]

en donde n\geq 1 y a_n\neq 0.

  • Si a_n>0 y p(x) es de grado par entonces

        \[\lim_{x\to \infty} p(x) = \lim_{x\to-\infty} p(x)= \infty,\]

  • Cuando a_n>0 y p(x) es de grado impar entonces

        \[\lim_{x\to \infty} p(x) = \infty \quad \text { y } \quad \lim_{x\to -\infty} p(x)=-\infty\]

  • Si a_n<0 y p(x) es de grado par entonces

        \[\lim_{x\to \infty} p(x) = \lim_{x\to-\infty} p(x)= -\infty,\]

  • Cuando a_n<0 y p(x) es de grado impar entonces

        \[\lim_{x\to \infty} p(x) = -\infty \quad \text { y } \quad \lim_{x\to -\infty} p(x)=\infty.\]

Demostración. Vamos a hacer una de las demostraciones. Mostraremos que para cuando a_n>0 y el grado es par, entonces

    \[\lim_{x\to \infty} p(x) = \infty.\]

Las demás se siguen haciendo cambios de signo cuidadosos y usando que una potencia impar de un real negativo es un real negativo, y una potencia par es un real negativo. Pensar en estas demostraciones queda como tarea moral.

Tomemos entonces p(x) un polinomio de grado par y con coeficiente principal a_n>0. Intuitivamente, tenemos que mostrar que si x es muy grande, entonces p(x) es tan grande como queramos. Tomemos un real M>0. Como haremos x grande, podemos suponer que x>1.

Como el término a_nx^n es positivo, basta mostrar como resultado auxiliar que si x es suficentemente grande, entonces

    \[a_nx^n >M+|a_0+a_1x+\ldots+a_{n-1}x^{n-1}|,\]

ya que si esto sucede, tendríamos que:

    \begin{align*}a_nx^n&>M+|a_0+a_1x+\ldots+a_{n-1}x^{n-1}|\\&=M+|-a_0-a_1x-\ldots-a_{n-1}x^{n-1}|\\&>M-a_0-a_1x-\ldots-a_{n-1}x^{n-1},\end{align*}

y de aquí, pasando todo excepto a M a la izquierda, tendríamos p(x)>M

Para probar el resultado auxiliar, tomemos A como el máximo de los valores absolutos |a_0|,\ldots,|a_{n-1}|. Por la desigualdad del triángulo y usando x>1 tenemos que

    \begin{align*}M+|a_0&+a_1x+\ldots+a_{n-1}x^{n-1}|\\&\leq M+|a_0|+|a_1 x| + \ldots + |a_{n-1}x^{n-1}|\\&\leq M+A(1+x+\ldots+x^{n-1})\\&< M+nAx^{n-1}\\&<(M+nA)x^{n-1} \end{align*}

De esta forma, para mostrar nuestra desigualdad auxiliar basta mostrar que para x suficientemente grande, tenemos que (M+nA)x^{n-1}<a_nx^n. Pero como x>0, esta desigualdad es equivalente a x>\frac{M+nA}{a_n}.

Recapitulando, para cualquier M>0, si x>\frac{M+nA}{a_n}, entonces p(x)>M. Esto termina la demostración.

\square

Podemos usar la proposición anterior para comparar polinomios cuando su variable tiende a infinito.

Ejemplo. Mostraremos que existe una M suficientemente grande tal que si x>M, entonces

    \[\frac{1}{2}x^7-x^6-x-1>x^6+1000x^5+1000000.\]

Pasando todo del lado izquierdo, nos queda la desigualdad equivalente

    \[\frac{1}{2}x^7-2x^6-1000x^5-x-999999>0.\]

Aquí tenemos un polinomio p(x) de grado impar y coeficiente principal positivo. Por la proposición anterior, \lim_{x\to \infty} p(x) = \infty, de modo que la M que estamos buscando existe.

\square

Continuidad de polinomios

Antes de llegar a diferenciabilidad de polinomios, haremos un paso intermedio. Recordemos otra definición de cálculo.

Definición. Sea f:\mathbb{R}\to \mathbb{R} una función y a un real. Decimos que f es continua en a si

    \[\lim_{x\to a} f(x) = f(a).\]

Decimos que f es continua si es continua en todo real.

Por la proposición de propiedades de límites, la suma o producto de funciones continuas es continua. Las funciones constantes son continuas. La función identidad I:\mathbb{R}\to \mathbb{R} dada por I(x)=x es continua. Estos tres hechos nos ayudan a demostrar que todos los polinomios son funciones continuas sin tener que recurrir a la definición de límite.

Teorema. Cualquier polinomio p(x) en \mathbb{R}[x] pensado como una función p:\mathbb{R}\to \mathbb{R} es una función continua.

Demostración. Supongamos que p(x) está dado por

    \[p(x)=a_0+a_1x+\ldots+a_nx^n.\]

Para toda i de 0 a n tenemos que la función x\mapsto a_i es constante y por lo tanto es continua. Si i>0, la función x\mapsto x^i es producto de i veces la identidad consigo misma. Como la identidad es continua y producto de continuas es continua, entonces x\mapsto x^i es continua.

De nuevo, usando que producto de funciones continuas es continua, tenemos que x\mapsto a_ix^i es una función continua. De esta forma, p(x) es la suma de n+1 funciones continuas, y por lo tanto es una función continua.

\square

El resultado anterior nos ayuda a usar teoremas versátiles de cálculo en nuestro estudio de polinomios. Recordemos el teorema del valor intermedio.

Teorema (del valor intermedio). Sea f:\mathbb{R}\to \mathbb{R} una función continua. Sean a<b dos reales. Entonces entre a y b, la función f toma todos los valores entre f(a) y f(b).

Veamos cómo el teorema del valor intermedio nos permite encontrar raíces de polinomios.

Problema. Muestra que el polinomio p(x)=x^7-5x^5+x^2+3 tiene por lo menos una raíz en el intervalo [0,2].

Solución. Al evaluar al polinomio en cero, obtenemos p(0)=3. Al evaluarlo en 2, obtenemos

    \begin{align*}p(2)&=2^7-5\cdot 2^5+x^2 + 3\\&=128-160+4+3\\&=-25.\end{align*}

Como los polinomios son funciones continuas, podemos aplicar el teorema del valor intermedio. Concluimos que p(x) toma todos los valores de -25 a 2 en el intervalo [0,2]. En particular, existe un real r en [0,2] tal que p(r)=0.

\square

El teorema del valor intermedio nos ayuda a demostrar que un polinomio tiene una raíz en cierto intervalo. Sin embargo, no es de tanta utilidad para decir exactamente cuál es esa raíz. Es un resultado existencial en vez de ser constructivo. Veamos un ejemplo más, que muestra una proposición que quedó pendiente en una entrada anterior.

Problema. Sea p(x) un polinomio cuadrático, mónico e irreducible en \mathbb{R}[x]. Muestra que p(r)>0 para todo real r.

Solución. Procedamos por contradicción. Supongamos que p(r)\leq 0 para algún real r.

Como p(x) es mónico, su coeficiente principal es 1, que es positivo. Como p(x) es cuadrático, es de grado par. Por la proposición de límites a infinito, existe un real t>r tal que p(t)>0. Por el teorema del valor intermedio, existiría un real s en el intervalo [r,t] tal que p(s)=0. Pero esto es imposible, pues entonces por el teorema del factor x-s divide a p(x) y esto contradice que p(x) es irreducible.

\square

Como muestra el problema anterior, se pueden combinar los límites de polinomios a infinito y menos infinito, y sus propiedades de continuidad. Otra aplicación es mostrar que todo polinomio de grado impar tiene por lo menos una raíz real. Esto se verá en otra entrada.

Por supuesto, otros resultados de continuidad también se pueden usar en todos los polinomios, como el teorema del valor extremo. Aplicándolo directamente, concluimos lo siguiente.

Proposición. Sean a<b reales y p(x) un polinomio en \mathbb{R}. Entonces p(x) está acotado en el intervalo [a,b] y existen reales r y s en dicho intervalo tales que p(r) y p(s) son el mínimo y máximo de p(x) en [a,b], respectivamente.

Diferenciabilidad de polinomios

Es momento de hablar de diferenciabilidad de polinomios. Recordemos una última definición de cálculo.

Definición. Sea f:\mathbb{R}\to \mathbb{R} una función. Decimos que f es diferenciable en a si el límite

    \[\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}\]

existe. En este caso, a ese límite lo denotamos por f'(a). Una función es diferenciable si es diferenciable en todo real. A la función f':\mathbb{R}\to \mathbb{R} le llamamos la derivada de f.

Al igual que en el caso de continuidad, la suma y producto de funciones diferenciales es diferenciable. Si f:\mathbb{R}\to \mathbb{R} y g:\mathbb{R}\to \mathbb{R} son diferenciables, entonces la derivada de f+g está dada por

    \[(f+g)'(x)=f'(x)+g'(x)\]

y la derivada de fg está dada por la regla de la cadena

    \[(fg)'(x)=f'(x)g(x)+f(x)g'(x).\]

Las funciones constantes son diferenciables, y su derivada es la función constante 0. La función identidad es diferenciable, y su derivada es la función constante 1. Esto es sencillo de mostrar y queda como tarea moral.

Proposición. Sea n\geq 1 un entero. El polinomio p(x)=x^n es diferenciable, y su derivada es la función p'(x)=nx^{n-1}.

Demostración. Haremos la prueba por inducción. Si n=1, el polinomio es p(x)=x, y su derivada es p'(x)=1=1\cdot x^0, como queremos. Supongamos que el resultado es cierto para el entero n\geq 1 y tomemos p(x)=x^{n+1}=x^n\cdot x. Por hipótesis inductiva, x\mapsto x^n es diferenciable. Como p(x) es producto de dos funciones diferenciables, entonces es diferenciable.

Usando la regla de la cadena, la hipótesis inductiva de la fórmula y la derivada de x\mapsto x, tenemos que

    \[p'(x)=(nx^{n-1})(x)+(x^n)(1)=(n+1)x^n.\]

Esto termina la demostración.

\square

Con todos estos ingredientes podemos mostrar la diferenciabilidad de todos los polinomios. Los detalles quedan como tarea moral.

Teorema (diferenciabilidad de polinomios). Sea p(x) un polinomio en \mathbb{R}[x] dado por

    \[p(x)=a_0+a_1x+\ldots+a_nx^n,\]

Entonces p(x) pensado como función es diferenciable y su derivada es un polinomio. Si p(x) es constante, su derivada es el polinomio 0. En otro caso, su derivada es el polinomio

    \[a_1+2a_2x+3a_3x^2+\ldots+na_nx^{n-1}.\]

Ejemplo. El polinomio x^7+3x^2-1 es diferenciable. Su derivada es el polinomio 7x^6+6x.

\square

Ya que sabemos que los polinomios son diferenciables, podemos usar todas las herramientas de cálculo diferencial, como:

No profundizaremos en esto, pues es el contenido de un buen curso de cálculo, o bien de material de algún texto en el área, como el libro de Cálculo de Spivak.

A nosotros nos interesa una consecuencia algebraica de que los polinomios tengan derivada. Como la derivada de un polinomio es otro polinomio, entonces la derivada es diferenciable. Por ello, un polinomio p(x) se puede derivar iteradamente tantas veces como se quiera. Al polinomio obtenido de derivar n veces le llamamos la n-ésima derivada y lo denotamos por p^{(n)}(x). En la siguiente entrada veremos cómo la repetida diferenciabilidad de polinomios nos ayuda a detectar la multiplicidad de sus raíces.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Estudia el resto de los casos de la proposición de límites de polinomios cuando la entrada va a menos infinito y a infinito.
  • Muestra usando la definición de límite que las funciones constantes y la función identidad son continuas.
  • Demuestra por definición que las funciones constantes son diferenciables y que su derivada es la función constante 0. Demuestra por definición que la función identidad es diferenciable y que su derivada es la función constante 1.
  • Muestra que existe un real x en el cual los polinomios p(x)=x^5+x^3+x y q(x)=100x^4+10x^2 son iguales. Sugerencia. Reescribe esta igualdad en términos de encontrar una raíz de un sólo polinomio.
  • Completa los detalles del teorema de diferenciabilidad de polinomios.

Álgebra Superior II: Desigualdades de polinomios reales

Introducción

En la entrada anterior mostramos el teorema de factorización para polinomios con coeficientes reales. Lo que haremos ahora es ver que podemos aplicarlo en la resolución de desigualdades de polinomios en \mathbb{R}[x]. El objetivo es que, al final de la entrada, entendamos cómo se pueden resolver problemas como los siguientes:

Problema. Determina todos los números x en \mathbb{R} para los cuales

    \[x^6-12x^4-49x^2-30 > 3x^5-48x^3-51x+6.\]

Problema. Determina todos los números x en \mathbb{R} para los cuales

    \[\frac{1}{x}>x^3-x^2+1.\]

Antes de hablar de resolución de desigualdades de polinomios, veremos una forma alternativa de factorizar en \mathbb{R}[x] usando potencias.

Teorema de factorización de polinomios reales con potencias

De acuerdo al teorema de factorización en \mathbb{R}[x], un polinomio p(x) se puede factorizar de manera única en factores lineales y factores cuadráticos con discriminante negativo. De ser necesario, podemos agrupar los factores lineales iguales y reordenarlos para llegar a una factorización de la forma

    \[a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),\]

en donde:

  • a es un real distinto de cero,
  • \alpha_1,\ldots,\alpha_m y n son enteros positivos tales que 2n+\sum_{i=1}^m \alpha_i es igual al grado de p(x),
  • para cada i en \{1,\ldots,m\} se tiene que r_i es raíz real de p(x) y r_1<r_2<\ldots<r_m
  • para cada j en \{1,\ldots,n\} se tiene que b_j,c_j son reales tales que b_j^2-4c_j<0.

Observa que los r_i son ahora distintos y que están ordenados como r_1<\ldots<r_m. De aquí, obtenemos que (x-r_i)^{\alpha_i} es la mayor potencia del factor lineal x-r_i que divide a p(x). Este número \alpha_i se usa frecuentemente, y merece una definición por separado.

Definición. Sea p(x) un polinomio en \mathbb{R}[x] y r una raíz de p(x). La multiplicidad de r como raíz de p(x) es el mayor entero \alpha tal que

    \[(x-r)^\alpha \mid p(x).\]

Decimos también que r es una raíz de multiplicidad \alpha.

Ejemplo. El polinomio k(x)=x^4-x^3-3x^2+5x-2 se factoriza como (x-1)^3(x+2). Así, la multiplicidad de 1 como raíz de k(x) es 3. Además, -2 es una raíz de k(x) de multiplicidad 1.

\square

Después hablaremos de una forma práctica en la que podemos encontrar la multiplicidad de una raíz, cuando hablemos de continuidad de polinomios y sus derivadas.

Desigualdades de polinomios reales factorizados

Supongamos que tenemos un polinomio p(x) no constante en \mathbb{R}[x] para el cual conocemos su factorización en la forma

    \[a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),\]

y que queremos determinar para qué valores reales r se cumple que

    \[p(r)>0.\]

Daremos por cierto el siguiente resultado, que demostraremos cuando hablemos de continuidad de polinomios.

Proposición. Las evaluaciones en reales de un polinomio cuadrático y mónico en \mathbb{R}[x] de discriminante negativo, siempre son positivas.

Lo que nos dice este resultado es que, para fines de la desigualdad que queremos resolver, podemos ignorar los factores cuadráticos en la factorización de p(x) pues

    \[a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n})\]

y

    \[a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}\]

tienen el mismo signo.

Por la miasma razón, podemos ignorar aquellos factores lineales con exponente par, y de los de exponente impar, digamos (x-r)^{2\beta +1} obtenemos una desigualdad equivalente si los remplazamos por exponente 1, pues (x-r)^{2\beta} es positivo y por lo tanto no cambia el signo de la desigualdad si lo ignoramos.

En resumen, cuando estamos resolviendo una desigualdad del estilo p(x)>0 podemos, sin cambiar el conjunto solución, reducirla a una de la forma

    \[q(x):=a(x-r_1)(x-r_2)\ldots(x-r_m)>0.\]

La observación clave para resolver desigualdades de este estilo está resumida en el siguiente resultado.

Proposición. Tomemos un polinomio q(x) en \mathbb{R}[x] de la forma

    \[q(x)=a(x-r_1)(x-r_2)\ldots(x-r_m)\]

con r_1<\ldots<r_m reales.

Si m es par:

  • Para reales r en la unión de intervalos

        \[(-\infty,r_1)\cup(r_2,r_3)\cup\ldots \cup (r_{m-2},r_{m-1})\cup (r_m,\infty),\]

    la evaluación q(r) tiene el mismo signo que a
  • Para reales r en la unión de intervalos

        \[(r_1,r_2)\cup(r_3,r_4)\cup\ldots \cup (r_{m-3},r_{m-2})\cup (r_{m-1},r_m),\]

    la evaluación q(r) tiene signo distinto al de a.

Si m es impar:

  • Para reales r en la unión de intervalos

        \[(r_1,r_2)\cup(r_3,r_4)\cup\ldots \cup (r_{m-2},r_{m-1})\cup (r_m,\infty),\]

    la evaluación q(r) tiene el mismo signo que a
  • Para reales r en la unión de intervalos

        \[(-\infty,r_1)\cup(r_2,r_3)\cup\ldots \cup (r_{m-3},r_{m-2})\cup (r_{m-1},r_m),\]

    la evaluación q(r) tiene signo distinto al de a.

Demostración. El producto (r-r_1)(r-r_2)\ldots(r-r_m) es positivo si y sólo si tiene una cantidad par de factores negativos. Si r>r_m, todos los factores son positivos, y por lo tanto q(r) tiene el mismo signo que a cuando r está en el intervalo (r_m,\infty).

Cada que movemos r de derecha a izquierda y cruzamos un valor r_i, cambia el signo de exactamente uno de los factores, y por lo tanto la paridad de la cantidad de factores negativos. El resultado se sigue de hacer el análisis de casos correspondiente.

\square

Veamos cómo podemos utilizar esta técnica para resolver desigualdades polinomiales que involucran a un polinomio que ya está factorizado en irreducibles.

Problema. Determina para qué valores reales x se tiene que

    \[-2(x-5)^7(x+8)^4(x+2)^3(x+10)(x^2-x+2)^3\]

es positivo.

Solución. Por la discusión anterior, podemos ignorar el polinomio cuadrático del final, pues es irreducible. También podemos ignorar los factores lineales con potencia par, y podemos remplazar las potencias impares por unos. Así, basta con encontrar los valores reales de x para los cuales

    \[q(x)=-2(x-5)(x+2)(x+10)\]

es positivo. Tenemos 3 factores, así que estamos en el caso de m impar en la proposición.

Las tres raíces, en orden, son -10, -2, 5. Por la proposición, para x en la unión de intervalos

    \[(-\infty,-10)\cup (-2,5)\]

se tiene que q(x) tiene signo distinto al de a=-2 y por lo tanto es positivo. Para x en el conjunto

    \[(10,-2)\cup (5,\infty)\]

se tiene que q(x) tiene signo igual al de a=-2, y por lo tanto es negativo. De esta forma, la respuesta es el conjunto

    \[(-\infty,-10)\cup (-2,5).\]

Puedes dar clic aquí para ver en GeoGebra las gráfica de q(x) y del polinomio original, y verificar que tienen el mismo signo en los mismos intervalos.

\square

Si estamos resolviendo una desigualdad y el valor de a en la factorización es positivo, es un poco más práctico ignorarlo desde el principio, pues no afecta a la desigualdad.

Problema. Determina para qué valores reales x se tiene que

    \[7(x+7)^{13}(x+2)^{31}(x-5)^{18}(x^2+1)\]

es positivo.

Solución. Tras las cancelaciones correspondientes, obtenemos la desigualdad equivalente

    \[(x+7)(x+2)>0.\]

Las raíces del polinomio que aparece son -7 y -2. De acuerdo a la proposición, estamos en el caso con m par. De esta forma, la expresión es negativa en el intervalo (-7,-2) y es positiva en la unión de intervalos

    \[(-\infty,-7)\cup (-2,\infty).\]

\square

Otras desigualdades de polinomios y manipulaciones algebraicas

Si tenemos otras expresiones polinomiales, también podemos resolverlas con ideas similares, solo que a veces se tienen que hacer algunas manipulaciones previas para llevar la desigualdad a una de la forma p(x)>0.

Problema. Determina todos los números x en \mathbb{R} para los cuales

    \[x^6-12x^4-49x^2-30 > 3x^5-48x^3-51x+6.\]

Solución. El problema es equivalente a encontrar los reales x para los cuales

    \[x^6-3x^5+12x^4+48x^3-29x^2+51x-36>0.\]

El polinomio del lado izquierdo se puede factorizar como (x-3)^2(x-1)(x+4)(x^2+1), así que obtenemos el problema equivalente

    \[(x-3)^2(x-1)(x+4)(x^2+1)>0,\]

que ya sabemos resolver. El resto de la solución queda como tarea moral.

Puedes ver la gráfica del polinomio

    \[(x-3)^2(x-1)(x+4)(x^2+1)\]

en GeoGebra si das clic aquí.

\square

Tener cuidado al multiplicar por denominadores

Hay que tener cuidado al realizar algunas manipulaciones algebraicas, pues pueden cambiar el signo de la desigualdad que estamos estudiando. Veamos un ejemplo donde sucede esto.

Problema. Determina todos los números x en \mathbb{R} para los cuales

    \[\frac{1}{x}>x^3-x^2+1.\]

Solución. La expresión no está definida en x=0, pues se anula un denominador. Supongamos entonces que x\neq 0, y recordémoslo al expresar la solución final. Vamos a multiplicar la desigualdad por x, pero tenemos que hacer casos.

Si x>0, entonces el signo de desigualdad no se altera y obtenemos la desigualdad equivalente

    \[0>x^4-x^3+x-1=(x-1)(x+1)(x^2-x+1).\]

El factor cuadrático es irreducible y lo podemos ignorar. Si estuviéramos trabajando en todo \mathbb{R}, el conjunto solución sería el intervalo (-1,1). Sin embargo, tenemos que restringir este conjunto solución sólo al caso en el que estamos, es decir, x>0. Así, para este caso sólo los reales en (0,1) son solución.

Si x<0, entonces el signo de la desigualdad sí se altera, y entonces obtenemos la desigualdad equivalente

    \[0<x^4-x^3+x-1=(x-1)(x+1)(x^2-x+1).\]

De nuevo podemos ignorar el factor cuadrático. La desigualdad tiene solución en todo \mathbb{R} al conjunto (-\infty,-1)\cup (1,\infty), pero en este caso debemos limitarlo adicionalmente con la restricción x<0. De este modo, las soluciones para este caso están en el intervalo (-\infty,-1).

Ahora sí, juntando ambos casos, tenemos que el conjunto solución final es

    \[(-\infty,-1)\cup(0,1).\]

Puedes ver la gráfica en GeoGebra de \frac{1}{x}-x^3+x^2-1 dando clic aquí. Ahí puedes verificar que esta expresión es positiva exactamente en el conjunto que encontramos.

\square

Reflexión final y lo que resta del curso

Como queda claro, resulta ser útil tener un polinomio en su forma factorizada para resolver desigualdades de polinomios reales. En los ejemplos que dimos en esta entrada, se dieron las factorizaciones de los polinomios involucrados. En el resto del curso veremos herramientas que nos permitirán encontrar la factorización de un polinomio o, lo que es parecido, encontrar sus raíces:

  • Veremos propiedades de continuidad de polinomios para mostrar la existencia de raíces para polinomios reales en ciertos intervalos.
  • El teorema del factor nos dice que si r es raíz de p(x), entonces x-r divide a p(x). Sin embargo, no nos dice cuál es la multiplicidad de r. Veremos que la derivada de un polinomio nos puede ayudar a determinar eso.
  • También veremos el criterio de la raíz racional, que nos permite enlistar todos los cantidatos a ser raíces racionales de un polinomio p(x) con coeficientes racionales.
  • Finalmente, veremos que para los polinomios de grado 3 y 4 hay formas de obtener sus raíces de forma explícita, mediante las fórmulas de Cardano y de Ferrari.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Completa la solución del problema enunciado en la sección de manipulaciones algebraicas.
  • Encuentra el conjunto solución de números reales x tales que

        \[(x+1)(x+2)^2(x+3)^3(x+4)^4>0.\]

  • Determina las soluciones reales a la desigualdad

        \[\frac{x-1}{x+2}>\frac{x+2}{x-1}.\]

    Ten cuidado con los signos. Verifica tu respuesta en este enlace de GeoGebra, que muestra la gráfica de f(x)=\frac{x-1}{x+2}-\frac{x+2}{x-1}.
  • Realiza las gráficas de otros polinomios de la entrada en GeoGebra para verificar las soluciones dadas a las desigualdades de polinomios.
  • Revisa esta entrada, en donde se hablan de aplicaciones de desigualdades polinomiales para un problema de un concurso de matemáticas.