Archivo de la etiqueta: teorema del factor

Álgebra Superior II: Irreducibilidad y factorización en polinomios reales

Introducción

Los números enteros tiene un teorema de factorización en primos: el teorema fundamental de la aritmética. Los polinomios en $\mathbb{R}[x]$ también. En esta entrada hablaremos de la irreducibilidad y factorización en polinomios reales. Lo primero lo haremos para decir «quiénes son los primos» en $\mathbb{R}[x]$. Para lo segundo usaremos el teorema del factor, que demostramos con anterioridad.

Resulta que el teorema de factorización en polinomios reales depende de un resultado importante de polinomios en $\mathbb{C}[x]$, es decir, los de coeficientes complejos. Esto es algo que sucede con frecuencia: a veces para resolver un problema en los números reales, hay que dar un paso hacia los complejos y luego regresar. Por esa razón, para esta entrada es importante que tengas en mente varias propiedades en los complejos, sobre todo cómo se realizan las operaciones y cuales son las propiedades de la conjugación compleja. Esto nos dará la oportunidad de enunciar (sin demostración) el teorema fundamental del álgebra.

Como recordatorio, un polinomio es irreducible en $\mathbb{R}[x]$ si no es un polinomio constante y no se puede escribir como producto de dos polinomios no constantes en $\mathbb{R}[x]$. Además, el teorema del factor nos dice que si $a$ es raíz de un polinomio $p(x)$, entonces $x-a$ divide a $p(x)$. Diremos que un polinomio es lineal si es de grado $1$ y cuadrático si es de grado $2$.

El teorema fundamental del álgebra

Así como construimos a $\mathbb{R}[x]$, se puede hacer algo análogo para construir a $\mathbb{C}[x]$, los polinomios de coeficientes complejos. Puedes practicar todo lo que hemos visto haciendo la construcción formal. Por el momento, para fines prácticos, puedes pensarlos como expresiones de la forma $$a_0+a_1 x + \ldots + a_n x^n$$ con $a_i$ complejos, digamos, $$(1+i)+2i x -3x^3+(5+2i)x^4.$$

Los polinomios en $\mathbb{C}[x]$ cumplen todo lo que hemos dicho de $\mathbb{R}[x]$: se vale el lema de Bézout, el algoritmo de Euclides, el teorema del factor, el teorema del residuo, etc. Una copia de $\mathbb{R}[x]$, con su estructura algebraica, «vive» dentro de $\mathbb{C}[x]$, es decir, todo polinomio con coeficientes reales se puede pensar como uno con coeficientes complejos.

Sin embargo, los polinomios en $\mathbb{R}[x]$ y en $\mathbb{C}[x]$ son muy diferentes en términos de raíces. Esto se nota, pir ejemplo, en el hecho de que el polinomio $x^2+1$ no tiene raíces en $\mathbb{R}$, pero sí en $\mathbb{C}$, donde la raíz es $i$. Resulta que esta $i$ hace toda la diferencia. Al agregarla no solamente hacemos que $x^2+1$ tenga una raíz, sino que ya todo polinomio tiene raíz. Esto está enunciado formalmente por el teorema fundamental del álgebra.

Teorema (teorema fundamental del álgebra). Todo polinomio no constante en $\mathbb{C}[x]$ tiene al menos una raíz en $\mathbb{C}$.

No vamos a demostrar este teorema durante el curso. Hay desde demostraciones elementales (como la que aparece en el bello libro Proofs from the book), hasta algunas muy cortas, pero que usan teoría un poco más avanzada (como las que se hacen en cursos de análisis complejo). Sin embargo, lo usaremos aquí para obtener algunas de sus consecuencias y, al final de esta entrada, demostrar los teoremas de irreducibilidad y factorización en polinomios reales.

Teorema de factorización en $\mathbb{C}[x]$

En la entrada anterior ya demostramos que los polinomios lineales son irreducibles. Veremos ahora que en $\mathbb{C}[x]$ no hay ningún otro polinomio irreducible.

Proposición. Los únicos polinomios irreducibles en $\mathbb{C}[x]$ son los de grado $1$.

Demostración. Tomemos cualquier polinomio $p(x)$ en $\mathbb{C}[x]$ de grado al menos $2$. Por el teorema fundamental del álgebra, $p(x)$ tiene al menos una raíz $z$ en $\mathbb{C}$. Por el teorema del factor, $$x-z \mid p(x),$$ así que podemos escribir $p(x)=(x-z)q(x)$ con $q(x)$ en $\mathbb{C}[x]$ de grado $\deg(p(x))-1\geq 1$.

De esta forma, pudimos factorizar al polinomio $p(x)$ en dos factores no constantes, y por lo tanto no es irreducible.

$\square$

Con esto podemos mostrar que en $\mathbb{C}[x]$ todo polinomio es factorizable como producto de términos lineales.

Teorema (de factorización única en $\mathbb{C}[x]$). Todo polinomio $p(x)$ en $\mathbb{C}[x]$ distinto del polinomio cero se puede factorizar de manera única como $$p(x)=a(x-z_1)(x-z_2)\cdots(x-z_n)$$ en donde $a$ es un complejo no cero, $n$ es el grado de $p(x)$ y $z_1,\ldots,z_n$ son complejos que son raíces de $p(x)$.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Procedemos por inducción en el grado de $p(x)$. Si $p(x)$ es de grado cero, entonces es de la forma $p(x)=a$ con $a$ un complejo, y ya está en la forma que queremos.

Tomemos ahora un entero $n\geq 1$. Supongamos que el resultado es cierto para los polinomios de grado $n-1$ y consideremos un polinomio $p(x)$ de grado $n$. Por el teorema fundamental del álgebra, $p(x)$ tiene al menos una raíz, digamos $z_n$. Usando el teorema del factor, existe un polinomio $q(x)$, que debe de ser de grado $n-1$, tal que $$p(x)=q(x)(x-z_n).$$ Aplicando la hipótesis inductiva a $q(x)$, podemos factorizarlo de la forma $$q(x)=a(x-z_1)(x-z_2)\cdots(x-z_{n-1}),$$ con $z_1,\ldots,z_{n-1}$ raíces de $q(x)$ (y por lo tanto también raíces de $p(x)$). De esta forma, $$p(x)=(x-z_1)(x-z_2)\cdots(x-z_{n-1})(x-z_n)$$ es una factorización que cumple lo que queremos. Esto termina la hipótesis inductiva, y por lo tanto la parte de existencia de la demostración.

$\square$

Ejemplo. Consideremos al polinomio $$p(x)=x^4+5x^2+4$$ en $\mathbb{R}[x]$. Este polinomio no tiene raíces reales, pues sus evaluaciones siempre son positivas. Sin embargo, lo podemos pensar como un polinomio en $\mathbb{C}[x]$. Por el teorema fundamental del álgebra, este polinomio debe tener una raíz en $\mathbb{C}$.

Afortunadamente, podemos encontrarla por inspección. Una de estas raíces es $i$, pues $$i^4+5i^2+4=1-5+4=0.$$ Por el teorema del factor, $x-i$ divide a $p(x)$. Al realizar la división, obtenemos $$p(x)=(x-i)(x^3+ix^2+4x+4i).$$ De aquí, por inspección, obtenemos que $-i$ es una raíz de $x^3+ix^2+4x+4i$, y realizando la división entre $x+i$, tenemos que $$p(x)=(x-i)(x+i)(x^2+4).$$

El polinomio $x^2+4$ claramente tiene como raíces a $2i$ y $-2i$. A partir de todo esto concluimos que $$p(x)=(x-i)(x+i)(x-2i)(x+2i)$$ es la factorización de $p(x)$ en polinomios lineales en $\mathbb{C}[x]$.

$\square$

En el ejemplo anterior podemos agrupar los factores $(x-i)$ y $(x+i)$ para obtener el polinomio $x^2+1$. De aquí obtenemos la factorización alternativa $$p(x)=(x^2+1)(x^2+2).$$ Esta factorización tiene puros coeficientes reales. Aquí hay que hacer una observación importante: esta no es una factorización en irreducibles en $\mathbb{C}[x]$, pero sí es una factorización en irreducibles en $\mathbb{R}[x]$. Retomaremos varias de estas ideas más en general en las siguientes secciones.

Raíces complejas de polinomios en $\mathbb{R}[x]$

En el ejemplo de la sección anterior sucedió que $i$ era una raíz de $p(x)$, y que $-i$ también. Cuando tenemos un polinomio de coeficientes reales y $z$ es un complejo que es raíz, entonces su conjugado también.

Proposición. Tomemos $p(x)$ un polinomio en $\mathbb{R}[x]$ y $z$ un número en $\mathbb{C}$. Si $p(z)=0$, entonces $p(\overline{z})=0$.

Demostración. Si $p(x)$ es el polinomio cero, la afirmación es cierta. En otro caso, sea $n$ el grado de $p(x)$ y escribamos a $p(x)$ como $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ donde $a_i$ son números en $\mathbb{R}$ para $i=0,\ldots,n$. Por lo que sabemos de la conjugación compleja, $\overline{a_i}=a_i$, y además abre sumas y productos. Así,
\begin{align*}
\overline{p(z)}&=\overline{a_0+a_1z+\ldots+a_nz^n}\\
&=\overline{a_0}+\overline{a_1z}+\ldots +\overline{a_nz^n}\\
&=\overline{a_0} + \overline{a_1}\, \overline{z} + \ldots +\overline{a_n}\, \overline{z}^n\\
&=a_0 + a_1 \overline{z} + \ldots + a_n \overline{z}^n\\
&=p(\overline{z}).
\end{align*}

Como $p(z)=0$, concluimos que $$p(\overline{z})=\overline{p(z)}=\overline{0}=0.$$

$\square$

El resultado anterior no es cierto en general para polinomios con coeficientes en $\mathbb{C}[x]$. Esto debe ser muy claro pues, por ejemplo, $i$ es raíz de $x-i$, pero $-i$ no.

Proposición. Tomemos $p(x)$ un polinomio en $\mathbb{R}[x]$ y una raíz $z$ de $p(x)$ en $\mathbb{C}\setminus \mathbb{R}$. Entonces el polinomio $$q(x)=x^2-(z+\overline{z})x+z\overline{z}$$ es un polinomio en $\mathbb{R}[x]$ que divide a $p(x)$ en $\mathbb{R}[x]$.

Demostración. Observa que $q(x)=(x-z)(x-\overline{z})$. Recordemos que
\begin{align*}
z+\overline{z}&=2\Rea{(z)} \\
z\overline{z}&=\norm{z}^2 .
\end{align*}

Esto muestra que los coeficientes de $q(x)$ son reales. Usemos el algoritmo de la división en $\mathbb{R}[x]$ para escribir $$p(x)=q(x)h(x)+r(x),$$ con $r(x)$ el polinomio cero, o de grado a lo más $1$.

Evaluando en $z$ y en $\overline{z}$, se obtiene que $r(z)=r(\overline{z})=0$. Como $z$ no es real, entonces $z$ y $\overline{z}$ son distintos. De este modo, $r(x)$ es el polinomio cero. Así, $p(x)=q(x)h(x)$ es una factorización de $p(x)$ en $\mathbb{R}[x]$ que usa a $q(x)$.

$\square$

Nuevamente, hay que tener cuidado con las hipótesis del resultado anterior. Es muy importante que usemos que $z$ es una raíz compleja y no real de un polinomio con coeficientes reales. En la tarea moral puedes encontrar un contraejemplo si no se satisfacen las hipótesis.

Ejemplo. Consideremos el polinomio $$p(x)=2x^3-16x^2+44x-40.$$ Una de sus raíces complejas es $3+i$, como puedes verificar. Como es un polinomio con coeficientes reales, el conjugado $3-i$ también es una raíz. Tal como lo menciona la proposición anterior, el polinomio
\begin{align*}
q(x):&=(x-(3+i))(x-(3-i))\\
&=x^2-(3+i+3-i)x+(3+i)(3-i)\\
&=x^2-6x+10
\end{align*}

es un polinomio de coeficientes reales. Además, divide a $p(x)$ en $\mathbb{R}[x]$ pues haciendo la división polinomial, tenemos que $$2x^3-16x^2+44x-40=(2x-4)(x^2-6x+10).$$

$\square$

Irreducibilidad y factorización en polinomios reales

Con todo lo que hemos hecho hasta ahora, estamos listos para probar los resultados que queremos en $\mathbb{R}[x]$. Observa que los enunciados de las secciones anteriores involucran a $\mathbb{C}$, pero los de esta sección ya no. Sin embargo, para hacer las demostraciones tenemos que dar un «brinco momentáneo a los complejos».

Recuerda que para un polinomio cuadrático $q(x)=ax^2+bx+c$ su discriminante es $b^2-4ac$.

Teorema (irreducibilidad en polinomios reales). Los únicos polinomios irreducibles en $\mathbb{R}[x]$ son los lineales y los cuadráticos de discriminante negativo.

Demostración. Ya mostramos antes que los polinomios lineales son irreducibles. Si $q(x)=ax^2+bx+c$ es un polinomio cuadrático y $r$ es una raíz real, tenemos que
\begin{align*}
ar^2+br+c&=0\\
r^2+\frac{b}{a}r+\frac{c}{a}&=0\\
r^2+\frac{b}{a}r+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+\frac{c}{a}&=0\\
\left(r+\frac{b}{2a}\right)^2&=\frac{b^2-4ac}{4a^2}.
\end{align*}

De esta igualdad, obtenemos que $\frac{b^2-4ac}{4a^2}\geq 0$ y por lo tanto que $b^2-4ac \geq 0$. Dicho de otra forma, si $b^2-4ac<0$, entonces $q(x)$ no tiene raíces reales. De esta misma equivalencia de igualdades se puede ver que si $b^2-4ac\geq 0$, entonces $q(x)$ sí tiene por lo menos una raíz real.

Supongamos que $q(x)$ es un polinomio cuadrático con discriminante negativo. Si existiera una factorización en $\mathbb{R}[x]$ de la forma $q(x)=a(x)b(x)$, con ninguno de ellos constante, entonces ambos deben tener grado $1$. Podemos suponer que $a$ es mónico. Pero entonces $a(x)=x-r$ para $r$ un real, y por el teorema del factor tendríamos que $r$ sería raíz de $q(x)$, una contradicción a la discusión anterior. Esto muestra que $q(x)$ es irreducible.

Falta ver que no hay ningún otro polinomio irreducible en $\mathbb{R}[x]$. Cuando $p(x)$ es cuadrático de discriminante no negativo, entonces por la fórmula cuadrática tiene al menos una raíz real $r$ y por lo tanto $x-r$ divide a $p(x)$, mostrando que no es irreducible.

Si $p(x)$ es de grado mayor o igual a $3$ y tiene una raíz real $r$, sucede lo mismo. En otro caso, es de grado mayor o igual a $3$ y no tiene raíces reales. Pero de cualquier forma tiene al menos una raíz compleja $z$. Usando la proposición de la sección anterior, tenemos que $x^2-(z+\overline{z})x+z\overline{z}$ es un polinomio de coeficientes reales que divide a $p(x)$ en $\mathbb{R}[x]$, lo cual muestra que no es irreducible.

Concluimos entonces que los únicos polinomios irreducibles en $\mathbb{R}[x]$ son los lineales y los cuadráticos de discriminante negativo.

$\square$

Ahora sí podemos enunciar el resultado estelar de esta entrada.

Teorema (factorización en polinomios reales). Todo polinomio $p(x)$ en $\mathbb{R}[x]$ distinto del polinomio cero se puede factorizar de manera única como $$a(x-r_1)\cdots(x-r_m)(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ en donde:

  • $a$ es un real distinto de cero,
  • $m$ y $n$ son enteros tales que $m+2n$ es igual al grado de $p(x)$,
  • para cada $i$ en $\{1,\ldots,m\}$ se tiene que $r_i$ es raíz real de $p(x)$ y
  • para cada $j$ en $ \{1,\ldots,n\}$ se tiene que $b_j,c_j$ son reales tales que $b_j^2-4c_j<0$.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Si $p(x)$ es irreducible, entonces al factorizar su coeficiente principal $a$ obtenemos la factorización deseada. Si $p(x)$ no es irreducible, procedemos por inducción fuerte sobre el grado $d$ de $p(x)$. El menor grado que debe tener es $2$ para no ser irreducible.

Si $d=2$ y es no irreducible, el resultado es cierto pues se puede factorizar como dos factores lineales y luego factorizar al término $a$ los coeficientes principales de cada factor para que queden mónicos.

Sea $d\geq 3$ y supongamos el resultado cierto para todo polinomio de grado menor a $d$. Tomemos un polinomio $p(x)$ de grado $d$. Por el teorema de irreducibilidad de polinomios reales, $p(x)$ no es irreducible, así que se puede factorizar como $p(x)=r(x)s(x)$ con $r(x)$ y $s(x)$ no constantes, y por lo tanto de grado menor al de $p(x)$. Por hipótesis inductiva, tienen una factorización como la del teorema. La factorización de $p(x)$ se obtiene multiplicando ambas. Esto termina la inducción.

$\square$

Veamos cómo podemos usar todas estas ideas en un problema en concreto de factorización en polinomios reales.

Problema. Factoriza al polinomio $x^{12}-1$ en polinomios irreducibles en $\mathbb{R}[x]$.

Solución. Usando identidades de factorización, podemos avanzar bastante:
\begin{align*}
x^{12}-1&=(x^6-1)(x^6+1)\\
&=(x^3-1)(x^3+1)(x^6+1)\\
&=(x-1)(x^2+x+1)(x+1)(x^2-x+1)(x^2+1)(x^4-x^2+1).
\end{align*}

Hasta aquí, $x+1$ y $x-1$ son factores lineales. Además, $x^2+x+1$, $x^2-x+1$ y $x^2+1$ son factores cuadráticos irreducibles pues sus discriminantes son, respectivamente, $-3,-3,-4$.

Aún queda un factor $x^4-x^2+1$ que por ser de grado $4$ no es irreducible. Sumando y restando $2x^2$, y luego factorizando la diferencia de cuadrados, tenemos:
\begin{align*}
x^4-x^2+1 &= x^4+2x^2+1-3x^2\\
&=(x^2+1)^2-3x^2\\
&=(x^2+1-\sqrt{3}x)(x^2+1+\sqrt{3}x).
\end{align*}

Cada uno de estos factores cuadráticos tiene discriminante $-1$, y por lo tanto es irreducible. Concluimos entonces que la factorización en irreducibles de $x^{12}-1$ en $\mathbb{R}[x]$ es
\begin{align*}
(x-1)(x&+1)(x^2+1)(x^2+x+1)\\
&(x^2-x+1)(x^2+\sqrt{3}x+1)(x^2-\sqrt{3}x+1).
\end{align*}

$\square$

Tarea moral

  • Haz la construcción formal de $\mathbb{C}[x]$ a partir de sucesiones de complejos. Muestra que se pueden expresar en la notación de $x$ y sus potencias. Prueba los teoremas que hemos visto hasta ahora. Todo debe ser análogo al caso real, por lo que te servirá mucho para repasar los conceptos vistos hasta ahora.
  • Muestra la unicidad de la factorización en $\mathbb{C}[x]$ y en $\mathbb{R}[x]$.
  • Sea $z$ un complejo no real. Muestra que que $x-z$ y $x-\overline{z}$ son polinomios primos relativos en $\mathbb{C}[x]$.
  • Hay que tener cuidado en las hipótesis de los teoremas de esta entrada. Muestra que $3$ es una raíz del polinomio $x^3-6x^2+11x-6$, pero que $x^2-6x+9$ no divide a este polinomio.
  • Argumenta por qué en el teorema de factorización en polinomios reales sucede que $m+2n$ es el grado de $p(x)$.

Más adelante

El teorema fundamental del álgebra y sus consecuencias en $\mathbb{R}$ son los resultados algebraicos más importantes que obtendremos en el estudio de polinomios, ya que nos permite caracterizar, al menos en teoría a todos los polinomios a partir de sus raíces.

En las siguientes entradas ocuparemos las herramientas que hemos desarrollado hasta ahora, sin embargo cambiaremos el enfoque de estudio, usaremos también herramientas de los cursos de cálculo para poder dar un análisis más detallado del comportamiento de los polinomios, y que nos servirán para que en muchos casos podamos encontrar las raíces de un polinomio, o cuando menos tener una idea de cómo son.

Entradas Relacionadas

Álgebra Superior II: Algoritmo de la división, teorema del factor y teorema del residuo

Introducción

Tal vez te hayas dado cuenta de que ya hablamos de suma, producto y resta de polinomios, pero aún no hemos hablado de la división. Una razón es que no todos los polinomios tienen inverso multiplicativo. Sin embargo, los polinomios sí tienen un algoritmo de la división parecido al que estudiamos para el conjunto $\mathbb{Z}$ de enteros. A partir de él podemos extender varios de los conceptos aritméticos de $\mathbb{Z}$ a $\mathbb{R}[x]$: divisibilidad, máximo común divisor, factorización, etc. Luego, estos aspectos se pueden conectar a evaluación de polinomios mediante el un teorema clave: el teorema del factor.

Como recordatorio, hasta ahora, ya construimos el anillo $\mathbb{R}[x]$ de polinomios con coeficientes reales y vimos que era un dominio entero. También, vimos que una copia de $\mathbb{R}$ vive en $\mathbb{R}[x]$, con lo justificamos pasar de la notación de sucesiones, a la notación usual de polinomios usando el símbolo $x$ y sus potencias. En la entrada anterior también hablamos del grado de un polinomio (cuando no es el polinomio cero), de la evaluación de polinomios y de raíces.

Algoritmo de la división

Recordemos que en $\mathbb{Z}$ tenemos un algoritmo de la división que dice que para enteros $a$ y $b\neq 0$ existen únicos enteros $q$ y $r$ tales que $a=qb+r$ y $0\leq r < |b|$.

En $\mathbb{R}[x]$ hay un resultado similar. Pero hay que tener cuidado al generalizar. En $\mathbb{R}[x]$ no tenemos una función valor absoluto que nos permita decir que encontramos un «residuo más chiquito». Para la versión polinomial del algoritmo de la división tenemos que usar una función que diga «qué tan grande es un polinomio»: el grado.

Teorema (algoritmo de la división en $\mathbb{R}[x]$). Sean $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$, donde $g(x)$ no es el polinomio cero. Entonces, existen únicos polinomios $q(x)$ y $r(x)$ en $\mathbb{R}[x]$ tales que $$f(x)=q(x)g(x)+r(x),$$ en donde $r(x)$ es el polinomio cero, o $\deg(r(x))<\deg(g(x))$.

Demostración. Probaremos la parte de existencia. La parte de unicidad queda como tarea moral. Para probar la existencia, haremos inducción fuerte sobre el grado de $f(x)$. Sin embargo, antes de poder hacer esto, necesitamos hacer el caso en el que $f(x)$ no tiene grado, es decir, cuando es el polinomio cero.

Si $f(x)$ es el polinomio cero, entonces $q(x)=0$ y $r(x)=0$ son polinomios que funcionan, pues $0=0\cdot g(x)+0$, para cualquier polinomio $g(x)$.

Asumamos entonces a partir de ahora que $f(x)$ no es el polinomio cero. Hagamos inducción sobre el grado de $f(x)$. Si $f(x)$ es de grado $0$, entonces es un polinomio de la forma $f(x)=a$ para $a$ en $\mathbb{R}$. Hay dos casos de acuerdo al grado de $g(x)$:

  • Si $g(x)$ es de grado $0$, es de la forma $g(x)=b$ para un real no cero y podemos tomar $q(x)=a/b$ y $r(x)=0$.
  • Si $g(x)$ es de grado mayor a $0$, entonces tomamos $q(x)=0$ y $r(x)=f(x)$. Esta es una elección válida pues se cumple \begin{align*}\deg(r(x))&=\deg(f(x))\\& =0\\& <\deg(g(x)).\end{align*}

Esto termina la demostración de la base inductiva.

Supongamos que el resultado es cierto para cuando $f(x)$ tiene grado menor a $n$ y tomemos un caso en el que $f(x)$ tiene grado $n$. Hagamos de nuevo casos con respecto al grado de $g(x)$, al que llamaremos $m$. Si $m>n$, entonces tomamos $q(x)=0$ y $r(x)=f(x)$, que es una elección válida pues $$\deg(r(x))=n<m.$$

En el caso de que $m\leq n$, escribamos explícitamente a $f(x)$ y a $g(x)$ en términos de sus coeficientes como sigue: \begin{align*}f(x)&=a_0+\ldots+a_nx^n\\g(x)&=b_0+\ldots+b_mx^m.\end{align*}

Consideremos el polinomio $$h(x):=f(x)-\frac{a_n}{b_m}x^{n-m}g(x).$$ Notemos que en $h(x)$ el coeficiente que acompaña a $x^n$ es $a_n-\frac{a_nb_m}{b_m}=0$, así que el grado de $h(x)$ es menor al de $f(x)$ y por lo tanto podemos usar la hipótesis inductiva para escribir $$h(x)=t(x)g(x)+u(x)$$ con $u(x)$ el polinomio $0$ o $\deg(u(x))<\deg(g(x))$. De esta forma,
\begin{align*}
f(x)&=t(x)g(x)+u(x)+\frac{a_n}{b_m}x^{n-m}g(x)\\
&=\left(t(x)+\frac{a_n}{b_m}x^{n-m}\right)g(x)+u(x).
\end{align*}

Así, eligiendo $q(x)=t(x)+\frac{a_n}{b_m}x^{n-m}$ y $r(x)=u(x)$, terminamos la hipótesis inductiva.

$\square$

Aplicando el algoritmo de la división de forma práctica

Veamos ahora un ejemplo de cómo se puede aplicar este teorema anterior de forma práctica. A grandes rasgos, lo que podemos hacer es «ir acumulando» en $q(x)$ a los términos $\frac{a_n}{b_m}x^{n-m}$ que van apareciendo en la inducción, y cuando $h(x)$ se vuelve de grado menor a $q(x)$, lo usamos como residuo. Hagamos un ejemplo concreto.

Ejemplo. Tomemos $f(x)=x^5+x^4+x^3+x^2+2x+3$ y $g(x)=x^2+x+1$. Vamos a aplicar iteradamente las ideas de la demostración del teorema anterior para encontrar los polinomios $q(x)$ y $r(x)$ tales que $$f(x)=q(x)g(x)+r(x),$$ con $r(x)$ el polinomio $0$ o de grado menor a $g(x)$.

Como el grado de $f(x)$ es $5$, el de $g(x)$ es $2$ y $5>2$, lo primero que hacemos es restar $x^{5-2}g(x)=x^3g(x)$ a $f(x)$ y obtenemos:

$$h_1(x)=f(x)-x^3g(x)=x^2+2x+3.$$

Hasta ahora, sabemos que $q(x)=x^3+\ldots$, donde en los puntos suspensivos va el cociente que le toca a $h_1(x)=x^2+2x+3$. Como el grado de $h_1(x)$ es $2$, el de $g(x)$ es $2$ y $2\geq 2$, restamos $x^{2-2}g(x)=1\cdot g(x)$ a $h_1(x)$ y obtenemos.

$$h_2(x)=h_1(x)-g(x)=x+2.$$

Hasta ahora, sabemos que $q(x)=x^3+1+\ldots$, donde en los puntos suspensivos va el cociente que le toca a $h_2(x)=x+2$. Como el grado de $h_2(x)$ es $1$, el de $g(x)$ es $2$ y $2>1$, entonces el cociente es $0$ y el residuo es $h_2(x)=x+2$.

De esta forma, concluimos que $$q(x)=x^3+1$$ y $$r(x)=x+2.$$

En conclusión,
\begin{align*}
x^5+ & x^4+x^3+x^2+2x+3\\
&= (x^3+1)(x^2+x+1) + x+2.
\end{align*}

Esto se puede verificar fácilmente haciendo la operación polinomial.

$\square$

Hay una forma más visual de hacer divisiones de polinomios «haciendo una casita». Puedes ver cómo se hace esto en el siguiente video en Khan Academy, y los videos que le siguen en la lista.

Divisibilidad en polinomios

Cuando trabajamos en $\mathbb{Z}$, estudiamos la noción de divisibilidad. Si en el algoritmo de la división obtenemos que $r(x)$ es el polinomio $0$, entonces obtenemos una noción similar para $\mathbb{R}[x]$.

Definición. Sean $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$. Decimos que $g(x)$ divide a $f(x)$ si existe un polinomio $q(x)$ tal que $f(x)=q(x)g(x)$.

Ejemplo. El polinomio $x^3-1$ divide al polinomio $x^4+x^3-x-1$, pues $$x^4+x^3-x-1 = (x^3-1)(x+1).$$

$\square$

Ejemplo. Si $g(x)$ es un polinomio no cero y constante, es decir, de la forma $g(x)=a$ para $a\neq 0$ un real, entonces divide a cualquier otro polinomio en $\mathbb{R}[x]$. En efecto, si $$f(x)=a_0+a_1x+\ldots + a_nx^n$$ es cualquier polinomio y tomamos el polinomio $$q(x)=\frac{a_0}{a}+\frac{a_1}{a}x+\ldots + \frac{a_n}{a}x^n,$$ entonces $f(x)=g(x)q(x)$.

$\square$

El último ejemplo nos dice que los polinomios constantes y no cero se comportan «como el $1$ se comporta en los enteros». También nos dice que cualquier polinomio tiene una infinidad de divisores. Eso nos pone en aprietos para definir algo así como los «polinomios primos» en términos del número de divisores. En la siguiente sección hablaremos de cómo hacer esta definición de manera adecuada.

Polinomios irreducibles

Cuando trabajamos con enteros, vimos que es muy útil poder encontrar la factorización en términos de números primos. En polinomios no tenemos «polinomios primos», pero tenemos un concepto parecido.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es irreducible en $\mathbb{R}[x]$ si no es un polinomio constante, y no es posible escribirlo como producto de dos polinomios no constantes en $\mathbb{R}[x]$.

Ejemplo. El polinomio $$x^4+x^2+1$$ no es irreducible en $\mathbb{R}[x]$ pues $$x^4+x^2+1=(x^2+x+1)(x^2-x+1).$$

Los polinomios $x^2+x+1$ y $x^2-x+1$ sí son irreducibles en $\mathbb{R}[x]$. Más adelante veremos por qué.

$\square$

La razón por la cual quitamos a los polinomios constantes es parecida a la cual en $\mathbb{Z}$ no consideramos que $1$ sea primo: ayuda a enunciar algunos teoremas más cómodamente.

Hay unos polinomios que fácilmente se puede ver que son irreducibles: los de grado $1$.

Proposición. Los polinomios de grado $1$ en $\mathbb{R}[x]$ son irreducibles.

Demostración. Si $f(x)$ es un polinomio de grado $1$, entonces no es constante. Además, no se puede escribir a $f(x)$ como el producto de dos polinomios no constantes pues dicho producto tiene grado al menos $2$.

$\square$

Hay otros polinomios en $\mathbb{R}[x]$ que no son de grado $1$ y que son irreducibles. Por ejemplo, con la teoría que tenemos ahora te debe ser fácil mostrar de tarea moral que $x^2+1$ es irreducible en $\mathbb{R}[x]$.

La razón por la que siempre insistimos en que la irreducibilidad sea en $\mathbb{R}[x]$ es por que a veces un polinomio no se puede factorizar en polinomios con coeficientes reales, pero sí con coeficientes complejos. Aunque $x^2+1$ sea irreducible en $\mathbb{R}[x]$, si permitimos coeficientes complejos se puede factorizar como $$x^2+1=(x+i)(x-i).$$

Más adelante seguiremos hablando de irreducibilidad. Por ahora, nos enfocaremos en los polinomios de grado $1$.

Teorema del factor

Una propiedad clave de los polinomios de grado $1$ es que, es lo mismo que $x-a$ divida a un polinomio $p(x)$, a que $a$ sea una raíz de $p(x)$.

Teorema (del factor). Sea $a$ un real y $p(x)$ un polinomio en $\mathbb{R}[x]$. El polinomio $x-a$ divide a $p(x)$ si y sólo si $p(a)=0$.

Demostración. De acuerdo al algoritmo de la división, podemos escribir $$p(x)=(x-a)q(x)+r(x),$$ en donde $r(x)$ es $0$ o un polinomio de grado menor estricto al de $x-a$. Como el grado de $x-a$ es $1$, la única posibilidad es que $r(x)$ sea un polinomio constante $r(x)=r$. Así, $p(x)=(x-a)q(x)+r$, con $r$ un real.

Si $p(a)=0$, tenemos que $$0=p(a)=(a-a)q(a)+r=r,$$ de donde $r=0$ y entonces $p(x)=(x-a)q(x)$, lo que muestra que $x-a$ divide a $p(x)$.

Si $x-a$ divide a $p(x)$, entonces $p(x)=(x-a)q(x)$, de donde $p(a)=(a-a)q(a)=0$, por lo que $a$ es raíz de $p(x)$.

$\square$

Ejemplo. Consideremos el polinomio $p(x)=x^3-6x^2+11x-6$. ¿Podremos encontrar algunos polinomios lineales que lo dividan? A simple vista, notamos que la suma de sus coeficientes es $1-6+11-6=0$. Esto nos dice que $p(1)=0$. Por el teorema del factor, tenemos que $x-1$ divide a $p(x)$. Tras hacer la división, notamos que $$p(x)=(x-1)(x^2-5x+6).$$

Veamos si podemos seguir factorizando polinomios lineales que no sean $x-1$. Si un polinomio $x-a$ divide a $p(x)$, por el teorema del factor debemos tener $$0=p(a)=(a-1)(a^2-5a+6).$$ Como $a\neq 1$, entonces $a-1\neq 0$, de modo que tiene que pasar $$a^2-5a+6=0,$$ en otras palabras, hay que encontrar las raíces de $x^2-5x+6$.

Usando la fórmula general cuadrática, tenemos que las raíces de $x^2-5x+6$ son
\begin{align*}
x_1&=\frac{5+\sqrt{25-24}}{2}=3\\
x_2&=\frac{5-\sqrt{25-24}}{2}=2.
\end{align*}

Usando el teorema del factor, concluimos que tanto $x-2$ como $x-3$ dividen a $p(x)$. Hasta ahora, sabemos entonces que $$p(x)=(x-1)(x-2)(x-3)h(x),$$ donde $h(x)$ es otro polinomio. Pero $(x-1)(x-2)(x-3)$ ya es un polinomio de grado $3$, como $p(x)$ y su coeficiente de $x^3$ es $1$, como el de $p(x)$. Concluimos que $h(x)=1$ y entonces $$p(x)=(x-1)(x-2)(x-3).$$

$\square$

Teorema del residuo

En realidad, la técnica que usamos para el teorema del factor nos dice algo un poco más general. Cuando escribimos $$p(x)=(x-a)q(x)+r$$ y evaluamos en $a$, obtenemos que $p(a)=r$. Reescribimos esta observación como un teorema.

Teorema (del residuo). Sea $a$ un real y $p(x)$ un polinomio en $\mathbb{R}[x]$. El residuo de dividir $p(x)$ entre $x-a$ es $p(a)$.

Problema. Encuentra el residuo de dividir el polinomio $p(x)=x^8-x^5+2x^3+2x$ entre el polinomio $x+1$.

Solución. Se podría hacer la división polinomial, pero esto es largo y no nos piden el polinomio cociente, sólo el residuo. Así, podemos resolver este problema más fácilmente usando el teorema del residuo.

Como $x+1=x-(-1)$, el residuo de la división de $p(x)$ entre $x+1$ es $p(-1)$. Este número es
\begin{align*}
p(-1)&=(-1)^8-(-1)^5+2(-1)^3+2(-1)\\
&=1+1-2-2\\
&=-2.
\end{align*}

$\square$

Tarea moral

  • Muestra que el polinomio $x$ no tiene inverso multiplicativo.
  • Demuestra la parte de unicidad del algoritmo de la división.
  • Muestra que el polinomio $x^2+1$ es irreducible en $\mathbb{R}[x]$. Sugerencia. Procede por contradicción. Una factorización tiene que ser de la forma $x^2+1=p(x)q(x)$ con $p$ y $q$ de grado $1$.
  • Factoriza en términos lineales al polinomio $p(x)=x^3-12x^2+44x-48$. Sugerencia. Intenta enteros pequeños (digamos de $-3$ a $3$) para ver si son raíces. Uno de ellos funciona. Luego, usa el teorema del factor para expresar a $p(x)$ como un polinomio lineal por uno cuadrático. Para encontrar el resto de factores lineales, encuentra las raíces del cuadrático.
  • Encuentra el residuo de dividir el polinomio $x^5-x^4+x^3-x^2+x-1$ entre el polinomio $x-2$.

Más adelante

Los teoremas que hemos visto en esta entrada serán las principales herramientas algebraicas que tendremos en el estudio de los polinomios así como en la búsqueda de las raíces de los polinomios y en resolver la pregunta sobre su irreductibilidad.

El algoritmo de la división nos servirá (como nos sirvió en $\mathbb{Z}$ para poder precisar el algoritmo de Euclides y definir el máximo común divisor de dos polinomios.

Por ahora, en la siguiente entrada, nos encargaremos de practicar lo aprendido y resolver ejercicios sobre raíces y residuos de polinomios.

Entradas Relacionadas

Seminario de Resolución de Problemas: Factorización de polinomios

Introducción

En la entradas anteriores se trataron algunos temas de identidades algebraicas y se profundizó en el binomio de Newton y la identidad de Gauss. En esta y la siguiente entrada hablaremos de polinomios. Por ahora, comenzaremos recordando las nociones básicas de la aritmética de polinomios y hablando un poco de la factorización de polinomios. Más adelante hablaremos del poderoso teorema de la identidad.

Recordatorio de polinomios

Tenemos que un polinomio de grado $n$, donde $n$ es un número entero no negativo, es una expresión algebraica de la forma

\begin{equation*}
a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0.
\end{equation*}

Dicha expresión también podemos denotarla como

\begin{equation*}
P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0,
\end{equation*}

en donde $a_n$ es distinto de $0$.

Los elementos $\right\{a_n, a_{n-1}, … , a_0\left\}$ se conocen como coeficientes. Si $a_n=1$, decimos que el polinomio es mónico.

Nota: El polinomio cuyos coeficientes son todos ceros, se le conoce como el polinomio cero y no tiene grado.

Si dos polinomios son idénticos coeficiente por coeficiente, decimos que dichos polinomios son iguales. Esta noción será de utilidad más adelante en la entrada del teorema de la identidad.

Si todos los coeficientes de un polinomio son enteros, decimos que es un polinomio sobre los enteros. Si los coeficientes son números reales, entonces es un polinomio sobre los reales. De manera similar definimos a los polinomios sobre los racionales, los complejos o incluso sobre $\mathbb{Z}_n$. Aunque parezca irrelevante, conocer las características de los coeficientes de un polinomio, nos da mucha información sobre su constitución. Hay resultados que, por ejemplo, se valen para los polinomios sobre los complejos, pero no para los polinomios sobre los reales.

Otra cosa que es de nuestro interés son las operaciones en los polinomios, y es que al igual que los números enteros, podemos sumar, multiplicar y dividir polinomios.

Algoritmo de la división para polinomios

Para los polinomios, al igual que en los números enteros, existe un algoritmo de la división. Este nos ayudará posteriormente para cuando queramos hacer factorización en polinomios.

Teorema. Sean los polinomios $P(x)$ y $Q(x)$ definidos sobre un campo $\mathbb{K}$ con $Q(x)$ distinto de cero. Entonces existen dos únicos polinomios $C(x)$ y $R(x)$ tales que

\begin{equation*}
P(x)=C(x)Q(x)+R(x),
\end{equation*}

donde $C(x)$ y $R(x)$ son el coeficiente y el residuo respectivamente, resultado de dividir $P(x)$ entre $Q(x)$, y se tiene que $R(x)$ es el polinomio $0$ o bien tiene grado menor o igual al grado de $C(x)$.

Ejemplo. Dados los polinomios $P(x)=x^2-3x-28$ y $Q(x)=x-5$, tenemos que $C(x)=x+2$ y $R(x)=-18$.

En efecto,

\begin{equation*}
x^2-3x-28=(x+2)(x-5)-18.
\end{equation*}

$\square$

Algoritmo de Euclides para polinomios

Al igual que en los enteros, el algoritmo de la división es de ayuda para determinar el máximo común divisor entre dos polinomios: simplemente seguimos los pasos del algoritmo de Euclides. Es por ello que tenemos el siguiente resultado.

Teorema. Si tenemos dos polinomios $P(x)$ y $Q(x)$ sobre un campo $\mathbb{K}$, tenemos que existen polinomios $S(x)$ y $T(x)$ tales que

\begin{equation*}
\MCD{P, Q}= PS+QT.
\end{equation*}

Aquí $\MCD{P, Q}$ es el máximo común divisor de $P(x)$ y $Q(x)$.

Otra forma de ver o de entender el máximo común divisor entre dos polinomios es como el producto de todos aquellos factores que tienen en común.

Problema: Encuentra polinomios $F(x)$ y $G(x)$ tales que

\begin{equation*}
(x^8-1)F(x)+(x^5-1)G(x)=x-1.
\end{equation}

Sugerencia pre-solución. Recuerda cómo encontrar el máximo común divisor de dos enteros usando el algoritmo de Euclides. Además, usa una factorización para cancelar el factor $x-1$ de la derecha.

Solución. Definamos

\begin{align*}
A(x)&=x^7+x^6+x^5+x^4+x^3+x^2+x+1\\
B(x)&=x^4+x^3+x^2+x+1.
\end{align*}

Notemos que la ecuación es equivalente a

\begin{equation*}
A(x)F(x)+B(x)G(x)=1.
\end{equation}

Tendría que suceder entonces que $A(x)$ y $B(x)$ sean primos relativos.

Aplicando el algoritmo de la división repetidamente, tenemos lo siguiente:

\begin{align*}
A(x)&=x^3B(x)+(x^2+x+1)\\
B(x)&=x^2(x^2+x+1)+(x+1)\\
x^2+x+1&=x(x+1)+1.
\end{align*}

Esto muestra que $A(x)$ y $B(x)$ son primos relativos, así que la combinación lineal que buscamos debe existir. Para encontrarla de manera explícita, invertimos los pasos. Trabajando hacia atrás, tenemos que

\begin{equation*}
\begin{split}
1 & =(x^2+x+1)-x(x+1)\\
& =(x^2+x+1)-x(B(x)-x^2(x^2+x+1))\\
& =(x^2+x+1)(x^3+1)-xB(x)\\
& =(x^3+1)(A(x)-x^3(B(x))-xB(x)\\
& =(x^3+1)A(x)-x^3(x^3+1)B(x)-xB(x)\\
& =(x^3+1)A(x)+(-x^6-x^3-x)B(x)
\end{split}
\end{equation*}

Así que podemos tomar a $F(x)=x^3+1$ y $G(x)=-x^6-x^3-x$.

$\square$

El teorema del factor

Sea $P(x)$ un polinomio sobre un dominio entero $D$. Decimos que un elemento $a$ de $D$ es raíz del polinomio $P(x)$ si $P(a)=0$. Si aplicamos el algoritmo de la división en los polinomios $P(x)$ y $x-a$ obtenemos el siguiente teorema, que es fundamental en la factorización de polinomios.

Teorema El elemento $a$ es raíz de $P(x)$ si y solo si $(x-a)$ es factor de $P(x)$.

Veamos cómo aplicar este teorema en un ejemplo concreto.

Problema. Dado $\omega=\cos\left(\frac{2\pi}{n}\right)+i\sin\left(\frac{2\pi}{n}\right)$, prueba que

\begin{equation*}
x^{n-1}+\ldots+x+1=(x-\omega)(x-\omega^2)\cdot\ldots\cdot(x-\omega^{n-1}).
\end{equation*}

Sugerencia pre-solución. Recuerda los resultados básicos de aritmética de los números complejos.

Solución. Por De Moivre tenemos que si

\begin{equation*}
\omega=\cos\left(\frac{2\pi}{n}\right)+i\sin\left(\frac{2\pi}{n}\right)=e^{\frac{2\pi i}{n}}
\end{equation*}

entonces $ \{1, \omega, \omega^2,…,\omega^{n-1}\}$ son raíces de $x^n-1=0$. Además, como $e^{\pi i}=-1$, tenemos que $\omega^n=1$.

Así, tenemos que $\omega^{n+1}=\omega$ y de manera general $\omega^{n+k}=\omega^k$.

Por otro lado,

\begin{equation*}
x^n-1=(x-1)(x^{n-1}+\ldots+x+1)
\end{equation*}

Y como $ \{1, \omega, \omega^2,\ldots,\omega^{n-1}\}$ son raíces de $x^n-1$, tenemos entonces que $\{\omega, \omega^2,\ldots,\omega^{n-1}\}$ deben de ser las raíces de $$x^{n-1}+\ldots+x+1.$$

Aplicando repetidamente el teorema del factor, tenemos que

\begin{equation*}
x^{n-1}+\ldots+x+1=(x-\omega)(x-\omega^2)\cdot\ldots\cdot(x-\omega^{n-1}).
\end{equation*}

$\square$

Un problema para números algebraicos

Un número real es algebraico si es raíz de un polinomio sobre los números enteros.

Problema. Prueba que $\sqrt{2}+\sqrt{3}$ es un número algebraico.

Sugerencia pre-solución. Realiza operaciones de suma, resta y producto con $\sqrt{2}+\sqrt{3}$ y con enteros. Ve si puedes encontrar un patrón de cómo se comportan.

Solución. Tenemos que encontrar un polinomio $P(x)$ sobre los número enteros de tal forma que $P(\sqrt{2}+\sqrt{3})=0$.

Si consideramos $x=\sqrt{2}+\sqrt{3}$, entonces $x^2=5+2\sqrt{6}$

Para $P(x)=x^2-5$, tenemos que $P(\sqrt{2}+\sqrt{3})=2\sqrt{6}$

Así,

\begin{equation*}
(P(\sqrt{2}+\sqrt{3}))^2=(2\sqrt{6})^2=144.
\end{equation*}

Ahora, si consideramos el polinomio

\begin{equation*}
Q(x)=(P(x))^2-144.
\end{equation*}

Tenemos que

\begin{equation*}
Q(\sqrt{2}+\sqrt{3})=(P(\sqrt{2}+\sqrt{3}))^2-144=0.
\end{equation*}

Por lo tanto como el polinomio $Q(x)=x^4-10x^2-119$ es un polinomio sobre los enteros, y como $Q(\sqrt{2}+\sqrt{3})=0$ concluimos que $\sqrt{2}+\sqrt{3}$ es un número algebraico.

$\square$

Más problemas

Puedes encontrar más problemas de aritmética y factorización de polinomios en la Sección 4.2 del libro Problem Solving through Problems de Loren Larson.