Archivo de la etiqueta: transpuesta

Álgebra Lineal II: Aplicaciones de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores demostramos que cualquier matriz (o transformación lineal) tiene una y sólo una forma canónica de Jordan. Además, explicamos cómo se puede obtener siguiendo un procedimiento específico. Para terminar nuestro curso, platicaremos de algunas de las consecuencias del teorema de Jordan.

Clasificación de matrices por similaridad

Una pregunta que aún no hemos podido responder es la siguiente: si nos dan dos matrices $A$ y $B$ en $M_n(F)$, ¿son similares? Con la maquinaria desarrollada hasta ahora podemos dar una muy buena respuesta.

Proposición. Sean $A$ y $B$ matrices en $M_n(F)$ tales que el polinomio característico de $A$ se divide en $F$. Entonces, $A$ y $B$ son similares si y sólo si se cumplen las siguientes dos cosas:

  • El polinomio característico de $B$ también se divide en $M_n(F)$ y
  • $A$ y $B$ tienen la misma forma canónica de Jordan.

Demostración. Sea $J$ la forma canónica de Jordan de $A$.

Si $A$ y $B$ son similares, como $A$ es similar a $J$, se tiene que $B$ es similar a $J$. Entonces, $B$ tiene el mismo polinomio característico que $A$ y por lo tanto se divide en $F$. Además, como $J$ es similar a $B$, entonces por la unicidad de la forma canónica de Jordan, precisamente $J$ es la forma canónica de Jordan de $B$. Esto es un lado de nuestra proposición.

Supongamos ahora que el polinomio característico de $B$ también se divide en $M_n(F)$ y que la forma canónica de Jordan de $B$ también es $J$. Por transitividad de similaridad, $A$ es similar a $B$.

$\square$

Veamos un ejemplo de cómo usar esto en un problema específico.

Problema. Encuentra dos matrices en $M_2(\mathbb{R})$ que tengan como polinomio característico a $x^2-3x+2$, pero que no sean similares.

Solución. Las matrices $A=\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ y $B=\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ ya están en forma canónica de Jordan y son distintas, así que por la proposición anterior no pueden ser similares. Además, por ser triangulares superiores, en ambos casos el polinomio característico es $$(X-1)(X-2)=X^2-3X+2.$$

$\square$

El problema anterior fue sumamente sencillo. Piensa en lo difícil que sería argumentar con cuentas de producto de matrices que no hay ninguna matriz $P\in M_2(\mathbb{R})$ tal que $A=P^{-1}B P$.

Forma canónica de Jordan «para cualquier matriz»

Como en $\mathbb{C}[X]$ todos los polinomios se dividen, entonces tenemos el siguiente corolario del teorema de Jordan.

Corolario. Toda matriz en $M_n(\mathbb{C})$ tiene una única forma canónica de Jordan.

Aquí $\mathbb{C}$ es muy especial pues es un campo completo, es decir, en el cual cualquier polinomio no constante tiene por lo menos una raíz. En general esto no es cierto, y es muy fácil dar ejemplos: $x^2-2$ no tiene raíces en $\mathbb{Q}$ y $x^2+1$ no tiene raíces en $\mathbb{R}$.

Sin embargo, existe toda un área del álgebra llamada teoría de campos en donde se puede hablar de extensiones de campos. Un ejemplo de extensión de campo es que $\mathbb{C}$ es una extensión de $\mathbb{R}$ pues podemos encontrar «una copia de» $\mathbb{R}$ dentro de $\mathbb{C}$ (fijando la parte imaginaria igual a cero).

Un resultado importante de teoría de campos es el siguiente:

Teorema. Sea $F$ un campo y $P(X)$ un polinomio en $F[X]$. Existe una extensión de campo $G$ de $F$ tal que $P(X)$ se divide en $G$.

¿Puedes notar la consecuencia que esto trae para nuestra teoría de álgebra lineal? Para cualquier matriz en $M_n(F)$, podemos considerar a su polinomio característico y encontrar campo $G$ que extiende a $F$ en donde el polinomio se divide. Por el teorema de Jordan, tendríamos entonces lo siguiente.

Corolario. Sea $A$ una matriz en $M_n(F)$. Entonces, $A$ tiene una forma canónica de Jordan en un campo $G$ que extiende a $F$.

Por supuesto, la matriz $P$ invertible que lleva $A$ a su forma canónica quizás sea una matriz en $M_n(G)$.

Toda matriz compleja es similar a su transpuesta

Ya demostramos que para cualquier matriz $A$ en $M_n(F)$ se cumple que $\chi_A(X)=\chi_(A^T)(X)$. Esto implica que $A$ y su transpuesta $A^T$ tienen los mismos eigenvalores, traza y determinante. También vimos que $\mu_A(X)=\mu_{A^T}(X)$. Las matrices $A$ y $A^T$ comparten muchas propiedades. ¿Será que siempre son similares? A continuación desarrollamos un poco de teoría para resolver esto en el caso de los complejos.

Proposición. Sea $J_{\lambda,n}$ un bloque de Jordan en $M_n(F)$. Entonces, $J_{\lambda,n}$ y $J_{\lambda,n}^T$ son similares.

Demostración. Para bloques de Jordan, podemos dar explícitamente la matriz de similitud. Es la siguiente matriz, con unos en la diagonal no principal:

$$P=\begin{pmatrix} 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & 1 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 1 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \end{pmatrix}.$$

Esta matriz es invertible, su inversa es ella misma y cumple lo siguiente (ver ejercicios). Si $A$ es una matriz en $M_n(F)$, entonces:

  • Si $A$ tiene columnas $C_1,\ldots, C_n$, entonces $AP$ tiene columnas $C_n, \ldots, C_1$.
  • Si $A$ tiene filas $R_1,\ldots, R_n$, entonces $PA$ tiene filas $R_n, \ldots, R_1$.

Para los bloques de Jordan, si revertimos el orden de las filas y luego el de las columnas, llegamos a la transpuesta. Así, $J_{\lambda,n}^T=PJ_{\lambda,n}P$ es la similitud entre las matrices dadas.

$\square$

La prueba anterior no funciona en general pues para matrices arbitrarias no pasa que $A^T=PAP$ (hay un contraejemplo en los ejercicios). Para probar lo que buscamos, hay que usar la forma canónica de Jordan.

Teorema. En $M_n(\mathbb{C})$, toda matriz es similar a su transpuesta.

Demostración. Sea $A$ una matriz en $M_n(\mathbb{C})$. Como en $\mathbb{C}$ todo polinomio se divide, tanto $A$ como $A^T$ tienen forma canónica de Jordan. Digamos que la forma canónica de Jordan es

\begin{equation}J=\begin{pmatrix} J_{\lambda_1,k_1} & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2} & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3} & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}\end{pmatrix}.\end{equation}

Si $P$ es la matriz de similitud, tenemos que $A=P^{-1}JP$ y al transponer obtenemos que:

$$A^T=P^T\begin{pmatrix} J_{\lambda_1,k_1}^T & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2}^T & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3}^T & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}^T\end{pmatrix}(P^T)^{-1}.$$

Como por la proposición anterior cada bloque de Jordan es similar a su transpuesta, existen matrices invertibles $Q_1,\ldots,Q_d$ tales $J_{\lambda_i,k_i}^T=Q_i^{-1}J_{\lambda_i,k_i}Q_i$ para todo $i\in\{1,\ldots,d\}$. Pero entonces al definir $Q$ como la matriz de bloques

$$Q=\begin{pmatrix} Q_1 & 0 & \ldots & 0 \\ 0 & Q_2 & \ldots & 0 \\ 0 & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & Q_d \end{pmatrix},$$

obtenemos la similaridad

$$A^T=P^TQ^{-1} \begin{pmatrix} J_{\lambda_1,k_1} & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2} & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3} & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}\end{pmatrix} Q (P^T)^{-1}.$$

Así, $A$ y $A^T$ tienen la misma forma canónica de Jordan y por lo tanto son matrices similares.

$\square$

Más adelante…

¡Hemos terminado el curso de Álgebra Lineal II! Por supuesto, hay muchos temas de Álgebra Lineal adicionales que uno podría estudiar.

Un tema conectado con lo que hemos platicado es qué hacer con las matrices cuyo polinomio característico no se divide en el campo con el que estamos trabajando. Por ejemplo si tenemos una matriz $A$ en $M_n(\mathbb{R})$ cuyo polinomio característico no se divide, una opción es pensarla como matriz en $M_n(\mathbb{C})$ y ahí encontrar su forma canónica de Jordan. ¿Pero si queremos quedarnos en $\mathbb{R}$? Sí hay resultados que llevan una matriz a algo así como una «forma canónica» en $\mathbb{R}$ muy cercana a la forma canónica de Jordan.

Otro posible camino es profundizar en la pregunta de cuándo dos matrices en $M_n(F)$ son similares. Si tienen forma canónica de Jordan, ya dimos una buena caracterización en esta entrada. En los ejercicios encontrarás otra. Pero, ¿y si no tienen forma canónica de Jordan? Podríamos extender el campo a otro campo $G$ y comprar las formas canónicas ahí, pero en caso de existir la similaridad, sólo la tendremos en $M_n(G)$. Existe otra manera de expresar a una matriz en forma canónica, que se llama la forma canónica de Frobenius y precisamente está pensada para determinar si dos matrices son similares sin que sea necesario encontrar las raíces del polinomio característico, ni extender el campo.

Estos son sólo dos ejemplos de que la teoría de álgebra lineal es muy extensa. En caso de que estés interesado, hay mucho más por aprender.

Tarea moral

  1. Sea $A$ una matriz en $M_n(F)$ y tomemos $P$ en $M_n(F)$ la matriz
    $$P=\begin{pmatrix} 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & 1 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 1 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \end{pmatrix}.$$
    • Demuestra que si $A$ tiene columnas $C_1,\ldots, C_n$, entonces $AP$ tiene columnas $C_n, \ldots, C_1$.
    • Demuestra que si $A$ tiene filas $R_1,\ldots,R_1$, entonces $PA$ tiene filas $R_n,\ldots,R_n$.
    • Concluye con cualquiera de los incisos anteriores que $P$ es invertible y su inversa es ella misma.
    • Tomemos explicitamente $n=2$ y $A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Encuentra explícitamente $PAP$. ¿Es $A^T$?
  2. ¿Cuál es la máxima cantidad de matrices que se pueden dar en $M_5(\mathbb{C})$ de manera que cada una de ellas tenga polinomio característico $x^2(x^2+1)(x+3)$ y tales que no haya dos de ellas que sean similares entre sí.
  3. Sea $A$ una matriz en $M_n(\mathbb{R})$ tal que su polinomio característico se divide en $\mathbb{R}$, con forma canónica de Jordan $J$. Sea $P(X)$ un polinomio en $\mathbb{R}[X]$.
    • Demuestra que el polinomio característico de $P(A)$ se divide en $\mathbb{R}$.
    • La forma canónica de Jordan de $P(A)$ no necesariamente será $P(J)$ pues puede que el polinomio altere el orden de los eigenvalores pero, ¿cómo se obtiene la forma canónica de $P(A)$ a partir de $J$?
  4. Sean $A$ y $B$ matrices en $M_n(F)$ cuyo polinomio característico se divide en $F$. Muestra que $A$ y $B$ son similares si y sólo si para cualquier polinomio $P(X)$ en $F[X]$ se tiene que $\text{rango}(P(A))=\text{rango}(P(B))$.
  5. Investiga sobre la forma canónica de Frobenius y sobre la variante a la forma canónica de Jordan restringida a $\mathbb{R}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Transformaciones ortogonales, isometrías y sus propiedades

Por Ayax Calderón

Introducción

En entradas anteriores hemos estudiado algunas transformaciones lineales especiales con respecto a la transformación adjunta asociada. Estudiamos, por ejemplo, las transformaciones normales que son aquellas que conmutan con su adjunta. El siguiente paso es estudiar las transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.

Isometrías y transformaciones ortogonales

Definición. Sean $V_1,V_2$ espacios euclidianos con productos interiores $\langle \cdot, \cdot \rangle_1$ y $\langle \cdot, \cdot \rangle_2$, y con correspondientes normas $||\cdot||_1$ y $||\cdot||_2$. Una isometría entre $V_1$ y $V_2$ es un isomorfismo $T:V_1\to V_2$ tal que para cualesquiera $x,y\in V_1$ se cumple que $$\langle T(x), T(y) \rangle_2 = \langle x,y\rangle_1.$$

Por lo tanto, una isometría es una transformación lineal biyectiva que preserva el producto interior. El siguiente problema nos da una mejor idea de esta preservación.

Problema. Sea $T:V_1\to V_2$ un isomorfismo de espacios vectoriales. Las siguientes dos condiciones son equivalentes.

  1. $\langle T(x),T(y) \rangle_2 = \langle x,y \rangle_1 $ para cualesquiera $x,y\in V_1$.
  2. $||T(x)||_2=||x||_1$ para cualquier $x\in V_1$.

Solución. $(1)\Rightarrow (2).$ Tomando $y=x$ se obtiene
$$||T(x)||_2^2=||x||_1^2$$ y por lo tanto $||T(x)||_2=||x||_1$, lo cual muestra el inciso 2.

$(2) \Rightarrow (1).$ Usando la identidad de polarización y la linealidad de $T$, podemos mostrar que
\begin{align*}
\langle T(x), T(y) \rangle_2 &=\frac{||T(x)+T(y)||_2^2-||T(x)||_2^2 – ||T(y)||_2^2}{2}\\
&= \frac{||T(x+y)||_2^2-||T(x)||_2^2 – ||T(y)||_2^2}{2}\\
&=\frac{||x+y||_2^2-||x||_2^2 – ||y||_2^2}{2}=\langle x,y \rangle_1,
\end{align*} lo cual muestra 1.

$\square$

Observación. Si $T$ es una transformación como la del problema anterior, entonces $T$ es automáticamente inyectiva: si $T(x)=0$, entonces $||T(x)||_2=0$, de donde $||x||_1=0$ y por lo tanto $x=0$. Recuerda que si $T$ es transformación lineal y $\text{ker}(T)=\{0\}$, entonces $T$ es inyectiva.

Definición. Sea $V$ un espacio euclidiano. Diremos que una transformación lineal $T:V\to V$ es ortogonal si $T$ es una isometría de $V$ en $V$. En otras palabras, $T$ es ortogonal si $T$ es biyectiva y para cualesquiera $x,y\in V$ se tiene que $$\langle T(x), T(y) \rangle = \langle x,y \rangle.$$

Nota que la biyectividad de $T$ es consecuencia de la relación anterior, gracias a la observación. Por lo tanto $T$ es ortogonal si y sólo si $T$ preserva el producto interior.

Similarmente, diremos que una matriz $A\in M_n(\mathbb{R})$ es ortogonal si
$$A^tA=I_n.$$

Estas nociones de ortogonalidad parecen algo distintas entre sí, pero la siguiente sección ayudará a entender la conexión que existe entre ellas.

Ejemplo. La matriz $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ es ortogonal, pues $$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$\triangle$

Equivalencias de transformaciones ortogonales

Entendamos un poco más qué quiere decir que una matriz $A\in M_n(\mathbb{R})$ sea ortogonal. Supongamos que sus filas son $R_1,\dots,R_n$. Notemos que la entrada $(i,j)$ de la matriz $A^tA$ es precisamente el producto punto $\langle R_i, R_j \rangle$. De esta manera, pedir que $$A^tA=I_n$$ es equivalente a pedir que $$\langle R_i, R_j \rangle = \begin{cases} 1 &\text{si $i=j$}\\ 0 & \text{en otro caso.}\end{cases}.$$

Esto es exactamente lo mismo que pedir que los vectores $R_1,\ldots,R_n$ formen una base ortonormal de $\mathbb{R}^n$.

También, de la igualdad $A^tA=I_n$ obtenemos que $A$ y $^tA$ son inversas, de modo que también tenemos $^tAA=I_n$, de donde $^tA$ también es ortogonal. Así, las filas de $^tA$ también son una base ortonormal de $\mathbb{R}^n$, pero estas filas son precisamente las columnas de $A$. Por lo tanto, prácticamente hemos probado el siguiente teorema.

Teorema. Sea $A\in M_n(\mathbb{R})$ una matriz y considera a $\mathbb{R}^n$ con el producto interior canónico. Las siguientes afirmaciones son equivalentes:

  1. $A$ es ortogonal.
  2. Las filas de $A$ forman una base ortonormal de $\mathbb{R}^n$.
  3. Las columnas de $A$ forman una base ortonormal de $\mathbb{R}^n$.
  4. Para cualquier $x\in\mathbb{R}^n$ se tiene $$||Ax||=||x||.$$

Las afirmaciones restantes quedan como tarea moral. Tenemos un resultado muy similar para el caso de transformaciones lineales.

Teorema. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal. Demuestra que las siguientes afirmaciones son equivalentes:

  1. $T$ es ortogonal, es decir, $\langle T(x),T(y) \rangle = \langle x,y \rangle$ para cualesquiera $x,y\in V$.
  2. $||T(x)||=||x||$ para cualquier $x\in V$.
  3. $T^*\circ T=Id$.

Demostración.$(1) \Rightarrow (2).$ Haciendo la sustitución $x=y$.

$(2) \Rightarrow (3).$ Usando polarización (haz los detalles de tarea moral)

$(3) \Rightarrow (1).$ Pensemos que $2$ se satisface. Entonces

\begin{align*}
\langle T^*\circ T(x)-x,y \rangle&=\langle y, T^*(T(x)) \rangle-\langle x,y \rangle\\
&= \langle T(x),T(y) \rangle – \langle x,y \rangle=0
\end{align*}

para cualesquiera $x,y \in V$ y por lo tanto $T^*(T(x))=x$, lo que prueba $(4)$.

$(4) \Rightarrow (1).$ Si $(4)$ se satisface, entonces $T$ es biyectiva, con inversa $T^*$, por lo que bastará ver que se cumple $(3)$ (pues a su vez implica $(2)$. Notemos que para cualquier $x\in V$ tenemos: $$||T(x)||^2=\langle T(x),T(x) \rangle =\langle x,T^*(T(x)) \rangle=\langle x,x \rangle=||x||^2.$$ Se concluye el resultado deseado.

$\square$

Las transformaciones ortogonales forman un grupo

Las propiedades anteriores nos hablan de una transformación ortogonal. Sin embargo, al tomar un espacio vectorial $V$ y considerar todas las posibles transformaciones ortogonales, tenemos una estructura algebraica bonita: un grupo. Este es el contenido del siguiente teorema.

Teorema. Sea $V$ un espacio euclideano y $O(V)$ el conjunto de transformaciones ortogonales de $V$. Se tiene que $O(V)$ es un grupo bajo composición. En otras palabras, la composición de dos transformaciones ortogonales es una transformación ortogonal y la inversa de una transformación ortogonal es una transformación ortogonal.

Demostración. Veamos la cerradura por composición. Sean $T_1,T_2$ transformaciones lineales ortogonales de $V$. Entonces $T_1\circ T_2$ es lineal y además
$$||(T_1\circ T_2)(x)||=||T_1(T_2(x))||=||T_2(x)||=||x||$$
para todo $x\in V$. Por lo tanto $T_1\circ T_2$ es una transformación lineal ortogonal.

Análogamente tenemos que si $T$ es ortogonal, entonces
$$||x||=||T(T^{-1}(x))||=||T^{-1}(x)||$$
para todo $x\in V$, lo que muestra que $T^{-1}$ es ortogonal.

$\square$

Definición. A $O(V)$ se le conoce como el grupo ortogonal de $V$.

Más adelante…

En esta entrada definimos y estudiamos las transformaciones ortogonales. También hablamos de las matrices ortogonales. Dimos algunas caracterizaciones para este tipo de transformaciones. Vimos que las transformaciones ortogonales de un espacio vectorial forman un grupo $O(V)$.

Las transformaciones que fijan el producto interior también fijan la norma y las distancias, de modo que geométricamente son muy importantes. En cierto sentido, entender quiénes son las transformaciones ortogonales de un espacio vectorial nos ayuda a entender «de qué maneras podemos cambiarlo linealmente, pero sin cambiar su métrica». En las siguientes entradas entenderemos con más profundidad al grupo $O(\mathbb{R}^n)$, el cual nos dará un excelente ejemplo de este fenómeno.

Tarea moral

  1. Verifica que la matriz
    $$A=\begin{pmatrix}
    \frac{3}{5} & \frac{4}{5}\\
    -\frac{4}{5} & \frac{3}{5}
    \end{pmatrix}$$ es ortogonal.
  2. Sea $\beta$ una base ortnormal de un espacio euclidiano $V$ y sea $\beta’$ otra base de $V$. Sea $P$ la matriz de cambio de base de $\beta$ a $\beta’$. Demuestra que $\beta’$ es ortonormal si y sólo si $P$ es ortogonal.
  3. Termina las demostraciones de las caracterizaciones de matrices ortogonales y de transformaciones ortogonales.
  4. Demuestra que el producto de matrices ortogonales es también una matriz ortogonal.
  5. Encuentra todas las posibles transformaciones ortogonales de $\mathbb{R}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Adjunta de una transformación lineal

Por Ayax Calderón

Introducción

En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales. De entrada, las definiciones para cada uno de estos conceptos parecerán simplemente un juego algebraico. Sin embargo, poco a poco descubriremos que pidiendo a las transformaciones lineales cierta propiedad con respecto a su adjunta, podemos recuperar muchas propiedades geométricas bonitas que satisfacen.

Un ejemplo de esto serán las transformaciones ortogonales. Estas serán las transformaciones que, a grandes rasgos, no cambian la norma. Daremos un teorema de clasificación para este tipo de transformaciones: veremos que sólo son reflexiones o rotaciones en ciertos ejes. Después estudiaremos las transformaciones simétricas y veremos un resultado fantástico: el teorema espectral. Este teorema nos garantizará que toda transformación simétrica en $\mathbb{R}$ puede ser diagonalizada, y de hecho a través de una transformación ortogonal.

El párrafo anterior nos dice que las transformaciones ortogonales y las simétricas serán «fáciles de entender» en algún sentido. Esto parece limitado a unas familias muy particulares de transformaciones. Sin embargo, cerraremos la unidad con un teorema muy importante: el teorema de descomposición polar. Gracias a él lograremos entender lo que hace cualquier transformación lineal. Tenemos un camino muy interesante por recorrer. Comencemos entonces con la idea de la adjunta de una transformación lineal.

La adjunta de una transformación lineal

Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Tomemos una transformación lineal $T:V \to V$. Para cada $y\in V$, la transformación $x\mapsto \langle T(x),y\rangle$ es una forma lineal. Del teorema de representación de Riesz se sigue que existe un único vector $T^*(y)\in V$ tal que
$$\langle T(x),y\rangle=\langle T^*(y),x\rangle =\langle x, T^*(y)\rangle \hspace{2mm} \forall x\in V.$$

Esta asignación de este vector $T^\ast$ es lineal, ya que al vector $ry_1+y_2$ para $r$ escalar y $y_1,y_2$ en $V$ se le asigna la forma lineal $x\mapsto \langle T(x),ry_1+y_2\rangle=r\langle(T(x),y_1\rangle + \langle (T(x),y_2)$, que se puede verificar que le corresponde en la representación de Riesz el vector $rT^\ast(y_1)+T^\ast(y_2)$.

De esta manera, podemos correctamente enunciar la siguiente definición.

Definición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Definimos a la adjunta de $T$, como la única transformación lineal $T^\ast:V\to V$ que cumple la siguiente condición para todos $x,y$ en $V$:

$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle$$

Notemos que para cualesquiera $x,y\in V$ tenemos que
$$\langle y,T(x)\rangle=\langle T(x),y\rangle=\langle x,T^* (y)\rangle=\langle T^*(y),x\rangle =\langle y, (T^*)^*(x)\rangle.$$

Restando el último término del primero, se sigue que $T(x)-(T^*)^*(x)=0$, de manera que $$(T^*)^*=T,$$ por lo cual simplemente escribiremos $$T^{**}=T.$$

Por lo tanto, la asignación $T\mapsto T^*$ es una transformación auto-inversa sobre $V$.

La matriz de la transformación adjunta

Tenemos que $T^{**}=T$. Esto debería recordarnos a la transposición de matrices. En efecto, en cierto sentido podemos pensar a la transformación $T^\ast$ algo así como la transpuesta de la transformación (por lo menos en el caso real, para espacios sobre $\mathbb{C}$ será algo ligeramente distinto).

La siguiente proposición nos ayudará a reforzar esta intuición.

Proposición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$ y $T:V\to V$ una transformación lineal. Sea $\mathcal{B}=(e_1,\dots, e_n)$ una base otronormal de $V$. Se tiene que $$\text{Mat}_{\mathcal{B}}(T^\ast)={}^t\text{Mat}_{\mathcal{B}}(T).$$

En palabras, bajo una base ortonormal, la adjunta de una transformación tiene como matriz a la transpuesta de la transformación original.

Solución. Sea $A=\text{Mat}_{\mathcal{B}}(T)$ y $B=[B_{ij}]$ la matriz asociada a $T^*$ con respecto a $\mathcal{B}$. Para cada $i\in\{1,\ldots,n\}$ se tiene
$$T^*(e_i)=\displaystyle\sum_{k=1}^n b_{ki}e_k.$$

En vista de que $$T(e_i)=\displaystyle\sum _{k=1}^n a_{ki}e_k$$ y de que la base $\mathcal{B}$ es ortonormal, se tiene que $$\langle T(e_i),e_j\rangle=\displaystyle\sum_{k=1}^n a_{ki}\langle e_k,e_j\rangle=a_{ji}$$ y
$$\langle e_i,T^*(e_j)\rangle=\displaystyle\sum_{k=1}^n b_{kj}\langle e_i,e_k \rangle = b_{ij}.$$

Como, por definición de transformación adjunta, se tiene que
$$\langle T(e_i),e_j\rangle =\langle e_i, T^*(e_j)\rangle,$$ entonces $b_{ij}=a_{ji}$ para cada $i,j$ en $\{1,\ldots, n\}$, que precisamente significa que $B= {}^tA$.

$\square$

Ejemplos de encontrar una adjunción

La proposición de la sección anterior nos da una manera práctica de encontrar la adjunción para transformaciones lineales.

Ejemplo. Encontraremos la transformación adjunta a la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T((x,y))=(y-x,y+2x)$. Por la proposición de la sección anterior, basta expresar a $T$ en una base ortonormal y transponer. Usemos la base canónica de $\mathbb{R}^2$. En esta base, la matriz que representa a $T$ es $\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$. Por ello, la matriz que representa a $T^\ast$ es la transpuesta, es decir $\begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$. De este modo, concluimos que $T^\ast((x,y)) = (-x+2y,x+y)$.

Podemos verificar que en efecto esta transformación satisface la definición de adjunción. Por un lado,

$$\langle T((a,b)), (c,d) \rangle = (b-a,b+2a)\cdot (c,d)= bc-ac+bd+2ad,$$

y por otro

$$ \langle (a,b), T((c,d)) \rangle = (a,b) \cdot (-c+2d,c+d) = -ac +2ad + bc +bd.$$

Ambas expresiones en efecto son iguales.

$\triangle$

Problema. Demuestra que una transformación lineal $T$ en un espacio euclideano de dimensión finita y la adjunta $T^\ast$ de $T$ tienen el mismo determinante.

Solución. El determinante de una transformación es igual al determinante de cualquiera de las matrices que la represente. Así, si $A$ es la forma matricial de $T$ bajo una base ortonormal, se tiene que $\det(A)=\det(T)$. Por la proposición de la sección anterior, $^tA$ es la forma matricial de $T^\ast$ en esa misma base, de modo que $\det({}^tA)=\det(T^\ast)$. Pero una matriz y su transpuesta tienen el mismo determinante, de modo que $$\det(T^\ast)=\det({}^tA)=\det(A)=\det(T).$$

$\square$

Más adelante…

La noción de transformación adjunta es nuestra primera noción fundamental para poder definir más adelante transformaciones que cumplen propiedades geométricas especiales. Con ella, en la siguiente entrada hablaremos de transformaciones simétricas, antisimétricas y normales.

Toma en cuenta que las definiciones que hemos dado hasta ahora son para espacios euclideanos, es decir, para el caso real. Cuando hablamos de espacios hermitianos, es decir, del caso complejo, los resultados cambian un poco. La transformación adjunta se define igual. Pero, por ejemplo, si la matriz que representa a una transformación es $A$, entonces la que representará a su adjunta no será la transpuesta, sino más bien la transpuesta conjugada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Encuentra la transformación adjunta para las siguientes tranformaciones lineales:
    • $T:\mathbb{R}^2\to \mathbb{R}^2 $ dada por $T(x,y)=(2y-x,2x+y)$.
    • $T:\mathbb{R}^3\to \mathbb{R}^3$ dada por $T(x,y,z)=(x+y+z,y+z,z)$.
    • $T:\mathbb{R}^n \to \mathbb{R}^n$ tal que para la base canónica $e_1,\ldots,e_n$ cumple que $T(e_i)=e_{i+1}$ para $i=1,\ldots,n-1$ y $T(e_n)=0$.
  2. Considera el espacio vectorial $M_n(\mathbb{R})$. En este espacio, la operación transponer es una transformación lineal. ¿Cuál es su tranformación adjunta?
  3. Completa los detalles de que $T^\ast$ es en efecto una transformación lineal.
  4. Demuestra que si $T$ es una transformación lineal sobre un espacio euclidiano y $\lambda$ es un eigenvalor de $T$, entonces $\lambda$ también es un eigenvalor de $T^\ast$. De manera más general, demuestra que $T$ y $T^\ast$ tienen el mismo polinomio característico.
  5. Sea $V$ un espacio euclidiano y $T:V\to V$. ¿Es cierto que para todo polinomio $p$ se cumple que $p(T)^\ast=p(T^\ast)$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Técnicas básicas de cálculo de determinantes

Por Leonardo Ignacio Martínez Sandoval

Introducción

Ya definimos a los determinantes para vectores, para transformaciones y para matrices. Además, mostramos algunas propiedades básicas de determinantes y las usamos para resolver varios problemas. Como hemos discutido, los determinantes guardan información importante sobre una transformación lineal o sobre una matriz. También ayudan a implementar la técnica de diagonalización la cual introdujimos hace algunas entradas y en la cual profundizaremos después. Es por esta razón que es importante tener varias técnicas para el cálculo de determinantes.

Fuera de este curso, los determinantes sirven en muchas otras áreas de las matemáticas. Cuando se hace cálculo de varias variables ayudan a enunciar el teorema del cambio de variable. En combinatoria ayudan a calcular el número de árboles generadores de una gráfica. Más adelante en tu formación matemática es probable que te encuentres con otros ejemplos.

Calculo de determinantes de $2\times 2$

Como ya discutimos anteriormente, una matriz en $M_2(F)$, digamos $A=\begin{pmatrix}a&b\\ c&d\end{pmatrix}$ tiene determinante $ad-bc$.

Problema. Calcula el determinante de la matriz $$\begin{pmatrix} 0 & 1\\ 1 & 1\end{pmatrix}^8.$$

Solución. Por la fórmula para el determinante de las matrices de $2\times 2$, se tiene que $\begin{vmatrix} 0 & 1\\ 1 & 1\end{vmatrix} = 0\cdot 1 – 1\cdot 1 = -1.$

Como el determinante es multiplicativo, $\det(A^2)=\det(A)\det(A)=(\det(A))^2$, e inductivamente se puede mostrar que para todo entero positivo $n$ se tiene que $\det(A^n)=(\det(A))^n$. De esta forma, el determinante que buscamos es $(-1)^8=1$.

$\square$

Observa que hubiera tomado más trabajo elevar la matriz a la octava potencia. Aunque esto usualmente no es recomendable, en este problema hay algo interesante que sucede con esta matriz. Llamémosla $A=\begin{pmatrix} 0 & 1\\ 1 & 1\end{pmatrix}$. Haciendo las cuentas para las primeras potencias, se tiene que
\begin{align*}
A&=\begin{pmatrix} 0 & 1\\ 1 & 1\end{pmatrix}\\
A^2&=\begin{pmatrix} 1 & 1\\ 1 & 2\end{pmatrix}\\
A^3&=\begin{pmatrix} 1 & 2\\ 2 & 3\end{pmatrix}\\
A^4&=\begin{pmatrix} 2 & 3\\ 3 & 5\end{pmatrix}\\
A^5&=\begin{pmatrix} 3 & 5\\ 5 & 8\end{pmatrix}
\end{align*}

Aquí aparece la sucesión de Fibonacci, dada por $F_0=0$, $F_1=1$ y $F_{n+2}=F_{n+1}+F_n$ para $n\geq 0$, cuyos primeros términos son $$0,1,1,2,3,5,8,13,21,\ldots.$$ De hecho se puede probar por inducción que $$A^n=\begin{pmatrix} F_{n-1} & F_n\\ F_n & F_{n+1}\end{pmatrix}.$$

Así, por un lado el determinante de la matriz $A^n$ es $F_{n-1}F_{n+1}-F_n^2$, usando la fórmula de determinante de $2\times 2$. Por otro lado, es $(-1)^n$, por el argumento del problema. Con esto hemos demostrado que para cualquier entero $n$ tenemos la siguiente identidad para los números de Fibonacci: $$F_{n-1}F_{n+1}-F_n^2 = (-1)^n.$$

Cálculo de determinantes de $3\times 3$

Para calcular el determinante de una matriz en $M_3(F)$ por definición, digamos de $A=\begin{pmatrix}a&b&c\\ d&e&f\\ g&h&i\end{pmatrix}$, tenemos que hacer una suma de $3!=6$ términos. Si se hacen las cuentas de manera explícita, el valor que se obtiene es $$aei+bfg+cdh-ceg-afh-bdi.$$

Esto se puede recordar mediante el siguiente diagrama, en el cual se ponen la primera y la segunda columna de nuevo, a la derecha. Las diagonales hacia abajo son términos positivos y las diagonales hacia arriba son términos negativos.

Cálculo de determinantes de matrices de 3x3
Cálculo de determinantes de $3\times 3$

Veamos un ejemplo de un problema en el que se puede aprovechar esta técnica.

Problema. Determina para qué reales $a,b,c$ se tiene que los vectores $(a,b,0)$, $(a,0,b)$ y $(0,a,b)$ son una base de $\mathbb{R}^3$.

Solución. Para que estos vectores sean una base de $\mathbb{R}^3$, basta con que sean linealmente independientes, pues son $3$. Como hemos visto en entradas anteriores, para que sean linealmente independientes, es necesario y suficiente que el determinante de la matriz $\begin{pmatrix}a&b&0\\ a&0&b\\ 0&a&b\end{pmatrix}$ sea distinto de cero.

Usando la técnica de arriba, hacemos siguiente diagrama:

De aquí, vemos que el determinante es $$0+0+0-0-a^2b-ab^2=-ab(a+b).$$ Esta expresión es igual a cero si $a=0$, si $b=0$ o si $a+b=0$. En cualquier otro caso, el determinante no es cero, y por lo tanto los vectores forman una base.

$\square$

Ten mucho cuidado. Esta técnica no funciona para matrices de $4\times 4$ o más. Hay una forma sencilla de convencerse de ello. Por ejemplo, el determinante de una matriz de $4\times 4$ debe tener $4!=24$ sumandos. Si intentamos copiar la técnica de arriba, tendremos solamente $8$ sumandos ($4$ en una diagonal y $4$ en otra). Para cuando tenemos matrices de $4\times 4$ o más, tenemos que recurrir a otras técnicas.

Reducción gaussiana para determinantes

Cuando vimos el tema de sistemas de ecuaciones hablamos del algoritmo de reducción gaussiana, y vimos que este siempre lleva una matriz en $M_{m,n}(F)$ a su forma escalonada reducida mediante operaciones elementales. Cuando aplicamos el algoritmo a matrices en $M_n(F)$, siempre llegamos a una matriz triangular, en donde sabemos fácilmente calcular el determinante: es simplemente el producto de las entradas en la diagonal. Nota cómo lo anterior también se cumple para las matrices diagonales, pues son un caso particular de matrices triangulares.

Por esta razón, es fundamental para el cálculo de determinantes saber qué le hacen las operaciones elementales al determinante de una matriz.

Teorema. Las operaciones elementales tienen el siguiente efecto en el determinante de una matriz $A$:

  1. Si todos los elementos de un renglón o columna de $A$ se multiplican por $\lambda$, entonces el determinante se multiplica por $\lambda$.
  2. Cuando se intercambian dos renglones o columnas de $A$, el determinante se multiplica por $-1$.
  3. Si a un renglón de $A$ se le suma un múltiplo escalar de otro renglón, entonces el determinante no cambia. Sucede algo análogo para columnas.

Demostración. El punto $1$ ya lo demostramos en la entrada anterior, en donde vimos que el determinante es homogéneo.

Para los puntos $2$ y $3$, usemos que si $e_1,\ldots e_n$ es la base canónica de $F^n$, el determinante de una matriz con renglones $R_1,\ldots,R_n$ es $$\det_{(e_1,\ldots,e_n)}(R_1,\ldots,R_n).$$

Intercambiar los renglones $i$ y $j$ es hacer $\det_{(e_1,\ldots,e_n)}(R_{\sigma(1)},\ldots,R_{\sigma(n)})$ para la transposición $\sigma$ que intercambia $i$ y $j$. Como el determinante es antisimétrico y $\sigma$ tiene signo $-1$, obtenemos la conclusión.

Hagamos ahora el tercer punto. Tomemos $i\neq j$ y un escalar $\lambda$. Si al $i$-ésimo renglón de $A$ le sumamos $\lambda$ veces el $j$-ésimo renglón de $A$, esto es lo mismo que multiplicar a $A$ por la izquierda por la matriz $B$ que tiene unos en la diagonal y $\lambda$ en la entrada $(i,j)$. La matriz $B$ es triangular, de modo que su determinante es el producto de las entradas, que es $1$. De esta forma, $$\det(BA)=\det(B)\det(A)=\det(A).$$

$\square$

Así, una estrategia para calcular el determinante de una matriz es hacer reducción gaussiana hasta llegar a una matriz diagonal (incluso es suficiente que sea triangular superior) de determinante $\Delta$. Si en el camino se hicieron $r$ intercambios de renglones y se multiplicaron los renglones por escalares $\lambda_1,\ldots,\lambda_s$, entonces el determinante de $A$ será $$\frac{(-1)^r \Delta}{\lambda_1\cdot\ldots\cdot \lambda_s}.$$

Otras propiedades para calcular determinantes

Aquí recolectamos otras propiedades de determinantes que pueden ayudar a calcularlos. Ya mostramos todas ellas, salvo la número $2$. Esta la mostramos después de la lista.

  1. Si se descompone una columna de una matriz como suma de dos columnas, entonces el determinantes es la suma de los determinantes en los que ponemos cada columna en vez de la original.
  2. Si $A$ es una matriz en $M_n(\mathbb{C})$, entonces el determinante de la matriz conjugada $\overline{A}$ es el conjugado del determinante de $A$.
  3. El determinante es multiplicativo.
  4. Si $A$ es una matriz en $M_n(F)$, el determinante de $\lambda A$ es $\lambda^n$ veces el determinante de $A$.
  5. El determinante de una matriz triangular es el producto de sus entradas en la diagonal.
  6. El determinante de una matriz invertible es el inverso multiplicativo del determinante de la matriz.
  7. Una matriz tiene el mismo determinante que su transpuesta.

Proposición. Si $A$ es una matriz en $M_n(\mathbb{C})$, entonces el determinante de la matriz conjugada $\overline{A}$ es el conjugado del determinante de $A$.

Demostración. La conjugación compleja abre sumas y productos. Aplicando esto repetidas veces obtenemos la siguiente cadena de igualdades:

\begin{align*}
\overline{\det(A)}&=\overline{\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}}\\
&=\sum_{\sigma \in S_n} \overline{\text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}}\\
&=\sum_{\sigma \in S_n} \text{sign}(\sigma)\overline{a_{1\sigma(1)}}\cdot\ldots\cdot \overline{a_{n\sigma(n)}}\\
&=\det(\overline{A}).
\end{align*}

$\square$

Hay una última técnica que es fundamental para el cálculo de determinantes: la expansión de Laplace. En algunos textos incluso se usa para definir el determinante. Probablemente la conoces: es la que consiste en hacer el determinante «con respecto a una fila o columna» y proceder de manera recursiva. Hablaremos de ella más adelante y veremos por qué funciona.

Dos problemas de cálculo de determinantes

Problema. Considera la matriz $$A=\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ -1 & -3 & 0 & 1\end{pmatrix}.$$ Calcula los siguientes determinantes:

  • $\det A$
  • $\det(^t A)$
  • $\det(A^{-1})$
  • $\det(^t A A)$
  • $\det(-2A)$

Solución. Hagamos primero el determinante de la matriz $A$. Para ello, haremos operaciones elementales como sigue
\begin{align*}
&\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ -1 & -3 & 0 & 1\end{pmatrix}\\
\to&\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ 0 & -\frac{14}{5} & \frac{2}{5} & 1\end{pmatrix}\\
\to &\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ 0 & 0 & -\frac{12}{5} & \frac{33}{5}\end{pmatrix}\\
\to& \begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ 0 & 0 & 0 & \frac{189}{25}\end{pmatrix}.
\end{align*}

En el primer paso sumamos $1/5$ veces el primer renglón al último. Luego, sumamos $14/5$ veces el segundo renglón al último. Finalmente, sumamos $12/25$ veces el tercer renglón al último. De esta forma, nunca cambiamos el determinante de la matriz. Así, del determinante de $A$ es el mismo que el de la matriz final, que por ser triangular superior es el producto de las entradas en su diagonal. De este modo, $$\det(A) = 5\cdot 1 \cdot 5 \cdot \frac{189}{5} = 189.$$

El determinante de una matriz es igual al de su transpuesta, así que $\det(^t A)=\det(A)$. El determinante $\det(A^{-1})$ es el inverso multiplicativo de $\det(A)$, así que es $\frac{1}{189}$.

Como el determinante es multiplicativo, $$\det({^tA}A)=\det({^tA})\det(A)=189\cdot 189=35721.$$

Finalmente, usando que el determinante es homogéneo y que estamos en $M_4(\mathbb{R})$, tenemos que
\begin{align*}
\det(-2A)&=(-2)^4\det(A)\\
&=16\cdot 189\\
&=3024.
\end{align*}

$\square$

Problema. Sean $a,b,c$ números complejos. Calculando el determinante de la matriz $$A=\begin{pmatrix}a&b&c\\ c&a&b\\ b&c&a\end{pmatrix}$$ en $M_3(\mathbb{C})$ de dos formas distintas, muestra que $$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$

Solución. Usando la técnica para determinantes de $3\cdot 3$ tenemos que por un lado,
\begin{align*}
\det(A) &= a^3 + b^3 + c^3 – abc – bca – cab\\
&=a^3+b^3+c^3-3abc.
\end{align*}

Por otro lado, el determinante no cambia si al primer renglón le sumamos los otros dos, así que el determinante de $A$ también es $$\begin{vmatrix}a+b+c&a+b+c&a+b+c\\ c&a&b\\ b&c&a\end{vmatrix}.$$ Como el determinante es homogéneo, podemos factorizar $a+b+c$ de la primera entrada para obtener que $$\det(A)=(a+b+c)\begin{vmatrix}1&1&1\\ c&a&b\\ b&c&a\end{vmatrix}.$$

Aplicando de nuevo la fórmula de determinantes de $3\times 3$, tenemos que $$\begin{vmatrix}1&1&1\\ c&a&b\\ b&c&a\end{vmatrix} = a^2+b^2+c^2-ab-bc-ca.$$

Concluimos entonces que $$\det(A)=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$ Igualando ambas expresiones para $\det(A)$ obtenemos la identidad deseada.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $\alpha$ un número real. Encuentra el determinante de la matriz $$\begin{pmatrix}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{pmatrix}.$$
  • Determina para qué valores de $a$ la matriz $$\begin{pmatrix} a & 0 & a & 0 & a \\0 & a & 0 & a & 0 \\ 0 & 0 & a & 0 & 0 \\ 0 & a & 0 & a & 0 \\ a & 0 & a & 0 & a \end{pmatrix}$$ es invertible.
  • Encuentra el determinante de la matriz $$\begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 & 2 \end{pmatrix}.$$
  • Sea $x$ un número complejo. Muestra que el determinante de la matriz $$\begin{pmatrix}3x^2-6x+5&2x^2-4x+2&x^2-2x\\ 2x^2-4x+2&2x^2+2x+1&x^2-x\\ x^2-2x&x^2-x&x^2\end{pmatrix}$$ es $x^6$. Sugerencia. Hay una solución simple, factorizando a la matriz como el producto de dos matrices triangulares, una superior y una inferior, una transpuesta de la otra.
  • Muestra que si $A=\begin{pmatrix}0& 1 \\ 1 & 1\end{pmatrix}$, entonces $$A^n=\begin{pmatrix} F_{n-1} & F_n\\ F_n & F_{n+1}\end{pmatrix},$$ donde $\{F_n\}$ es la sucesión de Fibonacci. Muestra que para los números de Fibonacci se satisface que $$F_{2n}=F_n(F_{n+1}+F_{n-1}).$$

Más adelante…

En esta entrada vimos varias formas para calcular el determinante de una matriz. Cuando nos enfrentemos con un problema que requiere el cálculo de un determinante, tenemos que elegir la que más nos convenga (o la que requiera menos pasos). La mejor forma de desarrollar un poco de «intuición» al momento de elegir el mejor método para calcular determinantes es haciendo ejercicios.

A continuación pondremos en práctica lo que aprendimos en esta entrada haciendo varios ejercicios de cálculo de determinantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Propiedades de determinantes

Por Ayax Calderón

Introducción

Para esta entrada enunciaremos y demostraremos algunas de las propiedades más importantes de los determinantes tanto para transformaciones lineales como para matrices. Estas propiedades de determinantes y en general el concepto de determinante tiene numerosas aplicaciones en otras áreas de las matemáticas como el cálculo de volúmenes $n-$dimensionales o el wronskiano en ecuaciones diferenciales, sólo por mencionar algunos, por eso es importante analizar a detalle el determinante de los distintos tipos de matrices y transformaciones lineales que conocemos.

Como recordatorio, veamos qué hemos hecho antes de esta entrada. Primero, transformaciones multilineales. De ellas, nos enfocamos en las que son alternantes y antisimétricas. Definimos el determinante para un conjunto de vectores con respecto a una base, y vimos que, en cierto sentido, son las únicas formas $n$-lineal alternantes en un espacio vectorial de dimensión $n$. Gracias a esto, pudimos mostrar que los determinantes para transformaciones lineales están bien definidos, y con ellos motivar la definición de determinante para matrices.

El determinante es homogéneo

La primera de las propiedades de determinantes que enunciaremos tiene que ver con «sacar escalares» del determinante.

Teorema. Sea $A$ una matriz en $M_n(F)$.

  1. Si multiplicamos un renglón o una columna de $A$ por un escalar $\lambda$, entonces su determinante se multiplica por $\lambda$.
  2. Se tiene que $\det(\lambda A)=\lambda^n A$.

Demostración. 1. Sea $A_j$ la matriz obtenida me multiplicar el $j$-ésimo renglón por $\lambda$. Siguiendo la definición de determinante vista en la entrada de ayer (determinantes de matrices) vemos que
\begin{align*}
\det A_j&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\dots \lambda a_{j\sigma(j)}\dots a_{n\sigma(n)}\\
&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)\lambda a_{1\sigma(1)}\dots a_{n\sigma(n)}\\
&= \lambda \det A.
\end{align*}

La demostración para la $j$-ésima columna queda como tarea moral.

2. Sea $\lamda A=[\lambda a_{ij}]$, entonces por definición tenemos

\begin{align*}
\det (\lambda A)&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)(\lambda a_{1\sigma(1)})\dots (\lambda a_{n\sigma(n)})\\
&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)\lambda^n a_{1\sigma(1)}\dots a_{n\sigma(n)}\\
&=\lambda^n \cdot \det A
\end{align*}

De manera alternativa, podemos aplicar el primer inciso $n$ veces, una por cada renglón.

$\square$

Aquí arriba hicimos la prueba explícita a partir de la definición. Una forma alternativa de proceder es notar que el determinante de una matriz es precisamente el determinante $\det$ (de vectores) con respecto a la base canónica de $F^n$ evaluada en los renglones de $A$. Al multiplicar uno de los renglones por $\lambda$, el vector entrada de $\det$ se multiplica por $\lambda$. El resultado se sigue inmediatamente de que $\det$ es una forma $n$-lineal.

El determinante es multiplicativo

Quizás de entre las propiedades de determinantes, la más importante es que es multiplicativo. Mostraremos esto a continuación.

Teorema. Sea $V$ un espacio vectorial de dimensión finita y transformaciones lineales $T_1:V\to V$, $T_2:V\to V$. Se tiene que $$\det(T_1\circ T_2) = \det T_1\cdot \det T_2.$$

Demostración. Sea $(v_1,\dots , v_n)$ una base cualquiera de $V$. Del resultado visto en la entrada anterior y la definición de determinante, se sigue que
\begin{align*}
\det (T_1 \circ T_2)&= \det _{(v_1,\dots , v_n)}(T_1(T_2(v_1)),\dots , T_1(T_2(v_n)))\\
&=\det T_1 \cdot \det_{(v_1,\dots , v_n)}(T_2(v_1), \dots , T_2(v_n))\\
&= \det T_1 \cdot \det T_2.
\end{align*}

$\square$

Observa cómo la demostración es prácticamente inmediata, y no tenemos que hacer ningún cálculo explícito en términos de coordenadas. La demostración de que el determinante es multiplicativo para las matrices también es muy limpia.

Teorema. Sean $A$ y $B$ matrices en $M_n(F)$. Se tiene que $$\det(AB)=\det A \cdot \det B.$$

Demostración. Sean $V=F^n$, $T_1:V\to V$ la transformación lineal definida por $x\mapsto Ax$ y similarmente $T_2:V\to V$ la transformación lineal definida por $x\mapsto Bx$. Sabemos que $A, B, AB$ son las matrices asociadas a $T_1, T_2, T_1\circ T_2$ con respecto a la base canónica, respectivamente.

Recordemos que para una transformación lineal $T$ en $V$, $\det T = \det A_T$, para una matriz que la represente en cualquier base. Entonces

\begin{align*}
\det(AB)&=\det A_{T_1\circ T_2}\\
&= \det T_1\circ T_2\\
&=\det T_1 \cdot \det T_2\\
&=\det A_{T_1} \cdot \det A_{T_2} \\
&= \det A \cdot \det B.
\end{align*}

$\square$

Nota que hubiera sido muy complicado demostrar que el determinante es multiplicativo a partir de su definición en términos de permutaciones.

El determinante detecta matrices invertibles

Otra de las propiedades fundamentales del determinante es que nos ayuda a detectar cuándo una matriz es invertible. Esto nos permite agregar una equivalencia más a la lista de equivalencias de matrices invertibles que ya teníamos.

Teorema. Una matriz $A$ en $M_n(F)$ es invertible si y sólo si $\det A\neq 0$.

Demostración. Supongamos que $A$ es invertible, entonces existe $B\in M_n(F)$ tal que $AB=I_n=BA$.
Así,

$1=\det I_n = \det (AB) = \det A \cdot \det B$.

Como el lado izquierdo es $1$, ambos factores del lado derecho son distintos de $0$. Por lo tanto $\det A \neq 0.$ Nota que además esta parte de la prueba nos dice que $\det A^{-1}=(\det A)^{-1}$.

Ahora supongamos que $\det A \neq 0$. Sea $(e_1, \dots , e_n)$ la base canónica de $F^n$ y $C_1,\dots , C_n$ las columnas de $A$. Como $\det_{(e_1,\ldots,e_n)}$ es una forma lineal alternante, sabemos que si $C_1,\ldots,C_n$ fueran linealmente dependientes, la evaluación daría cero. Ya que la columna $C_i$ es la imagen bajo $A$ de $e_i$, entonces

$\det A =\det _{(e_1,\dots , e_n)}(C_1, \dots , C_n) \neq 0$.

Por lo tanto los vectores $C_1, \dots , C_n$ son linealmente independientes y así $\text{rank}(A)=n$. Se sigue que $A$ es una matriz invertible.

$\square$

Determinante de transformación y matriz transpuesta

Una cosa que no es totalmente evidente a partir de la definición de determinante para matrices es que el determinante no cambia si transponemos una matriz o una transformación lineal. Esta es la última de las propiedades de determinantes que probaremos ahora.

Teorema. Sea $A$ una matriz en $M_n(F)$. Se tiene que $$\det({^tA})=\det A.$$

Demostración. Por definición

$\det({^tA})=\displaystyle\sum_{\sigma \in S_n}\text{sign}(\sigma^{-1})a_{\sigma^{-1}(1)1 \dots a_{\sigma^{-1}(n)n}}.$

Luego, para cualquier permutación $\sigma$ se tiene

$$a_{\sigma(1)1}\dots a_{\sigma(n)n}=a_{1\sigma^{-1}(1)}\dots a_{n\sigma^{-1}(n)}$$

pues $a_{i\sigma^{-1}(i)}=a_{\sigma(j)j}$, donde $j=\sigma^{-1}(i)$.
También vale la pena notar que $$\text{sign}(\sigma^{-1})=\text{sign}(\sigma)^{-1}=\text{sign}(\sigma).$$

De lo anterior se sigue que

\begin{align*}
\det({^tA})&=\displaystyle\sum_{\sigma \in S_n} \text{sign}(\sigma^{-1})a_{1\sigma^{-1}(1)}\dots a_{n\sigma^{-1}(n)}\\
&=\displaystyle\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\dots a_{n\sigma(n)}\\
&=\det A.
\end{align*}

$\square$

Teorema. Sea $V$ un espacio vectorial de dimensión finita $T:V\to V$ una transformación lineal. Se tiene que $$\det(^t T) = \det T.$$

Demostración. Sea $A$ la matriz asociada a $T$, entonces $^tA$ es la matriz asociada a $^tT$. Luego $$\det (^tT)=\det (^tA)=\det A = \det T.$$

$\square$

Veamos un ejemplo de un problema en el que podemos aplicar algunas de las propiedades anteriores.

Problema. Sea $A\in M_n(F)$ una matriz antisimétrica para algún $n$ impar. Demuestra que $\det(A)=0$.

Demostración. Como $A=-A^t$, entonces $\det A = \det (- {^tA})$, pero $\det A = \det ({^tA})$.
Se sigue que
\begin{align*}
\det ({^tA}) &= \det (-{^tA})\\
&=(-1)^n \det ({^tA})\\
&=-\det ({^tA}).
\end{align*}

Concluimos $\det (^tA)=0$

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que al multiplicar una columna de una matriz por $\lambda$, entonces su determinante se multiplica por $\lambda$.
  • Demuestra que si una matriz tiene dos columnas iguales, entonces su determinante es igual a cero.
  • Analiza cómo es el determinante de una matriz antisimétrica $A\in M_n(F)$ con $n$ par.
  • Formaliza la frase «el determinante detecta transformaciones invertibles» en un enunciado matemático. Demuéstralo.

Más adelante…

En esta entrada enunciamos y demostramos varias propiedades de los determinantes. Ahora, vamos a ponerlas en práctica resolviendo algunos problemas.

En las siguientes entradas, que constituyen la parte final del curso, vamos a hablar de diferentes técnicas para calcular el determinante de una matriz y obtendremos sus eigenvalores y eigenvectores. Vamos a ver cómo esto nos conduce a uno de los teoremas más importantes del curso de Algebra Lineal I: el teorema espectral.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»