Álgebra Lineal I: Teorema de reducción gaussiana

Introducción

Llegamos a uno de los resultados más importantes del álgebra lineal: el teorema de reducción gaussiana. Como mencionamos en una entrada previa, el teorema nos proporcionará un algoritmo que nos permitirá resolver muchos problemas prácticos: resolver sistemas lineales, invertir matrices, así como temas que veremos más adelante, como determinar la independencia lineal de vectores.

El teorema nos dice que cualquier matriz puede llevarse a una en forma escalonada reducida con solo una cantidad finita de operaciones elementales. La prueba además nos dice cómo hacerlo de una manera más o menos sencilla. Aparte de la demostración, damos una receta un poco más coloquial de cómo trabajar con el algoritmo y finalmente damos un ejemplo, muy importante para aclarar el procedimiento.

Sugerencia antes de empezar

El algoritmo que veremos es uno de esos resultados que es fácil de seguir para una matriz en concreto, pero que requiere de un buen grado de abstracción para entender cómo se demuestra en general. Una fuerte recomendación es que mientras estes leyendo la demostración del siguiente teorema, tengas en mente alguna matriz muy específica, y que vayas realizando los pasos sobre ella. Puedes usar, por ejemplo, a la matriz

    \[A=\begin{pmatrix} 0 & 0 & 4 & -2 \\ 0 & 3 & -1 & 0 \\ 0& -3 & 5 & -2 \end{pmatrix}.\]

El teorema de reducción gaussiana

Teorema. Cualquier matriz A\in M_{m,n}(F) puede llevarse a una en forma escalonada reducida realizando una cantidad finita de operaciones elementales en sus filas.

Demostración: Daremos una demostración algorítmica. Sea A\in M_{m,n}(F) cualquier matriz. Para auxiliarnos en el algoritmo, vamos a tener registro todo el tiempo de las siguientes dos variables:

  • X es la columna que «nos toca revisar»
  • Y es la cantidad de «filas no triviales» que hemos encontrado

La variable X empieza siendo 1 y la variable Y empieza siendo 0.

Haremos los siguientes pasos:

Paso 1. Revisaremos la columna X a partir de la fila Y+1 (osea, al inicio Y=0, así que revisamos toda la columna). Si todas estas entradas son iguales a 0, entonces le sumamos 1 a X (avanzamos hacia la derecha) y si X<n, volvemos a hacer este Paso 1. Si X=n, vamos al paso 7.

Paso 2. En otro caso, existe alguna entrada distinta de cero en la columna X, a partir de la fila Y+1. Tomemos la primera de estas entradas. Supongamos que sucede en la fila i, es decir, que es la entrada a_{iX}. Al número en esta entrada a_{iX} le llamamos x.

Paso 3. Hacemos un intercambio entre la fila i y la fila Y+1. Puede pasar que i=Y+1, en cuyo caso no estamos haciendo nada. Independientemente del caso, ahora el número en la entrada (X,Y+1) es x\neq 0.

Paso 4. Tomamos la fila Y+1 y la multiplicamos por el escalar 1/x. Esto hace que ahora sea la primer entrada en su fila distinta de cero, y además que sea igual a 1.

Paso 5. De ser necesario, hacemos transvecciones para hacer el resto de las entradas de la columna X iguales a 0. Esto lo podemos hacer pues, si por ejemplo la entrada a_{iX}\neq 0, entonces la transvección que a la i-ésima fila le resta a_{iX} veces la (Y+1)-ésima fila hace que la entrada (i,X) se anule.

Paso 6. Le sumamos 1 a Y (para registrar que encontramos una nueva fila no trivial) y le sumamos 1 a X (para avanzar a la columna de la derecha). Si X<n, vamos al Paso 1. Si X=n, vamos al Paso 7.

Paso 7. Reportamos la matriz obtenida como A_{red}, la forma escalonada reducida de A.

Mostremos que en efecto obtenemos una matriz escalonada reducida. El Paso 3 garantiza que las únicas filas cero están hasta abajo. El Paso 4 garantiza que todos los pivotes son iguales a 1. El ir recorriendo las columnas de izquierda a derecha garantiza que los pivotes quedan «escalonados», es decir de abajo hacia arriba quedan de izquierda a derecha. El Paso 5 garantiza que cada pivote es la única entrada no cero de su columna.

\square

El procedimiento descrito en el teorema se llama reducción gaussiana.

Como vimos en la entrada anterior realizar una operación elemental es sinónimo de multiplicar por una matriz elemental. Como el teorema nos dice que podemos obtener una matriz en forma escalonada reducida realizando una cantidad finita de operaciones elementales, se sigue que podemos obtener una matriz en forma escalonada reducida multiplicando por la izquierda por un número finito de matrices elementales. Al asociar todas estas matrices elementales en un único producto, obtenemos la demostración del siguiente corolario.

Corolario. Para cualquier matriz A\in M_{m,n}(F) podemos encontrar una matriz B\in M_{m}(F) que es un producto finito de matrices elementales y que satisface qu A_{red}=BA.

Un tutorial de reducción gaussiana más relajado

Si bien el teorema nos da la manera formal de hacer el algoritmo, el proceso es en realidad bastante intuitivo una vez que se entiende. Para esto explicamos en unos cuantos pasos en términos más sencillos como hacer la reducción:

  1. Buscamos la primer columna de la matriz que no tenga puros ceros.
  2. Una vez encontrada, buscamos la primer entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos el renglón con esa entrada hasta arriba haciendo un cambio de renglones.
  4. Multiplicamos por el inverso de esa entrada a todo el renglón, para quedarnos así con un 1 hasta arriba.
  5. Sustraemos múltiplos del primer renglón a todos los otros renglones para que todo lo que esté abajo del 1 sea cero.
  6. Buscamos la siguiente columna tal que no sea cero abajo del primer renglón.
  7. Repetimos los pasos anteriores, solo que en lugar de pasar nuestro renglón «hasta arriba» solo lo colocamos en el segundo lugar, y así sucesivamente.

Un ejemplo de reducción gaussiana

La mejor manera de entender el algoritmo de reducción gaussiana es con un ejemplo. Usemos el algoritmo para reducir la matriz

    \begin{align*}A=\begin{pmatrix}  0 & 1 & 2 & 3 &4\\ -1 & 0 &1 & 2 &3 \\ 0 & 1 & 1 & 1 &1\\ 3 & 1  &-1 & 0 & 2\end{pmatrix}\in M_{4,5}(\mathbb{R}).\end{align*}

Aplicando los pasos en orden: Primero identificamos la primer columna que no sea idénticamente cero, y vemos que la primera columna no tiene puros ceros. La primer entrada que no es cero está en el segundo renglón. Así cambiamos el primer y segundo renglón de lugar para subir esa entrada y obtener

    \begin{align*}A_1=\begin{pmatrix} -1 & 0 &1 & 2 &3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 3 & 1 &-1 & 0 & 2\end{pmatrix}.\end{align*}

Ahora que la primer entrada del primer renglón es distinta de cero, multiplicamos el primer renglón por \frac{1}{-1}=-1 y obtenemos

    \begin{align*}A_2=\begin{pmatrix} 1 & 0 &-1 & -2 &-3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 3 & 1 &-1 & 0 & 2\end{pmatrix}.\end{align*}

Ahora queremos quitar el 3 del último renglón. Para esto, multiplicamos por -3 el primer renglón y lo sumamos al último y nos queda

    \begin{align*}A_3&=\begin{pmatrix} 1 & 0 &-1 & -2 &-3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 3-3 & 1-3\cdot 0 &-1-3\cdot (-1) & 0-3\cdot (-2) & 2-3\cdot (-3)\end{pmatrix}\\ &=\begin{pmatrix} 1 & 0 &-1 & -2 &-3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 0 & 1&2 & 6 & 11\end{pmatrix}.\end{align*}

Ya tenemos entonces nuestra primera columna en forma escalonada reducida, pasemos a la segunda. Ya tenemos un 1 en la segunda entrada de la segunda columna, por lo que no hace falta hacer un cambio de renglón o multiplicar por un inverso. Basta entonces con cancelar las otras entradas de la columna, para eso sustraemos el segundo renglón del tercero y cuarto, para obtener

    \begin{align*}A_4&= \begin{pmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 &4 \\ 0-0 & 1-1 & 1-2 & 1-3 & 1-4\\ 0 -0 & 1-1& 2-2 & 6-3 & 11-4\end{pmatrix}\\&= \begin{pmatrix}1 & 0 &-1 & -2 &-3\\ 0 & 1 & 2 & 3 &4  \\ 0 & 0 & -1 & -2 & -3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}.\end{align*}

Seguimos entonces con la tercera columna, y observamos que la entrada (3,3) es -1, entonces la transformamos en un 1 multiplicando el tercer renglón por \frac{1}{-1}=-1.

    \begin{align*}A_5=\begin{pmatrix}1 & 0 &-1 & -2 &-3\\ 0 & 1 & 2 & 3 &4 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}.\end{align*}

Ahora tenemos que cancelar las entradas de la tercer columna, para eso sumamos -2 veces el tercer renglón al segundo y una vez el tercer renglón al primero:

    \begin{align*}A_6&=\begin{pmatrix}1+0 & 0+0 &-1+1 & -2+2 &-3+3\\ 0-2\cdot 0 & 1-2\cdot 0 & 2-2\cdot 1 & 3-2\cdot2 &4-2\cdot3 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}\\&= \begin{pmatrix}1 & 0 &0 & 0 &0\\ 0 & 1 & 0 & -1 &-2 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}.\end{align*}

Ahora pasamos a la siguiente columna. En la entrada (4,4) tenemos un 3, pero queremos un 1, entonces multiplicamos el último renglón por \frac{1}{3}:

    \begin{align*}A_7= \begin{pmatrix}1 & 0 &0 & 0 &0\\ 0 & 1 & 0 & -1 &-2 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &1 & \frac{7}{3}\end{pmatrix}.\end{align*}

Finalmente, cancelamos las entradas restantes de los otros renglones sustrayendo dos veces el último renglón del penúltimo y sumándolo una vez al segundo para obtener

    \begin{align*}A_8=\begin{pmatrix}1 & 0 &0 &0 &0 \\ 0 & 1& 0 & 0 & \frac{1}{3}\\  0 & 0 &1 & 0 &-\frac{5}{3}\\ 0 & 0 & 0 & 1 & \frac{7}{3} \end{pmatrix}.\end{align*}

Y así termina nuestro algoritmo, y nuestra matriz está en forma escalonada reducida. Las dos cosas más importantes de A_8 son que

  • Está en forma escalonada reducida y
  • es equivalente a A, es decir, el sistema de ecuaciones AX=0 y el sistema de ecuaciones A_8 X =0 tienen exactamente las mismas soluciones.

De hecho, todas las matrices A,A_1, A_2, \ldots, A_8 son equivalentes entre sí, pues difieren únicamente en operaciones elementales. Esta propiedad es muy importante, y precisamente es la que nos permite aplicar el algoritmo de reducción gaussiana a la resolución de sistemas lineales.

Una aplicación a un sistema de ecuaciones

Usemos el ejemplo anterior para resolver un sistema de ecuaciones:

Problema. Resolver en los reales el sistema lineal homogéneo AX=0 donde A es la matriz ejemplo de la sección anterior.

Solución: Los sistemas AX=0 y A_{red}X=0 son equivalentes, por lo que basta resolver A_{red}X=0 con A_{red} la matriz en forma escalonada reducida que encontramos (es decir, A_8). Este sistema queda planteado por las siguientes ecuaciones lineales:

    \begin{align*}\begin{cases}x_1=0\\x_2+\frac{x_5}{3}=0\\x_{3}-\frac{5}{3}x_5=0\\x_4+\frac{7}{3}x_5=0.\end{cases}.\end{align*}

Ya hemos resuelto sistemas de este estilo. Aquí x_5 es la variable libre y x_1,x_2,x_3,x_4 son variables pivote. Fijando x_5 igual a cualquier número real t, obtenemos que las soluciones son de la forma

    \begin{align*}\left(0, -\frac{1}{3}t, \frac{5}{3} t, - \frac{7}{3}t, t\right), \hspace{2mm} t\in \mathbb{R}.\end{align*}

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Aplica el algoritmo de reducción gaussiana a la matriz

        \[\begin{pmatrix} 1 & 1 & 2 & 2 & 3 & 3 \\ 0 & 0 & 4 & 4 & 5 & 5 \\ 0 & 0 & 0 & 0 & 6 & 6 \end{pmatrix}.\]

    Para su sistema lineal asociado, encuentra todas las variables pivote y libres y resuélvelo por completo.
  • Aplica el algoritmo de reducción gaussiana a la matriz

        \[\begin{pmatrix} 0 & 8 \\ 0 & 2 \\ -1 & 5 \\ 2 & 3 \\ 5 & 0 \\ 3 & 1\end{pmatrix}.\]

  • Considera las matrices A_1, A_4 y A_8 de la sección con el ejemplo del algoritmo de reducción gaussiana. Toma una solución no trivial de A_8X=0 y verifica manualmente que también es solución de los sistemas lineales A_1X=0 y de A_4X=0.
  • Encuentra la matriz B, producto de matrices elementales tal que BA=A_{red} con A la matriz que usamos en el ejemplo. Para ello, tendrás que multiplicar todas las matrices correspondientes a las operaciones elementales que usamos.
  • Explica qué es lo que garantiza que el algoritmo de reducción gaussiana en efecto hace una cantidad finita de operaciones elementales.
  • Aplica el algoritmo de reducción gaussiana a la matriz

        \[A=\begin{pmatrix} 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1\end{pmatrix}.\]

    Si haces los pasos correctamente, llegarás a una matriz del estilo

        \[A_{red}=\begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{pmatrix}.\]

    Toma el bloque B de 2\times 2 de la izquierda de A, es decir B=\begin{pmatrix} 0 & 2 \\ 1 & 1\end{pmatrix}. Toma el bloque C de 2\times 2 de la derecha de A_{red}, es decir, C=\begin{pmatrix} a & b \\ c & d \end{pmatrix}. ¿Qué matriz obtienes al hacer el producto BC? ¿Y el producto CB? ¿Por qué crees que pasa esto?

Álgebra Lineal I: Forma escalonada reducida

Introducción

En esta entrada tratamos la forma escalonada reducida de una matriz, que es básicamente una forma «bonita» de expresar una matriz que nos permite resolver sistemas de ecuaciones lineales. Luego nos adentramos en la parte de operaciones elementales, que es el primer paso para desarrollar un algoritmo (que luego veremos es la reducción gaussiana) que nos permite llevar a cualquier matriz a su forma escalonada reducida.

En otras palabras, en esta entrada vemos cómo resolver un caso fácil de un sistema de ecuaciones. Más adelante veremos que en realidad cualquier caso puede llevarse al caso fácil con un algoritmo relativamente fácil.

¿Qué es la forma escalonada reducida?

Sea una matriz A con entradas en un campo F. Si R es un renglón de A, diremos que R es una fila cero si todas sus entradas son cero. Si R no es una fila cero, el término principal de R o bien el pivote de R es la primera entrada distinta de cero de la fila. Diremos que A está en forma escalonada reducida si A tiene las siguientes propiedades:

  1. Todas las filas cero de A están hasta abajo de A (es decir, no puede seguirse una fila distina de cero después de una cero).
  2. El término principal de una fila no-cero está estrictamente a la derecha del término principal de la fila de encima.
  3. En cualquier fila distinta de cero, el término principal es 1 y es el único elemento distinto de cero en su columna.

Ejemplo. La matriz I_n está en forma escalonada reducida, así como la matriz cero O_n. La matriz

    \begin{align*}A= \begin{pmatrix} 1 &-1 & 0 &2\\  0 & 0 & 1 & -1\\ 0 & 0 & 0 & 0 \end{pmatrix} \end{align*}

está en forma escalonada reducida. El término principal de la primer fila es 1 y está en la primer columna. El término principal de la segunda fila también es 1, y se encuentra más a la derecha que el término principal de la fila anterior. Además, es la única entrada distinta de cero en su columna.

Sin embargo, la matriz ligeramente distinta

    \begin{align*}B= \begin{pmatrix} 1 &-1 & 5 &2\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 0 \end{pmatrix} \end{align*}

no está en forma escalonada reducida ya que el término principal del segundo renglón no es la única entrada distinta de cero en su columna.

\square

¿Cómo la forma escalonada reducida nos permite resolver sistemas de ecuaciones?

¿Cual es la importancia de la forma escalonada con respecto al problema de resolver sistemas de ecuaciones? Veremos que cualquier matriz se puede poner (de manera algorítmica) en forma escalonada reducida y que esta forma es única. También veremos que si A_{red} es la forma escalonada reducida de una matriz, entonces los sistemas AX=0 y A_{red}X=0 son equivalentes. Además, veremos que resolver el sistema A_{red} X=0 es muy fácil de resolver precisamente por estar en forma escalonada reducida.

Ejemplo. Resolvamos el sistema AX=0 donde A es la matriz que dimos anteriormente, que está en forma escalonada reducida. El sistema asociado es

    \begin{align*}\begin{cases}x_1 -x_2+2x_4&=0\\x_3-x_4&=0\end{cases}.\end{align*}

De la segunda igualdad podemos expresar x_3=x_4 y de la primera x_1=x_2-2x_4. Así, podemos escoger x_2 y x_4 «libremente» y obtener x_3 y x_1 con estas ecuaciones (tenemos, de cierta manera, dos «parámetros libres»), por lo que nuestras soluciones se ven de la forma

    \begin{align*}(a-2b, a, b,b )\end{align*}

con a,b\in F.

\square

En general si A es una matriz en forma escalonada reducida, veamos cómo resolver el sistema AX=0. Las únicas ecuaciones importantes son las que resultan de renglones distintos de cero (pues las otras solo son 0=0) y al estar en forma escalonada reducida, todos los renglones cero están hasta el final. Supongamos que el i-ésimo renglón de A es distinto de cero y su término principal está en la j-ésima columna, así el término principal es a_{ij}=1. La i-ésima ecuación del sistema lineal entonces es de la forma

    \begin{align*}x_j +\sum_{k=j+1}^{n} a_{ik} x_k =0.\end{align*}

Llamamos a x_j la variable pivote del renglón L_i. Así, a cada renglón distinto de cero le podemos asociar una única variable pivote. Todas las demás variables del sistema son llamadas variables libres. Uno resuelve el sistema empezando desde abajo, expresando sucesivamente las variables pivote en términos de las variables libres. Esto nos da la solución general del sistema, en términos de las variables libres, que pueden tomar cualquier valor en F.

Si y_1, \dots, y_s son las variables libres, entonces las soluciones del sistema son de la forma

    \begin{align*}X= \begin{pmatrix}b_{11} y_1 + b_{12} y_2 + \dots+ b_{1s} y_s\\b_{21} y_1+ b_{22} y_2 +\dots+b_{2s} y_s\\\vdots\\b_{n1} y_1 +b_{n2} y_2+ \dots + b_{ns} y_s\end{pmatrix}\end{align*}

para algunos escalares b_{ij}. Esto también se puede escribir como

    \begin{align*}X= y_1 \begin{pmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{n1}\end{pmatrix}+\dots + y_s \begin{pmatrix} b_{1s} \\ b_{2s}\\ \vdots \\ b_{ns} \end{pmatrix} .\end{align*}

Llamamos a

    \begin{align*} Y_1= \begin{pmatrix} b_{11}\\ b_{21}\\ \vdots \\ b_{n1}\end{pmatrix}, \dots, Y_s= \begin{pmatrix} b_{1s} \\ b_{2s} \\ \vdots \\ b_{ns}\end{pmatrix}\end{align*}

las soluciones fundamentales del sistema AX=0. La motivación para su nombre es fácil de entender: Y_1, \dots, Y_s son soluciones del sistema AX=0 que ‘generan’ todas las otras soluciones, en el sentido que todas las soluciones del sistema AX=0 se obtienen a través de todas las combinaciones lineales de Y_1, \dots, Y_s (correspondiendo a todos los valores posibles de y_1, \dots, y_s).

Un ejemplo para aterrizar los conceptos

Sea A la matriz en forma escalonada reducida dada como sigue

    \begin{align*}A= \begin{pmatrix}1 & 1 & 0 & 0  &-1 & 0 & 2\\ 0 & 0 & 1 & 0 & 3 & 0 & 1\\ 0 & 0 & 0 & 1& 0 & 0 &-1\\ 0 & 0 &0 & 0 & 0 & 1 & 0 \\ 0 & 0 &0 & 0 & 0 & 0 & 0 \end{pmatrix}\end{align*}

y consideremos el sistema homogéneo asociado AX=0. Este se puede escribir como

    \begin{align*}\begin{cases} x_1+x_2-x_5+2x_7&=0\\x_3+3x_5+x_7&=0\\x_4-x_7&=0\\x_6&=0\end{cases}.\end{align*}

Las variables pivote son x_1, x_3, x_4 y x_6, ya que los términos principales aparecen en las columnas 1,3,4 y 6. Eso nos deja a x_2, x_5 y x_7 como variables libres.

Para resolver el sistema, empezamos con la última ecuación y vamos «subiendo», expresando en cada paso las variables pivote en términos de las variables libres. La última ecuación nos da x_6=0. Después, obtenemos x_4=x_7, posteriormente x_3=-3x_5-x_7 y x_1= -x_2+x_5-2x_7. Nunca nos va a pasar que tengamos que expresar a una variable pivote en términos de otra variable pivote, por la condición de que cada pivote es la única entrada no cero en su columna.

Para expresar las soluciones en términos vectoriales, hacemos lo siguiente.

    \begin{align*}X&=\begin{pmatrix}-x_2+x_5 -2x_7\\x_2\\-3x_5-x_7\\x_7\\x_5\\0 \\x_7\end{pmatrix}\\ &= x_2\cdot \begin{pmatrix}-1 \\ 1 \\ 0 \\ 0\\ 0 \\ 0 \\ 0 \end{pmatrix} +x_5\cdot \begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}+x_7 \cdot \begin{pmatrix} -2\\ 0 \\ -1\\ 1 \\ 0 \\ 0 \\1 \end{pmatrix}.\end{align*}

Los tres vectores columna que aparecen del lado derecho de la igualdad son entonces las soluciones fundamentales del sistema AX=0. Todas las soluciones están entonces dadas por la expresión de la derecha, donde x_2, x_5 y x_7 pueden tomar cualquier valor en F.

Una moraleja sobre el número de soluciones

El número de soluciones fundamentales del sistema AX=0 es igual al número total de variables menos el número de variables pivote. Deducimos que el sistema AX=0 tiene como única solución a X=0 si no hay variables libres. Esto es lo mismo que decir que el número de variables pivote es igual al número de columnas de A.

Combinando las observaciones anteriores con el principio de superposición obtenemos el siguiente y muy importante resultado.

Teorema.

  1. Un sistema lineal homogéneo que tiene más variables que ecuaciones tiene soluciones no triviales. Si el campo de coeficientes es infinito (como por ejemplo \mathbb{R} o \mathbb{C}), entonces el sistema tiene infinitas soluciones.
  2. Un sistema lineal consistente AX=b que tiene más variables que ecuaciones tiene al menos dos soluciones, y si el campo es infinito, tiene infinitas soluciones.

¿Cómo llevar una matriz a su forma escalonada reducida? Operaciones elementales

Ahora regresamos al problema de transformar una matriz dada en una matriz con forma escalonada reducida. Para resolver este problema introducimos tres tipos de operaciones que pueden aplicarse a las filas de una matriz. Veremos que gracias a estas operaciones, uno puede transformar cualquier matriz en una en forma escalonada reducida.

Estas operaciones surgen de las manipulaciones cuando resolvemos sistemas lineales: las operaciones más naturales que hacemos cuando resolvemos un sistema de ecuaciones lineales son:

  1. multiplicar una ecuación por un escalar distinto de cero;
  2. añadir una ecuación (o mejor aún, un múltiplo de una ecuación) a otra ecuación diferente;
  3. intercambiar dos ecuaciones.

Observamos que estas operaciones son reversibles: si por ejemplo, multiplicamos una ecuación por un escalar a\neq 0, podemos multiplicar la misma ecuación por \frac{1}{a} para recuperar la ecuación original. Queda claro que realizando una cantidad finita de estas operaciones en un sistema obtenemos un sistema con el mismo conjunto de soluciones que el sistema original (en nuestra terminología más barroca, un sistema nuevo equivalente al original). Estas operaciones en el sistema pueden verse como operaciones directamente en la matriz. Más precisamente:

Definición. Una operación elemental en las filas de una matriz A en M_{m,n}(F) es una operación de uno de los siguientes tipos:

  1. cambio de filas: intercambiar dos renglones de la matriz A,
  2. reescalar una fila: multiplicar una fila de la matriz A por un escalar c en F distinto de cero,
  3. transvección: reemplazar una fila L por L+cL' para algún escalar c en F y otra fila L' de A diferente a L.

La discusión previa muestra que si A es una matriz y B se obtiene a partir de A al aplicar una sucesión finita de operaciones elementales entonces A\sim B (recordamos que esa notación solo nos dice que los sistemas AX=0 y BX=0 son equivalentes).

Correspondiendo a estas operaciones definimos las matrices elementales:

Definición. Una matriz A\in M_n(F) es una matriz elemental si se obtiene de I_n al realizar una operación elemental.

Ejemplo. La matriz

    \begin{align*}B= \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}\end{align*}

es una matriz elemental, pues se obtiene al intercambiar el primer y segundo renglón de I_3.

Observamos que las matrices elementales son cuadradas. Tenemos entonces tres tipos de matrices elementales:

  1. Matrices de transposición: aquellas que resultan de intercambiar dos renglones de I_n.
  2. Matrices de dilatación: aquellas obtenidas de I_n multiplicando uno de sus renglones por un escalar distinto de cero.
  3. Matrices de transvección: son las que obtenemos de I_n al añadir el múltiplo de un renglón a otro renglón.

Una sencilla, pero crucial observación es la siguiente:

Proposición. Sea A\in M_n(F) una matriz. Realizar una operación elemental en A es equivalente a multiplicar a A por la izquierda por la matriz elemental correspondiente a la operación.

Demostración: Si E es una matriz de m\times m y A\in M_{m,n}(F), entonces la i-ésima fila de EA es e_{i1} L_1+ e_{i2} L_2+\dots + e_{im} L_m donde L_1, \dots, L_m son las filas de A y e_{ij} es la (i,j)-ésima entrada de E. El resultado se sigue de las definiciones y haciendo caso por caso, de acuerdo al tipo de operación elemental que se trate.

Por ejemplo, si la operación es un intercambio de filas, entonces E es una matriz de transposición en donde, digamos, se intercambiaron la fila k y la fila l. Por lo que mencionamos arriba, las filas L_i con i\neq k y i\neq l permanecen intactas, pues e_{ij}=1 si i=j y 0 en otro caso, de modo que la i-ésima fila de EA es simplemente L_i. Para la fila k de EA, tenemos que e_{kl}=1 y si i\neq k, entonces e_{ki}=0. De esta forma, tendríamos que dicha fila es L_l. El análisis de la l-ésima fila de EA es análogo.

Los detalles de la demostración anterior, así como las demostraciones para operaciones de reescalamiento y transvección, quedan como tarea moral.

\square

Más adelante…

En la entrada de reducción gaussiana terminaremos de probar que toda matriz puede llevarse mediante operaciones elementales a una matriz en forma escalonada reducida. Más aún, obtendremos un algoritmo sencillo que siempre nos permitirá hacerlo. En el transcurso de este algoritmo siempre tendremos matrices equivalentes entre sí, de modo que esta será una herramienta fundamental para resolver sistemas de ecuaciones lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • En el ejemplo concreto que hicimos, verifica que en efecto las soluciones fundamentales que obtuvimos son solución al sistema. Verifica también que la suma de las tres también es una solución al sistema. Luego, elige los valores que tú quieras para x_2,x_5,x_7 y verifica que esa también es una solución
  • ¿Será cierto que la transpuesta de una matriz en forma escalonada reducida también está en forma escalonada reducida? ¿Será cierto que la suma de dos matrices en forma escalonada reducida también es de esta forma?
  • Termina los detalles de la demostración de la última proposición.
  • Demuestra que toda matriz elemental es invertible, y que su inversa también es una matriz elemental.
  • ¿Es cierto que la transpuesta de una matriz elemental es una matriz elemental?

Álgebra Lineal I: Problemas de sistemas de ecuaciones y forma escalonada reducida

Introducción

En esta entrada nos encargaremos de resolver algunos problemas de sistemas de ecuaciones lineales y de dar algunos ejemplos más de matrices en forma escalonada reducida.

Problemas de sistemas de ecuaciones lineales

Problema. ¿Para cuáles números reales a se tiene que el siguiente sistema es consistente?. Resuelve el sistema para estos casos.

    \begin{align*}\begin{cases}x + 2y &=1\\4x+8y &=a.\end{cases}\end{align*}

Solución. Tomando la primera ecuación y multiplicandola por 4 vemos que

    \begin{align*}4x+8y=4\end{align*}

De lo anterior se sigue que el único número real a para el cuál el sistema es consistente es a=4, pues en otro caso tendríamos ecuaciones lineales que se contradicen entre sí.

Cuando a=4, tenemos entonces una única ecuación x+2y=1. Para encontrar todas las soluciones a esta ecuación lineal, podemos fijar el valor de y arbitrariamente como un número real r. Una vez fijado y, obtenemos que x=1-2y=1-2r. Así, el conjunto de soluciones es

    \[\{(1-2r,r): r \in \mathbb{R}\}.\]

\square

Problema. Encuentra todos a,b\in\mathbb{R} para los cuales los sistemas

    \begin{align*}\begin{cases}2x + 3y &=-2\\x - 2y &=6\end{cases}\end{align*}


y

    \begin{align*}\begin{cases}x + 2ay &=3\\-x - y &=b\end{cases}\end{align*}


son equivalentes.

Solución. Para resolver el primer sistema tomamos la segunda ecuación y despejamos x:

    \begin{align*}x=6+2y.\end{align*}


Sustituyendo lo anterior en la primera ecuación se tiene

    \begin{align*}2(6+2y)+3y&=-2\\ 12+7y&=-2\\7y&=-14\\y&=-2.\end{align*}


Luego sustituimos el valor de y para encontrar x

    \begin{align*}x&=6+2y\\&=6+2(-2)\\&=2.\end{align*}


Ahora, para encontrar los valores de a y b, sustituimos los valores de x y y que encontramos en el primer sistema y de esta forma garantizamos que ambos sistemas tendrán el mismo conjunto de soluciones, es decir, son equivalentes.

    \begin{align*}\begin{cases}x + 2ay &=3\\-x - y &=b\end{cases}\end{align*}


    \begin{align*}\begin{cases}2 + 2a(-2) &=3\\-2 - (-2) &=b\end{cases}\end{align*}


De la segunda ecuación es inmediato que b=0.
Por otro lado, despejando a de la primera ecuación se tiene

    \begin{align*}2-4a&=3\\-4a&=1\\a&=-\frac{1}{4}\end{align*}


Concluimos que los sistemas son equivalentes cuando

    \begin{align*}a=-\frac{1}{4}, \hspace{4mm} b=0.\end{align*}

\square

Más ejemplos de forma escalonada reducida

Para finalizar con esta entrada veremos más ejemplos de matrices que están en forma escalonada reducida y de matrices que no lo están.

Ejemplo. La matriz

    \begin{align*}\begin{pmatrix}2 & -1 & 3 & 1\\1 & 0 & 2 & 2\\3 & 1 & 7 & 0\\1 & 2 & 4 & -1\end{pmatrix}\end{align*}


no está en forma escalonada reducida, pues todas las entradas de la primera columna son distintas de cero.
En cambio, la matriz

    \begin{align*}\begin{pmatrix}1 & 0 & 2 & 0\\0 & 1 & 1 & 0\\0 & 0 & 0 & 1\\0 & 0 & 0 & 0\end{pmatrix}\end{align*}


sí está en forma escalonada reducida. Queda como tarea moral verificar que esto es cierto.

\square

Ejemplo. La matriz

    \begin{align*}\begin{pmatrix}0 & 0 & 0 & 0 & 0\\0 & 1 & -5 & 2 & 0\\0 & 0 & 0 & 0 & 3\\0 & 0 & 0 & 0 & 0\end{pmatrix}\end{align*}


no está en forma escalonada reducida, pues hay filas cero por encima de filas no cero. Otro problema que tiene es que el pivote de la tercer fila no es igual a 1.


En cambio

    \begin{align*}\begin{pmatrix}1 & 0 & 0 & 0 & -1\\0 & 1 & 0 & 0 & 2\\0 & 0 & 1 & 0 & 1\\0 & 0 & 0 & 1 & 1\end{pmatrix}\end{align*}


sí está en forma escalonada reducida.

\square

Ejemplo. La matriz \begin{pmatrix} 0 & 1 & 2  \\ 1 & 0 & 0 \end{pmatrix} no está en forma escalonada reducida pues el pivote de la segunda fila está más a la izquierda que el de la primera. Sin embargo, si intercambiamos las filas, la matriz \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix} sí está en forma escalonada reducida.

\square

Más adelante veremos un método para llevar una matriz a su forma escalonada reducida y veremos que esto es muy útil para resolver sistemas de ecuaciones lineales.

Álgebra Lineal I: Problemas de transpuesta de matriz y matrices de bloque

Introducción

En esta entrada ejercitaremos los conceptos de matriz transpuesta y matriz de bloque mediante ejercicios resueltos. Además, para los últimos tres problemas definiremos un concepto que aunque no se estudia a fondo en este curso, aparece en muchas áreas de las matemáticas y de la física.

Problemas resueltos

Problema. Sea A\in M_n(\mathbb{R}) una matriz con una única entrada distinta de cero en cada renglón y columna, dicha entrada es igual a 1 ó -1. Demuestra que A es una matriz ortogonal.

Solución. Sea A=[a_{ij}]. Queremos ver que A^{-1}= ^tA. Sean i,j\in \{1, 2, \dots , n\}. Entonces la entrada (i,j)-ésima de A \ ^t A es

    \begin{align*}(A\ {^tA})_{ij}=\displaystyle\sum_{k=1}^na_{ik}a_{jk}.\end{align*}

Supongamos que a_{ik}a_{jk} es distinto de cero para algún k\in \{1,2,\dots n\}, por tanto a_{ik} y a_{jk} son distintos de cero.
Si sucediera que i\neq j, entonces A tiene al menos dos entradas distintas de cero en la columna k, pero esto es imposible. Así, si i\neq j, entonces a_{ik}a_{jk}=0 para todo k\in\{1,2,\dots n\} y por consiguiente la (i,j)-ésima entrada de A\ ^tA es 0.

Por otro lado, si i=j, entonces

    \begin{align*}(A\ ^tA)_{ij}=\displaystyle\sum_{k=1}^na_{ik}^2.\end{align*}

Como por hipótesis se tiene que todas las entradas del i-esimo renglón de A son todas 0 salvo una que es 1 ó -1, entonces \displaystyle\sum_{k=1}^na_{ik}^2=1 y así (A\ ^tA)_{ij}=1 cuando i=j. Concluimos que A\ ^tA=I_n.
Mediante un argumento análogo se ve que ^tA A = I_n.

\square

Problema. a) Sea A\in M_n(\mathbb{R}) una matriz tal que ^tA \cdot A =O_n. Demuestra que A=O_n.
b) ¿El inciso a) seguirá siendo cierto si reemplazamos \mathbb{R} por \mathbb{C}?

Solución. a) Sea A=[A_{ij}]. Por la regla del producto de matrices se tiene que la (i,i)-ésima entrada de ^tA\cdot A es

    \begin{align*}(^tA\cdot A )_{ii} &= \displaystyle\sum_{k=1}^n (^tA)_{ik}A_{ki} \\ &=\displaystyle\sum_{k=1}^n A_{ki}^2.\end{align*}

Como ^tA\cdot A=O_n, concluimos que para toda i\in\{1,2,\dots,n\} se tiene que

    \begin{align*}\displaystyle\sum_{k=1}^n A_{ki}^2=0.\end{align*}

Como cada A_{ki} es un número real, al elevarlo al cuadrado obtenemos números no negativos. De lo anterior se sigue que A_{ki}=0 para toda k\in \{1,2\dots ,n\}. Como la i fue tomada de manera arbitraria, concluimos que A=O_n.
b) El resultado no necesariamente es cierto si cambiamos el campo de los reales por el campo de los complejos. Busquemos una matriz simétrica A\in M_2(\mathbb{C}) tal que ^tA\cdot A= O_2, pero como A es simétrica, lo anterior solamente es A^2=O_2 y además se puede escribir como

    \begin{align*}A=\begin{pmatrix} a & b\\b & d\end{pmatrix}\end{align*}

para algunos números complejos a,b y d. Ahora

    \begin{align*}A^2 &= \begin{pmatrix} a & b\\b & d\end{pmatrix} \cdot \begin{pmatrix}a & b\\b & d\end{pmatrix} \\&=\begin{pmatrix}a^2 +b^2 & b(a+d)\\b(a+d) & b^2+ d^2\end{pmatrix}.\end{align*}

Así que buscamos números complejos a,b,d con al menos uno de ellos distinto de cero y tales que

    \begin{align*}a^2+b^2=0, \hspace{2mm} b(a+d)=0, \hspace{2mm} b^2+d^2=0. \end{align*}

Basta con asegurar que a+d=0 y a^2+b^2=0, para lo cual tomamos a=i, b=1, d=-i .

\square

Producto tensorial

A continuación definiremos el producto tensorial. Es importante mencionar que esto es meramente para ejemplificar la teoría que se ha visto hasta ahora, por lo que no se profundizará en este tema.

Si A=[a_{ij}]\in M_{m_1,n_1}(F) y B\in M_{m_2,n_2}(F) son matrices, entonces definimos el producto de Kronecker o producto tensorial de A y B como la matriz de bloque A\otimes B\in M_{m_1m_2,n_1n_2}(F) definida por

    \begin{align*}A\otimes B = \begin{pmatrix}a_{11}B & a_{12}B & \dots & a_{1,n_1}B\\a_{21}B & a_{22}B & \dots & a_{2,n_1}B\\\vdots & \vdots & \vdots & \vdots\\a_{m_1,1}B & a_{m_1,2}B & \dots & a_{m_1,n_1}B \end{pmatrix}.\end{align*}

Problema. Calcula el producto tensorial de las matrices

    \begin{align*}A=\begin{pmatrix} 0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{pmatrix}, \hspace{4mm} B=\begin{pmatrix}2 & 1\\1 & -1\end{pmatrix}.\end{align*}

Solución. Usamos directamente la definición de producto tensorial

    \begin{align*}A\otimes B=\begin{pmatrix} 0 \cdot \begin{pmatrix}2 & 1\\1 & -1\end{pmatrix} & 1 \cdot \begin{pmatrix}2 & 1\\1 & -1\end{pmatrix} & 0 \cdot \begin{pmatrix}2 & 1\\1 & -1\end{pmatrix}\\1\cdot \begin{pmatrix}2 & 1\\1 & -1\end{pmatrix} & 0 \cdot \begin{pmatrix}2 & 1\\1 & -1\end{pmatrix} & 0\cdot \begin{pmatrix}2 & 1\\1 & -1\end{pmatrix}\\0\cdot \begin{pmatrix}2 & 1\\1 & -1\end{pmatrix} & 0\cdot \begin{pmatrix}2 & 1\\1 & -1\end{pmatrix} & 1\cdot \begin{pmatrix}2 & 1\\1 & -1\end{pmatrix}\end{pmatrix}\end{align*}

    \begin{align*}= \begin{pmatrix}0 & 0 & 2 & 1 & 0 & 0\\0 & 0 & 1 & -1 & 0 & 0\\2 & 1 & 0 & 0 & 0 & 0\\1 & -1 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 2 & 1\\0 & 0 & 0 & 0 & 1 & -1\end{pmatrix} \end{align*}

\square

Problema. ¿El producto tensorial es conmutativo?

Solución. En general, el producto tensorial, no es conmutativo. Sean A y B como en el problema anterior. Entonces

    \begin{align*}B\otimes A = \begin{pmatrix}2\cdot \begin{pmatrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{pmatrix} & 1\cdot \begin{pmatrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{pmatrix}\\1\cdot \begin{pmatrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{pmatrix} & -1\cdot \begin{pmatrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{pmatrix}\end{pmatrix}\end{align*}


    \begin{align*}=\begin{pmatrix}0 & 2 & 0 & 0 & 1 & 0\\2 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 2 & 0 & 0 & 1\\0 & 1 & 0 & 0 & -1 & 0\\1 & 0 & 0 & -1 & 0 & 0\\0 & 0 & 1 & 0 & 0 & -1\end{pmatrix}.\end{align*}

Comparando con lo obtenido en el problema anterior, ser verifica que el producto tensorial no es conmutativo.

\square

Problema. Verifica que I_m\otimes I_n = I_{mn}.

Solución. Por definición sabemos que I_m\otimes I_n\in M_{mn}(F). Ahora veamos que

    \begin{align*}\begin{pmatrix}1\cdot I_n & 0\cdot I_n & \dots & 0\cdot I_n\\0\cdot I_n & 1 \cdot I_n & \dots & 0\cdot I_n\\\vdots & \vdots &\ddots & \vdots\\0\cdot I_n & 0\cdot I_n & \dots & 1\cdot I_n\end{pmatrix}= I_{mn}.\end{align*}

\square

Álgebra Lineal I: Sistemas de ecuaciones lineales y sistemas homogéneos asociados

Introducción

En esta sección damos un primer acercamiento al concepto de sistemas de ecuaciones lineales. Este es un concepto de fundamental importancia en muchas áreas de las matemáticas, como las ecuaciones diferenciales o incluso la geometría algebraica.

Los sistemas de ecuaciones lineales nos son familiares. Desde la educación secundaria se aprende a resolver ecuaciones «de 2\times 2«, y más adelante «de 3\times 3«. Estos sistemas también aparecen en cursos de la licenciatura, como geometría analítica. Sin embargo, es en un curso de álgebra lineal que se estudian con toda generalidad. Las herramientas de esta área de las matemáticas permiten determinar si un sistema de ecuaciones lineales tiene solución y, en caso de que sí, ver cómo se ven todas las soluciones.

Como veremos a continuación, un sistema de ecuaciones lineales se puede ver en términos de matrices. Esta conexión es fundamental. La información acerca de una matriz nos permite obtener información acerca del sistema de ecuaciones lineales asociado. A la vez, la información sobre un espacio o matriz se puede determinar a partir de la resolución de sistemas de ecuaciones lineales.

Sistemas de ecuaciones lineales

Una ecuación lineal en variables x_1, \dots, x_n es una ecuación de la forma

    \begin{align*}a_1 x_1 + \dots +a_n x_n =b,\end{align*}

donde a_1, \dots, a_n, b\in F son escalares dados y n es un entero positivo. Las incógnitas x_1,\dots, x_n suponen ser elementos de F.

Un sistema de ecuaciones lineales en las variables x_1, \dots, x_n es una familia de ecuaciones lineales, usualmente escrito como

    \begin{align*}\begin{cases}a_{11}x_1+a_{12} x_2+\dots +a_{1n} x_n = b_1\\a_{21} x_1 +a_{22} x_2 + \dots + a_{2n} x_n = b_2\\\quad \vdots\\a_{m1} x_1+a_{m2} x_2+\dots + a_{mn}x_n = b_m\end{cases}.\end{align*}

Aquí de nuevo los a_{ij} y los b_i son escalares dados. Resolver un sistema de ecuaciones lineales consiste en describir todos los posibles valores que pueden tener x_1,\ldots,x_n de modo que todas las ecuaciones anteriores se satisfagan simultáneamente.

La notación que usamos no es mera coincidencia y nos permite describir de manera mucho más concisa el sistema: Si X es un vector columna con entradas x_1, \dots, x_n, A es la matriz en M_{m,n}(F) con entradas [a_{ij}] y b es un vector columna en F^m con entradas b_1, \dots, b_m entonces el sistema se reescribe como

    \begin{align*}AX=b.\end{align*}

Puedes verificar esto usando la definición de A como transformación lineal y comparando los vectores en ambos lados de la igualdad entrada a entrada. Resolver el sistema se traduce entonces a responder cómo son todos los vectores X en F^n que satisfacen la igualdad anterior.

Ejemplo. A continuación tenemos un sistema de ecuaciones en tres variables (o incógnitas) x_1, x_2 y x_3:

    \begin{align*}\begin{cases}3x_1-2x_2+7x_3&=5\\4x_1+3x_3&=7\\2x_1+x_2-7x_3&=-1\\-x_1+3x_2&=8\end{cases}.\end{align*}

Si tomamos al vector b=\begin{pmatrix} 5 \\ 7 \\ -1 \\8 \end{pmatrix} en \mathbb{R}^4, al vector de incógnitas X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} y a la matriz

    \[A=\begin{pmatrix} 3 & -2 & 7\\ 4 & 0 & 3 \\ 2 & 1 & -7 \\ -1 & 3 & 0\end{pmatrix},\]

entonces el sistema de ecuaciones lineales consiste exactamente en determinar aquellos vectores X en \mathbb{R}^3 tales que

    \[AX=b.\]

\square

También podríamos describir nuestro sistema en términos solo de vectores. Recordando un resultado visto en la entrada de producto de matrices, si C_1, \dots, C_n son las columnas de A, vistos como vectores columna en F^{m}, el sistema es equivalente a

    \begin{align*}x_1 C_1+x_2 C_2 +\dots +x_n C_n=b.\end{align*}

Sistemas de ecuaciones lineales homogéneos

Hay un tipo de sistemas de ecuaciones lineales muy especiales: aquellos en los que b=0. Son tan importantes, que tienen un nombre especial.

Definición.

  1. El sistema de ecuaciones lineales AX=b se dice homogéneo si b=0 (es decir si b_1= b_2=\dots= b_m=0).
  2. Dado un sistema AX=b, el sistema lineal homogéneo asociado es el sistema AX=0.

Así, un sistema es homogéneo si es de la forma AX=0 para alguna matriz A.

Ejemplo. Considera el siguiente sistema de ecuaciones lineales:

    \begin{align*}\begin{cases}2x+3y-z&=-1\\5x+8z&=0\\-x+y&=1.\end{cases}\end{align*}

Este es un sistema de ecuaciones que en representación matricial se ve así:

    \begin{align*}\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =\begin{pmatrix} -1 \\ 0 \\ 1\end{pmatrix}.\end{align*}

Como el vector en el lado derecho de la igualdad no es el vector cero, entonces este no es un sistema homogéneo. Sin embargo, tiene asociado el siguiente sistema lineal homogéneo:

    \begin{align*}\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0\end{pmatrix}.\end{align*}

\square

Para la resolución de sistemas lineales en general, el sistema homogéneo asociado juega un papel crucial gracias al siguiente resultado, que nos dice esencialmente que para resolver un sistema AX=b basta con encontrar un vector solución X_0 y resolver el sistema homogéneo asociado.

Proposición. (Principio de superposición) Sea A\in M_{m,n}(F) y b\in F^{m}. Sea \mathcal{S}\subset F^{n} el conjunto de soluciones del sistema homogéneo asociado AX=0. Si el sistema AX=b tiene una solución X_0, entonces el conjunto de soluciones del sistema AX=b no es más que

    \begin{align*}X_0+\mathcal{S}= \lbrace X_0 +s\mid s\in \mathcal{S} \rbrace.\end{align*}

Demostración: Por hipótesis, AX_0=b. Ahora al sustituir, AX=b si y sólo si AX=A X_0, o bien A(X-X_0)=0. Es decir, un vector X es solución de AX=b si y sólo si X-X_0 es solución de AY=0, de otra manera, si y sólo si X-X_0\in \mathcal{S}. Pero esto último es equivalente a decir que existe s\in \mathcal{S} tal que X-X_0=s, luego X= X_0 +s\in X_0 +\mathcal{S}. Esto prueba el resultado.

\square

Consistencia de sistemas lineales

Definición. Un sistema lineal es dicho consistente si tiene al menos una solución. Se le llama inconsistente si no es consistente (es decir, si no existe una solución).

Presentamos una última definición para esta entrada.

Definición.

  1. Dos sistemas lineales se dicen equivalentes si tienen el mismo conjunto de soluciones
  2. Sean A y B dos matrices del mismo tamaño. Si los sistemas AX=0 y BX=0 son equivalentes, escribiremos A\sim B.

Ejemplo. Un ejemplo clásico de un sistema inconsistente es

    \begin{align*} \begin{cases} x_1=0\\x_1=1\end{cases}\end{align*}

o bien

    \begin{align*}\begin{cases}x_1 -2x_2=1\\2 x_2-x_1=0\end{cases}.\end{align*}

\square

Observación. Observamos que todo sistema homogéneo siempre es consistente, ya que el vector cero (cuyas coordenadas son todas cero) satisface el sistema. A esta solución la conocemos como solución trivial. Se sigue de la proposición que un sistema consistente AX=b tiene una única solución si y sólo si el sistema homogéneo asociado tiene como única solución la solución trival.

Más adelante

El principio de superposicion dice que para entender las soluciones de los sistemas lineales de la forma AX=b, basta con entender a los homogéneos, es decir, los de la forma AX=0.

Nuestro siguiente paso será ver cómo podemos entender las soluciones de los sistemas lineales homogéneos. Para ello, tenemos que hablar de los sistemas que corresponden a matrices en forma escalonada reducida. La ventaja de estos sistemas es que sus soluciones son muy fáciles de entender, y para cualquier sistema de ecuaciones AX=0, hay uno de la forma A_{red}X=0, con A_{red} una matriz escalonada reducida, y equivalente a A.

Más adelante, ya que tengamos a nuestra disposición herramientas de determinantes, hablaremos de otra forma en la que se pueden resolver sistemas de ecuaciones lineales usando la regla de Cramer.

Tarea moral

  • Muestra que el sistema

        \begin{align*}\begin{cases}x_1 -2x_2=1\\2 x_2-x_1=0\end{cases}.\end{align*}


    es inconsistente. Para ello, puedes proceder por contradicción, suponiendo que existe una solución.
  • Rescribe el primer ejemplo de sistemas de ecuaciones lineales en términos de vectores.
  • Sea b un vector en F^n y I_n la matriz identidad en M_n(F). ¿Cómo se ve de manera explícita el sistema de ecuaciones (2I_n)X=b? ¿Cuáles son todas sus soluciones?
  • Sean A,B matrices de tamaño n\times n tales que el sistema ABX=0 solo tiene como solución la solución trivial. Demuestre que el sistema BX=0 también tiene como única solución a la solución trivial.
  • Sea A\in M_2(\mathbb{C}) y considere el sistema homogéneo AX=0. Demuestre que son equivalentes:
    1. El sistema tiene una única solución, la solución trivial.
    2. A es invertible.