Archivo de la etiqueta: polinomios

Geometría Analítica I: Polinomios cuadráticos y curvas cuadráticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Lo primero que queremos determinar en un problema de clasificación es cuáles son los objetos que clasificaremos. En esta entrada los definimos con toda precisión: serán los polinomios cuadráticos en dos variables y las curvas cuadráticas.

Los primeros son expresiones algebraicas que mezclan a dos variables $x$ y $y$ mediante sumas y productos, pero teniendo grado dos. Las segundas son aquellos conjuntos del plano en donde se anula un polinomio cuadrático.

Polinomios cuadráticos en dos variables

Comencemos con una definición algebraica.

Definición. Un polinomio cuadrático en dos variables $P$ es una función $P:\mathbb{R}^2\to \mathbb{R}$ de la forma $$P((x,y))=Ax^2+Bxy+Cy^2+Dx+Ey+F,$$ para algunos reales $A,B,C,D,E,F$, en donde alguno de $A$, $B$ ó $C$ es distinto de cero.

En ocasiones, para abreviar «polinomio cuadrático en dos variables» simplemente usaremos las siglas «PCDV».

Ejemplo. Todas las expresiones que aparecen en las cónicas canónicas que hemos estudiado son PCDVs. Por ejemplo, la ecuación canónica de la elipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$ puede reescribirse como $$b^2x^2+a^2y^2-a^2b^2=0.$$ Del lado izquierdo de esta igualdad tenemos un PCDV. De manera similar, la ecuación canónica de la parábola $y^2=4px$ puede reescribirse como $y^2-4px=0$. Una vez más al lado izquierdo nos aparece un PCDV.

$\square$

Ejemplo. Si consideramos las dos rectas $3x+5y+1=0$ y $2x-2y+1=0$ y «multiplicamos» sus ecuaciones, entonces obtenemos de nuevo un PCDV pues el producto es:

\begin{align*}
(3x+5y+1)(2x-2y+1)&=6x^2-6xy+3x+10xy-10y^2+5y+2x-2y+1\\
&=6x^2+4xy-10y^2+5x+3y+1.
\end{align*}

$\square$

Curvas cuadráticas

Cuando tenemos una expresión algebraica que depende de dos variables $x$ y $y$, entonces podemos preguntarnos por cómo es la figura geométrica que se obtiene al considerar los puntos $(x,y)$ del plano que hacen que la expresión algebraica sea igual a cero. Un ejemplo de esto es cuando consideramos las expresiones del estilo $Ax+By+C$. Las parejas $(x,y)$ que hacen que esta expresión sea igual a cero forman una recta en el plano. En efecto, forman la recta en forma normal dada por la ecuación $(A,B)\cdot (x,y)=-C$, como puedes verificar.

Esta idea es mucho más general. A partir de los polinomios cuadráticos en dos variables también podemos hacernos la misma pregunta: ¿cómo se ven las parejas $(x,y)$ que anulan un polinomio cuadrático? La respuesta será importante, así que las figuras que se construyen así les damos su propio nombre.

Definición. Una curva cuadrática es el conjunto de puntos $(x,y)$ del plano que anulan a un polinomio cuadrático en dos variables $P$. En otras palabras, es un conjunto de la forma $$\mathcal{C}:=\{(x,y)\in \mathbb{R}^2: Ax^2+Bxy+Cy^2+Dx+Ey+F = 0\}.$$

A $P$ le llamamos el polinomio asociado a $\mathcal{C}$. A $\mathcal{C}$ le llamamos la curva descrita (o dada) por $P$. Quizás usaremos terminología un poco distinta, pero que siga dejando evidente que $P$ y $\mathcal{C}$ están relacionados.

Ejemplo. Ya hemos estudiado anteriormente algunas curvas cuadráticas: las cónicas canónicas. Por ejemplo, si tomamos el PCDV $P((x,y))=4x^2-9y^2-36$ y nos preguntamos para cuáles parejas $(x,y)$ esto es igual a cero, como respuesta tenemos que son aquellas parejas $(x,y)$ tales que $ 4x^2-9y^2-36=0$, lo cual podemos reescribir como $$\frac{x^2}{9}-\frac{y^2}{4}=1.$$ Esta es la hipérbola canónica de semieje mayor $3$ y semieje menor $2$. Podemos verla en la siguiente figura.

$\square$

Ejemplo. ¿Qué sucede si nos fijamos en la curva descrita por el polinomio cuadrático en dos variables $$ 6x^2+4xy-10y^2+5x+3y+1$$ que construimos en un ejemplo anterior? Si recuerdas, obtuvimos este polinomio cuadrático en dos variables a partir de multiplicar dos expresiones. De esta forma, tenemos que $$ 6x^2+4xy-10y^2+5x+3y+1=0$$ si y sólo si $$ (3x+5y+1)(2x-2y+1) =0.$$ Pero el producto de dos cosas es igual a cero si y sólo si alguna es igual a cero. Así, alguna de las expresiones $3x+5y+1$ y $2x-2y+1$ debe ser igual a cero. Si la primera es cero, entonces $(x,y)$ es un punto en la recta normal $\ell_1$ de ecuación $(3,5)\cdot (x,y) = -1$. Si la segunda es cero, entonces $(x,y)$ es un punto en la recta normal $\ell_2$ de ecuación $(2,-2)\cdot(x,y) = -1$. Así, la curva cuadrática descrita por el PCDV es la unión de $\ell_1$ con $\ell_2$. Podemos verla en la siguiente figura.

$\square$

Forma matricial de polinomios cuadráticos en dos variables

Cuando trabajamos con rectas, nos convenía tener varias formas de expresarlas: la forma paramétrica ayudaba a determinar fácilmente el paralelismo, la forma baricéntrica nos daba fórmulas sencillas para los puntos medios, la forma normal nos permitía encontrar distancias, etc. Así mismo, cuando trabajamos con polinomios cuadráticos en dos variables es de ayuda tener más de una expresión.

Podemos reescribir un polinomio cuadrático en dos variables $$P((x,y))=Ax^2+Bxy+Cy^2+Dx+Ey+F$$ de una manera más compacta usando multiplicación matricial. Para ello, definimos $$M=\begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix}, k=\begin{pmatrix} D \\ E \end{pmatrix}, v=\begin{pmatrix} x \\ y \end{pmatrix}.$$ Con esta notación, e interpretando a las matrices de $1\times 1$ como reales, tenemos que $P$ se puede reescribir de la siguiente manera: $$P(v)=v.$$

En efecto, al realizar las operaciones en el lado derecho obtenemos:

\begin{align*}
v^t M v + k^t v + F &=\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} D & E \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + F\\
&=\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} Ax + \frac{B}{2} y \\ \frac{B}{2} x + C y \end{pmatrix} + Dx + Ey + F\\
&=Ax^2 + Bxy + Cy^2+Dx+Ey+F.
\end{align*}

Observa que cuando pasamos un polinomio cuadrático en dos variables a forma matricial entonces siempre obtenemos una matriz $M$ simétrica.

Ejemplo. La forma matricial del PCDV que encontramos anteriormente $$6x^2+4xy-10y^2+5x+3y+1$$ es

$$ \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 6 & 2 \\ 2 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 1.$$

nota que el coeficiente de $xy$ se tuvo que dividir entre $2$ para llegar a las entradas de la matriz. Es importante recordar esto al pasar de la forma en coordenadas a la forma matricial.

$\square$

En caso de ser necesario, también podemos pasar fácilmente de la forma matricial de un polinomio cuadrático en dos variables a su forma en coordenadas.

Ejemplo. Si comenzamos con el polinomio cuadrático en dos variables con forma matricial $$ \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} – 1, $$

entonces su forma en coordenadas es $$2x^2-2xy+3y^2 – 3y -1.$$

Observa que las entradas $-1$ fuera de la diagonal principal de la matriz al salir se duplican para conformar el coeficiente de $xy$. Es importante recordar esto al pasar de forma matricial a forma en coordenadas.

$\square$

Más adelante…

En esta entrada definimos qué son los polinomios cuadráticos en dos variables y qué son las curvas cuadráticas.

Por un lado, mencionamos que todas las ecuaciones de cónicas canónicas que hemos visto tienen polinomios cuadráticos en dos variables. ¿Será que todas las ecuaciones de cónicas también tienen polinomios cuadráticos en dos variables? Por otro lado, vimos que algunas curvas cuadráticas son cónicas. Pero nos pasó algo un poco raro: en un ejemplo salieron dos rectas que se intersectan, que quizás estrictamente no pensamos como una cónica usual (elipse, hipérbola, parábola).

¿Cómo serán todas las curvas cuadráticas? ¿Serán sólo las cónicas usuales y algunas excepciones o podrán tener formas muy extrañas? Eso lo estudiaremos después.

También en esta entrada vimos la forma matricial de un polinomio cuadrático en dos variables. De momento, no hemos hablado de la utilidad que tiene pensar a un PCDV así. Sin embargo, en la siguiente entrada veremos que esta expresión es fundamental para ver qué sucede cuando «combinamos» un polinomio cuadrático con una transformación afín.

Tarea moral

  1. Usa alguna herramienta tecnológica (como GeoGebra) para trazar las curvas cuadráticas descritas por los siguientes polinomios cuadráticos en dos variables:
    • $x^2-2xy+3y^2+x-5y+7$
    • $3y^2+5y+x$
    • $x^2+y^2-5x-5y+3$
    • $xy-x-y+7$
    • $-x^2+2xy-3y^2-x+5y-7$
  2. Sea $P:\mathbb{R}^2\to \mathbb{R}$ dada por $P((x,y))=(Ax+By+C)(Dx+Ey+F)$. Demuestra que $P$ es un polinomio cuadrático en dos variables. Luego, demuestra que:
    1. Si $AE-BD\neq 0$, entonces la curva cuadrática dada por $P$ es la unión de dos rectas que se intersectan.
    2. Si $AE-BD=0$, entones la curva cuadrática dada por $P$ es la unión de dos rectas paralelas (no necesariamente distintas).
  3. Demuestra que la intersección de una recta con una curva cuadrática sólo puede ser:
    1. Vacía,
    2. Un punto,
    3. Dos puntos, o
    4. Una infinidad de puntos.
  4. Demuestra que cualquier curva cuadrática $\mathcal{C}$ puede ser descrita a través de una infinidad de polinomios cuadráticos en dos variables.
  5. Considera la gráfica de la función $f(x)=\sin(x)$. ¿Será que esta gráfica es una curva cuadrática? Intenta demostrar por qué sí o por qué no.

Entradas relacionadas

Geometría Analítica I: Equivalencia de polinomios y reducción de polinomios cuadráticos

Por Paola Lizeth Rojas Salazar

Introducción

En las entradas anteriores, estuvimos hablando de la clasificación de las curvas cuadráticas módulo transformaciones afines (las $G$-equivalencias), en esta entrada, vamos a responder preguntas para saber cuándo tienen sentido estas clasificaciones. Estas preguntas, principalmente derivan en la equivalencia de polinomios y la reducción de polinomios cuadráticos.

Equivalencia de polinomios

Antes de definir la equivalencia de polinomios, es importante preguntarnos si las imágenes afínes de curvas cuadráticas son de nuevo curvas cuadráticas.

Para responder la pregunta anterior, considera una curva cuadrática $C$ y una transformación afín $g \in Af(2)$. Entonces, existe un polinomio $P$ que define a $C$, es decir, que se cumple la siguiente igualdad:

\begin{equation} C=C(P)=\{x\in \mathbb R^2|P(x)=0\}\end{equation}

Dado lo anterior, podemos afirmar que:

\begin{equation} g(C)=\{y \in \mathbb R^2|(P\circ g^{-1})(y)=0\}\end{equation}

Demostración

$\subset$

Observemos que cualquier punto en $g(C)$ es de la forma $g(x)$ con $x\in C$, esto implica que $P(x)=0$. Entonces:

\begin{equation} (P\circ g^{-1})(g(x))=P(g^{-1}(g(x)))=P(x)=0\end{equation}

Entonces $g(x)\in\{y \in \mathbb R^2|(P\circ g^{-1})(y)=0\}$ y, finalmente,

\begin{equation} g(C)\subset\{y \in \mathbb R^2|(P\circ g^{-1})(y)=0\}\end{equation}

$\supset$

Sea $Y$ tal que $(P\circ g^{-1})(y)=0$, si definimos $x:=g^{-1}(y)$, entonces $P(x)=(P\circ g^{-1})(y)=0$.

Entonces, $x\in C$, lo que implica que $y=g(x)\in g(C)$. Finalmente:

\begin{equation} g(C)\supset\{y \in \mathbb R^2|(P\circ g^{-1})(y)=0\}\end{equation}

Lo que termina la demostración.

Observa que en la demostración anterior, solo se usó que $C$ estuviera definida como los ceros de una función y que $g$ fuera invertible, pero, ¿$g(C)$ es una curva cuadrática? Sí, lo anterior lo vemos en el siguiente lema:

Lema 4.1: Sea $C$ una curva cuadrática y $g\in Af(2)$, entonces $g(C)$ también es una curva cuadrática. Además, si $C=C(P)$, entonces $g(C)=C(P\circ g^{-1})$

Demostración

Si $P$ es un polinomio cuadrático y $g$ una transformación afín, entonces, $(P\circ g):\mathbb R^2 \to \mathbb R$ también es un polinomio cuadrático.

Y como las dos coordenadas de $g$ son polinomios lineales y $P\circ g$ es cuadrático, al sustituir ambos polinomios, obtendremos un polinomio con monomios de grado a lo más $2$.

Entonces $g(C)$ también es una curva cuadrática.

Con lo que termina la demostración.

Definición: Sea $G$ un subgrupo de $Af(2)$.

Decimos que dos polinomios cuadráticos $P_1$ y $P_2$ son $G-equivalentes$ o equivalentes módulo $G$ ($P_1\sim^G P_2$), si existen $g\in G$ y $k\in \mathbb R$, con $k\neq 0$, tales que $kP_1=P_2\circ g$. $(*)$

Finalmente, tenemos el siguiente teorema que relaciona esta entrada con la entrada anterior en la que se clasificó a las curvas cuadráticas:

Teorema 4.2: Sea $P$ un polinomio cuadrático en dos variables $x, y$. Entonces $P$ es afinmente equivalente a uno y solo uno de los polinomios que clasificamos en la entrada anterior.

Reducción de polinomios cuadráticos

Ahora veremos cómo reducir o simplificar un polinomio cuadrático, usando coordenadas afines. Para esto, vamos a simplificar los polinomios con matrices y vectores.

Recordemos que el polinomio general de segundo grado se puede escribir como:

\begin{equation}P(x,y)=ax^2+2bxy+cy^2+dx+ey+f\end{equation}

Ahora considera un vector variable $x^T=(x,y)$ y a la matriz $A$ y un vector $k$ definidos de la siguiente forma:

\begin{equation}A:=\begin{pmatrix} a & b \\ b & c \end{pmatrix}, \hspace{1cm} k=\begin{pmatrix} d \\ e\end{pmatrix}\end{equation}

Con estos datos, podemos escribir $P$ como:

\begin{equation} P(x)=x*Ax+k*x+f\end{equation}

Con $A=A^T\neq 0$.

A esta expresión se le conoce como la expresión vectorial del P.

Tarea moral

  1. Demuestra que, la relación definida en $(*)$ es de equivalencia.
  2. Demuestra el Teorema 4.2.
  3. Muestra que, la expresión en $(8)$, es cierta.
  4. Demuestra que, para un subgrupo $G$ de $Af(2)$, la relación de ser $G$-equivalentes, es una relación de equivalencia en los polinomios cuadráticos de dos variables.
  5. Da una expresión general para un polinomio cuadrático en tres variables $x,y,z$ y luego define una expresión vectorial para él.
  6. Encuentra la matriz simétrica $A$ y el vector constante $k$ que dan la expresión vectorial de los siguientes polinomios cuadráticos:
    • $x^2+2y^2-6x+4y+3$
    • $2xy-6x-4y-4$

Más adelante

En la siguiente entrada, vamos a usar los conocimientos adquiridos de esta entrada, para encontrar el centro y los ejes de las cónicas.

Álgebra Lineal II: Diagonalizar

Por Julio Sampietro

Introducción

En la entrada anterior estudiamos la triangularización de matrices, que consistía en llevar matrices a una forma triangular superior. En esta fortaleceremos esta idea, y buscaremos maneras de llevar una matriz a una matriz diagonal: a este proceso se le conoce como diagonalizar.

Matrices y transformaciones diagonalizables

A lo largo de esta sección fijamos $F$ un campo. Todos los espacios vectoriales se asumirán de dimensión finita.

Definición. Una matriz $A\in M_n(F)$ es llamada diagonalizable si es similar a una matriz diagonal en $M_n(F)$.

Una transformación lineal $T:V\to V$ sobre un espacio vectorial $V$ se llama diagonalizable si existe una base de $V$ tal que la matriz de $T$ respecto a esa base sea diagonal.

Es decir una matriz $A\in M_n(F)$ es diagonalizable si y sólo si podemos escribir

\begin{align*}
A=PDP^{-1}
\end{align*}

para alguna matriz invertible $P\in M_n(F)$ y una matriz diagonal $D=[d_{ij}]\in M_n(F)$. Nota que la definición implica que cualquier matriz similar a una matriz diagonalizable es a su vez diagonalizable. De misma manera, una transformación lineal es diagonalizable si su representación es diagonalizable respecto a cualquier base (aunque no será necesariamente diagonal en cualquier base).

Damos la siguiente caracterización de transformaciones diagonalizables.

Teorema. Una transformación lineal $T:V\to V$ es diagonalizable si y sólo si $V$ tiene una base compuesta por eigenvectores de $T$.

Demostración. Supongamos que $T$ es diagonalizable. Por tanto existe una base $v_1,\dots, v_n$ de $V$ tal que la matriz asociada a $T$ en esta base es diagonal. Si $(a_{ii})_{i=1}^{n}$ son las entradas diagonales de $A$, entonces por definición $T(v_{i})=a_{ii} v_i$ para todo $i=1,\dots, n$. Luego $v_1,\dots, v_n$ es una base de $V$ compuesta por eigenvectores de $T$.

Conversamente, supongamos que $T$ tiene una base $v_1,\dots, v_n$ compuesta por eigenvectores de $T$. Si $T(v_i)=d_i v_i$ entonces la matriz respecto a $v_1,\dots, v_n$ de $T$ es diagonal con entradas $d_i$.

$\square$

Primeras propiedades

Tenemos dos observaciones inmediatas.

Observación. El teorema nos proporciona una manera de diagonalizar explícitamente una matriz. Si $A\in M_n(F)$ es diagonalizable, entonces encontramos una base de $V=F^n$ formada por eigenvectores y los acomodamos como columnas de una matriz $P$. Entonces $P^{-1}AP=D$ es diagonal y $A=PDP^{-1}$.

Observación. Supongamos que $A$ es diagonalizable y que $A=PDP^{-1}$ para alguna matriz diagonal $D$ y una matriz invertible $P$.

  1. El polinomio característico de $A$ y de $D$ es el mismo, puesto que son matrices similares. De esto deducimos que
    \begin{align*}
    \prod_{i=1}^{n}(X-d_{ii})=\chi_{A}(X).
    \end{align*}
    En particular, los eigenvalores de $A$ son las entradas diagonales de $D$ (contados con multiplicidad).
  2. Sea $\lambda\in F$ un eigenvalor de $A$. Entonces la multiplicidad algebraica es igual al número de índices $i=1,\dots, n$ tales que $d_{ii}=\lambda$ (esto por el inciso anterior). Por otro lado, la dimensión geométrica de $\lambda$ como eigenvalor de $A$ o $D$ es la misma puesto que la asignación $X\mapsto P^{-1}X$ induce un isomorfismo entre $\ker(\lambda I_n-A)$ y $\ker(\lambda I_n-D)$. Pero además la multiplicidad geométrica de $\lambda$ como eigenvalor de $D$ también coincide con el número de índices $i=1,\dots, n$ tales que $\lambda_{ii}=n$, ya que el sistema $DX=\lambda X$ es equivalente a $(d_{ii}-\lambda )x_i=0$. Concluimos que en una matriz diagonalizable, la multiplicidad algebraíca y la multiplicidad geométrica coinciden.

Un par de problemas

A continuación resolvemos un par de problemas: el primero sirve para aplicar lo que hemos visto hasta ahora, y el segundo nos será útil más adelante.

Problema. Demuestra que la matriz

\begin{align*}
A=\begin{pmatrix}
1 & a\\ 0 & 1\end{pmatrix}
\end{align*}

no es diagonalizable si $a\neq 0$.

Solución. Supongamos que $A$ es diagonalizable y escribamos $A=PDP^{-1}$ con $P$ invertible y $D$ diagonal. Como $A$ es triangular superior con entradas diagonales iguales a $1$, deducimos que $1$ es el único eigenvalor de $A$. Por la observación anterior tenemos que las entradas diagonales de $D$ son $1$, por tanto $D=I_n$. Pero entonces $A=PI_nP^{-1}=I_n$ una contradicción si $a\neq 0$.

$\square$

El siguiente problema es más técnico, y nos servirá para demostrar uno de los teoremas fundamentales que caracteriza a las matrices diagonalizables.

Problema. Sea $k>1$ y sean $P_1,\dots, P_k$ polinomios primos relativos dos a dos. Si $P=P_1\cdot P_2\cdots P_k$ es su producto y $Q_i=\frac{P}{P_i}$, demuestra que los $Q_1,\dots, Q_k$ son primos relativos (es decir, no existe un polinomio que los divida a todos simultáneamente).

Solución. Supongamos que existe un polinomio $Q$ irreducible que divide a todos los $Q_i$. Puesto que $Q\mid Q_1=P_2\cdots P_k$ deducimos que $Q$ divide a $P_j$ para algún $j\in \{2,\dots, k\}$. Pero como $Q$ divide también a $Q_j$, esto quiere decir que $Q$ divide a $P_i$ para algún $i\neq j$, lo que contradice que los $P_i$ son primos relativos dos a dos.

$\square$

Un teorema de descomposición

Terminamos esta entrada con un teorema algo técnico que será de mucha utilidad en la próxima entrada, cuando caractericemos a las matrices diagonalizables.

Teorema. Sea $T$ una transformación lineal de algún espacio $V$ en si mismo (no necesariamente de dimensión finita). Entonces para cualesquiera polinomios $P_1,\dots, P_k\in F[X]$ primos relativos dos a dos se cumple que

\begin{align*}
\ker P(T)=\bigoplus_{i=1}^{k} \ker P_i(T),
\end{align*}

dónde $P=P_1\cdots P_k$.

Demostración. Consideramos a los polinomios $Q_i=\frac{P}{P_i}$ como en el problema anterior. Como son primos relativos, el teorema de Bezout nos dice que existen polinomios $R_1,\dots, R_k$ tales que

\begin{align*}
Q_1 R_1+\dots +Q_k R_k=1.
\end{align*}

Como $P_i$ divide a $P$, se sigue que $\ker P_i(T)\subset \ker P(T)$ para todo $i\in \{1,\dots, k\}$. Por otro lado si $x\in \ker P(T)$ y escribimos $x_i=(Q_i R_i)(T)(x)$, la relación anterior nos dice que

\begin{align*}
x=x_1+\dots+x_k
\end{align*}

Más aún $P_i(T)(x_i)=(P_i Q_i R_i)(T)(x)$ y $P_iQ_i R_i$ es un múltiplo de $P$. Dado que $x\in \ker P(T)\subset \ker(P_i Q_i R_i)(T)$, se sigue que $x_i\in \ker P_i(T)$, y como $x=x_1+\dots +x_k$ concluimos que

\begin{align*}
\ker P(T)=\sum_{i=1}^{k} \ker P_i(T).
\end{align*}

Queda por demostrar que si $x_i\in \ker P_i(T)$ y $x_1+\dots + x_k=0$ entonces $x_i=0$ para todo $i\in \{1,\dots, k\}$. Tenemos que

\begin{align*}
Q_1(T)(x_1)+Q_1(T)(x_2)+\dots+ Q_1(T)(x_k)=0.
\end{align*}

Pero $Q_1(T)(x_2)=\dots= Q_1(T)(x_k)=0$ dado que $Q_1$ es un múltiplo de $P_2,\dots, P_k$ y $P_2(T)(x_2)=\dots=P_k(T)(x_k)=0$. Entonces $Q_1(T)(x)=0$ y similarmente $Q_j(T)(x_j)=0$ para $j\in \{1,\dots, k\}$. Pero entonces

\begin{align*}
x_1=(R_1 Q_1)(T)(x_1)+\dots+ (R_k Q_k)(T)(x_k)=0
\end{align*}

y similarmente se demuestra que $x_2=\dots =x_k=0$. Queda demostrado el teorema.

$\square$

Más adelante…

En la próxima entrada usaremos lo demostrado en esta entrada para dar una caracterización de las matrices diagonalizables, como hicimos con las matrices triangularizables.

Tarea moral

Estos ejercicios no forman parte de la evaluación del curso, pero son útiles para practicar los conceptos vistos en esta entrada.

  1. Diagonaliza la matriz
    \begin{align*}
    A=\begin{pmatrix}
    -1 & 2\\ 4 & 1\end{pmatrix}\in M_2(\mathbb{C}).
    \end{align*}
  2. ¿Es la siguiente matriz diagonalizable?
    \begin{align*}
    B=\begin{pmatrix}
    5 & 0 & 0\\ 0 & 5 & 0\\ 1 & 0 & 5\end{pmatrix}\in M_3(\mathbb{R}).
    \end{align*}
  3. Sea $V$ un espacio vectorial de dimensión finita y $T:V\to V$ lineal. Demuestra que si $T$ es diagonalizable, entonces $T^2$ también lo es y además $\ker T=\ker T^2$.
  4. Sean $A,B\in M_n(F)$ dos matrices tales que $A$ es invertible y $AB$ es diagonalizable. Demuestra que $BA$ también lo es.
  5. Sea $A\in M_n(\mathbb{C})$ tal que existe $d>0$ con $A^{d}=I_n$. Demuestra que $A$ es diagonalizable.

Entradas relacionadas

Álgebra Lineal I: Problemas de combinaciones lineales, generadores e independientes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya hablamos de combinaciones lineales, de conjuntos generadores y de conjuntos independientes. Lo que haremos aquí es resolver problemas para reforzar el contenido de estos temas.

Problemas resueltos

Problema. Demuestra que el polinomio $p(x)=x^2+x+1$ no puede ser escrito en el espacio vectorial $\mathbb{R}[x]$ como una combinación lineal de los polinomios \begin{align*} p_1(x)=x^2-x\\ p_2(x) = x^2-1\\ p_3(x) = x-1.\end{align*}

Solución. Para resolver este problema, podemos plantearlo en términos de sistemas de ecuaciones. Supongamos que existen reales $a$, $b$ y $c$ tales que $$p(x)=ap_1(x)+bp_2(x)+cp_3(x).$$

Desarrollando la expresión, tendríamos que
\begin{align*}
x^2+x+1 &= a(x^2-x)+b(x^2-1)+c(x-1)\\
&= (a+b)x^2+(-a+c)x+(-b-c),
\end{align*}

de donde igualando coeficientes de términos del mismo grado, obtenemos el siguiente sistema de ecuaciones: $$\begin{cases}a+b & = 1\\ -a + c &= 1 \\ -b-c &= 1.\end{cases}$$

Para mostrar que este sistema de ecuaciones no tiene solución, le aplicaremos reducción gaussiana a la siguiente matriz extendida: $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & 1 \end{pmatrix}.$$

Tras la transvección $R_2+R_1$, obtenemos $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & -1 & -1 & 1 \end{pmatrix}.$$

Tras la transvección $R_3+R_2$, obtenemos $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

De aquí se ve que la forma escalonada reducida tendrá un pivote en la última columna. Por el teorema de existencia y unicidad el sistema original no tiene solución.

$\square$

En el problema anterior usamos un argumento de reducción gaussiana para mostrar que el sistema no tiene solución. Este es un método general que funciona en muchas ocasiones. Una solución más sencilla para ver que el sistema del problema no tiene solución es que al sumar las tres ecuaciones se obtiene $0=3$.

Problema. Sea $n$ un entero positivo. Sea $W$ el subconjunto de vectores en $\mathbb{R}^n$ cuya suma de entradas es igual a $0$. Sea $Z$ el espacio generado por el vector $(1,1,\ldots,1)$ de $\mathbb{R}^n$. Determina si es cierto que $$\mathbb{R}^n=W\oplus Z.$$

Solución. El espacio $Z$ está generado por todas las combinaciones lineales que se pueden hacer con el vector $v=(1,1,\ldots,1)$. Como sólo es un vector, las combinaciones lineales son de la forma $av$ con $a$ en $\mathbb{R}$, de modo que $Z$ es precisamente $$Z=\{(a,a,\ldots,a): a\in\mathbb{R}\}.$$

Para obtener la igualdad $$\mathbb{R}^n=W\oplus Z,$$ tienen que pasar las siguientes dos cosas (aquí estamos usando un resultado de la entrada de suma y suma directa de subespacios):

  • $W\cap Z = \{0\}$
  • $W+Z=\mathbb{R}^n$

Veamos qué sucede con un vector $v$ en $W\cap Z$. Como está en $Z$, debe ser de la forma $v=(a,a,\ldots,a)$. Como está en $W$, la suma de sus entradas debe ser igual a $0$. En otras palabras, $0=a+a+\ldots+a=na$. Como $n$ es un entero positivo, esta igualdad implica que $a=0$. De aquí obtenemos que $v=(0,0,\ldots,0)$, y por lo tanto $W\cap Z = \{0\}$.

Veamos ahora si se cumple la igualdad $\mathbb{R}^n=W+Z$. Por supuesto, se tiene que $W+Z\subseteq \mathbb{R}^n$, pues los elementos de $W$ y $Z$ son vectores en $\mathbb{R}^n$. Para que la igualdad $\mathbb{R}^n\subseteq W+Z$ se cumpla, tiene que pasar que cualquier vector $v=(x_1,\ldots,x_n)$ en $\mathbb{R}^n$ se pueda escribir como suma de un vector $w$ uno con suma de entradas $0$ y un vector $z$ con todas sus entradas iguales. Veamos que esto siempre se puede hacer.

Para hacerlo, sea $S=x_1+\ldots+x_n$ la suma de las entradas del vector $v$. Consideremos al vector $w=\left(x_1-\frac{S}{n},\ldots, x_n-\frac{S}{n} \right)$ y al vector $z=\left(\frac{S}{n},\ldots,\frac{S}{n}\right)$.

Por un lado, $z$ está en $Z$, pues todas sus entradas son iguales. Por otro lado, la suma de las entradas de $w$ es
\begin{align*}
\left(x_1-\frac{S}{n}\right)+\ldots + \left(x_n-\frac{S}{n}\right)&=(x_1+\ldots+x_n)-n\cdot \frac{S}{n}\\ &= S-S=0,
\end{align*}

lo cual muestra que $w$ está en $W$. Finalmente, notemos que la igualdad $w+z=v$ se puede comprobar haciendo la suma entrada a entrada. Con esto mostramos que cualquier vector de $V$ es suma de vectores en $W$ y $Z$ y por lo tanto concluimos la igualdad $\mathbb{R}^n=W\oplus Z$.

$\square$

En el problema anterior puede parecer algo mágico la propuesta de vectores $w$ y $z$. ¿Qué es lo que motiva la elección de $\frac{S}{n}$? Una forma de enfrentar los problemas de este estilo es utilizar la heurística de trabajar hacia atrás. Sabemos que el vector $w$ debe tener todas sus entradas iguales a cierto número $a$ y queremos que $z=v-w$ tenga suma de entradas igual a $0$. La suma de las entradas de $v-w$ es $$(x_1-a)+\ldots+(x_n-a)= S -na.$$ La elección de $a=\frac{S}{n}$ está motivada en que queremos que esto sea cero.

Problema. Considera las siguientes tres matrices en $M_2(\mathbb{C})$:
\begin{align*}
A&= \begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix}\\
B&= \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix}\\
C&= \begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix}.
\end{align*}

Demuestra que $A$, $B$ y $C$ son matrices linealmente dependientes. Da una combinación lineal no trivial de ellas que sea igual a $0$.

Solución. Para mostrar que son linealmente dependientes, basta dar la combinación lineal no trivial buscada. Buscamos entonces $a,b,c$ números complejos no cero tales que $aA+bB+cC=O_2$, la matriz cero en $M_2(\mathbb{C})$. Para que se de esta igualdad, es necesario que suceda entrada a entrada. Tenemos entonces el siguiente sistema de ecuaciones:
$$\begin{cases}
-i a + 2i b + ic &= 0\\
-3a + b -7c &=0\\
2a + 3b + 12c &= 0\\
3a -b +7c &=0.
\end{cases}$$

En este sistema de ecuaciones tenemos números complejos, pero se resuelve exactamente de la misma manera que en el caso real. Para ello, llevamos la matriz correspondiente al sistema a su forma escalonada reducida. Comenzamos dividiendo el primer renglón por $-i$ y aplicando transvecciones para hacer el resto de las entradas de la columna iguales a $0$. Luego intercambiamos la tercera y cuarta filas.

\begin{align*}
&\begin{pmatrix}
-i & 2i & i \\
-3 & 1 & -7 \\
2 & 3 & 12 \\
3 & -1 & 7
\end{pmatrix}\\
\to&\begin{pmatrix}
1 & -2 & -1 \\
0 & -5 & -10 \\
0 & 7 & 14 \\
0 & 5 & 10
\end{pmatrix}
\end{align*}

Ahora reescalamos con factor $-\frac{1}{5}$ la segunda fila y hacemos transvecciones para hacer igual a cero el resto de entradas de la columna 2:

\begin{align*}
&\begin{pmatrix}
1 & 0& 3 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\end{align*}

Con esto llegamos a la forma escalonada reducida de la matriz. De acuerdo al procedimiento que discutimos en la entrada de sistemas lineales homogéneos, concluimos que las variables $a$ y $b$ son pivote y la variable $c$ es libre. Para poner a $a$ y $b$ en términos de $c$, usamos la primera y segunda ecuaciones. Nos queda \begin{align*} a &= -3c \\ b &= -2c. \end{align*}

En resumen, concluimos que para cualqueir número complejo $c$ en $\mathbb{C}$ se tiene la combinación lineal $$-3c\begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix} – 2c \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix} + c\begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Una posible combinación lineal no trivial se obtiene tomando $c=1$.

$\square$

En el problema anterior bastaba encontrar una combinación lineal no trivial para acabar el ejercicio. Por supuesto, esto también se puede hacer por prueba y error. Sin embargo, la solución que dimos da una manera sistemática de resolver problemas de este estilo.

Problema. Consideremos el espacio vectorial $V$ de funciones $f:\mathbb{R}\to \mathbb{R}$. Para cada real $a$ en $(0,\infty)$, definimos a la función $f_a\in V$ dada por $$f_a(x)=e^{ax}.$$

Tomemos reales distintos $0<a_1<a_2<\ldots<a_n$. Supongamos que existe una combinación lineal de las funciones $f_{a_1},\ldots,f_{a_n}$ que es igual a $0$, es decir, que existen reales $\alpha_1,\ldots,\alpha_n$ tales que $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0$$ para todo real $x\geq 0$.

Muestra que $\alpha_1=\ldots=\alpha_n=0$. Concluye que la familia $(f_a)_{a\in \mathbb{R}}$ es linealmente independiente en $V$.

Solución. Procedemos por inducción sobre $n$. Para $n=1$, si tenemos la igualdad $\alpha e^{ax}=0$ para toda $x$, entonces $\alpha=0$, pues $e^{ax}$ siempre es un número positivo. Supongamos ahora que sabemos el resultado para cada que elijamos $n-1$ reales cualesquiera. Probaremos el resultado para $n$ reales cualesquiera.

Supongamos que tenemos la combinación lineal $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0$$ para todo real $x\geq 0$.

Dividamos esta igualdad que tenemos entre $e^{a_nx}$:

$$\alpha_1 e^{(a_1-a_n)x} + \alpha_2e^{(a_2-a_n)x} + \ldots + \alpha_{n-1}e^{(a_{n-1}-a_n)x}+\alpha_n = 0.$$

¿Qué sucede cuando hacemos $x\to \infty$? Cada uno de los sumandos de la forma $\alpha_i e^{(a_i-a_n)x}$ se hace cero, pues $a_i<a_n$ y entonces el exponente es negativo y se va a $-\infty$. De esta forma, queda la igualdad $\alpha_n=0$. Así, nuestra combinación lineal se ve ahora de la forma $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_{n-1} e^{a_{n-1}x} = 0.$$

Por la hipótesis inductiva, $\alpha_1=\ldots=\alpha_{n-1}=0$. Como también ya demostramos $\alpha_n=0$, hemos terminado el paso inductivo.

Concluimos que la familia (infinita) $(f_a)_{a\in \mathbb{R}}$ es linealmente independiente en $V$ pues cualquier subconjunto finito de ella es linealmente independiente.

$\square$

El problema anterior muestra que la razón por la cual ciertos objetos son linealmente independientes puede deberse a una propiedad analítica o de cálculo. A veces dependiendo del contexto en el que estemos, hay que usar herramientas de ese contexto para probar afirmaciones de álgebra lineal.

Entradas relacionadas

Álgebra Lineal I: Subespacios vectoriales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior dimos la definición de espacio vectorial y vimos varios ejemplos de espacios vectoriales. Ahora hablaremos de subespacios vectoriales o simplemente, subespacios. A grandes rasgos, podemos pensar a un subespacio como un subconjunto de un espacio vectorial $V$ que también es un espacio vectorial con las mismas operaciones de $V$.

Definición de subespacios vectoriales y primeras consecuencias

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Un subespacio vectorial de $V$, o simplemente un subespacio de $V$, es un subconjunto no vacío $W$ de $V$ cerrado bajo las operaciones de suma vectorial y multiplicación escalar de $V$. En otras palabras, $W$ es un subespacio de $V$ si se cumplen las siguientes dos propiedades:

  1. (Cerradura de la suma vectorial) Para cualesquiera $u$ y $v$ elementos de $W$, se cumple que $u+v$ está en $W$.
  2. (Cerradura de la multiplicación por escalar) Para cualquier escalar $c$ en $F$ y vector $v$ en $W$ se cumple que $cv$ está en $W$.

En la entrada anterior ya vimos un ejemplo. Si tenemos un campo $F$ y nos fijamos el espacio vectorial $F[x]$ de polinomios, entonces para cualquier entero $n$ el subconjunto $F_n[x]$ de $F[x]$ de polinomios de grado a lo más $n$ es cerrado bajo la suma de polinomios y bajo el producto escalar. De esta forma, $F_n[x]$ es un subespacio de $F[x]$. Más abajo veremos muchos ejemplos de subespacios, pero primero nos enfocaremos en algunas consecuencias de la definición.

Observación. Se cumple todo lo siguiente:

  1. Si $W$ es un subespacio de un espacio vectorial $V$, entonces $W$ debe tener al vector $0$ de $V$ (es decir, la identidad aditiva de la suma vectorial). Esto se debe a que $W$ es no vacío, así que tiene por lo menos un elemento $v$. Si tomamos al $0$ de $F$ y usamos la propiedad (2) de subespacio con $0$ y $v$ obtenemos que $0v=0$ está en $W$.
  2. Si $W$ es un subespacio de un espacio vectorial $V$ y $v$ está en $W$, entonces $-v$ también. Esto se debe a que por la propiedad (2) de subespacio tenemos que $(-1)v=-v$ está en $W$.
  3. Si $V$ es un espacio vectorial sobre $F$ y $W$ es un subespacio de $V$, entonces $W$ también es un espacio vectorial sobre $F$ con las mismas operaciones que $V$. Por un lado, el neutro e inversos aditivos existen por los dos incisos anteriores. Para el resto de las propiedades, se usa que se cumplen para elementos de $V$ y por lo tanto también para los de $W$ (pues es un subconjunto).
  4. Si $W_1$ y $W_2$ son dos subespacios de un espacio vectorial $V$, entonces la intersección $W_1\cap W_2$ también lo es.

$\square$

La primera propiedad nos puede ayudar en algunas ocasiones (no siempre) a darnos cuenta rápidamente si un subconjunto no es subespacio vectorial: si no tiene al vector $0$, entonces no es subespacio.

La tercera propiedad tiene una consecuencia práctica muy importante: para mostrar que algo es un espacio vectorial, basta con mostrar que es un subespacio de algo que ya sabemos que es un espacio vectorial.

Problema. Muestra que $\mathcal{C}[0,1]$, el conjunto de funciones continuas de $[0,1]$ a $\mathbb{R}$, es un espacio vectorial sobre $\mathbb{R}$ con las operaciones de suma de funciones y multiplicación por escalar.

Solución. En la entrada anterior vimos que el conjunto $V$ de funciones de $[0,1]$ a los reales es un espacio vectorial sobre $\mathbb{R}$ con las operaciones de suma de funciones y multiplicación escalar. El conjunto $\mathcal{C}[0,1]$ es un subconjunto de $V$.

Por argumentos de cálculo, la suma de dos funciones continuas es una función continua. Así mismo, al multiplicar una función continua por un real obtenemos de nuevo una función continua. De esta forma, $\mathcal{C}[0,1]$ es un subespacio de $V$.

Por la observación (3) de la discusión previa, obtenemos que $\mathcal{C}[0,1]$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones de suma de funciones y multiplicación por escalar.

$\square$

Definiciones alternativas de subespacios vectoriales

Algunos textos manejan definiciones ligeramente distintas a la que nosotros dimos. Sin embargo, todas ellas son equivalentes.

Proposición. Sea $V$ un espacio vectorial sobre el campo $F$ y $W$ un subconjunto de $V$. Los siguientes enunciados son equivalentes.

  1. $W$ es un subespacio de $V$ de acuerdo a nuestra definición.
  2. Para cualesquiera vectores $u$ y $v$ en $W$ y escalares $a$ y $b$ en $F$, se tiene que $au+bv$ está en $W$.
  3. Para cualesquiera vectores $u$ y $v$ en $W$ y cualquier escalar $c$ en $F$ se tiene que $cu+v$ está en $W$.

Demostración. (1) implica (2). Supongamos que $W$ es un subespacio de $V$. Tomemos vectores $u,v$ en $W$ y escalares $a,b$ en $F$. Como $W$ es cerrado bajo producto escalar, se tiene que $au$ está en $W$. De manera similar, $bv$ está en $W$. Como $W$ es cerrado bajo sumas, se tiene que $au+bv$ está en $W$.

(2) implica (3). Supontamos que $W$ satisface (2) y tomemos $u,v$ en $W$ y cualquier escalar $c$ en $F$. Tomando $a=c$ y $b=1$ en (2), tenemos que $cu+1v=cu+v$ está en $W$.

(3) implica (1). Supongamos que $W$ satisface (3). Hay que ver que $W$ es cerrado bajo sumas y producto escalar. Si tomamos $u$ y $v$ en $W$ y al escalar $c=1$ de $F$, por (3) obtenemos que $cu+v=1u+v=u+v$ está en $W$, lo cual muestra la cerradura de la suma. Si tomamos cualquier escalar $c$ y al vector $w=0$, entonces por (3) se tiene que $cu+w=cu+0=cu$ está en $W$. Esto muestra la cerradura bajo producto escalar.

$\square$

La consecuencia práctica de la proposición anterior es que basta verificar (2) o (3) para garantizar que $W$ es un subespacio.

Problema. Considera $V$ el espacio vectorial de matrices en $M_n(F)$. Muestra que el subconjunto $W$ de matrices simétricas forman un subespacio de $V$.

Solución. Lo demostraremos probando el punto (3) de la proposición. Sea $c$ un escalar en $F$ y sean $A$ y $B$ matrices en $W$, es decir, tales que $^tA=A$ y $^tB = B$. Debemos mostrar que $cA+B$ está en $W$, es decir, que $^t(cA+B)=cA+B$. Usando propiedades de la transpuesta y la hipótesis sobre $A$ y $B$ tenemos que: $$^t(cA+B) = c \ ^tA+ \ ^tB = cA + B.$$ Con esto termina la demostración.

$\square$

Más ejemplos de subespacios vectoriales

A continuación presentamos más ejemplos de subespacios vectoriales. En cada ejemplo damos un espacio vectorial y un subconjunto $W$. Para cada uno de los casos, piensa por qué la suma de dos elementos de $W$ es de nuevo un elemento de $W$ y por qué el producto de un escalar por un elemento de $W$ es un elemento de $W$. También puedes usar la última proposición para probar ambas cosas simultáneamente.

  • Si tomamos $M_2(\mathbb{R})$, el subconjunto $W$ de matrices que cumplen que la suma de entradas en su diagonal principal es igual a $0$ es un subespacio.
  • En el espacio vectorial $F^4$, el subconjunto $W$ de vectores cuya primera y tercer entrada son iguales a $0$ forman un subespacio.
  • Las funciones acotadas del intervalo $[-3, 3]$ a $\mathbb{R}$ forman un subconjunto $W$ que es un subespacio de las funciones del intervalo $[-3,3]$ a $\mathbb{R}$.
  • El subconjunto $W$ de vectores $(x,y,z)$ de $\mathbb{R}^3$ tales que $$\begin{cases}x+y+z &= 0\\ x+ 2y + 3z &= 0 \end{cases}$$ es un subespacio de $\mathbb{R}^3$.
  • Si tomamos $W=\mathbb{R}_3[x]$, entonces este es un subespacio de $\mathbb{R}_4[x]$.
  • Si tomamos $W=\mathbb{R}_4[x]$, entonces este es un subespacio de $\mathbb{R}_5[x]$.
  • El subconjunto $W$ de funciones diferenciables de $[0,10]$ a $\mathbb{R}$ tales que su derivada evaluada en $7$ es igual a $0$ es un subespacio del espacio de funciones continuas de $[0,10]$ a $\mathbb{R}$.
  • Las matrices triangulares superiores de $M_n(F)$ forman un subespacio $W$ del espacio $M_n(F)$. Las matrices triangulares inferiores también. Como la intersección de estos subespacios es el conjunto de matrices diagonales, obtenemos que las matrices diagonales también son un subespacio (aunque claro, esto también se puede probar directamente de la definición).

Ejemplos de subconjuntos que no son subespacios vectoriales

Aunque ya vimos muchos ejemplos de subespacios, resulta que en realidad es un poco raro que un subconjunto de un espacio vectorial sea un subespacio. Los ejemplos de subconjuntos que no son subespacios vectoriales abundan. Veamos algunos y qué tipo de cosas pueden salir mal.

  • El subconjunto $W=\{(x,y,z): x^2+y^2+z^2=1\}$ no es un subespacio de $\mathbb{R}^3$. Podemos dar el siguiente argumento: ya demostramos que un subespacio debe tener al vector cero. En este caso, $W$ debería tener a $(0,0,0)$ para ser subespacio. Pero $0^2+0^2+0^2=0\neq 1$. Así, $(0,0,0)$ no está en $W$ y por lo tanto $W$ no es subespacio.
  • Alternativamente, en el ejemplo anterior podemos ver que $(1,0,0)$ está en $W$, pero $2(1,0,0)=(2,0,0)$ no.
  • El subconjunto $W=\{(0,0), (1,2), (-1,2)\}$ de $\mathbb{R}^2$ no es un subespacio, pues $(1,2)$ está en $W$. Tomando $u=(1,2)$ y $v=(1,2)$, vemos que $W$ no es cerrado bajo sumas pues $(1,2)+(1,2)=(2,4)$ no está en $W$.
  • Las matrices del subconjunto $GL_n(F)$ de $M_n(F)$, es decir, las matrices invertibles, no conforman un subespacio. Por un lado, ya vimos que el neutro aditivo de la suma debe estar en un subespacio, pero la matriz $O_n$ no es invertible, así que no está en $GL_n(F)$.
  • El subconjunto $W$ de funciones $f:[-3,3]\to \mathbb{R}$ diferenciables tales que su derivada en $0$ es igual a $2$ no es un subespacio de las funciones continuas de $[-3,3]$ a $\mathbb{R}$. Hay muchas formas de verlo. Podemos darnos cuenta que $f(x)=x^2+2x$ es una de las funciones en $W$ pues $f'(x)=2x+2$ y $f'(0)=2$. Sin embargo, $3f$ no está en $W$.
  • El subconjunto $W$ de polinomios de $\mathbb{R}[x]$ con coeficientes no negativos no es un subespacio de $\mathbb{R}[x]$. El polinomio $0$ sí está en $W$ y la suma de cualesquiera dos elementos de $W$ está en $W$. Sin embargo, falla la multiplicación escalar pues $x$ está en $W$, pero $(-1)x=-x$ no.
  • La unión del eje $X$, el eje $Y$ y el eje $Z$ de $\mathbb{R}^3$ es un subconjunto $W$ de $\mathbb{R}^3$ que no es un subespacio. Cualquier producto escalar queda dentro de $W$, pero la suma no es cerrada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que los siguientes conjuntos $W$ son subespacios del espacio vectorial indicado.
    • El subconjunto $W$ de vectores $(w,x,y,z)$ de $\mathbb{C}^4$ tales que $w+x+y+z=0$.
    • La colección $W$ de funciones continuas $f:[0,1]\to \mathbb{R}$ tales que $\int_0^1 f(x) \, dx = 0$ es un subespacio del espacio de funciones de $[0,1]$ a $\mathbb{R}$.
    • $W=\left\{\begin{pmatrix} a+b & b\\ -b & c+b \end{pmatrix}: a,b,c \in \mathbb{R} \right\}$ es un subespacio de las matrices en $M_2(\mathbb{R})$.
  • Demuestra que los siguientes conjuntos $W$ no son subespacios del espacio vectorial indicado.
    • El subconjunto $W$ de vectores $(x,y)$ de $\mathbb{R}^2$ tales que $xy\geq 0$ no es un subespacio de $\mathbb{R}^2$.
    • El subconjunto $W$ de matrices en $M_{3,2}(F)$ cuyo producto de todas las entradas es igual a $0$ no es un subespacio de $M_{3,2}$
    • Cuando $W$ es un subconjunto finito y con al menos dos polinomios con coeficientes complejos y de grado a lo más $3$, es imposible que sea un subespacio de $\mathbb{C}_3[x]$.
  • Sea $V$ un espacio vectorial y $n$ un entero positivo. Demuestra que si $W_1, W_2, \ldots, W_n$ son subespacios de $V$, entonces la intersección $$W_1 \cap W_2 \cap \ldots \cap W_n$$ también lo es.
  • Escribe por completo la demostración de que cualquier subespacio de un espacio vectorial es también un espacio vectorial con las mismas operaciones.
  • Demuestra que si $V$ es un espacio vectorial, $W$ es un subespacio de $V$ y $U$ es un subespacio de $W$, entonces $U$ es un subespacio de $V$.

Más adelante…

En esta entrada definimos el concepto de subespacio de un espacio vectorial. En la siguiente hablaremos de algunas operaciones que se les puede hacer a los subespacios vectoriales para «combinarlos» y obtener más subespacios. Una operación muy imporante es la de suma de subespacios, que puede tener dos o más sumandos. La operación de suma de subespacios es particularmente especial cuando los subespacios están en posición de suma directa. Para irte dando una idea de qué quiere decir esto, dos subespacios están en posición de suma directa si su único elemento en común es el vector $0$. El caso general de más subespacios se enuncia de forma distinta y también lo veremos en la siguiente entrada.

Entradas relacionadas