Archivo de la etiqueta: polinomio característico

Álgebra lineal II: Triangularizar y descomposición de Schur

Introducción

En esta entrada estudiaremos el concepto de triangularizar matrices. Esto simplemente quiere decir encontrar una base respecto a la cual podamos escribir a nuestra matriz como una matriz triangular superior. Esto tiene muchas ventajas, puesto que las matrices triangulares superiores son relativamente fáciles de calcular. Como veremos, el concepto de triangularización está íntimamente ligado con los ceros de polinomios.

Matrices triangulares

Recordamos que una matriz $A=[a_{ij}]\in M_n(F)$ se dice triangular superior si $a_{ij}=0$ siempre que $i>j$, es decir si todas las entradas por debajo de la diagonal son cero. Las matrices triangulares gozan de algunas propiedades que ya hemos explorado. Por ejemplo, sus valores propios son fácilmente calculables: ¡son precisamente las entradas de la diagonal! Más explícitamente su polinomio característico es exactamente

\begin{align*}
\chi_A(X)=\prod_{i=1}^{n}(X-a_{ii}).
\end{align*}

Además forman un subespacio cerrado bajo multiplicación del espacio de todas las matrices. Puesto que son matrices ‘sencillas’, es deseable poder escribir alguna otra matriz como una matriz triangular, tal vez mediante un cambio de base: esto es precisamente triangularizar. Tenemos entonces la siguiente definición.

Definición. Diremos que una matriz es triangularizable si es similar a una matriz triangular superior.

Primero, necesitaremos de un par de conceptos sobre polinomios.

Polinomios y sus raíces

Definición. Un polinomio $P\in F[X]$ se divide sobre F si es de la forma

\begin{align*}
P(X)=c(X-a_1)\cdots (X-a_n)
\end{align*}

para algunos escalares $c,a_1,\dots, a_n\in F$ no necesariamente distintos.

Por ejemplo el polinomio $X^2+1$ no se divide sobre $\mathbb{R}$ ya que sabemos que no tiene raíces reales. Sin embargo, el mismo polinomio si se divide sobre $\mathbb{C}$: en efecto

\begin{align*}
X^2+1=(X-i)(X+i).
\end{align*}

Por otro lado, el polinomio $X^2-3X+2$ si se divide sobre $\mathbb{R}$, puesto que lo podemos escribir como

\begin{align*}
X^2-3X+2=(X-1)(X-2).
\end{align*}

Nota que el polinomio también se divide sobre $\mathbb{C}$ puesto que $\mathbb{R}\subset \mathbb{C}$. De hecho, no existe ningún polinomio con coeficientes complejos que no se divida sobre $\mathbb{C}$, este es un sorprendente resultado de Gauss:

Teorema. (Fundamental del Álgebra)

Cualquier polinomio $P\in \mathbb{C}[X]$ se divide sobre $\mathbb{C}$.

Este teorema también se enuncia diciendo que $\mathbb{C}$ es algebraícamente cerrado. Es decir, todo polinomio con coeficientes complejos tiene al menos una raíz compleja. Es un buen ejercicio verificar que ambas versiones son equivalentes.

Por lo que mencionamos al principio, el polinomio característico de una matriz triangular superior se divide sobre el campo. Como el polinomio de matrices similares es igual, se sigue que si una matriz es triangularizable, entonces su polinomio característico se divide sobre el campo.

Problema. Da un ejemplo de una matriz $A\in M_2(\mathbb{R})$ que no sea triangularizable en $M_2(\mathbb{R})$.

Solución. Puesto que el polinomio característico de una matriz triangularizable se divide sobre el campo, es suficiente con encontrar una matriz cuyo polinomio característico no se divida sobre $\mathbb{R}$: por ejemplo $X^2+1$. Enseguida proponemos la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 1 \\ -1 & 0 \end{pmatrix}.
\end{align*}

Entonces $\chi_A(X)=X^2+1$, que ya aclaramos que no se divide sobre $\mathbb{R}$. Por tanto $A$ no es triangularizable.

$\square$

Un teorema sobre triangularizar

Ya vimos que si $A$ es una matriz triangularizable su polinomio característico se divide sobre el campo. El siguiente teorema nos dice que el converso también es cierto.

Teorema. Sea $A\in M_n(F)$. Las siguientes afirmaciones son equivalentes:

  1. El polinomio característico de $A$ se divide sobre $F$.
  2. $A$ es similar a una matriz triangular superior.

Demostración. La discusión previa ya nos mostró que $2$ implica $1$. Probaremos el converso por inducción sobre $n$. El resultado se cumple para $n=1$ (pues toda matriz es triangular superior), así que podemos asumir que $n\geq 2$ y que el resultado se cumple para $n-1$.

Sea $\lambda\in F$ una raíz de $\chi_A$. Nota que dicha raíz existe pues estamos suponiendo que $\chi_A$ se divide sobre $F$. También escogemos un vector no-cero $v$ tal que $Av=\lambda v$, es decir, un eigenvector asociado a $\lambda$. Como $v\neq 0$, podemos completar a una base $v=v_1,\dots, v_n$ de $V=F^n$. La matriz asociada a la transformación lineal $T$ asociada a $A$ se ve entonces de la forma

\begin{align*}
\begin{pmatrix}
\lambda & \ast\\
0 & B
\end{pmatrix}
\end{align*}

para alguna $B\in M_{n-1}(F)$. Entonces podemos encontrar una matriz de cambio de base (y por tanto invertible) $P_1$ tal que

\begin{align*}
P_1 AP_1^{-1}=\begin{pmatrix}
\lambda & \ast\\
0 & B
\end{pmatrix}.
\end{align*}

Puesto que matrices similares comparten el mismo polinomio característico, tenemos que

\begin{align*}
\chi_A(X)=\chi_{P_1AP_1^{-1}}(X)=(X-\lambda)\chi_B(X).
\end{align*}

Se sigue que $\chi_B$ se divide sobre el campo. Además, $B\in M_{n-1}(F)$, por lo que podemos aplicar la hipótesis de inducción para afirmar que existe una matriz invertible $Q\in M_{n-1}(F)$ tal que $QBQ^{-1}$ es triangular superior. Luego definiendo

\begin{align*}
P_2=\begin{pmatrix}
1 & 0\\
0 & Q
\end{pmatrix},
\end{align*}

se cumple no solo que $P_2$ es invertible (¿por qué?) pero además que

\begin{align*}
P_2(P_1AP_1^{-1})P_2^{-1}=\begin{pmatrix}
\lambda & \ast\\
0 & QBQ^{-1}\end{pmatrix}.
\end{align*}

Notamos que esta última matriz es triangular superior, puesto que $QBQ^{-1}$ lo es. Esto completa la prueba.

$\square$

Un corolario importante

Combinando el teorema fundamental del álgebra junto con el teorema pasado obtenemos un corolario importante, conocido como el teorema de descomposición de Schur. Lo enunciamos como teorema.

Teorema. (De descomposición de Schur)

Para cualquier matriz $A\in M_n(\mathbb{C})$ podemos encontrar una matriz invertible $P\in M_n(\mathbb{C})$ y una matriz triangular superior $T\in M_n(\mathbb{C})$ tal que $A=PTP^{-1}$. Por tanto toda matriz con entradas complejas es triangularizable.

Demostración. Por el teorema fundamental del álgebra, tenemos que $\chi_A$ se divide sobre $\mathbb{C}$. Luego usando el teorema anterior concluimos que $A$ es triangularizable.

$\square$

Más adelante

En la próxima entrada veremos un concepto parecido a triangularizar pero más fuerte: diagonalizar, que consiste en llevar a una matriz a una matriz diagonal similar.

Tarea moral

A continuación presentamos algunos ejercicios que sirven para repasar los temas vistos en esta entrada.

  1. ¿Es la matriz
    \begin{align*}
    A=\begin{pmatrix}
    1 & 2 & 1\\ 3 & 2 & 2\\ 0 & 1 & 1\end{pmatrix}
    \end{align*}
    triangularizable sobre $\mathbb{R}$?
  2. Encuentra una matriz traingular superior similar a la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 2\\ 3 & 2\end{pmatrix}.
    \end{align*}
  3. Encuentra una matriz triangular superior similar a la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1\end{pmatrix}.
    \end{align*}
  4. ¿Por qué la matriz $P_2$ construida en la demostración del segundo teorema es invertible?
  5. Demuestra que una matriz $A\in M_n(F)$ es nilpotente si y sólo si es similar a una matriz triangular superior con entradas cero en la diagonal.

Álgebra lineal II: Demostración de Cayley-Hamilton

Introducción

En esta entrada demostraremos el teorema de Cayley-Hamilton. Daremos dos demostraciones de sabores muy diferentes, y terminaremos con un par de ejercicios de aplicación. La primera demostración explota las propiedades de la matriz adjunta, mientras que la segunda echa mano de las familias especiales de las cuales calculamos el polinomio característico.

Primera demostración

La primera demostración del teorema de Cayley-Hamilton usa algunas propiedades de la matriz adjunta. Recordamos el teorema y lo demostramos a continuación:

Teorema. (Cayley-Hamilton)

Para cualquier matriz $A\in M_n(F)$ se cumple que

\begin{align*}
\chi_A(A)=O_n.
\end{align*}

Demostración. Sea $A\in M_n(F)$ y sea $B=XI_n-A\in M_n(K)$ dónde $K=F(X)$ es el campo de fracciones racionales en la variable $X$. Es decir, un elemento de $K$ es un cociente de la forma

\begin{align*}
\frac{A(X)}{B(X)}, \hspace{2mm} A(X),B(X)\in F[X]
\end{align*}

con $B$ no idénticamente cero.

Sea $C$ la matriz adjunta de $B$, es decir $C=\operatorname{adj}(B)$. Sus entradas son (por definición) los determinantes de las matrices de tamaño $(n-1)$ cuyas entradas son a su vez polinomios de grado a lo más $1$. Es decir cada entrada de $C$ es un polinomio de grado a lo más $n-1$. Luego, sea

\begin{align*}
c_{ij}= c_{ij}^{(0)}+c_{ij}^{(1)}X+\dots+c_{ij}^{(n-1)} X^{n-1}
\end{align*}

la $(i,j)$-ésima entrada de $C$, con $c_{ij}^{(0)},\dots, c_{ij}^{(n-1)}\in F$. Sea $C^{(k)}$ la matriz cuyas entradas son $c_{ij}^{(k)}$. Entonces

\begin{align*}
C=C^{(0)}+C^{(1)}X+\dots+ C^{(n-1)}X^{n-1}.
\end{align*}

Enseguida, recuerda que

\begin{align*}
B\cdot C=B \cdot \operatorname{adj}(B)=\det(B)\cdot I_n=\chi_A(X)\cdot I_n.
\end{align*}

Es decir

\begin{align*}
(X I_n-A)\cdot \left(C^{(0)}+C^{(1)}X+\dots+C^{(n-1)}X^{n-1}\right)=\chi_A(X)\cdot I_n.
\end{align*}

Por otro lado, si escribimos a $\chi_A(X)$ como $\chi_A(X)=X^{n}+u_{n-1}X^{n-1}+\dots + u_0\in F[X]$, la igualdad anterior se convierte en

\begin{align*}
&-AC^{(0)}+(C^{(0)}-AC^{(1)})X+ (C^{(1)}-AC^{(2)})X^2+\dots + (C^{(n-2)}-AC^{(n-1)})X^{n-1}\\ &+C^{(n-1)}X^{n}= u_0 I_n+\dots + u_{n-1}I_nX^{n-1}+I_nX^{n}.
\end{align*}

Identificando los términos de cada coeficiente llegamos a

\begin{align*}
\begin{cases} -AC^{(0)}= u_0 I_n,\\ C^{(0)}-AC^{(1)}= u_1 I_n,\\ \vdots\\ C^{(n-2)}-AC^{(n-1)}=u_{n-1}I_n,\\ C^{(n-1)}=I_n.
\end{cases}
\end{align*}

Comenzando con la última igualdad, tenemos que $C^{(n-1)}=I_n$. Sustituyendo en la anterior llegamos a que $C^{(n-2)}=A+u_{n-1}I_n$, e inductivamente se cumple que

\begin{align*}
C^{(n-j-1)}=A^{j}+u_{n-1}A^{j-1}+\dots+u_1 I_n.
\end{align*}

En particular

\begin{align*}
C^{(0)}=A^{n-1}+u_{n-1}A^{n-2}+\dots+u_1 I_n.
\end{align*}

Multiplicando ambos lados por $A$ y usando que $-AC^{(0)}=u_0 I_n$ finalmente llegamos a

\begin{align*}
A^{n}+u_{n-1}A^{n-1}+\dots+ u_0 I_n=O_n.
\end{align*}

Pero esta igualdad no es nada más que $\chi_A(A)=O_n$, lo que concluye la prueba.

$\square$

Segunda demostración

Para la segunda demostración enunciaremos el teorema de una manera distinta pero equivalente (¿por qué?). Usaremos una estrategia fundada en el cálculo de polinomios característicos de familias conocidas de una entrada previa.

Teorema. (Cayley-Hamilton)

Sea $V$ un espacio vectorial de dimensión finita sobre $F$ y sea $T:V\to V$ una transformación lineal. Entonces $\chi_T(T)=0$.

Demostración. La idea es reducir el problema a transformaciones lineales para las que podemos calcular $\chi_T$ fácilmente. Sin embargo, los detalles son un poco complicados.

Fijemos $x\in V$. Para $m\geq 0$ fijamos

\begin{align*}
W_m=\operatorname{Span}(T^0(x), T^1(x), \dots, T^{m}(x)).
\end{align*}

Nota como $W_0\subset W_1\subset \dots \subset V$ y que $\dim W_m\leq \dim W_{m+1}\leq \dim V$ para todo $m\geq 0$. Entonces debe existir algún $m$ mínimo tal que $\dim W_{m-1}=\dim W_m$. Entonces como $W_{m-1}\subset W_{m}$ se tiene que $W_{m-1}=W_{m}$. Luego $T^{m}(x)\in W_{m-1}$, es decir existe una combinación lineal

\begin{align*}
T^{m}(x)=\sum_{k=0}^{m-1} a_k T^{k}(x).
\end{align*}

Nota que esto implica que $W_{m-1}$ es estable bajo $T$. Como $m$ es mínimo, los vectores $T^{0}(x),\dots, T^{m-1}(x)$ deben ser linealmente independientes: en efecto, si no lo fueran existiría una relación de dependencia entre $T^{m-1}(x)$ y términos de grado menor y así $\dim W_{m-1}=\dim W_{m-2}$ y entonces $m$ no sería mínimo. Por lo tanto forman una base para $W_{m-1}$ y respecto a esta base la matriz asociada a $T\vert_{W_{m-1}}$ es

\begin{align*}
A=\begin{pmatrix} 0 & 0 & 0 &\dots & 0 & a_0\\ 1 & 0 & 0 & \dots & 0 & a_1\\ 0 & 1 & 0 & \dots & 0 & a_2\\ \vdots & \vdots &\vdots &\ddots &\vdots &\vdots\\ 0 & 0 & 0 & \dots & 1 & a_n\end{pmatrix}.
\end{align*}

El polinomio característico de matrices como esta lo calculamos en esta entrada y es igual a $X^{m}-a_{m-1}X^{m-1}-\dots -a_0$. Entonces

\begin{align*}
\chi_{T\vert_{W_{m-1}}}(T)(x)= T^{m}(x)-\sum_{k=0}^{m-1}a_k T^{k}(x)=0.
\end{align*}

Pero como $W_{m-1}$ es $T-$estable, el polinomio característico de $T\vert_{W_{m-1}}$ divide al polinomio característico de $T$ (este es un ejercicio en la tarea moral de esta entrada) y por tanto $\chi_T(T)(x)=0$. Como $x$ fue arbitrario concluimos que $\chi_T(T)$ es la transformación cero.

$\square$

Más adelante

En la próxima entrada veremos aplicaciones del teorema de Cayley-Hamilton.

Tarea Moral

  1. Supón que $T:V\to V$ es una transformación lineal y $V$ es de dimensión finita. Demuestra que si $W$ es un subespacio $T$-estable de $V$ entonces $\chi_{T\vert_{W}}(X)$ divide a $\chi_{T}(X)$. Sugerencia. Considera una base de $W$, extiéndela a una base de $V$. ¿Cómo se ve la matriz asociada a $T$ en esta base?
  2. Explica por qué las dos versiones que dimos del teorema de Cayley-Hamilton son equivalentes.
  3. Demuestra la propiedad de la matriz adjunta que se menciona en la primera demostración.
  4. Sean $A,B,C\in M_2(\mathbb{C})$ matrices tales que $AC=CB$ y $C\neq O_n$. Demuestra que para cualquier polinomio $P$ se cumple que $P(A)C=CP(B)$. Usando esto y escogiendo un polinomio adecuado, deduce que $A$ y $B$ tienen un eigenvalor en común. Sugerencia: Usa el teorema de Cayley-Hamilton.
  5. Sea la matriz
    \begin{align*}
    A=\begin{pmatrix}
    0 & 2 & 0\\
    1 & 1 & -1\\
    -1 & 1& 1
    \end{pmatrix}.
    \end{align*}
    Usa el teorema de Cayley-Hamilton para calcular $A^{1000}$. Sugerencia: El teorema de Cayley-Hamilton te debería dar una relación entre algunas potencias de $A$.

Álgebra lineal II: Introducción al teorema de Cayley-Hamilton

Introducción

En esta entrada introducimos el teorema de Cayley-Hamilton, el primer teorema importante del curso. Intuitivamente este teorema nos dice que ‘el polinomio característico mata al operador lineal’. Es decir, si $P(\lambda)$ es el polinomio característico de una transformación lineal $T$, entonces $P(T)=0$.

Algunos ejemplos

Damos unos cuantos ejemplos para que entendamos que está pasando.

Ejemplo. Sea $A\in M_2(\mathbb{R})$ la matriz dada por

\begin{align*}
A=\begin{pmatrix} 0 & -1\\ 1 & 0
\end{pmatrix}.
\end{align*}

Calculemos su polinomio característico

\begin{align*}
\chi_A(X)=\det \begin{pmatrix} X & 1\\ -1 & X\end{pmatrix}=X^2+1.
\end{align*}

Así, si evaluamos al polinomio $\chi_A$ en la matriz $A$ tenemos que calcular

\begin{align*}
\chi_A(A)= A^2+I_2.
\end{align*}

Por un lado

\begin{align*}
A^2=\begin{pmatrix} 0 & 1\\ -1 & 0\end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\ -1 & 0\end{pmatrix}=\begin{pmatrix} -1 &0 \\ 0 & -1\end{pmatrix}=-I_2.
\end{align*}

Luego

\begin{align*}
\chi_A(A)=A^2+I_2= -I_2+I_2=O_2.
\end{align*}

Es decir, ¡$\chi_A(A)$ es la matriz cero!

$\square$

Ejemplo. Calculemos el polinomio característico de la matriz $A\in M_3(\mathbb{R})$ dónde $A$ está dada por

\begin{align*}
A=\begin{pmatrix}
0 & -1 & -2\\ 0 & 3 &4\\ 0 & 0 & -5.
\end{pmatrix}
\end{align*}

Notamos que $A$ es una matriz triangular superior. Por una entrada anterior sabemos que el polinomio característico es solo el producto de los monomios $(X-a_{ii})$. Es decir

\begin{align*}
\chi_A(X)=(X-0)(X-3)(X-(-5))= X(X-3)(X+5).
\end{align*}

Enseguida, evaluemos $\chi_A(A)$. Recordamos que esto quiere decir que tenemos que calcular

\begin{align*}
\chi_A(A)=A(A-3I_3)(A+5I_3).
\end{align*}

Por un lado

\begin{align*}
A-3I_3=\begin{pmatrix}
-3 & -1 & -2\\ 0 & 0 & 4\\ 0 & 0 & -8
\end{pmatrix},
\end{align*}

y por otro

\begin{align*}
A+5I_3=\begin{pmatrix}
5 & -1 & -2\\ 0 & 8 & 4\\ 0 & 0 &0
\end{pmatrix}.
\end{align*}

Así

\begin{align*}
(A-3I_3)(A+5I_3)&=\begin{pmatrix}
-3 & -1 & -2\\ 0 & 0 & 4\\ 0 & 0 & -8
\end{pmatrix}\cdot \begin{pmatrix}
5 & -1 & -2\\ 0 & 8 & 4\\ 0 & 0 &0
\end{pmatrix}\\ &=\begin{pmatrix} -15 & -5 & -2\\ 0 &0 &0 \\ 0 & 0 &0\end{pmatrix}.
\end{align*}

Finalmente

\begin{align*}
A(A-I_3)(A+5I_3)=\begin{pmatrix}
0 & -1 & -2\\ 0 & 3 &4\\ 0 & 0 & -5.
\end{pmatrix}\cdot \begin{pmatrix} -15 & -5 & -2\\ 0 &0 &0 \\ 0 & 0 &0\end{pmatrix}=O_3.
\end{align*}

Una vez más $\chi_A(A)=0$.

$\square$

El teorema

Los ejemplos anteriores sirven de calentamiento para enunciar el teorema de Cayley-Hamilton, que dice exactamente lo que sospechamos.

Teorema. (De Cayley-Hamilton)

Para cualquier matriz $A\in M_n(F)$ se cumple

\begin{align*}
\chi_A(A)=O_n.
\end{align*}

En otras palabras, si $\chi_A(X)=X^n+a_{n-1}X^{n-1}+\dots+a_0$ entonces

\begin{align*}
A^{n}+a_{n-1}A^{n-1}+\dots+a_0 I_n=O_n.
\end{align*}

Demostraremos este teorema en la próxima entrada. Uno podría sospechar que la demostración consiste en simplemente sustituir $A$ en la expresión de $\chi_A$ como sigue

\begin{align*}
\chi_A(A)= \det(AI_n-A)=\det(0)=0.
\end{align*}

Sin embargo, esta ‘prueba’ no es correcta, ya que estamos multiplicando a $A$ con $I_n$ como si fueran matrices, mientras que la expresión de $\chi_A$ se refiere a escalares. Más aún, observa como el resultado de la expresión que anotamos es el escalar cero, mientras que sabemos que $\chi_A(A)$ debería ser la matriz cero.

Concluimos esta sección con una breve aplicación del teorema de Cayley-Hamilton.

Proposición.

El polinomio mínimo de una matriz $A\in M_n(F)$ divide al polinomio característico.

Demostración.

Por el teorema de Cayley-Hamilton, $\chi_A(A)=0$. Luego por definición del polinomio mínimo se sigue que $\mu_A(X)$ divide a $\chi_A(X)$.

$\square$

Más adelante

En la próxima entrada demostraremos el teorema de Cayley-Hamilton, y luego pasaremos a dar aplicaciones de este.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. En una entrada anterior calculamos el polinomio característico de una matriz nilpotente. Explica por qué el teorema de Cayley-Hamilton es compatible con dicho cálculo. De otra manera, verifica el teorema de Cayley-Hamilton en ese caso particular.
  2. Sea $A\in M_3(\mathbb{R})$ tal que $\operatorname{Tr}(A)=\operatorname{Tr}(A^2)=0$. Usa el teorema de Cayley-Hamilton para demostrar que existe un $\alpha\in \mathbb{R}$ tal que $A^3=\alpha I_3$.
  3. Calcula el polinomio característico de $A\in M_2(\mathbb{C})$ donde
    \begin{align*}
    A=\begin{pmatrix} 0 & -1\\ 1 & 0\end{pmatrix}.
    \end{align*}
    Es decir, $A$ es la misma matriz que en el ejemplo pero pensada como una matriz compleja. Verifica que $\chi_A(A)=O_2$.
  4. Verifica que $\chi_A(A)=O_3$ con
    \begin{align*}
    A= \begin{pmatrix} 1 & 0 & -1\\ 1 & 1 & 1 \\ 0 & 2 & 1\end{pmatrix}\in M_3(\mathbb{R}).
    \end{align*}
  5. Sea $A\in M_n(\mathbb{R})$ una matriz tal que $A$ y $3A$ son similares. Demuestra que $A^n=O_n$.

Álgebra Lineal II: Polinomio característico de familias especiales

Introducción

En la entrada anterior dimos la definición de polinomio característico. Vimos que siempre es un polinomio mónico y que su grado es exactamente del tamaño de la matriz. También, vimos cómo calcular el polinomio mínimo en algunos casos particulares. En esta entrada veremos varias propiedades que nos van a facilitar el calcular el polinomio característico (y por tanto los eigenvalores) en un amplio rango de matrices diferentes.

Comenzaremos estudiando el polinomio mínimo de las triangulares superiores. Luego, veremos cómo calcular el polinomio de matrices nilpotentes. No solo nos harán la vida más fácil los resultados a continuación, si no que los usaremos en la teoría más adelante.

Matrices triangulares superiores y transpuestas

El caso de las matrices triangulares superiores es muy sencillo, como veremos a través del siguiente problema.

Problema. Sea $A=[a_{ij}]$ una matriz triangular superior. Demuestra que

\begin{align*}
\chi_A(X)=\prod_{i=1}^{n}(X-a_{ii}).
\end{align*}

Solución. La matriz $X I_n-A$ sigue siendo triangular superior, y sus entradas diagonales son precisamente $X-a_{ii}$. Usando que el determinante de una matriz triangular superior es el producto de sus entradas diagonales y usando la definición se sigue que

\begin{align*}
\chi_A(X)=\det(X I_n-A)=\prod_{i=1}^{n} (X-a_{ii}).
\end{align*}

$\square$

Ejemplo. Si queremos calcular el polinomio característico de la matriz

\begin{align*}
A=\begin{pmatrix}
1 & -\pi & \sqrt{2}\\
0 & -2 & 10^{10}\\
0 & 0 &3
\end{pmatrix}.
\end{align*}

entonces podemos aplicar el problema anterior y deducir inmediatamente que

\begin{align*}
\chi_A(X)=(X-1)(X+2)(X-3).
\end{align*}

¡Qué complicado hubiera sido calcular el determinante a pie!

$\square$

Por otro lado, recordando la demostración que dice que los eigenvalores de la transpuesta de una matriz son iguales a los de la matriz original era de esperarse que el polinomio característico también «se portara bien» bajo transposición.

Problema. Demuestra que las matrices $A$ y $^{t}A$ tienen el mismo polinomio característico para cualquier $A\in M_n(F)$.

Solución. Notamos que $^{t}(X I_n-A)= XI_n-\ ^{t}A$. Como una matriz y su transpuesta tienen el mismo determinante se tiene que

\begin{align*}
\chi_A(X)&=\det(XI_n-A)\\&=\det(\ ^{t}(XI_n-A))\\&= \det(XI_n-\ ^{t}A)\\&=\chi_{^t A}(X).
\end{align*}

$\square$

Estrictamente hablando, estamos haciendo un poquito de trampa en la demostración anterior (y de hecho en varias que involucran a la variable $X$). Las propiedades de determinantes que hemos visto (como que una matriz y su transpuesta tienen el mismo determinante) las obtuvimos partiendo de la hipótesis de que las entradas vienen de un campo $F$. Pero cuando agregamos a la variable $X$, ahora las entradas vienen más bien de un anillo: el anillo de polinomios en $F[X]$. Aunque esto parezca un problema, en realidad no lo es. Las propiedades que usamos pueden mostrarse también en ese contexto.

Veamos ahora cómo podemos aplicar el resultado anterior en un ejemplo concreto.

Ejemplo. Queremos calcular el polinomio característico de la matriz

\begin{align*}
A= \begin{pmatrix} 0 & 0 &0\\ -4 & 9 & 0\\ -1 & -1 & 2.\end{pmatrix}
\end{align*}

Para esto notamos que

\begin{align*}
^t A=\begin{pmatrix} 0 & -4 & -1\\ 0 & 9 & -1\\ 0 & 0 & 2\end{pmatrix}
\end{align*}

que es triangular superior. Usando el primer problema

\begin{align*}
\chi_{^t A}(X)= X(X-9)(X-2).
\end{align*}

Finalmente por el último problema $$\chi_{A}(X)=\chi_{^t A}(X)=X(X-9)(X-2).$$

$\square$

El término de la traza

Como vimos en la entrada anterior, en el polinomio $\det(XA+B)$ aparecen los términos $\det(A)$ y $\det(B)$. El siguiente problema aplica esto al polinomio característico e incluso deducimos otro término: la traza.

Problema. Demuestra que el polinomio característico de $A\in M_n(F)$ es de la forma

\begin{align*}
\chi_A(X)= X^n- \operatorname{Tr}(A)X^{n-1}+\dots+(-1)^n \det A.
\end{align*}

Solución. Regresemos a la definición

\begin{align*}
\det (X I_n-A)=\sum_{\sigma\in S_n} \operatorname{sign}(\sigma)\left(X\delta_{1\sigma(1)}-a_{1\sigma(1)}\right)\cdots \left(X \delta_{n\sigma(n)}-a_{n\sigma(n)}\right).
\end{align*}

Haciendo la expansión salvajemente podemos recuperar al menos los primeros términos:

\begin{align*}
(X\delta_{1\sigma(1)}-a_{1\sigma(1)})\cdots (X\delta_{n\sigma(n)}-a_{n\sigma(n)})&=X^{n}\prod_{i=1}^{n} \delta_{i\sigma(i)}\\
&- X^{n-1}\sum_{j=1}^{n}\left(\prod_{k\neq j} \delta_{k\sigma(k)}\right)a_{j\sigma(j)}+\dots.
\end{align*}

Más aún, nota cómo el producto $\prod_{j=1}^{n}\delta_{j\sigma(j)}$ es distinto de cero si y sólo si $j=\sigma(j)$ para todo $j$: es decir si $\sigma$ es la identidad. Esto muestra que $\chi_A(X)$ es mónico de grado $n$, como ya habíamos mencionado en la entrada anterior.

Además, el término constante está dado por \begin{align*}\chi_A(0)&=\det(0\cdot I_n-A)\\&=\det(-A)\\&=(-1)^{n}\det(A)\end{align*}. Alternativamente pudimos haber usado la primera proposición de esta entrada para concluir estos hechos.

Nos falta estudiar el término de grado $n-1$. Si $j\in \{1,2,\dots, n\}$, entonces $\prod_{k\neq j}\delta_{j\sigma(j)}$ es distinto de cero solo si $\sigma(k)=k$ para todo $k\neq j$: pero $\sigma$ es una permutación, en particular una biyección, lo que fuerza que $\sigma(j)=j$ también y entonces $\sigma$ sea la identidad. Entonces el término de $X^{n-1}$ en $$(X\delta_{1\sigma(1)}-a_{1\sigma(1)})\cdots (X\delta_{n\sigma(n)}-a_{n\sigma(n)})$$ es distinto de cero sólo cuando $\sigma$ es la identidad. En ese caso es precisamente $$-\sum_{j=1}^{n} a_{jj}=-\operatorname{Tr}(A).$$

$\square$

Ejemplo. Si $A$ es la matriz del primer problema de esta entrada, tenemos que

\begin{align*}
\chi_A(X)&=(X-1)(X+2)(X-3)\\&= X^3-2 X^2+\dots +6.
\end{align*}

Nota cómo el término de $X^2$ es en efecto $-\text{Tr}(A)= -(1-2+3)$ y el último es $-\det(A)$.

$\square$

Matrices nilpotentes

El caso de las matrices nilpotentes es todavía más sencillo.

Problema. Sea $A\in M_n(F)$ una matriz nilpotente. Es decir, existe $k\geq 1$ tal que $A^{k}=O_n$.

  1. Demuestra que
    \begin{align*}
    \chi_A(X)=X^{n}.
    \end{align*}
  2. Demuestra que $\operatorname{Tr}A^{m}=0$ para todo $m\geq 1$.

Solución.

  1. Sea $k\geq 1$ tal que $A^{k}=O_n$ (existe pues $A$ es nilpotente). Entonces
    \begin{align*}
    X^{k}I_n&=X^{k}I_n-A^{k}\\&=(XI_n-A)(X^{k-1}I_n+X^{k-2}A+\dots +A^{k-1}).
    \end{align*}
    Tomando el determinante de ambos lados y recordando que abre productos llegamos a
    \begin{align*}
    X^{nk}&=\det(X^{k}I_n)\\&= \chi_{A}(X)\cdot \det(X^{k-1}I_n+\dots +A^{k-1}).
    \end{align*}
    De aquí, concluimos que $\chi_{A}(X)$ tiene que dividir a $X^{nk}$, pero sabemos que $\chi_A(X)$ es mónico y de grado $n$. Concluimos entonces que $\chi_A(X)=X^{n}$.
  2. Puesto que $A^{m}$ también es una matriz nilpotente, el inciso anterior nos dice que
    \begin{align*}
    \chi_{A^{m}}(X)=X^{n}.
    \end{align*}
    Pero sabemos por la sección sobre la traza que el término de $X^{n-1}$ es $-\operatorname{Tr}(A^{m})$. Como este término no aparece, concluimos que la traza es cero.

$\square$

Ejemplo. Para calcular el polinomio característico de la matriz

\begin{align*}
A=\begin{pmatrix}
5 & -3 &2\\
15 & -9 & 6\\
10 & -6 &4
\end{pmatrix}
\end{align*}

podríamos notar (aunque no sea obvio a simple vista) que $A^2=O_3$. Luego, por el problema anterior, $\chi_A(X)=X^3$.

$\square$

Un último caso particular

Acabamos con una última familia de matrices con polinomio característico simple. Esta familia está descrita por su forma, y será de particular importancia para el teorema de Cayley-Hamilton.

Problema. Para escalares $a_0,\dots, a_{n-1}\in F$ consideramos la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 0 & 0 & \dots & 0 & a_0\\
1 & 0 & 0 & \dots & 0 & a_1\\
0 & 1 & 0 & \dots & 0 & a_2\\
\dots & \dots & \dots & \dots & \dots &\dots\\
0 & 0 & 0 & \dots & 1 &a_{n-1}
\end{pmatrix}.
\end{align*}

en $M_n(F)$.

Demuestra que

\begin{align*}
\chi_A(X)=X^{n}-a_{n-1}X^{n-1}-\dots -a_0.
\end{align*}

Solución. Sea $P(X)=X^{n}-a_{n-1}X^{n-1}-\dots-a_0$. Considera la matriz

\begin{align*}
B=X I_n-A=\begin{pmatrix} X & 0 & 0 &\dots &0& -a_0\\ -1 & X & 0 &\dots & 0 &-a_1\\ 0 & -1 & X &\dots& 0&-a_2\\ \dots & \dots & \dots & \dots &\dots &\dots\\ 0 & 0 & 0 & \dots & -1 & X-a_{n-1}\end{pmatrix}.
\end{align*}

Sumando el segundo renglón multiplicado por $X$ al primer renglón, luego sumándole también al primer renglón el tercero multiplicado por $X^2$, el cuarto por $X^3$, y así sucesivamente hasta sumar el último renglón multiplicado por $X^{n-1}$ llegamos a la matriz

\begin{align*}
C=\begin{pmatrix}
0 & 0 & 0 & \dots &0& P(X)\\
-1 & X & 0 & \dots &0 & -a_1\\
0 & -1 & X & \dots & 0 & -a_2\\
\dots & \dots & \dots & \dots & \dots &\dots\\
0 & 0 & 0 & \dots & -1 & X-a_{n-1}
\end{pmatrix}.
\end{align*}

Recordamos que el determinante es invariante bajo sumas de renglones, por lo que

\begin{align*}
\chi_A=\det B=\det C.
\end{align*}

Expandiendo el determinante de $C$ en el primer renglón obtenemos sencillamente

\begin{align*}
\det C&=(-1)^{n+1}P(X) \cdot \begin{vmatrix} -1 & X & \dots & 0\\ 0 & -1 & \dots & 0\\ \dots &\dots & \dots & \dots \\ 0 & 0 & \dots & -1 \end{vmatrix}\\&= (-1)^{n+1} P(X)(-1)^{n-1}\\&=P(X).
\end{align*}

Para la segundaigualdad usamos que el determinante es el de una matriz triangular superior con puros $-1$ como entradas. Para la última, usamos que $n+1+n-1=2n$ siempre es un número par, así que queda $-1$ elevado a un número par. Esto concluye la prueba.

$\square$

Una de las consecuencias de la proposición anterior es que para cualquier polinomio mónico $P$ de grado $n$ en $F[X]$, existe una matriz en $M_n(F)$ tal que su polinomio característico es $P$.

Tarea moral

  1. Encuentra una matriz $A$ tal que $\chi_A(X)=X^5-5X^3+X^2-2X+2$. Sugerencia: Usa el último problema.
  2. Demuestra que el polinomio característico de una matriz $A=[a_{ij}]$ triangular inferior está dado por $\prod_{i=1}^{n}(X-a_{ii})$.
  3. Demuestra que $0$ es eigenvalor de una matriz si y sólo si su determinante es cero.
  4. Calcula el polinomio característico de la siguiente matriz con entradas reales:
    \begin{align*}
    A= \begin{pmatrix} 5 & 5 & 5 \\ 6 & 6 & 6\\ -11 & -11 & -11\end{pmatrix}.
    \end{align*} Sugerencia: ¿Quién es $A^2$?
  5. ¿Es cierto que si $F$ es cualquier campo y $A$ es una matriz con entradas en $F$, entonces el hecho de que $\operatorname{Tr}(A)=0$ implica que $A$ sea nilpotente? Sugerencia: Piensa en $F_2$.
  6. Da una demostración alternativa al último problema de esta entrada usando inducción matemática sobre el tamaño de la matriz.

Más adelante

En la próxima entrada veremos unos últimos aspectos teóricos del polinomio característico antes de lanzarnos de lleno al teorema de Cayley-Hamilton y su demostración.

Álgebra Lineal II: Polinomio característico

Introducción

En el transcurso de esta unidad hemos construido varios de los objetos algebraicos que nos interesan. En primer lugar, dejamos claro qué quería decir evaluar un polinomio en una matriz o transformación lineal. Esto nos llevó a preguntarnos por aquellos polinomios que anulan a una matriz o transformación lineal. De manera natural, descubrimos que aquellos polinomios que anulan son múltiplos de un polinomio especial asociado a la matriz o transformación lineal llamado polinomio mínimo.

De manera un poco separada, comenzamos a estudiar los eigenvalores, eigenvectores y eigenespacios de una transformación lineal y en la entrada anterior nos enfocamos en varias de sus propiedades principales. Uno de los resultados clave que encontramos es que los eigenvalores de una matriz o transformación lineal son las raíces del polinomio mínimo que estén en el campo en el que estemos trabajando.

Aunque este resultado sea interesante de manera teórica, en la práctica debemos hacer algo diferente pues no es tan sencillo encontrar el polinomio mínimo de una matriz o transformación lineal. Es por esto que ahora estudiaremos con profundidad otro objeto que resultará fundamental en nuestro estudio: el polinomio característico. Ya nos encontramos con él anteriormente. Si $A$ es una matriz en $M_n(F)$, dicho polinomio en la variable $\lambda$ es el determinante $\det(\lambda I_n-A)$.

Esta entrada es más bien una introducción, así que nos enfocaremos en probar las cosas más básicas de este objeto. Lo primero, y más importante, es verificar que en efecto es un polinomio (y con ciertas características específicas). También, aprovecharemos para calcularlo en varios contextos (y campos) diferentes.

Definición de polinomio característico

Comencemos con una matriz $A\in M_n(F)$. Vimos que encontrar los eigenvalores de $A$ se reduce a encontrar las soluciones de la ecuación

\begin{align*}
\det(\lambda I_n-A)=0
\end{align*}

en $F$. Vamos a estudiar más a detalle la expresión de la izquierda.

El siguiente teorema va un poco más allá y de hecho estudia expresiones un poco más generales.

Teorema. Sean $A,B\in M_n(F)$ dos matrices. Existe un polinomio $P\in F[X]$ tal que para todo $x\in F$ se cumple

\begin{align*}
P(x)=\det(xA+B).
\end{align*}

Si denotamos a este polinomio por $P(X)=\det(XA+B)$, entonces

\begin{align*}
\det(XA+B)=\det(A)X^{n}+\alpha_{n-1}X^{n-1}+\dots+\alpha_1 X+\det B
\end{align*}

para algunas expresiones polinomiales $\alpha_1,\dots, \alpha_{n-1}$ con coeficientes enteros en las entradas de $A$ y $B$.

Demostración. Consideremos el siguiente polinomio en la variable $X$ y coeficientes en $F$, es decir, el siguiente polinomio en $F[X]$:

\begin{align*}
P(X)=\sum_{\sigma\in S_n} \operatorname{sign}(\sigma)\left(a_{1\sigma(1)} X+b_{1\sigma(1)}\right)\cdots \left(a_{n\sigma(n)}X+b_{n\sigma(n)}\right).
\end{align*}

Por construcción, $P$ es un polinomio cuyos coeficientes son expresiones polinomiales enteras en las entradas de $A$ y $B$. Más aún, se cumple que $P(x)=\det(xA+B)$ para $x\in F$ (podría ser útil revisar la entrada sobre determinantes para convencerte de ello). El término constante lo obtenemos al evaluar en $X=0$, pero eso no es más que $P(0)=\det(0\cdot A+B)=\det(B)$. Finalmente para cada $\sigma\in S_n$ tenemos que el primer término de cada sumando es

\begin{align*}
\operatorname{sign}(\sigma)(a_{1\sigma(1)}X+b_{1\sigma(1)})\cdots (a_{n\sigma(n)} X+b_{n\sigma(n)})= \operatorname{sign}(\sigma) a_{1\sigma(1)}\cdots a_{n\sigma(n)}X^{n}+\dots
\end{align*}

En efecto, los términos «ocultos en los puntos suspensivos» todos tienen grado a lo más $n-1$. Agrupando todos los sumandos y comparando con la definición del determinante llegamos a que $$P(X)=\det(A)X^{n}+\ldots,$$ es decir el término de orden $n$ es en efecto $\det(A)$.

$\square$

Del teorema se sigue que si $A$ y $B$ tienen entradas enteras o racionales, $\det(XA+B)$ tiene coeficientes enteros o racionales respectivamente.

Enseguida podemos definir (gracias al teorema) el siguiente objeto:

Definición. El polinomio característico de la matriz $A\in M_n(F)$ es el polinomio $\chi_A\in F[X]$ definido por

\begin{align*}
\chi_A(X)=\det(X\cdot I_n-A).
\end{align*}

Una observación inmediata es que, de acuerdo al teorema, el coeficiente principal de $\chi_A(X)$ tiene coeficiente $\det(I_n)=1$. En otras palabras, acabamos de demostrar la siguiente propiedad fundamental del polinomio característico.

Proposición. El polinomio característico de una matriz en $M_n(F)$ siempre tiene grado exactamente $n$ y además es un polinomio mónico, es decir, que el coeficiente que acompaña al término de grado $n$ es iguala $1$.

Veamos un ejemplo sencillo.

Ejemplo. Si queremos calcular el polinomio característico de

\begin{align*}
A=\begin{pmatrix} 1 & -1\\ 1 &0\end{pmatrix}\in M_2(\mathbb{R})
\end{align*}

entonces usamos la definición

\begin{align*}
\chi_A(X)&=\det(X\cdot I_2-A)\\&=\begin{vmatrix} X-1 & 1\\ -1 & X\end{vmatrix}\\&= X(X-1)+1.
\end{align*}

Y así los eigenvalores de $A$ son las raíces reales de $\chi_A(X)$. Es decir, tenemos que resolver

\begin{align*} 0=x(x-1)+1=x^2-x+1.\end{align*}

Sin embargo, el discriminante de esta ecuación cuadrática es $(-1)^2-4(1)(1)=-3$, el cual es un real negativo, por lo que no tenemos eigenvalores reales. Si estuviéramos trabajando en $\mathbb{C}$ tendríamos dos eigenvalores complejos:

\begin{align*}
x_{1,2}= \frac{1\pm i\sqrt{3}}{2}.
\end{align*}

De aquí, ¿cómo encontramos los eigenvectores y eigenespacios? Basta con resolver los sistemas lineales homogéneos de ecuaciones $(A-x_1I_2)X=0$ para encontrar el $x_1$-eigenespacio y $(A-x_2)X=0$ para encontrar el $x_2$-eigenespacio.

$\square$

Algunos cálculos de polinomios característicos

Ya que calcular polinomios característicos se reduce a calcular determinantes, te recomendamos fuertemente que recuerdes las propiedades que tienen los determinantes. Sobre todo, aquellas que permiten calcularlos.

¡A calcular polinomios característicos!

Problema. Encuentra el polinomio característico y los eigenvalores de $A$ dónde $A$ es

\begin{align*}
A=\begin{pmatrix}
0 & 1 & 0 & 0\\
2 & 0 & -1 & 0\\
0 & 7 & 0 &6\\
0 & 0 & 3 & 0
\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. Usamos la expansión de Laplace respecto al primer renglón:

\begin{align*}
\chi_A(X)&=\det(XI_4-A)\\&= \begin{vmatrix}
X & -1 & 0 & 0\\
-2 & X & 1 & 0\\
0 & -7 & X & -6\\
0 & 0 & -3 & X\end{vmatrix}\\
&= X\begin{vmatrix} X & 1 & 0\\ -7 & X & -6\\ 0 & -3 & X\end{vmatrix}+ \begin{vmatrix}
-2 & 1 & 0\\ 0 & X& -6\\ 0 &-3 & X\end{vmatrix}\\
&= X(X^3-11X)-2(X^2-18)\\
&= X^4-13X^2+36.
\end{align*}

Después, para encontrar los eigenvalores de $A$ tenemos que encontrar las raíces reales de la ecuación

\begin{align*}
x^4-13x^2+36=0.
\end{align*}

Sin embargo, no hay que desalentarse por ver una ecuación de grado $4$. Si hacemos el cambio $y=x^2$ podemos llevar nuestro problema a resolver

\begin{align*}
y^2-13y+36=0.
\end{align*}

¡Es una ecuación de segundo orden! Esta la podemos resolver usando ‘la chicharronera’ y obtenemos como soluciones $y_1=4$ y $y_2=9$. Pero todavía tenemos que resolver $x^2=y_1$ y $x^2=y_2$. Al resolver estas últimas dos ecuaciones obtenemos que $x=\pm 2,\pm 3$ son los eigenvalores de $A$.

$\square$

Problema. Calcula el polinomio característico y los eigenvalores de la matriz

\begin{align*}
A=\begin{pmatrix} 1 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 &1 \end{pmatrix}\in M_3(F_2).
\end{align*}

Solución. Nota que estamos trabajando en el campo de dos elementos $F_2$, por lo que $-1=1$. Usando la definición:

\begin{align*}
\chi_A(X)&=\det(XI_3-A)\\&= \begin{vmatrix} X-1 & 0 & -1\\ -1 & X-1 & 0\\ -1 & 0 &X-1\end{vmatrix}\\
&= \begin{vmatrix} X+1 & 0 & 1\\ 1 & X+1& 0 \\ 1 & 0 &X+1\end{vmatrix}.
\end{align*}

Aquí estamos usando repetidamente $-1=1$. Usamos otra vez la expansión de Laplace en el primer renglón para llegar a

\begin{align*}
\chi_A(X)&= (X+1)\begin{vmatrix} X+1 & 0 \\ 0 & X+1\end{vmatrix}+\begin{vmatrix} 1 & X+1\\ 1 & 0\end{vmatrix}\\
&= (X+1)^3-(X+1).
\end{align*}

Luego, si queremos encontrar los eigenvalores de $A$ tenemos que resolver

\begin{align*}
(x+1)^3-(x+1)=0.
\end{align*}

Si bien existen varias maneras de resolver la ecuación, podemos simplemente sustituir los únicos valores posibles de $x$ : $0$ o $1$. Sustituyendo es fácil ver que ambos satisfacen la ecuación, por lo que los eigenvalores de $A$ son $0$ y $1$.

$\square$

Tarea moral

  • Demuestra que $0$ es un eigenvalor de una matriz $A$ si y sólo si $\det(A)=0$.
  • ¿Una matriz compleja de tamaño $n$ tiene necesariamente $n$ eigenvalores distintos?
  • Calcular el polinomio característico y los eigenvalores de
    \begin{align*}A=\begin{pmatrix} 1 & 2 & 0\\ 0 & 1 &2\\ 2 & 0 & 1\end{pmatrix}\in M_3(F_3).
    \end{align*}
  • Usando la fórmula del determinante para matrices de tamaño $2$, encuentra un criterio simple para saber si una matriz con entradas reales de tamaño $2$ tiene dos, uno o ningún eigenvalor real.
  • Da un criterio simple para saber si una matriz de tamaño $2$ con entradas complejas tiene eigenvalores puramente imaginarios.

Más adelante

En la próxima entrada calcularemos el polinomio característico de una variedad de matrices importantes: triangulares superiores, nilpotentes, etc. Esto nos permitirá entender mejor al polinomio característico y lidiar con muchos casos para facilitarnos los cálculos más adelante.