Álgebra Lineal I: Ortogonalidad y transformación transpuesta

Introducción

En entradas anteriores ya estudiamos la noción de espacio dual y la de ortogonalidad. También vimos cómo a partir de la ortogonalidad podemos definir subespacios como intersección de hiperplanos. Como veremos a continuación, la ortogonalidad también nos permite definir qué quiere decir que consideremos la “transformación transpuesta” de una transformación lineal.

Antes de comenzar, vale la pena recordar también que cada transformación lineal entre espacios de dimensión finita puede ser expresada mediante una matriz que depende de la elección de bases de los espacios vectoriales. Como tal vez te imaginarás, la transformación transpuesta tendrá como matriz a la matriz transpuesta de la transformación original.

Esta intuición nos dice que hay que tener cuidado. Supongamos que estamos trabajando sobre un campo F. Si tenemos espacios vectoriales V de dimensión n, W de dimensión m y una tranformación lineal T:V\to W, recordemos que, tras elegir bases, T está representada por una matriz A en M_{m,n}(F), es decir, con m filas y n columnas.

Pero la matriz transpuesta ^t A es de n filas y m columnas, así que típicamente no representará a una transformación de V a W, pues las dimensiones no necesariamente coinciden. Podríamos intentar construir una transformación de W a V para que las dimensiones coincidan, pero resulta que esto no es “tan natural”, por razones en las que no profundizaremos.

Lo que sí resulta muy natural y fácil de definir es una transformación de W^\ast a V^\ast, lo cual tendrá sentido pues ya probamos que \dim W^\ast = \dim W y \dim V^\ast = \dim V, así que será representada por una matriz en M_{n,m}. Es un poco más difícil conceptualmente, pero las consecuencias matemáticas son más bonitas y útiles. Sin decir más, comenzamos con la teoría.

Definición y ejemplo de transformación transpuesta

Para definir “transformación transpuesta”, le hacemos como sigue.

Definición. Sean V y W espacios vectoriales sobre un campo F y sea T:V\to W una transformación lineal. Definimos la transformación transpuesta de T, como la transformación ^tT:W^\ast \to V^\ast tal que a cada forma lineal l en W^\ast la manda a la forma lineal ^tT(l) en V^\ast para la cual

    \[(^tT(l))(v)=l(T(v)).\]

Otra forma de escribir a la definición es mediante la notación de emparejamiento canónico:

    \[\langle ^tT(l),v\rangle=\langle l, T(v)\rangle.\]

Veamos un ejemplo para entender mejor la definición.

Ejemplo. Considera a V=M_{2}(\mathbb{R}) y W=\mathbb{R}^2. Considera la transformación lineal T:V\to W dada por

    \[T\begin{pmatrix} a& b\\ c&d\end{pmatrix}=(a+b,c+d).\]

La transformación ^t T va a mandar a una forma lineal l de W a una forma lineal ^tT(l) de V. Las formas lineales l en W se ven de la siguiente forma

    \[l(x,y)=rx+sy.\]

La forma lineal ^tT(l) en V debe satisfacer que ^tT(l)=l\circ T. En otras palabras, para cualquier matriz \begin{pmatrix} a& b\\ c&d\end{pmatrix} se debe tener

    \begin{align*}(^t T(l)) \begin{pmatrix} a& b\\ c&d\end{pmatrix} &= l(a+b,c+d)\\&=r(a+b)+s(c+d)\\&=ra+rb+sc+sd.\end{align*}

Si tomamos la base canónica E_{11}, E_{12}, E_{21}, E_{22} de V y la base canónica e_1,e_2 de W, observa que la transformación T tiene como matriz asociada a la matriz

    \[\begin{pmatrix} 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\end{pmatrix}\]

(recuerda que se obtiene poniendo como columnas a los vectores coordenada de las imágenes de la base).

Por otro lado, los vectores de la base dual e_1^\ast y e_2^\ast “leen las coordenadas”, de modo que e_1^\ast(x,y)=x y e_2^\ast(x,y)=y. Por lo que vimos arriba, (^t T)(e_1) es entonces la forma lineal a+b y (^t T)(e_2) es la forma lineal c+d. En términos de la base dual en V^\ast, estos son E_{11}^\ast + E_{12}^\ast y E_{21}^\ast+ E_{22}^\ast respectivamente. De esta forma, la transformación ^t T tiene matriz asociada

    \[\begin{pmatrix}1&0\\1&0\\0&1\\0&1\end{pmatrix}.\]

\square

Nota que en el ejemplo la transformación transpuesta tiene como matriz a la matriz transpuesta de la transformación original. Esto es algo que queremos que pase siempre, y más abajo lo demostramos.

Propiedades básicas de transformación transpuesta

Observa que la definición no necesita que V y W sean de dimensión finita. A continuación enunciamos y probamos algunos resultados que se valen también en el contexto de dimensión infinita.

Teorema 1. Tomemos V,W,Z espacios vectoriales sobre un campo F y c en F. Sean T_1,T_2: V \to W transformaciones lineales. Sea T_3:W\to Z una transformación lineal. Se cumple todo lo siguiente:

  1. ^tT_1 es una transformación lineal.
  2. ^t(T_1+cT_2)= {^tT_1} + c^tT_2.
  3. ^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3.
  4. Si V=W y T_1 es invertible, entonces ^t T_1 también lo es y (^t T_1)^{-1}= {^t (T_1^{-1})}.

Para tener un poco más de intuición, observa cómo estas propiedades son análogas a las de transposición para matrices.

Demostración. Las partes 1 y 2 se demuestran usando cuidadosamente las definiciones. Haremos la demostración de 1 y la demostración de 2 queda como tarea moral. Para probar 1, necesitamos probar que ^tT_1:W^\ast \to V^\ast es lineal, así que tomemos l_1, l_2 en W^\ast y a un escalar en F. Tenemos que demostrar que

    \[^tT_1(l_1+a l_2)=  {^tT_1(l_1)}+ a  ^tT_1(l_2).\]

Ésta es una igualdad de formas lineales en V^\ast, y para mostrar su validez tenemos que mostrar que se vale en cada v\in V. Por un lado,

    \begin{align*} ^tT_1(l_1+a l_2)(v) &= (l_1+a l_2)(T_1(v))\\&=l_1(T_1(v))+a l_2(T_1(v)).\end{align*}

Por otro lado,

    \begin{align*} (^tT_1(l_1)+ a  ^tT_1(l_2))(v)&= {^tT_1(l_1)(v)}+ a  ^tT_1(l_2)(v)\\&= l_1(T_1(v)) + a  l_2(T_1(v)).\end{align*}

En ambos casos obtenemos el mismo resultado, así que ^tT_1(l_1+a l_2) y ^tT_1(l_1)+ a  ^tT_1(l_2) son iguales, mostrando que ^t T_1 es lineal.

Pasemos a la parte 3. La igualdad ^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3 es una igualdad de transformaciones de Z^\ast a V^\ast. Para verificar su veracidad, hay que ver que son iguales en cada elemento en su dominio. Tomemos entonces una forma lineal l en Z^\ast. Queremos verificar la veracidad de

    \[^t(T_3\circ T_1)(l) = (^t T_1 \circ ^t T_3)(l),\]

que es una igualdad de formas lineales en V^\ast, de modo que tenemos que verificarla para cada v en V. Por un lado,

    \begin{align*} ^t(T_3\circ T_1)(l)(v)&=l((T_3\circ T_1)(v))\\&=l(T_3(T_1(v))),\end{align*}

Por otro,

    \begin{align*}(^t T_1 \circ ^t T_3)(l)(v)&=(^tT_1(^t T_3 (l)))(v)\\&=(^t T_3 (l))(T_1(v))\\&=l(T_3(T_1(v))).\end{align*}

En ambos casos obtenemos el mismo resultado.

Para la parte 4 basta notar que si V=W y T_1 es invertible, entonces tiene una inversa S:V\to V, y por la parte 3 tenemos que

    \[^t S\circ ^t T_1 = {^t(T_1\circ S)} = {^t \text{Id}_V} = \text{Id}_{V^\ast},\]

mostrando que ^t T_1 tiene inversa ^tS. Observa que estamos usando que la transpuesta de la transformación identidad es la identidad. Esto no lo hemos probado, pero lo puedes verificar como tarea moral.

\square

La matriz transpuesta es la matriz de la transformación transpuesta

Cuando estamos trabajando en espacios de dimensión finita, podemos mostrar que la matriz que le toca a la transformación transpuesta es precisamente la transpuesta de la matriz que le toca a la transformación original. Hacemos esto más preciso en el siguiente resultado.

Teorema 2. Sea T:V\to W una transformación lineal entre espacios de dimensión finita y B y B' bases de V y W respectivamente. Si A es la matriz de T con respecto a B y B', entonces ^t A es la matriz de la transformación ^t T:W^\ast \to V^\ast con respecto a las bases duales B'^\ast y B^\ast.

Demostración. Necesitamos definir algo de notación. Llamemos n=\dim V, m=\dim W, B=\{b_1,\ldots, b_n\}, B'=\{c_1,\ldots, c_m\} y A=[a_{ij}]. Recordemos que la matriz A está hecha por las coordenadas de las imágenes de la base B en términos de la base B', es decir, que por definición tenemos que para toda j=1,\ldots, n:

(1)   \begin{equation*}T(b_j)=\sum_{i=1}^{m} a_{ij} c_i.\end{equation*}

La transformación ^t T:W^\ast \to V^\ast va de un espacio de dimensión m a uno de dimensión n, así que en las bases B'^\ast y B^\ast se puede expresar como una matriz de n filas y m columnas. Afirmamos que ésta es la matriz ^t A. Para ello, basta mostrar que las coordenadas de las imágenes de la base B'^\ast en términos de la base B^\ast están en las filas de A, es decir, que para todo i=1, \ldots, m tenemos que

    \[^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast.\]

La anterior es una igualdad de formas lineales en V^\ast, de modo que para ser cierta tiene que ser cierta evaluada en todo v en V. Pero por linealidad, basta que sea cierta para todo b_j en la base B. Por un lado, usando (1),

    \begin{align*}^tT(c^\ast_i)(b_j)&=c^\ast_i(T(b_j))\\&=c^\ast_i \left(\sum_{k=1}^{m} a_{kj} c_i\right)\\&=\sum_{k=1}^{m} a_{kj} c^\ast_i(c_k)\\&=a_{ij},\end{align*}

en donde estamos usando que por definición de base dual c_i^\ast (c_i)= 1 y c_j^\ast (c_i)=0 si i\neq j. Por otro lado,

    \begin{align*}\left(\sum_{k=1}^{n} a_{ik} b_k^\ast\right)(b_j)&= \sum_{k=1}^{n} a_{ik} b_k^\ast(b_j)\\&=a_{ij},\end{align*}

en donde estamos usando linealidad y la definición de base dual para B.

Con esto concluimos la igualdad

    \[^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast,\]

que muestra que podemos leer las coordenadas de las evaluaciones de ^t T en B'^\ast en términos de la base B^\ast en las filas de A, por lo tanto podemos leerlas en las columnas de ^t A. Esto muestra que ^t A es la matriz correspondiente a esta transformación en términos de las bases duales.

\square

Kernel e imagen de la transformación transpuesta

Finalmente, el siguiente resultado nos habla acerca de cómo están relacionadas las transformaciones transpuestas y la ortogonalidad.

Teorema 3. Sea T:V\to W una transformación lineal entre espacios vectoriales de dimensión finita. Entonces

    \[\ker (^t T) = (\Ima (T))^\bot,\quad \ker (T)=(\Ima (^t T))^\bot\]

y

    \[\Ima (^t T) = (\ker(T))^\bot\,\quad \Ima (T)=(\ker(^t T))^\bot.\]

Demostración. Demostraremos la igualdad \ker (^t T) = (\Ima (T))^\bot. Notemos que l \in \ker(^t T) si y sólo si (^t T)(l)=0, lo cual sucede si y sólo si l\circ T = 0. Pero esto último sucede si y sólo si para todo v en V se tiene que l(T(v))=0, que en otras palabras quiere decir que l(w)=0 para todo w en \Ima (T). En resumen, l\in \ker(^t T) pasa si y sólo si l se anula en todo \Ima (T) es decir, si y sólo si está en (\Ima (T))^\bot.

El resto de las igualdades se demuestran de manera análoga, o alternativamente, usando la bidualidad canónica. Es un buen ejercicio hacerlo y se deja como tarea moral.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que la transpuesta de la transformación lineal T:\mathbb{R}^2\to \mathbb{R}^2 dada por T(x,y)=T(7x+8y,6x+7y) es invertible. Encuentra a su transpuesta y a la inversa de la transpuesta explícitamente.
  • Muestra la parte 2 del Teorema 1.
  • Muestra que la transpuesta de la transformación identidad es la identidad.
  • Demuestra el resto de las igualdades del Teorema 3.
  • Encuentra la transpuesta de la transformación traza que va de M_n(\mathbb{R}) a los reales. Recuerda que esta transformación manda a una matriz A=[a_{ij}] a la suma de sus entradas en la diagonal principal, es decir

        \[A\mapsto a_{11}+a_{22}+\ldots+a_{nn}.\]

Más adelante…

Entradas relacionadas

2 comentarios en “Álgebra Lineal I: Ortogonalidad y transformación transpuesta

  1. JP Antuna

    Cuando dan el ejemplo después de la definición de transformación transpuesta… cuando queremos ver la matriz asociada a ^t(T) creo que en una parte debería ser “En términos de la base dual en V*, estos son […]”
    -Decir V* en lugar de W*, ¿no?

    Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.