Archivo de la etiqueta: vectores propios

Cálculo Diferencial e Integral III: Representaciones matriciales, eigenvalores y eigenvectores

Por Alejandro Antonio Estrada Franco

Introducción

Como se ha mencionado anteriormente el objetivo de introducir ideas de álgebra lineal en cálculo diferencial es poder establecer una transformación lineal que sea la mejor aproximación lineal en un punto a una función dada. Esto nos ayudará a entender a la función dada en el punto en términos de otra función «más simple». Pero así mismo, las transformaciones lineales pueden ellas mismas pensarse en términos de transformaciones más sencillas. En esta entrada revisaremos esta idea y la conectaremos con la noción de eigenvectores.

Por un lado, recordaremos cómo es que una transformación lineal puede ser representada mediante una matriz una vez que se ha elegido una base del espacio vectorial. Luego, hablaremos de cómo elegir, de entre todas las bases, aquella que nos de una representación matricial lo más sencilla posible.

Representación matricial de las transformaciones lineales

Comencemos esta entrada repasando la importante relación entre transformaciones lineales y matrices. Denotaremos como $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ al espacio vectorial de transformaciones lineales de $\mathbb{R}^n$ a $\mathbb{R}^m$.

Si tomamos cualquier transformación lineal $T\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, entonces los valores de $T$ en cualquier vector de $\mathbb{R}^n$ quedan totalmente determinados por los valores de $T$ en los elementos de alguna base $\beta$ para $\mathbb{R}^n$. Tomemos $\gamma=\{\bar{w}_{1},\dots ,\bar{w}_{m}\}$ una base ordenada para $\mathbb{R}^m$, y $\beta=\{\bar{e}_{1},\dots ,\bar{e}_{n}\}$ una base ordenada para $\mathbb{R}^n$. Para cada $\bar{e}_{k}$ tenemos:

$$\begin{equation} T(\bar{e}_{k})=\sum_{i=1}^{m}t_{ik}\bar{w}_{i} \end{equation},$$

para algunos escalares $t_{1k},\dots ,t_{mk}$ que justo son las componentes de $T(\bar{e}_{k})$ en la base $\gamma$. Con estos escalares, podemos considerar la matriz: \[ \text{Mat}_{\gamma,\beta}(T)= \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \]

Esta es llamada la representación matricial de la transformación $T$ con respecto a las bases $\beta$ y $\gamma$. Esta matriz ayuda a calcular $T$ en cualquier vector de $\mathbb{R}^n$ como explicamos a continuación.

Para cada $\bar{v}\in \mathbb{R}^n$, podemos expresarlo como combinación lineal de elementos de la base $\beta$ digamos que $\bar{v}=\sum_{i=1}^{n} v_{i}\bar{e}_{i}$. Mediante estos coeficientes, podemos entonces asociar a $\bar{v}$ al siguiente vector columna de $\mathbb{R}^n$ \[ [\bar{v}]_{\beta}=\begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}, \]

al que llamamos el vector de coordenadas de $\bar{v}$ con respecto a la base $\beta$.

Realicemos por un lado el siguiente cálculo:

\[ \text{Mat}_{\gamma,\beta}(T)[\bar{v}]_{\beta}=\begin{pmatrix} t_{11} & \dots & t_{1n}\\ \vdots & \ddots & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}=\begin{pmatrix} \displaystyle\sum_{k=1}^{n}t_{1k}v_{k} \\ \vdots \\ \displaystyle\sum_{k=1}^{n}t_{mk}v_{k}.\end{pmatrix} \]

Por otro lado tenemos lo siguiente:

\begin{align*}
T(\bar{v})&=T \left( \sum_{k=1}^{n}v_{k}\bar{e}_{k} \right)\\&=\sum_{k=1}^{n}v_{k}T(\bar{e}_{k})\\&=\sum_{k=1}^{n}v_{k}T\left( \sum_{i=1}^{m}t_{ik}\bar{w}_{i} \right)\\&=\sum_{i=1}^{m}\left( \sum_{k=1}^{n}v_{k}t_{ik} \right)\bar{w}_{i}.
\end{align*}

Juntando ambos cálculos: \[ [T(\bar{v})]_{\gamma}=\begin{pmatrix} \sum_{k=1}^{n}v_{k}t_{1k} \\ \vdots \\ \sum_{k=1}^{n}v_{k}t_{mk} \end{pmatrix} = \text{Mat}_{\gamma,\beta}(T)[\bar{v}]_{\beta}.\]

En otras palabras, aplicar $T$ a un vector $\bar{v}$ equivale a multiplicar $\text{Mat}_{\gamma,\beta}$ por el vector columna asociado a $\bar{v}$ en la base $\beta$, en el sentido de que tras hacer este producto recuperamos el vector de coordenadas para $T(\bar{v})$ en la base $\gamma$.

Isomorfismo entre transformaciones lineales y matrices

Con las operaciones de suma y multiplicación por escalar que vimos en la entrada de Matrices, se tiene que $M_{m,n}\left( \mathbb{R} \right)$ es un espacio vectorial sobre $\mathbb{R}$. De igual manera $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ es un espacio vectorial sobre $\mathbb{R}$ con las siguientes operaciones:

  • Si $T$ y $U$ son dos transformaciones, la transformación $T+U$ es aquella que envía a todo vector $\bar{v}\in \mathbb{R}^n$ al vector $T(\bar{v})+U(\bar{v})$.
  • Si $r\in \mathbb{R}$ la transformación $rT$ es la que a todo $\bar{v}\in \mathbb{R}^n$ lo envía al vector $rT(\bar{v})$.

Queda como ejercicio que verifiques que esto dota efectivamente a $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ de la estructura de espacio vectorial.

A continuación veremos que estos dos espacios vectoriales son, prácticamente, el mismo. Lo que haremos es construir una función $$\Phi :M_{m,n}\left( \mathbb{R} \right) \to\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$$ que sea biyectiva y que preserve las operaciones de suma y de producto escalar.

Para ello, tomemos una base $\beta=\{\bar{e}_1,\ldots,\bar{e}_n\}$ de $\mathbb{R}^{n}$ y una base $\gamma=\{\bar{u}_1,\ldots,\bar{u}_m\}$ de $\mathbb{R}^m$. Tomemos una matriz $A\in M_{m,n}(\mathbb{R})$. Explicaremos a continuación cómo construir la transformación $\Phi(A)$, para lo cual diremos qué hace con cada elemento de la base $\beta$. Tomaremos aquella transformación lineal $T_A\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ tal que

$$T_A(\bar{e}_j)=\sum_{i=1}^n a_{ij} \bar{u}_i.$$

Tomamos entonces $\Phi(A)=T_A$. Veamos que $\Phi$ tiene todas las propiedades que queremos.

  • $\Phi$ es suprayectiva. Si tenemos una transformación $T:\mathbb{R}^n\to \mathbb{R}^m$, entonces por la construcción anterior se tiene que su forma matricial $A:=\text{Mat}_{\gamma,\beta}(T)$ justo cumple $T_A=T$, de modo que $\Phi(A)=T$.
  • $\Phi$ es inyectiva. Si $A$ y $B$ son matrices distintas, entonces difieren en alguna entrada, digamos $(i,j)$. Pero entonces $T_A$ y $T_B$ difieren ya que $T_A(\bar{e}_j)\neq T_B(\bar{e}_j)$ ya que en las combinaciones lineales creadas hay un coeficiente distinto. Así, $\Phi(A)\neq \Phi(B)$.
  • $\Phi $ es lineal. Para $r\in \mathbb{R}$, $A$ y $B$ matrices con entradas $a_{ij}$ y $b_{ij}$, respectivamente, se cumple que $\Phi \left( rA+B \right)=T_{(rA+B)}$ y entonces se satisface para cada $j=1,\dots ,n$ lo siguiente:
    \begin{align*}
    (rA+B)[\bar{e}_{j}]_{\beta}&=rA[\bar{e}_{j}]_{\beta}+B[\bar{e}_{j}]_{\beta}\\&=r[T_A(\bar{e}_{i})]_{\gamma}+[T_{B}(\bar{e}_{i})]_{\gamma}.
    \end{align*}
    Por tanto para cada $\bar{e}_{i}$ tenemos que $$T_{(rA+B)}(\bar{e}_{i})=rT_{A}(\bar{e}_{i})+T_{B}(\bar{e}_{i})$$ y en consecuencia $$T_{(rA+B)}=rT_{A}+T_{B}.$$ Así $$\Phi (rA+B)=r\Phi (A)+\Phi(B).$$

Todo lo anterior implica que $M_{m,n}\left( \mathbb{R} \right)\simeq \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, es decir, que ambos espacios vectoriales son isomorfos.

En búsqueda de una matriz sencilla

Por lo que hemos platicado hasta ahora, a cada transformación lineal le corresponde una matriz, y viceversa. De hecho, esta asociación respeta operaciones como la suma y el producto por escalar. Esta equivalencia está dada a partir de la función $\Phi$ encontrada en la sección anterior.

Si $\Phi $ es biyectiva, ¿por qué hablamos entonces de encontrar una representación matricial simple para una transformación lineal $T$? Esto parecería no tener sentido, pues a cada transformación le corresponde una y sólo una matriz. Sin embargo, esto es cierto únicamente tras haber fijado las bases $\beta$ y $\gamma$ para $\mathbb{R}^n$ y $\mathbb{R}^m$, respectivamente. Así, dependiendo de la elección de las bases las representaciones matriciales cambian y si tenemos una transformación lineal $T$, es posible que querramos encontrar bases $\beta$ y $\gamma$ en donde la representación matricial sea sencilla.

Nos enfocaremos únicamente en transformaciones lineales que van de un espacio vectorial a sí mismo. Tomemos entonces $T:\mathbb{R}^n\to \mathbb{R}^n$ y una base $\beta$ de $\mathbb{R}^n$. Por simplicidad, escribiremos $\text{Mat}_{\beta, \beta}(T)$ simplemente como $\text{Mat}_{\beta}(T)$. Hay propiedades de $T$ que podemos leer en su matriz $\text{Mat}_{\beta}(T)$ y que no dependen de la base $\beta$ que hayamos elegido. Si con una base $\beta$ especial resulta que $\text{Mat}_{\beta}(T)$ es muy sencilla, entonces podremos leer estas propiedades de $T$ muy fácilmente. Un ejemplo es la siguiente proposición, la cual queda como tarea moral.

Proposición. La transformación lineal $T:\mathbb{R}^n\to\mathbb{R}^n$ es invertible si y sólo si $\text{Mat}_{\beta}(T)$ es invertible.

Si $A=\text{Mat}_{\beta}(T)$ fuera muy muy sencilla, por ejemplo, si fuera una matriz diagonal, entonces podríamos saber la invertibilidad de $T$ sabiendo la invertibilidad de $A$, y la de $A$ sería muy fácil de ver pues por ser matriz diagonal bastaría hacer el producto de las entradas de su diagonal para obtener su determinante y estudiar si es distinto de cero.

Motivados por el ejemplo anterior, estudiemos la siguiente pregunta: ¿toda transformación lineal se puede representar con una matriz diagonal? Si una transformación lineal se puede representar de esta manera, diremos que es diagonalizable.

Eigenvalores, eigenvectores y eigenespacios

En lo que sigue repasaremos el aparato conceptual que nos permitirá dar una respuesta parcial de cuándo una matriz es diagonalizable. Un tratamiento mucho más detallado se puede encontrar aquí en el blog, en el curso de Álgebra Lineal II, comenzando con la entrada Eigenvectores y eigenvalores.

Para nuestro repaso, debemos introducir algunos conceptos y estudiarlos.

Definición. Sea $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ una transformación lineal. Diremos que un escalar $r \in \mathbb{R}$ es un eigenvalor de $T$ si existe $\bar{v}\in \mathbb{R}^n\setminus\{ \bar{0} \}$ tal que $T(\bar{v})=r\bar{v}$. A dicho vector $\bar{v}$ le llamaremos un eigenvector de $T$ con eigenvalor asociado $r$.

Dado un eigenvector $\bar{v}\in \mathbb{R}^n$, sólo hay un eigenvalor correspondiente a éste. Si $T(\bar{v})=r\bar{v}$ y $T(\bar{v})=t\bar{v}$, entonces $r\bar{v}=t\bar{v}$ de donde $(r-t)\bar{v}=\bar{0}$. Como $\bar{v}\neq \bar{0}$, se sigue que $r=t$.

Por otro lado, para un eigenvalor $r$ puede haber más de un eigenvector con eigenvalor asociado $r$. Consideremos para un eigenvalor $r$ el conjunto $E(r)=\{ \bar{v}\in V |T(\bar{v})=r\bar{v}\}$. Notemos que $\bar{0}\in E(r)$ y también todos los eigenvectores de $r$ están en $E(r)$. Además, $E(r)$ es un subespacio de $\mathbb{R}^n$, pues si $\bar{u},\bar{v} \in E(r)$, y $a\in \mathbb{R}$, tenemos

\begin{align*}
T(a\bar{u}+\bar{v})&=aT(\bar{u})+T(\bar{v})\\
&=a(r\bar{u})+(r\bar{v})\\
&=r(a\bar{u}+\bar{v}),
\end{align*}

lo cual implica que $a\bar{u}+\bar{v} \in E(r)$.

Definición. Para una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$ y un eigenvalor $r$ de $T$ llamaremos a

$$E(r)=\{ \bar{v}\in V |T(\bar{v})=r\bar{v}\}$$

el eigenespacio de $T$ correspondiente a $r$.

Cuando tenemos eigenvectores correspondientes a eigenvalores distintos, cumplen algo especial.

Proposición. Si $\bar{v}_{1}, \dots ,\bar{v}_{l}$ son eigenvectores de una transformación lineal $T:\mathbb{R}^n \rightarrow \mathbb{R}^n$ con eigenvalores correspondientes $r_{1}, \dots ,r_{l}$ distintos entonces $\bar{v}_{1}, \dots ,\bar{v}_{l}$ son linealmente independientes.

Demostración. La ruta para establecer la demostración de este teorema será por inducción sobre $l$. Para un conjunto con sólo un eigenvector el resultado es evidente (¿por qué?). Supongamos cierto para cualquier subconjunto de $l-1$ eigenvectores que pertenecen a eigenespacios distintos. Sean $\bar{v}_{1}, \dots ,\bar{v}_{l}$ eigenvectores en distintos eigenespacios y consideremos $\alpha _{1}, \dots ,\alpha_{l}$ escalares tales que:

\begin{equation}
\label{eq:comb-cero}
\sum_{k=1}^{l}\alpha _{k}\bar{v}_{k}=\bar{0}.
\end{equation}

Aplicamos $T$ a la igualdad anterior. Usando que cada $\bar{v}_{k}$ es eigenvector correspondiente al eigenvalor $r_{k}$ obtenemos:

\begin{align*}
\bar{0}=T(\bar{0})&=T\left(\sum_{k=1}^{l}\alpha _{k}\bar{v}_{k} \right)\\&=\sum_{k=1}^{l}\alpha _{k}T(\bar{v}_{k})\\&=\sum_{k=1}^{l}\alpha _{k}r_{k}\bar{v}_{k}.
\end{align*}

Es decir,

\begin{equation}
\label{eq:aplicarT}
\textbf{0}=\sum_{k=1}^{l}\alpha _{k}r_{k}\bar{v}_{k}
\end{equation}

Multipliquemos \eqref{eq:comb-cero} por $r_{l}$ y restemos el resultado de \eqref{eq:aplicarT} para obtener que

\begin{align*}
\bar{0}=\bar{0}-\bar{0}&=\sum_{k=1}^{l}\alpha _{k}r_{k}\bar{v}_{k}-r_{l}\sum_{k=1}^{l}\alpha _{k}\bar{v}_{k}\\&=\sum_{k=1}^{l-1}\alpha _{k}(r_{k}-r_{l})\bar{v}_{k}.
\end{align*}

Tenemos entonces:

\[ \sum_{k=1}^{l-1}\alpha _{k}(r_{k}-r_{l})\bar{v}_{k}=\bar{0}.\]

Ya que por hipótesis de inducción $\bar{v}_{1}, \dots ,\bar{v}_{l-1}$ son linealmente independientes entonces $\alpha _{k}(r_{k}-r_{l})=0$ para todo $k$, pero los eigenvalores son todos distintos entre sí por lo tanto para todo $k$ de $1$ a $l-1$ se tiene $r_{k}-r_{l}\neq 0$ y así $\alpha _{k}=0$. Finalmente, usando \eqref{eq:comb-cero} obtenemos $\alpha_l=0$. Por lo tanto $\bar{v}_{1}, \dots ,\bar{v}_{l}$ son linealmente independientes.

$\square$

Eigenvectores y transformaciones diagonalizables

Recuerda que dijimos que una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$ es diagonalizable si existe una base $\beta$ de $\mathbb{R}^n$ tal que $\text{Mat}_{\beta}(T)$ es una matriz diagonal. El siguiente resultado conecta las dos ideas que hemos estado explorando: los eigenvectores y la representabilidad sencilla de $T$.

Teorema. Sea $T:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ transformación lineal. Una matriz $T$ es diagonalizable si y sólo si existe una base de $\mathbb{R}^n$ conformada por eigenvectores de $T$.

En realidad la demostración consiste únicamente en entender correctamente cómo se construyen las matrices para una base dada.

Demostración. $\Rightarrow )$ Supongamos que $T$ tiene una representación matricial que es una matriz diagonal $A:=\text{Mat}_{\beta}(T)=\text{diag}(r_{1}, \dots ,r_{n})$ con respecto a la base $\beta=\{\bar{v}_{1}, \dots ,\bar{v}_{n}\}$. Afirmamos que para cada $j=1,\ldots,n$ se tiene $\bar{v}_j$ es eigevector de eigenvalor $r_j$. En efecto, la forma en la que se construyó la matriz $A$ nos dice que

\begin{align*}
T(\bar{e}_j)&=\sum_{i=1}^n a_{ij} \bar{e}_i \\&= a_{jj} \bar{e}_j \\&= r_j \bar{e}_j,
\end{align*}

en donde estamos usando que las entradas $a_{ij}$ de la matriz son cero si $i\neq j$ (por ser diagonal), y son $r_j$ si $i=j$. Por supuesto, como $\bar{e}_j$ forma parte de una base, tampoco es el vector cero. Así, $\bar{e}_j$ es eigenvector de eigenvalor $\bar{e}_j$.

$\Leftarrow )$ Supongamos ahora que $\bar{v}_{1},\dots ,\bar{v}_{n}$ son una base $\beta$ de $\mathbb{R}^n$ conformada por eigenvectores de $T$ con eigenvalores asociados, digamos, $r_{1},\dots ,r_{n}$. Aquí se puede mostrar que $\text{Mat}_\beta(T)$ es diagonal. Queda como tarea moral hacer las cuentas.

$\square$

Hay una situación particular en la que podemos aprovechar el teorema anterior de manera inmediata: cuando la transformación tiene $n$ eigenvalores distintos. Esta consecuencia queda establecida en el siguiente resultado.

Corolario. Toda transformación lineal $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ tiene a lo más $n$ eigenvalores distintos. Si $T$ tiene exactamente $n$ eigenvalores distintos, entonces los eigenvectores correspondientes forman una base para $\mathbb{R}^n$ y la matriz de $T$ relativa a esa base es una matriz diagonal con los eigenvalores como elementos diagonales.

Demostración. Queda como tarea moral. Como sugerencia, recuerda que mostramos arriba que los eigenvectores de eigenvalores distintos son linealmente independientes.

$\square$

Al parecer los eigenvalores, eigenvectores y eigenespacios de una transformación lineal son cruciales para poder expresarla de manera sencilla. ¿Cómo los encontramos? Esto lo veremos en la siguiente entrada.

Antes de concluir, mencionamos que hay otro teorema crucial sobre diagonalización de matrices. Diremos que una matriz $P\in M_n(\mathbb{R})$ es ortogonal si $P^tP=I$.

Teorema (el teorema espectral). Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces, existe una matriz ortogonal $P$ tal que $PAP^t$ es una matriz diagonal.

El teorema anterior nos dice no únicamente que la matriz $A$ es diagonalizable, sino que además es diagonalizable mediante un tipo muy especial de matrices. Un estudio y demostración de este teorema queda fuera de los alcances de nuestro curso, pero puedes revisar, por ejemplo la entrada teorema espectral del curso de Álgebra Lineal I que tenemos en el blog.

Más adelante

Lo que haremos en la siguiente entrada es desarrollar un método para conocer los eigenvalores de una matriz. A partir de ellos podremos encontrar sus eigenvectores. Y en ciertos casos especiales, esto nos permitirá mostrar que la transformación es diagonalizable y, de hecho, nos dará la base para la cual la matriz asociada es diagonal.

Tarea moral

  1. Considera la transformación lineal de $\mathbb{R}^{3}$ en $\mathbb{R}^{2}$, dada como $T(x,y,z)=(x+y,z+y)$. Encuentra su representación matricial con las bases canónicas de $\mathbb{R}^3$ y $\mathbb{R}^2$. Luego, encuentra su representación matricial con las bases $\{(1,2,3),(1,0,1),(0,-1,0)\}$ de $\mathbb{R}^3$ y $\{(1,1),(1,-1)\}$ de $\mathbb{R}^2$.
  2. Considera la siguiente matriz: \[ \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & -1 & 0 & 2 \\ \end{pmatrix}\] Da una transformación lineal $T:\mathbb{R}^4\to \mathbb{R}^2$ y ciertas bases $\beta$ de $\mathbb{R}^4$ y $\gamma$ de $\mathbb{R}^2$ para las cuales esta matriz sea la representación matricial de $T$ en las bases $\beta$ y $\gamma$.
  3. Fija bases $\beta$, $\gamma$ y $\delta$ para $\mathbb{R}^n$, $\mathbb{R}^m$ y $\mathbb{R}^l$. Considera dos transformaciones lineales $T:\mathbb{R}^n\to \mathbb{R}^m$ y $S:\mathbb{R}^m\to \mathbb{R}^l$. Demuestra que:
    $$\text{Mat}_{\delta, \beta} (S \circ T) = \text{Mat}_{\delta,\gamma}(S) \text{Mat}_{\gamma, \beta} (T).$$
    En otras palabras que la «composición de transformaciones corresponde al producto de sus matrices».
  4. Sea $T:\mathbb{R}^n\to\mathbb{R}^n$ una transformación lineal y $\beta$ una base de $\mathbb{R}^n$. Demuestra que $T$ es biyectiva si y sólo si $\text{Mat}_{\beta}(T)$ es invertible.
  5. Verifica que los vectores $\bar{v}_1,\ldots,\bar{v}_n$ dados en el último teorema en efecto ayudan a dar una representación matricial diagonal para $T$.
  6. La demostración del último corolario es un conjunto de sencillas consecuencias de las definiciones y teoremas desarrollados en esta entrada con respecto a los eigenvalores y eigenvectores. Realiza esta demostración.

Entradas relacionadas

Ecuaciones Diferenciales I: Teoría cualitativa de los sistemas lineales homogéneos – Valores propios nulos

Por Omar González Franco

Un matemático es un hombre ciego en un cuarto oscuro
tratando de buscar a un gato negro que no está allí.
– Charles Darwin

Introducción

En esta entrada concluiremos con el estudio cualitativo de los sistemas lineales homogéneos compuestos por dos ecuaciones diferenciales.

Hasta ahora somos capaces de clasificar y esbozar el comportamiento de las soluciones para los casos en los que los valores propios son reales, complejos y repetidos. Es momento de estudiar el último caso en donde uno o ambos de los valores propios son cero. Este caso es importante ya que divide los sistemas lineales con valores propios estrictamente positivos (repulsores) y valores propios estrictamente negativos (atractores) de aquellos que poseen un valor propio positivo y uno negativo (puntos silla).

Los casos posibles son

  • $\lambda_{1} = 0$ y $\lambda_{2} < 0$.
  • $\lambda_{1} = 0$ y $\lambda_{2} > 0$.
  • $\lambda_{1} = \lambda_{2} = 0$.

Recordemos que el sistema que estamos estudiando es de la forma

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx + dy \label{1} \tag{1}
\end{align*}

Este sistema lo podemos escribir como

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{2} \tag{2}$$

en donde,

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
x \\ y
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix}$$

Sean $\lambda_{1}$ y $\lambda_{2}$ los valores propios de $\mathbf{A}$ y sean $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ los vectores propios de $\mathbf{A}$ asociados a cada valor propio, respectivamente.

Comencemos por revisar el caso en el que un valor propio es nulo y el otro negativo.

Un valor propio nulo y otro negativo

Caso 1: $\lambda_{1} = 0$ y $\lambda_{2} < 0$.

Supongamos que $\lambda_{1} = 0$ y $\lambda_{2} < 0$ son los valores propios de $\mathbf{A}$. Debido a que $\lambda_{1} = 0$ y $\lambda_{2} \neq 0$, es decir, los valores propios son reales y distintos, entonces la solución general de (\ref{1}) debe ser de la forma

$$\mathbf{Y}(t) = c_{1} e^{\lambda_{1} t} \mathbf{K}_{1} + c_{2} e^{\lambda_{2} t} \mathbf{K}_{2} \label{3} \tag{3}$$

Pero $\lambda_{1} = 0$, por consiguiente la solución general es

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} + c_{2} e^{\lambda_{2} t} \mathbf{K}_{2} \label{4} \tag{4}$$

Observemos que esta solución depende de $t$ sólo a través del segundo término, de manera que si $c_{2} = 0$, entonces la solución será el vector constante

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} \label{5} \tag{5}$$

En este caso, todos los puntos $c_{1} \mathbf{K}_{1}$, para cualquier $c_{1}$, son puntos de equilibrio y todo aquel que esté situado en la línea de vectores propios para el valor propio $\lambda_{1} = 0$ es un punto de equilibrio.

Si $\lambda_{2} < 0$, entonces el segundo término en la solución general (\ref{4}) tiende a cero cuando $t$ crece, por lo que dicha solución tiende al punto de equilibrio $c_{1} \mathbf{K}_{1}$ a lo largo de una línea paralela a $\mathbf{K}_{2}$.

El plano fase indicando estas características es el siguiente.

Plano fase para un valor propio nulo y otro negativo.

Veamos que ocurre si $\lambda_{2} > 0$.

Un valor propio nulo y otro positivo

Caso 2: $\lambda_{1} = 0$ y $\lambda_{2} > 0$.

La solución general del sistema (\ref{1}) sigue siendo

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} + c_{2} e^{\lambda_{2} t} \mathbf{K}_{2}$$

Pero en este caso $\lambda_{2} > 0$, lo que implica que la solución se aleja de la línea de puntos de equilibrio cuando $t$ crece.

El plano fase es el siguiente.

Plano fase para un valor propio nulo y otro positivo.

Finalmente veamos que ocurre si $\lambda_{1} = \lambda_{2} = 0$.

Ambos valores propios nulos

Caso 3: $\lambda_{1} = \lambda_{2} = 0$.

En este caso ambos valores propios son repetidos, lo que significa que podemos aplicar la teoría vista en la entrada anterior. Sea $\mathbf{K}_{1}$ el único vector propio de la matriz $\mathbf{A}$ y sea $\mathbf{K}_{2}$ un vector propio generalizado de $\mathbf{A}$. Sabemos que la solución general del sistema (\ref{1}) en el caso de valores propios repetidos es

$$\mathbf{Y}(t) = c_{1} e^{\lambda t} \mathbf{K}_{1} + c_{2} e^{\lambda t} \left[ \mathbf{K}_{2} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K}_{2} \right] \label{6} \tag{6}$$

Sin embargo $\lambda = 0$, entonces la solución anterior se reduce a

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} + c_{2} \left[ \mathbf{K}_{2} + t \mathbf{A} \mathbf{K}_{2} \right] \label{7} \tag{7}$$

El hecho de que los valores propios sean nulos un vector propio podrá ser algún vector canónico

$$\mathbf{K} = \begin{pmatrix}
1 \\ 0
\end{pmatrix} \hspace{1cm} o \hspace{1cm} \mathbf{K} = \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

Las consecuencias de esto es que terminaremos con una solución en la que sólo una función $x(t)$ o $y(t)$ dependerá de $t$, mientras que la otra será una constante.

Supongamos que sólo $x$ depende de $t$, es decir, $x = x(t)$ y $y(t) = c$, con $c$ una constante, entonces para todo $t$ la función $y(t)$ tendrá el mismo valor, mientras que $x(t)$ dependerá de $t$ linealmente, esto en el plano fase se traduce en rectas paralelas al eje $X$ (ya que $y$ no cambia). La dirección de las trayectorias dependerá del signo de la constante que acompaña a la función $y(x)$.

El plano fase para el caso en el $x$ depende de $t$ es

Plano fase para ambos valores propios nulos.

Si se presenta el caso en el que $x(t)$ es una constante y $y(t)$ depende de $t$, entonces las trayectorias serán rectas verticales paralelas al eje $Y$.

En este caso los puntos de equilibrio del sistema serán el eje $X$ o el eje $Y$ dependiendo de que función sea la que dependa de $t$.

Concluyamos esta entrada con un ejemplo por cada caso visto.

Caso 1: $\lambda_{1} = 0$ y $\lambda_{2} < 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-3 & 1 \\ 3 & -1
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
-3 -\lambda & 1 \\ 3 & -1 -\lambda
\end{vmatrix} = \lambda (\lambda -4) = 0$$

Las raíces son $\lambda_{1} = 0$ y $\lambda_{2} = -4$. El vector propio asociado a $\lambda_{1} = 0$ lo obtenemos del siguiente sistema.

$$(\mathbf{A} -0 \mathbf{I}) \mathbf{K} = \mathbf{AK} = \begin{pmatrix}
-3 & 1 \\ 3 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Vemos que $3k_{1} = k_{2}$. Elegimos $k_{1} = 1$, tal que $k_{2} = 3$. El primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 3
\end{pmatrix}$$

Determinemos el segundo vector propio asociado a $\lambda_{2} = -4$.

$$(\mathbf{A} + 4 \mathbf{I}) \mathbf{K} = \begin{pmatrix}
1 & 1 \\ 3 & 3
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

En este caso $k_{1} = -k_{2}$. Sea $k_{1} = -3$, tal que $k_{2} = 3$. El segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
-3 \\ 3
\end{pmatrix}$$

Por lo tanto, la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 3
\end{pmatrix} + c_{2} e^{-4t} \begin{pmatrix}
-3 \\ 3
\end{pmatrix}$$

O bien,

\begin{align*}
x(t) &= c_{1} -3c_{2}e^{-4t} \\
y(t) &= 3c_{1} + 3c_{2}e^{-4t}
\end{align*}

De acuerdo a la teoría vista, los puntos de equilibrio corresponden a la recta situada a lo largo del vector propio $\mathbf{K}_{1}$. Para encontrar esta recta consideremos que $c_{2} = 0$, de manera que la solución es

\begin{align*}
x(t) &= c_{1} \\
y(t) &= 3c_{1}
\end{align*}

De donde $y(x) = 3x$, por lo tanto, toda la recta $y = 3x$ contiene puntos de equilibrio.

Otra forma de verlo es a través de la definición. La función vectorial $F(x, y)$ en este caso es

$$F(x, y) = (-3x + y, 3x -y)$$

Los puntos de equilibrio son aquellos en los que $F(x, y) = (0, 0)$, es decir,

\begin{align*}
-3x + y &= 0 \\
3x -y &= 0
\end{align*}

De este sistema obtenemos que los puntos de equilibrio son aquellos en los que $3x = y$, es decir, la recta definida por la función $y(x) = 3x$.

Por otro lado, considerando nuevamente la solución general, es claro que

$$\lim_{t \to \infty} x(t) = c_{1} \hspace{1cm} y \hspace{1cm} \lim_{t \to \infty} y(t) = 3c_{1}$$

por lo que todas las trayectorias tienden a los puntos de equilibrio $c_{1}\mathbf{K}_{1}$ por cada valor de $c_{1}$ y lo hacen de forma paralela al vector propio $\mathbf{K}_{2}$.

El plano fase indicando las características anteriores es el siguiente.

Plano fase del sistema.

Ya vimos que la función vectorial es

$$F(x, y) = (-3x + y, 3x -y)$$

El campo vectorial definido por esta función, y algunas trayectorias correspondientes a soluciones del sistema, se muestran en la siguiente figura.

Trayectorias y campo vectorial.

$\square$

Caso 2: $\lambda_{1} = 0$ y $\lambda_{2} > 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & 2 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

Solución: Comencemos por determinar los valores propios.

$$\begin{vmatrix}
4 -\lambda & 2 \\ 2
& 1 -\lambda
\end{vmatrix} = \lambda (\lambda -5) = 0$$

Las raíces son $\lambda_{1} = 0$ y $\lambda_{2} = 5$. Determinemos primero el vector propio asociado al valor propio $\lambda_{1} = 0$.

$$(\mathbf{A} -0 \mathbf{I}) \mathbf{K} = \mathbf{AK} = \begin{pmatrix}
4 & 2 \\ 2 & 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

De este sistema obtenemos que $2k_{1} = -k_{2}$. Sea $k_{1} = -1$, entonces $k_{2} = 2$. Por lo tanto, el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
-1 \\ 2
\end{pmatrix}$$

Determinemos el segundo vector propio asociado a $\lambda_{2} = 5$.

$$(\mathbf{A} -5 \mathbf{I}) \mathbf{K} = \begin{pmatrix}
-1 & 2 \\ 2 & -4
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Vemos que $2k_{2} = k_{1}$. Sea $k_{2} = 2$, entonces $k_{1} = 4$. Por lo tanto, el segundo vector propio es

$$\mathbf{K}_{2} =\begin{pmatrix}
4 \\ 2
\end{pmatrix}$$

Por lo tanto, la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
-1 \\ 2
\end{pmatrix} + c_{2}e^{5t} \begin{pmatrix}
4 \\ 2
\end{pmatrix}$$

O bien,

\begin{align*}
x(t) &= -c_{1} + 4c_{2}e^{5t} \\
y(t) &= 2c_{1} + 2c_{2}e^{5t}
\end{align*}

La recta que contiene a los puntos de equilibrio es aquella línea definida por el vector propio $\mathbf{K}_{1}$, es decir, si en la solución general hacemos $c_{2} = 0$, entonces obtenemos la solución

\begin{align*}
x(t) &= -c_{1} \\
y(t) &= 2c_{1}
\end{align*}

De donde obtenemos la función $y(x) = -2x$, todos los puntos de esta recta son puntos de equilibrio.

La función vectorial $F(x, y)$ en este caso es

$$F(x, y) = (4x + 2y, 2x + y)$$

Prueba que efectivamente si $y = -2x$, entonces $F(x, y) = (0, 0)$.

Por otro lado, de la solución general vemos que

$$\lim_{t \to -\infty} x(t) = -c_{1} \hspace{1cm} y \hspace{1cm} \lim_{t \to -\infty} y(t) = 2c_{1}$$

Y $x(t)$ y $y(t)$ divergen si $t \rightarrow \infty$, esto nos indica que las trayectorias se alejan de los puntos de equilibrio $c_{1} \mathbf{K}_{1}$ por cada valor de $c_{1}$ y lo hacen de forma paralela al vector propio $\mathbf{K}_{2}$.

El plano fase del sistema es el siguiente.

Plano fase del sistema.

La función vectorial que define al campo vectorial asociado es

$$F(x, y) = (4x + 2y, 2x + y)$$

El campo vectorial y algunas trayectorias se muestran en la siguiente figura.

Trayectorias y campo vectorial.

$\square$

Concluyamos con el caso especial en el que ambos valores propios son cero.

Caso 3: $\lambda_{1} = \lambda_{2} = 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
0 & 2 \\ 0 & 0
\end{pmatrix} \mathbf{Y}$$

Solución: Antes de comenzar a desarrollar el método notemos que se trata de un sistema muy sencillo, la ecuación de $y^{\prime}$ es

$$\dfrac{dy}{dt} = 0$$

Es claro que la solución es cualquier constante $C_{1}$, es decir $y(t) = C_{1}$, si sustituimos en la ecuación para $x^{\prime}$, tenemos

$$\dfrac{dx}{dt} = 2C_{1}$$

Resolviendo esta ecuación obtenemos la función

$$x(t) = 2C_{1}t + C_{2}$$

Por tanto, la solución general del sistema es

\begin{align*}
x(t) &= 2C_{1}t + C_{2} \\
y(t) &= C_{1}
\end{align*}

Vemos que sólo la función $x(t)$ depende de $t$, mientras que $y(t)$ es una constante.

Esto lo hacemos debido a que el sistema es bastante sencillo. Sin embargo, a continuación haremos el desarrollo hecho en la entrada anterior ya que, como veremos, los valores propios serán repetidos y nulos. Dichos valores propios los obtenemos de la siguiente ecuación característica.

$$\begin{vmatrix}
0 -\lambda & 2 \\ 0 & 0 -\lambda
\end{vmatrix} = \lambda^{2} = 0$$

La única raíz es $\lambda = 0$, es decir, cero es el único valor propio con multiplicidad $2$.

Para determinar el vector propio resolvemos el siguiente sistema.

$$\mathbf{AK} = \begin{pmatrix}
0 & 2 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix}$$

Este sistema nos indica que $2k_{2} = 0$, es decir, $k_{2} = 0$ y que $k_{1}$ puede tomar cualquier valor en $\mathbb{R}$. Tomemos $k_{1} = 1$, tal que el primer vector propio sea

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0
\end{pmatrix}$$

Buscamos ahora un vector propio generalizado.

$$(\mathbf{A} -\lambda \mathbf{I})^{2} \mathbf{K} = \begin{pmatrix}
0 & 2 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 2 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Debido a que cualquier vector $\mathbf{K}$, tal que

$$\mathbf{AK} \neq \mathbf{0}$$

es un vector propio generalizado, elegimos el vector ortogonal

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

Por lo tanto, la solución general es

\begin{align*}
\mathbf{Y}(t) &= c_{1} \begin{pmatrix}
1 \\ 0
\end{pmatrix} + c_{2} \left[ \begin{pmatrix}
1 \\ 0
\end{pmatrix} + t \begin{pmatrix}
0 & 2 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
0 \\ 1
\end{pmatrix} \right] \\
&= c_{1} \begin{pmatrix}
1 \\ 0
\end{pmatrix} + c_{2} \left[ \begin{pmatrix}
0 \\ 1
\end{pmatrix} + t
\begin{pmatrix}
2 \\ 0
\end{pmatrix} \right] \\
&= c_{1} \begin{pmatrix}
1 \\ 0
\end{pmatrix} + c_{2} \left[ \begin{pmatrix}
0 \\ 1
\end{pmatrix} + 2t
\begin{pmatrix}
1 \\ 0
\end{pmatrix} \right]
\end{align*}

Solución que podemos escribir como

\begin{align*}
x(t) &= c_{1} + 2c_{2}t \\
y(t) &= c_{2}
\end{align*}

Esta solución es la misma que encontramos antes. Debido a que $x(t)$ depende de $t$ linealmente, entonces por cada valor de $y(t)$, es decir de $c_{2}$, $x(t)$ tomará todos los valores en $\mathbb{R}$. Esto significa que en el plano fase las trayectorias serán rectas paralelas al eje $X$.

Verifica que los puntos de equilibrio del sistema corresponden al eje $X$ del plano fase.

Notemos que si $y(x) > 0$, o bien, $c_{2} > 0$, entonces

$$\lim_{t \to \infty} x(t) = \infty$$

y si $y(x) < 0$, o bien, $c_{2} < 0$, entonces

$$\lim_{t \to \infty} x(t) = -\infty$$

De manera que para $y > 0$ las trayectorias se moverán hacía la derecha y lo harán en sentido opuesto si $y < 0$. El plano fase es el siguiente.

Plano fase del sistema.

La función que define al campo vectorial es

$$F(x, y) = (2y, 0)$$

En la siguiente figura se muestra el campo vectorial asociado y algunas trayectorias.

Trayectorias y campo vectorial.

$\square$

Hemos concluido con el estudio de los sistemas lineales.

Más adelante comenzaremos a estudiar sistemas no lineales, al menos desde una perspectiva cualitativa, y veremos que mucho de los que vimos en los casos lineales nos será de ayuda ya que los planos fase de los sistemas no lineales en la vecindad de un punto de equilibrio son, con frecuencia, muy similares a los planos fase de sistemas lineales, así que veremos esta conexión entre ambos sistemas.

Pero antes de estudiar a los sistemas no lineales dedicaremos la siguiente entrada en hacer un repaso de lo visto en las últimas 4 entradas y resumirlo en lo que se conoce como el plano traza – determinante, ya que seguramente en este punto podría parecernos que hay muchas posibilidades diferentes para los sistemas lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales y hacer un análisis cualitativo de las soluciones.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 4 \\ 3 & 6
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -3 & 1 \\ 3 & -1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & -3 \\ 0 & 0
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    3 & 6 \\ -1 & -2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & 4 \\ 1/2 & -2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & 0 \\ 5 & 0
    \end{pmatrix} \mathbf{Y}$

Más adelante…

Hemos concluido con el análisis analítico y cualitativo de los sistemas lineales homogéneos compuestos por dos ecuaciones diferenciales del primer orden. Para tener todo en perspectiva, en la siguiente entrada haremos un breve repaso de todo lo visto con respecto a estos sistemas y resumiremos todo en un plano especial conocido como el plano traza – determinante.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Teoría cualitativa de los sistemas lineales homogéneos – Valores propios reales y distintos

Por Omar González Franco

Las matemáticas son el juez supremo;
de sus decisiones no hay apelación.
– Tobias Dantzig

Introducción

Ahora que conocemos algunas de las propiedades cualitativas más importantes a analizar de los sistemas autónomos compuestos por dos ecuaciones diferenciales, dedicaremos las siguientes entradas a estudiar exclusivamente los sistemas lineales homogéneos, logrando hacer una conexión entre la unidad 3 y la unidad 4 del curso.

Esta y las siguientes entradas serán el complemento cualitativo del método de valores y vectores propios para resolver sistemas lineales homogéneos, con la restricción de que los sistemas que estudiaremos estarán compuestos por dos ecuaciones diferenciales ya que son el tipo de sistemas en los que conjuntamente podemos hacer una descripción geométrica en $\mathbb{R}^{2}$, concretamente en el plano fase o plano $XY$.

En la primera entrada de esta unidad mostramos los casos posibles de acuerdo al valor que pueden tomar los valores propios, dichos casos pueden ser

Valores propios reales y distintos:

  • $\lambda_{1} < \lambda_{2} < 0$.
  • $\lambda_{1} > \lambda_{2} > 0$.
  • $\lambda_{1} < 0$ y $\lambda_{2} > 0$.

Valores propios complejos:

  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha < 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha = 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha > 0$.

Valores propios repetidos:

  • $\lambda_{1} = \lambda_{2} < 0$.
  • $\lambda_{1} = \lambda_{2} > 0$.

Valores propios nulos:

  • $\lambda_{1} = 0$ y $\lambda_{2} < 0$.
  • $\lambda_{1} = 0$ y $\lambda_{2} > 0$.
  • $\lambda_{1} = \lambda_{2} = 0$.

Dedicaremos esta entrada al caso exclusivo en el que los valores propios son reales y distintos.

Sistemas lineales

El sistema lineal autónomo que estudiaremos es

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx+dy \label{1} \tag{1}
\end{align*}

Si se definen las matrices

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
x \\ y
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix}$$

entonces el sistema se puede escribir como

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{2} \tag{2}$$

Por otro lado, si consideramos la función vectorial

$$F(x, y) = (F_{1}(x, y), F_{2}(x, y)) \label{3} \tag{3}$$

en donde,

$$F_{1}(x, y) = ax + by \hspace{1cm} y \hspace{1cm} F_{2}(x, y) = cx + dy \label{4} \tag{4}$$

entonces el sistema autónomo (\ref{1}) se puede escribir, alternativamente, como

$$Y^{\prime} = F(x, y) \label{5} \tag{5}$$

Veremos que el plano fase del sistema depende casi por completo de los valores propios de la matriz $\mathbf{A}$ y habrá diferencias notables si los valores propios de $\mathbf{A}$ cambian de signo o se vuelven imaginarios.

Sean $\lambda_{1}$ y $\lambda_{2}$ los dos valores propios reales de $\mathbf{A}$, tal que $\lambda_{1} \neq \lambda_{2}$, recordemos que la solución general para este caso es de la forma

$$\mathbf{Y}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1} + c_{2}e^{\lambda_{2} t} \mathbf{K}_{2} \label{6} \tag{6}$$

En donde $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ son los vectores propios de $\mathbf{A}$ y $c_{1}$ y $c_{2}$ son constantes arbitrarias que se determinan a partir de las condiciones iniciales del problema.

Comencemos por estudiar el caso en el que los valores propios son negativos.

Valores propios negativos

Caso 1: $\lambda_{1} < \lambda_{2} < 0$.

Sean $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ los vectores propios de $\mathbf{A}$ con valores propios $\lambda_{1}$ y $\lambda_{2}$, respectivamente. La solución general está dada por (\ref{6}), sin embargo es conveniente hacer un análisis por separado de las soluciones linealmente independientes

$$\mathbf{Y}_{1}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1} \hspace{1cm} y \hspace{1cm} \mathbf{Y}_{2}(t) = c_{2}e^{\lambda_{2} t} \mathbf{K}_{2}$$

Comencemos por trazar en el plano $XY$, o plano fase, cuatro semirrectas, dos de ellas $l_{1}$ y $l_{2}$ siendo paralelas a $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$, respectivamente, mientras que las semirrectas $l^{\prime}_{1}$ y $l^{\prime}_{2}$ paralelas a $-\mathbf{K}_{1}$ y $-\mathbf{K}_{2}$, respectivamente.

Consideremos primero la solución

$$\mathbf{Y}_{1}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1} \label{7} \tag{7}$$

Esta solución es siempre proporcional a $\mathbf{K}_{1}$ y la constante de proporcionalidad $c_{1}e^{\lambda_{1} t}$ varía de $\pm \infty$ a cero, dependiendo de si $c_{1}$ es positiva o negativa. Por lo tanto, la trayectoria de esta solución es la semirrecta $l_{1}$ para $c_{1} > 0$, y la semirrecta $l^{\prime}_{1}$ para $c_{1} < 0$. Análogamente, la trayectoria de la solución

$$\mathbf{Y}_{2}(t) = c_{2}e^{\lambda_{2} t} \mathbf{K}_{2} \label{8} \tag{8}$$

es la semirrecta $l_{2}$ para $c_{2} > 0$ y la semirrecta $l^{\prime}_{2}$ para $c_{2} < 0$.

Consideremos ahora la solución general (\ref{6}).

$$\mathbf{Y}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1} + c_{2}e^{\lambda_{2} t} \mathbf{K}_{2}$$

Notemos que toda solución $\mathbf{Y}(t)$ tiende al punto $(0, 0)$ cuando $t \rightarrow \infty$. Por lo tanto, toda trayectoria de (\ref{1}) tiende al origen cuando $t$ tiende a infinito.

Observemos que $e^{\lambda_{2} t} \mathbf{K}_{2}$ es muy pequeño comparado con $e^{\lambda_{1} t} \mathbf{K}_{1}$ cuando $t$ es grande (recordemos que $\lambda_{1} < \lambda_{2} < 0$). Por lo tanto, para $c_{1} \neq 0$, $\mathbf{Y}(t)$ se aproxima cada vez más a $c_{1} e^{\lambda_{1} t} \mathbf{K}_{1}$ conforme $t \rightarrow \infty $, esto implica que la tangente a la trayectoria de $\mathbf{Y}(t)$ tiende a $l_{1}$ si $c_{1}$ es positiva y a $l^{\prime}_{1}$, si $c_{1}$ es negativa.

Con todas estas características el plano fase de (\ref{1}), para el caso en el que los valores propios son negativos, tiene la forma que se presenta en la siguiente figura.

Plano fase para valores propios negativos.

Observamos que todas las trayectorias, con excepción de una sola recta, tienden al origen. En este caso se dice que el punto de equilibrio $Y_{0} = (0, 0)$ de (\ref{1}) es un nodo atractor y su estabilidad es asintóticamente estable.

Una última observación es que la trayectoria de toda solución $\mathbf{Y}(t)$ de (\ref{1}) tiende al origen cuando $t$ tiende a infinito, sin embargo ese punto no pertenece a la trayectoria de ninguna solución no trivial $\mathbf{Y}(t)$.

Veamos ahora que ocurre cuando los valores propios son positivos.

Valores propios positivos

Caso 2: $0 < \lambda_{1} < \lambda_{2}$.

Para este caso se hace análogamente el mismo análisis que en el caso anterior, de modo que el plano fase es exactamente el mismo, excepto que el sentido de las trayectorias es el opuesto. El plano fase se muestra a continuación.

Plano fase para valores propios positivos.

Como las soluciones se alejan del punto de equilibrio $Y_{0} = (0, 0)$ de (\ref{1}), se dice que dicho punto es un nodo repulsor e inestable.

Antes de realizar algunos ejemplos concluyamos con el caso en el que un valor propio es negativo, mientras que el otro es positivo.

Valores propios con signos opuestos

Caso 3: $\lambda_{1} < 0 < \lambda_{2}$.

Sean nuevamente $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ los vectores propios de $\mathbf{A}$ con valores propios $\lambda_{1}$ y $\lambda_{2}$, respectivamente.

De forma similar que en los casos anteriores, comencemos por trazar en el plano $XY$ cuatro semirrectas, dos de ellas $l_{1}$ y $l_{2}$ siendo paralelas a $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$, respectivamente, mientras que las semirrectas $l^{\prime}_{1}$ y $l^{\prime}_{2}$ paralelas a $-\mathbf{K}_{1}$ y $-\mathbf{K}_{2}$, respectivamente.

Consideremos nuevamente las soluciones linealmente independientes por separado.

$$\mathbf{Y}_{1}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1} \hspace{1cm} y \hspace{1cm} \mathbf{Y}_{2}(t) = c_{2}e^{\lambda_{2} t} \mathbf{K}_{2}$$

En el caso de la solución

$$\mathbf{Y}_{1}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1}$$

la trayectoria es $l_{1}$ para $c_{1} > 0$ y $l^{\prime}_{1}$ para $c_{1} < 0$, mientras que la trayectoria de la solución

$$\mathbf{Y}_{2}(t) = c_{2} e^{\lambda_{2} t} \mathbf{K}_{2}$$

es $l_{2}$ para $c_{2} > 0$ y $l^{\prime}_{2}$ para $c_{2} < 0$.

Notemos que la solución $c_{1} e^{\lambda_{1} t} \mathbf{K}_{1}$ tiende al origen $(0, 0)$ cuando $t \rightarrow \infty$, mientras que la solución $c_{2} e^{\lambda_{2} t} \mathbf{K}_{2}$ con $c_{2} \neq 0$ es no acotada conforme $t \rightarrow \infty$.

Por otro lado, observemos que $e^{\lambda_{1} t} \mathbf{K}_{1}$ es muy pequeño comparado con $e^{\lambda_{2} t} \mathbf{K}_{2}$ cuando $t$ crece mucho. Por lo tanto, toda solución $\mathbf{Y}(t)$ de (\ref{1}) con $c_{2} \neq 0$ es no acotada cuando $t$ tiende a infinito y su trayectoria tiende a $l_{2}$ o a $l^{\prime}_{2}$. De forma similar notamos que $e^{\lambda_{2} t} \mathbf{K}_{2}$ es muy pequeño comparado con $e^{\lambda_{1} t} \mathbf{K}_{1}$ cuando $t$ crece mucho con signo negativo. Por lo tanto, la trayectoria de cualquier solución $\mathbf{Y}(t)$ de (\ref{1}) con $c_{1} \neq 0$ tiende a $l_{1}$ o a $l^{\prime}_{1}$ cuando $t$ tiende a menos infinito.

Por lo tanto, en el caso en el que los valores propios tienen signos opuestos, el plano fase, con las características mencionadas, tiene la siguiente forma.

Plano fase para valores propios con signos opuestos.

Es posible observar que el plano fase se asemeja a una silla de montar cerca del origen, por esta razón se dice que el punto de equilibrio $Y_{0} = (0, 0)$ de (\ref{1}) es un punto silla y es inestable.

Para concluir con la entrada realicemos un ejemplo por cada caso analizado. En los ejemplos de esta y las próximas entradas estaremos usando las herramientas antes proporcionadas para visualizar el plano fase y el campo vectorial asociado. Puedes usarlas tu mismo para comprobar los resultados o visualizar otros sistemas.

Caso 1: $\lambda_{1} < \lambda_{2} < 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-5 & 1 \\ 1 & -5
\end{pmatrix} \mathbf{Y}$$

Solución: Primero resolvamos el sistema analíticamente. Determinemos los valores propios.

$$\begin{vmatrix}
-5 -\lambda & 1 \\ 1 & -5 -\lambda
\end{vmatrix} = (-5 -\lambda)^{2} -1 = \lambda^{2} + 10 \lambda + 24 = (\lambda + 6)(\lambda + 4) = 0$$

Las raíces son $\lambda_{1} = -6$ y $\lambda_{2} = -4$. Determinemos los vectores propios. La primer ecuación a resolver es

$$(\mathbf{A} + 6 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Inmediatamente vemos que $k_{1} = -k_{2}$. Sea $k_{2} = 1$, entonces $k_{1} = -1$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
-1 \\ 1
\end{pmatrix}$$

Para el segundo vector propio resolvemos la ecuación

$$(\mathbf{A} + 4 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
-1 & 1 \\ 1 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

En este caso $k_{1} = k_{2}$. Sea $k_{1} = 1 = k_{2}$, entonces el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Por lo tanto, la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} e^{-6t} \begin{pmatrix}
-1 \\ 1
\end{pmatrix} + c_{2} e^{-4t} \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Separemos la soluciones en las funciones $x(t)$ y $y(t)$.

\begin{align*}
x(t) &= -c_{1}e^{-6t} + c_{2}e^{-4t} \\
y(t) &= c_{1}e^{-6t} + c_{2}e^{-4t}
\end{align*}

Analicemos las soluciones cualitativamente.

Lo primero que sabemos es que el punto de equilibrio $Y_{0} = (0, 0)$ es un nodo atractor estable lo que implica que todas las soluciones tienden al origen, pero nunca llegan a él ya que dicho punto no pertenece a ninguna solución.

Las rectas paralelas a los vectores propios $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ están definidas por las funciones $y(x) = -x$ y $y(x) = x$, respectivamente. La forma de comprobarlo es considerando las soluciones linealmente independientes por separado.

$$\mathbf{Y}_{1}(t) = c_{1} e^{-6t} \begin{pmatrix}
-1 \\ 1
\end{pmatrix}$$

y

$$\mathbf{Y}_{2}(t) = c_{2} e^{-4t} \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

En el caso de la solución $\mathbf{Y}_{1}(t)$ las soluciones son

\begin{align*}
x(t) &= -c_{1}e^{-6t} \\
y(t) &= c_{1}e^{-6t}
\end{align*}

De donde es claro que $y = -x = c_{1}e^{-6t}$. De forma similar, de la segunda solución $\mathbf{Y}_{2}(t)$ se obtienen las soluciones

\begin{align*}
x(t) &= c_{2}e^{-4t} \\
y(t) &= c_{2}e^{-4t}
\end{align*}

De donde $y = x = c_{2}e^{-4t} $.

Todas las trayectorias se trazarán de acuerdo a la función paramétrica

$$f(t) = (-c_{1}e^{-6t} + c_{2}e^{-4t}, c_{1}e^{-6t} + c_{2}e^{-4t})$$

Tracemos como ejemplo $4$ trayectorias correspondientes a los siguientes casos:

  • $c_{1} = 1$, $c_{2} = 1 \hspace{1.3cm} \rightarrow \hspace{1cm} f(t) = (-e^{-6t} + e^{-4t}, e^{-6t} + e^{-4t})$
  • $c_{1} = 1$, $c_{2} = -1 \hspace{1cm} \rightarrow \hspace{1cm} f(t) = (-e^{-6t} -e^{-4t}, e^{-6t} -e^{-4t})$
  • $c_{1} = -1$, $c_{2} = 1 \hspace{1cm} \rightarrow \hspace{1cm} f(t) = (e^{-6t} + e^{-4t}, -e^{-6t} + e^{-4t})$
  • $c_{1} = -1$, $c_{2} = -1 \hspace{0.7cm} \rightarrow \hspace{1cm} f(t) = (e^{-6t} -e^{-4t}, -e^{-6t} -e^{-4t})$

La gráfica en el plano $XY$ de las cuatro trayectorias anteriores, cerca del origen, se muestra a continuación.

$4$ trayectorias particulares del sistema.

Por supuesto hay infinitas trayectorias, una para cada posible par de valores $c_{1}$ y $c_{2}$.

En la parte izquierda de la siguiente figura se encuentra el plano fase del sistema con algunas trayectorias, los vectores propios de $\mathbf{A}$ y las rectas paralelas a dichos vectores. En el lado derecho se encuentra el sistema que estamos analizando y el valor de los eigenvalores y eigenvectores.

Plano fase del sistema.

En la figura anterior también se encuentran los datos $\Delta = 24$ y $\tau = -10$, estos valores corresponden al valor del determinante y la traza de $\mathbf{A}$, respectivamente. Por el momento no tenemos que preocuparnos por estos valores, sin embargo más adelante veremos que nos serán de mucha utilidad cuando estudiemos el llamado plano traza – determinante.

Para concluir con el ejemplo determinemos el campo vectorial asociado. La función $F(x, y)$ en este caso es

$$F(x, y) = (-5x + y, x -5y)$$

El campo vectorial asociado junto con algunas trayectorias se muestra a continuación.

Trayectorias y campo vectorial.

$\square$

Caso 2: $0 < \lambda_{1} < \lambda_{2}$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ -2 & 5
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
4 -\lambda & -1 \\ -2 & 5 -\lambda
\end{vmatrix} = (4 -\lambda)(5 -\lambda) -2 = \lambda^{2} -9 \lambda + 18 = (\lambda -3)(\lambda -6) = 0$$

Las raíces son $\lambda_{1} = 3$ y $\lambda_{2} = 6$. Determinemos los vectores propios. La primer ecuación a resolver es

$$(\mathbf{A} -3 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
1 & -1 \\ -2 & 2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Resolviendo el sistema se obtiene que $k_{1} = k_{2}$, elegimos convenientemente $k_{1} = -2 = k_{2}$, tal que el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
-2 \\ -2
\end{pmatrix}$$

Para obtener el segundo vector propio resolvemos la ecuación

$$(\mathbf{A} -6 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
-2 & -1 \\ -2 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

En este caso se obtiene que $-2k_{1} = k_{2}$. Elegimos $k_{1} = 1$, entonces $k_{2} = -2$ y así el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ -2
\end{pmatrix}$$

Por lo tanto, la solución general es

$$\mathbf{Y}(t) = c_{1} e^{3t} \begin{pmatrix}
-2 \\ -2
\end{pmatrix} + c_{2} e^{6t} \begin{pmatrix}
1 \\ -2
\end{pmatrix}$$

Escribamos la solución en términos de las funciones $x(t)$ y $y(t)$.

\begin{align*}
x(t) &= -2c_{1}e^{3t} + c_{2}e^{6t} \\
y(t) &= -2c_{1}e^{3t} -2c_{2}e^{6t}
\end{align*}

Comencemos por determinar las funciones que definen las rectas paralelas a los vectores propios, para ello consideremos por separado las soluciones linealmente independientes

$$\mathbf{Y}_{1}(t) = c_{1} e^{3t} \begin{pmatrix}
-2 \\ -2
\end{pmatrix}$$

y

$$\mathbf{Y}_{2}(t) = c_{2} e^{6t} \begin{pmatrix}
1 \\ -2
\end{pmatrix}$$

De la solución $\mathbf{Y}_{1}(t)$ tenemos las soluciones

\begin{align*}
x(t) &= -2c_{1}e^{3t} \\
y(t) &= -2c_{1}e^{3t}
\end{align*}

De donde vemos que $y = x = -2c_{1}e^{3t}$, por tanto la recta paralela a $\mathbf{K}_{1}$ se define por la función $y(x) = x$. Por otro lado, de la solución $\mathbf{Y}_{2}(t)$ se tiene las soluciones

\begin{align*}
x(t) &= c_{2}e^{6t} \\
y(t) &= -2c_{2}e^{6t}
\end{align*}

En este caso vemos que $y = -2x = -2c_{2}e^{6t}$, por tanto la recta paralela al vector propio $\mathbf{K}_{2}$ esta definida por la función $y(x) = -2x$.

La función paramétrica que nos permite trazar las trayectorias es

$$f(t) = (-2c_{1}e^{3t} + c_{2}e^{6t}, -2c_{1}e^{3t} -2c_{2}e^{6t})$$

Si lo deseas intenta graficar algunas trayectorias para algunos valores de $c_{1}$ y $c_{2}$ como lo hicimos en el ejemplo anterior.

El plano fase del sistema indicando algunas trayectorias, los vectores propios y las rectas paralelas a estos vectores, se muestra a continuación.

Plano fase del sistema.

Se puede observar que las trayectorias son un poco similares a las del ejemplo anterior con la diferencia de que el sentido es el opuesto, de forma que el punto de equilibrio $Y_{0} = (0, 0)$ es nodo repulsor inestable.

El campo vectorial asociado está dado por la función vectorial

$$F(x, y) = (4x -y, -2x + 5y)$$

El campo vectorial con algunas trayectorias se muestra a continuación.

Trayectorias y campo vectorial.

$\square$

Concluyamos con un ejemplo del tercer caso.

Caso 3: $\lambda_{1} < 0 < \lambda_{2}$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
3 & -1 \\ 5 & -3
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
3 -\lambda & -1 \\ 5 & -3 -\lambda
\end{vmatrix} = (3 -\lambda )( -3 -\lambda ) + 5 = \lambda {2} -4 = (\lambda -2)(\lambda + 2) = 0$$

Las raíces son$\lambda_{1} = -2$ y $\lambda_{2} = 2$. Determinemos los vectores propios. Para el primer vector resolvamos la ecuación

$$(\mathbf{A} + 2 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
5 & -1 \\ 5 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Vemos que $5k_{1} = k_{2}$. Sea $k_{1} = -1$, tal que $k_{2} = -5$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
-1 \\ -5
\end{pmatrix}$$

Para obtener el segundo vector propio resolvemos

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
1 & -1 \\ 5 & -5
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Tenemos que $k_{1} = k_{2}$. Sea $k_{1} = 5 = k_{2}$, entonces el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
5 \\ 5
\end{pmatrix}$$

Por lo tanto, la solución general es

$$\mathbf{Y}(t) = c_{1} e^{-2t} \begin{pmatrix}
-1 \\ -5
\end{pmatrix} + c_{2} e^{2t} \begin{pmatrix}
5 \\ 5
\end{pmatrix}$$

o bien,

\begin{align*}
x(t) &= -c_{1} e^{-2t} + 5c_{2} e^{2t} \\
y(t) &= -5c_{1}e^{-2t} + 5c_{2}e^{2t}
\end{align*}

Las soluciones linealmente independientes son

$$\mathbf{Y}_{1}(t) = c_{1} e^{-2t} \begin{pmatrix}
-1 \\ -5
\end{pmatrix}$$

y

$$\mathbf{Y}_{2}(t) = c_{2} e^{2t} \begin{pmatrix}
5 \\ 5
\end{pmatrix}$$

cuyas soluciones en términos de las funciones $x(t)$ y $y(t)$ son, respectivamente

\begin{align*}
x(t) &= -c_{1} e^{-2t} \\
y(t) &= -5c_{1}e^{-2t}
\end{align*}

y

\begin{align*}
x(t) &= 5c_{2} e^{2t} \\
y(t) &= 5c_{2}e^{2t}
\end{align*}

La recta paralela al vector propio $\mathbf{K}_{1}$ está definida por la función $y(x) = 5x$, mientras que la recta paralela al vector propio $\mathbf{K}_{2}$ está definida por la función $y(x) = x$.

Las trayectorias son trazadas de acuerdo a la función paramétrica

$$f(t) = (-c_{1} e^{-2t} + 5c_{2} e^{2t}, -5c_{1} e^{-2t} + 5c_{2} e^{2t})$$

Consideremos nuevamente los siguientes casos:

  • $c_{1} = 1$, $c_{2} = 1 \hspace{1.3cm} \rightarrow \hspace{1cm} f(t) = (-e^{-2t} + 5e^{2t}, -5e^{-2t} + 5e^{2t})$
  • $c_{1} = 1$, $c_{2} = -1 \hspace{1cm} \rightarrow \hspace{1cm} f(t) = (-e^{-2t} -5e^{2t}, -5e^{-2t} -5e^{2t})$
  • $c_{1} = -1$, $c_{2} = 1 \hspace{1cm} \rightarrow \hspace{1cm} f(t) = (e^{-2t} + 5e^{2t}, 5e^{-2t} + 5e^{2t})$
  • $c_{1} = -1$, $c_{2} = -1 \hspace{0.7cm} \rightarrow \hspace{1cm} f(t) = (e^{-2t} -5e^{2t}, 5e^{-2t} -5e^{2t})$

La gráfica en el plano $XY$ de las cuatro trayectorias anteriores, cerca del origen, se muestra a continuación.

$4$ trayectorias particulares del sistema.

Observemos cuidadosamente que ocurre en los casos límite.

Consideremos la función

$$f(t) = (x(t), y(t)) = (-e^{-2t} + 5e^{2t}, -5e^{-2t} + 5e^{2t})$$

Conforme $t$ crece el término $-e^{-2t}$ se hace muy pequeño comparado con el término $5e^{2t}$, de manera que si $t \rightarrow \infty$, entonces $x(t) \rightarrow 5e^{2t}$, de forma similar el término $-5e^{-2t}$ se hace muy pequeño en comparación con el término $5e^{2t}$, es decir, si $t \rightarrow \infty$, entonces $y(t) \rightarrow 5e^{2t}$. Esto nos permite notar que si $t \rightarrow \infty$, entonces $y \rightarrow x$. Por el contrario, si $t \rightarrow -\infty$, entonces $y \rightarrow 5x$. En la gráfica anterior vemos este comportamiento para la trayectoria verde.

Intenta hacer este mismo análisis para las tres trayectorias restantes de la gráfica anterior y logra notar que en los casos límites las trayectorias tienden a las rectas paralelas a los vectores propios.

En la siguiente figura se muestra el plano fase indicando algunas trayectorias, los vectores propios y las rectas paralelas a estos vectores.

Plano fase del sistema.

Efectivamente, el punto de equilibrio $Y_{0} = (0, 0)$ es un punto silla y es inestable.

Finalmente apreciemos el campo vectorial asociado, definido por la función vectorial

$$F(x, y) = (3x -y, 5x -3y)$$

Trayectorias y campo vectorial.

$\square$

Con esto concluimos esta entrada. En la siguiente entrada veremos que ocurre si los valores y vectores propios son complejos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales y hacer un análisis cualitativo de las soluciones.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -2 \\ 3 & -4
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 2 \\ 1 & 3
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    3 & -2 \\ 2 & -2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & -1 \\ 8 & -6
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 1 \\ 1 & 2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 2 \\ 4 & 3
    \end{pmatrix} \mathbf{Y}$

Más adelante…

Concluimos con el caso en el que los valores propios de la matriz $\mathbf{A}$ son reales y distintos.

En la siguiente entrada haremos un análisis muy similar a como lo hicimos en esta entrada, pero en el caso en el que los valores propios de la matriz $\mathbf{A}$ son complejos. Veremos que en este caso existen soluciones que son periódicas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Introducción a la teoría cualitativa de las ecuaciones diferenciales

Por Omar González Franco

No hay rama de la matemática, por lo abstracta que sea, que no
pueda aplicarse algún día a los fenómenos del mundo real.
– Lobachevski

Introducción

¡Bienvenidos a la cuarta y última unidad del curso de Ecuaciones Diferenciales I!.

En esta unidad estudiaremos a las ecuaciones diferenciales ordinarias desde una perspectiva cualitativa y geométrica. En particular, estudiaremos las propiedades cualitativas de los sistemas de ecuaciones diferenciales de primer orden que vimos en la unidad anterior y, como sabemos, las ecuaciones de orden superior se pueden reducir a sistemas de ecuaciones de primer orden, lo que significa que en nuestro estudio también estaremos revisando las propiedades cualitativas de algunas de las ecuaciones vistas en la unidad 2.

La teoría cualitativa ya no es nueva para nosotros, pues en la primera unidad estudiamos desde esta perspectiva a las ecuaciones de primer orden. Recordemos que una ecuación diferencial de primer orden se puede ver, en su forma normal, como

$$\dfrac{dy}{dx} = f(x, y(x)) = f(x, y) \label{1} \tag{1}$$

Y una ecuación diferencial autónoma como

$$\dfrac{dy}{dx} = f(y(x)) = f(y) \label{2} \tag{2}$$

En esta última ecuación la variable independiente no aparece explícitamente.

Sobre la ecuación (\ref{1}) definimos los conceptos de elementos lineales, campo de pendientes, curvas integrales e isóclinas y sobre la ecuación (\ref{2}) definimos conceptos como puntos de equilibrio o puntos críticos, esquema de fases, líneas de fase, así como atractores, repulsores y nodos. Muchos de estos conceptos los generalizaremos a los sistemas lineales, además de algunos otros conceptos nuevos que definiremos.

En esta entrada daremos una introducción intuitiva al análisis cualitativo y geométrico de los sistemas lineales y a partir de la siguiente entrada comenzaremos a formalizar la teoría.

Sistemas lineales

Recordemos que un sistema de ecuaciones diferenciales de primer orden es de la forma

\begin{align*}
y_{1}^{\prime}(t) &= F_{1}(t, y_{1}, y_{2}, \cdots, y_{n}) \\
y_{2}^{\prime}(t) &= F_{2}(t, y_{1}, y_{2}, \cdots, y_{n}) \\
&\vdots \\
y_{n}^{\prime}(t) &= F_{n}(t, y_{1}, y_{2}, \cdots, y_{n}) \label{3} \tag{3}
\end{align*}

En forma vectorial se puede escribir como

$$\mathbf{Y}^{\prime}(t) = \mathbf{F}(t, \mathbf{Y}(t)) \label{4} \tag{4}$$

Si el sistema es lineal, entonces se puede escribir, en su forma normal, como

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}(t)y_{1} + a_{12}(t)y_{2} + \cdots + a_{1n}(t)y_{n} + g_{1}(t) \\ y_{2}^{\prime}(t) &= a_{21}(t)y_{1} + a_{22}(t)y_{2} + \cdots + a_{2n}(t)y_{n} + g_{2}(t) \\ &\vdots \\
y_{n}^{\prime}(t) &= a_{n1}(t)y_{1} + a_{n2}(t)y_{2} + \cdots + a_{nn}(t)y_{n} + g_{n}(t) \label{5} \tag{5}
\end{align*}

En esta unidad estudiaremos a detalle la propiedades cualitativas de los sistemas lineales compuestos por dos ecuaciones diferenciales de primer orden homogéneas con coeficientes constantes por muchas razones, las cuales comentaremos al final de la entrada. Dicho sistema lo podemos escribir de la siguiente forma.

\begin{align*}
x^{\prime}(t) &= ax(t) + by(t) \\
y^{\prime}(t) &= cx(t) + dy(t) \label{6} \tag{6}
\end{align*}

En donde $a, b, c$ y $d$ son constantes. Si definimos

$$\mathbf{Y}^{\prime}(t) = \begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t)
\end{pmatrix}, \hspace{1cm} \mathbf{Y}(t) = \begin{pmatrix}
x(t) \\ y(t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix}$$

entonces el sistema (\ref{6}) se puede escribir como

$${\mathbf{Y}}'(t) = \mathbf{AY}(t) \label{7} \tag{7}$$

Esta es la forma común con la que estuvimos trabajando en la unidad anterior. Si ahora definimos las funciones

$$F_{1}(t, x, y) = ax(t) + by(t) \hspace{1cm} y \hspace{1cm} F_{2}(t, x, y) = cx(t) + dy(t) \label{8} \tag{8}$$

y definimos el vector compuesto por estas funciones

$$\mathbf{F}(t, x, y) = \begin{pmatrix}
F_{1}(t, x, y) \\ F_{2}(t, x, y)
\end{pmatrix} \label{9} \tag{9}$$

entonces podemos escribir al sistema (\ref{6}) como

$$\mathbf{Y}^{\prime}(t) = \mathbf{F}(t, x, y) \label{10} \tag{10}$$

De (\ref{7}) y (\ref{10}), se obtiene que

$$\mathbf{F}(t, x, y) = \mathbf{AY}(t) \label{11} \tag{11}$$

Esta es una nueva forma de ver un sistema lineal, sin embargo nuestro interés está en hacer un análisis cualitativo y geométrico, así que es conveniente ver a la ecuación (\ref{11}) como una función de varias variables definida en un dominio $U$.

Observemos que el sistema lineal (\ref{6}) no depende explícitamente de la variable $t$, por lo que podemos escribir

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx + dy \label{12} \tag{12}
\end{align*}

Y ahora podemos escribir

$$F_{1}(x, y) = ax + by \hspace{1cm} y \hspace{1cm} F_{2}(x, y) = cx + dy \label{13} \tag{13}$$

Es claro que $F_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ y $F_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$, es decir las funciones $F_{1}$ y $F_{2}$ son funciones de dos variables cuyo dominio está formado por puntos con $2$ coordenadas y la función asocia a cada punto un número real determinado. La gráfica de estas funciones está en $\mathbb{R}^{3}$. Ahora bien, se puede definir la función

$$F(x, y) = (F_{1}(x, y), F_{2}(x, y)) = (ax + by, cx + dy) \label{14} \tag{14}$$

En este caso $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, así que ya no podemos visualizar su gráfica, sin embargo existe una técnica en la que en un mismo plano a cada elemento $(x, y) \in \mathbb{R}^{2}$ lo dibujamos como un punto y a $F(x, y)$ como un vector colocado sobre ese punto $(x, y)$. Por ejemplo, la función

$$F(x, y) = (x, y)$$

se puede visualizar como

Bosquejo de la función $F(x, y) = (x, y)$.

Este tipo de bosquejos es lo que conocemos como campos vectoriales.

Finalmente consideremos las soluciones del sistema lineal (\ref{12}). En este caso lo que obtendremos al resolver el sistema serán dos funciones $x(t)$ y $y(t)$ definidas como $x: \mathbb{R} \rightarrow \mathbb{R}$ y $y: \mathbb{R} \rightarrow \mathbb{R}$. Lo que deseamos es graficar de alguna manera estas dos funciones en el mismo plano en el que se bosqueja el campo vectorial $F(x, y)$, para hacerlo definimos la función

$$f(t) = (x(t), y(t)) \label{15} \tag{15}$$

Vemos que $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, es decir, dado un valor para $t$ las soluciones $x(t)$ y $y(t)$ toman un valor particular que sirven como entrada de la función $f$ y ésta devuelve un sólo valor.

Para tener una visualización de $f$ consideremos como ejemplo la función

$$f(t) = (t, t^{2})$$

con $t \in [-2, 2]$, es decir,

$$x(t) = t \hspace{1cm} y \hspace{1cm} y(t) = t^{2}$$

Consideremos algunos valores particulares

  • $t = -2 \hspace{0.7cm} \rightarrow \hspace{1cm} f(-2) = (-2, 4)$.
  • $t = 2 \hspace{1cm} \rightarrow \hspace{1cm} f(2) = (2, 4)$.
  • $t = -1 \hspace{0.7cm} \rightarrow \hspace{1cm} f(-1) = (-1, 1)$.
  • $t = 1 \hspace{1cm} \rightarrow \hspace{1cm} f(1) = (1, 1)$.

Para visualizar estos datos lo que vamos a hacer es dibujar vectores que parten del origen hacía las coordenadas $(x(t), y(t))$ obtenidas, tal como se muestra en la siguiente figura.

Vectores correspondientes a $f(t)$ para $t = -2, -1, 1, 2$.

$f(t)$ será la curva que trazará la punta del vector a medida que $t$ tiene distintos valores. Siguiendo con el mismo ejemplo $f(t) = (t, t^{2})$ para $t \in [-2, 2]$, la curva que traza $f$ se ve de la siguiente forma.

Curva de la función $f(t) = (t, t^{2})$ para $t \in [-2, 2]$.

Observemos que $f(t) = (t, t^{2})$ no es más que la parametrización de la parábola $y(x) = x^{2}$ en el intervalo $[-2, 2]$. Es por ello que diremos que $f(t)$ es una función paramétrica.

Recordemos que un sistema de ecuaciones paramétricas permite representar una curva o superficie en el plano o en el espacio mediante una variable $t$ llamada parámetro que recorre un intervalo de números reales, considerando cada coordenada de un punto como una función dependiente del parámetro.

Concluiremos esta entrada con un ejemplo para visualizar cómo es que esta nueva forma de ver el problema de resolver un sistema lineal nos ayudará a obtener información cualitativa del mismo.

Análisis cualitativo y geométrico

Ejemplo: Hacer un análisis cualitativo y geométrico del siguiente sistema lineal homogéneo.

\begin{align*}
x^{\prime} &= 2x + 3y \\
y^{\prime} &= 2x + y \label{16} \tag{16}
\end{align*}

Solución: Primero resolvamos el sistema de forma tradicional, es decir, analíticamente.

La matriz de coeficientes es

$$\mathbf{A} = \begin{pmatrix}
2 & 3 \\ 2 & 1
\end{pmatrix} \label{17} \tag{17}$$

Los valores propios se obtienen de resolver la siguiente ecuación característica.

$$|\mathbf{A} -\lambda \mathbf{I})| = \begin{vmatrix}
2 -\lambda & 3 \\ 2 & 1-\lambda
\end{vmatrix} = \lambda^{2} -3 \lambda -4 = (\lambda + 1)(\lambda -4) = 0$$

Resolviendo se obtiene que los valores propios son

$$\lambda_{1} = -1 \hspace{1cm} y \hspace{1cm} \lambda_{2} = 4$$

Determinemos los vectores propios.

Para $\lambda_{1} = -1$, debemos resolver

$$(\mathbf{A} + \mathbf{I}) \mathbf{K} = \mathbf{0}$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
3k_{1} + 3k_{2} &= 0 \\
2k_{1} + 2k_{2} &= 0
\end{align*}

De donde $k_{1} = -k_{2}$. Si elegimos $k_{2} = 1$, se obtiene $k_{1} = -1$ y entonces el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
-1 \\ 1
\end{pmatrix}$$

Para $\lambda_{2} = 4$, debemos resolver

$$(\mathbf{A} -4\mathbf{I}) \mathbf{K} = \mathbf{0}$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
-2k_{1} + 3k_{2} &= 0 \\
2k_{1} -3k_{2} &= 0
\end{align*}

Se ve que $k_{1} = \dfrac{3}{2}k_{2}$, así si $k_{2} = 2$, entonces $k_{1} = 3$ y por tanto el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
3 \\ 2
\end{pmatrix}$$

Las soluciones linealmente independientes son

$$\mathbf{\mathbf{Y}}_{1}(t) = \begin{pmatrix}
-1 \\ 1
\end{pmatrix} e^{ -t} \hspace{1cm} y \hspace{1cm}
\mathbf{\mathbf{Y}}_{2}(t) = \begin{pmatrix}
3 \\ 2
\end{pmatrix}e^{4t} \label{18} \tag{18}$$

Y por lo tanto, la solución general del sistema lineal es

$$\mathbf{\mathbf{Y}}(t) = c_{1} \begin{pmatrix}
1 \\ -1
\end{pmatrix} e^{ -t} + c_{2} \begin{pmatrix}
3 \\ 2
\end{pmatrix} e^{4t} \label{19} \tag{19}$$

Si dejamos de usar la notación matricial podemos escribir a las soluciones como

$$x(t) = c_{1} e^{-t} + 3c_{2} e^{4t} \hspace{1cm} y \hspace{1cm} y(t) = -c_{1}e^{-t} + 2c_{2} e^{4t} \label{20} \tag{20}$$

Hasta aquí es hasta donde hemos llegado con lo visto en la unidad anterior, ahora veamos el comportamiento de estas soluciones geométricamente.

Obtuvimos dos funciones, cada una de ellas depende de la variable $t$ de forma que la primer función la podemos graficar en el plano $XT$, mientras que la segunda en el plano $YT$.

La gráfica de $x(t)$ para $c_{1} = c_{2} = 1$ se ve de la siguiente forma.

Función $ x(t) = e^{-t} + 3 e^{4t}$ en el plano $XT$.

Por otro lado, la gráfica de $y(t)$ para $c_{1} = c_{2} = 1$ se ve de la siguiente forma.

Función $y(t) = -e^{-t} + 2e^{4t}$ en el plano $YT$.

De acuerdo a (\ref{15}), la función paramétrica es

$$f(t) = (c_{1}e^{-t} + 3c_{2}e^{4t}, -c_{1}e^{-t} + 2c_{2}e^{4t}) \label{21} \tag{21}$$

Para el caso particular en el que $c_{1} = c_{2} = 1$ la función paramétrica es

$$f(t) = (e^{-t} + 3e^{4t}, -e^{-t} + 2 e^{4t}) \label{22} \tag{22}$$

Grafiquemos en el plano $XY$ la trayectoria de esta función.

Trayectoria en el plano $XY$ o plano fase.

Como ejemplo, si $t = 0$, entonces $x(0) = 4$ y $y(0) = 1$, tal coordenada $(4, 1)$ corresponde al punto mostrado en el plano $XY$, así la trayectoria se forma por el conjunto de puntos $(x(t), y(t))$ correspondientes a cada valor $t \in \mathbb{R}$.

Las tres gráficas anteriores corresponden a la solución particular en la que $c_{1} = c_{2} = 1$, así cada solución particular producirá tres curvas distintas en tres planos distintos.

Nos centraremos especialmente en el plano $XY$ o también llamado plano fase. Cada una de las curvas que se pueden formar en el plano fase correspondientes a valores específicos de $c_{1}$ y $c_{2}$ se llama trayectoria.

En el siguiente plano fase se muestra un conjunto de trayectorias definidas por (\ref{21}) para distintos valores de $c_{1}$ y $c_{2}$.

Distintas trayectorias en el plano fase.

Al conjunto de trayectorias representativas en el plano fase se llama diagrama fase.

Consideremos las soluciones independientes (\ref{18}).

$$\mathbf{\mathbf{Y}}_{1} = \begin{pmatrix}
-1 \\ 1
\end{pmatrix} e^{ -t} \hspace{1cm} y \hspace{1cm}
\mathbf{\mathbf{Y}}_{2} = \begin{pmatrix}
3 \\ 2
\end{pmatrix}e^{4t}$$

Y notemos lo siguiente.

De $\mathbf{Y}_{2}$ se obtienen las funciones

$$x(t) = 3e^{4t} \hspace{1cm} y \hspace{1cm} y(t) = 2e^{4t} \label{23} \tag{23}$$

De manera que la función $y(t)$ se puede escribir en términos de $x$ como

$$y(x) = \dfrac{2}{3}x$$

con $x > 0$ y cuya gráfica en el plano $XY$ corresponde a una recta en el primer cuadrante con pendiente $\dfrac{2}{3}$.

Gráfica de $y(x) = \dfrac{2}{3}x$ para $x > 0$.

De forma similar, si consideramos la solución $-\mathbf{Y}_{1}$ se obtienen las funciones

$$x(t) = e^{-t} \hspace{1cm} y \hspace{1cm} y(t) = -e^{t} \label{24} \tag{24}$$

De forma que $y$ en términos de $x$ se ve como

$$y(x) = -x$$

Para $x < 0$ en el plano $XY$ tendremos una recta en el segundo cuadrante con pendiente $-1$.

Gráfica de $y(x) = -x$ para $x < 0$.

Consideremos ahora la solución $-\mathbf{Y}_{2}$ cuyas funciones son

$$x(t) = -3e^{4t} \hspace{1cm} y \hspace{1cm} y(t) = -2e^{4t} \label{25} \tag{25}$$

En este caso,

$$y(x) = \dfrac{2}{3}x$$

con $x < 0$, la gráfica corresponde a una recta de pendiente $ \dfrac{2}{3}$ en el tercer cuadrante.

Gráfica de $y(x) = \dfrac{2}{3}x$ para $x < 0$.

Y finalmente de $\mathbf{Y}_{1}$ se obtienen las funciones

$$x(t) = -e^{-t} \hspace{1cm} y \hspace{1cm} y(t) = e^{-t} \label{26} \tag{26}$$

tal que,

$$y(x) = -x$$

con $x > 0$ y cuya gráfica es una recta de pendiente $-1$ en el cuarto cuadrante.

Gráfica de $y(x) = -x$ para $x > 0$.

Lo interesante es que cada vector propio se puede visualizar como un vector bidimensional que se encuentra a lo largo de una de estas semirrectas.

Por ejemplo el vector propio

$$\mathbf{K}_{1} = \begin{pmatrix}
-1 \\ 1
\end{pmatrix}$$

corresponde al siguiente vector en el plano $XY$.

Vector propio $K_{1}$ en el plano $XY$.

Mientras que el vector propio

$$\mathbf{K}_{2} = \begin{pmatrix}
3 \\ 2
\end{pmatrix}$$

corresponde al vector

Vector propio $K_{2}$ en el plano $XY$.

A continuación se muestran las cuatro semirrectas anteriores y los vectores propios unitarios

$$\hat{\mathbf{K}}_{1} = \dfrac{\mathbf{K}_{1}}{\left\| \mathbf{K}_{1} \right\|} \hspace{1cm} y \hspace{1cm} \hat{\mathbf{K}}_{2} = \dfrac{\mathbf{K}_{2}}{\left\| \mathbf{K}_{2} \right\|}$$

sobre el mismo plano fase de antes.

Plano fase ilustrando los vectores propios.

El vector propio $\hat{\mathbf{K}}_{2}$ se encuentra junto con $y = \dfrac{2}{3}x$ en el primer cuadrante y $\hat{\mathbf{K}}_{1}$ se encuentra junto con $y =-x$ en el segundo cuadrante.

Notamos que en el plano fase las trayectorias tienen flechas que indican dirección. Para saber la dirección de las trayectorias nos apoyaremos en el campo vectorial asociado.

Definamos las funciones $F_{1}$ y $F_{2}$ de acuerdo a (\ref{13}).

$$F_{1}(x, y) = 2x + 3y, \hspace{1cm} y \hspace{1cm} F_{2}(x, y) = 2x + y \label{27} \tag{27}$$

Entonces la función $F(x, y)$ correspondiente es

$$F(x, y) = (2x + 3y, 2x + y) \label{28} \tag{28}$$

El campo vectorial será descrito por esta función. Como vimos al inicio de la entrada, para cada punto $(x, y)$ del plano fase anclaremos un vector cuya punta termina en la coordenada dada por la suma vectorial $(x, y) + F(x, y)$. Por ejemplo si $x = 0$ y $y = 1$, entonces nos situaremos en la coordenada $(0, 1)$ del plano fase, evaluando en la función $F(x, y)$ se obtiene el punto $F(0, 1) = (3, 1)$, entonces la punta del vector que parte de $(0, 1)$ terminará en la coordenada $(0, 1) + (3, 1) = (3, 2)$.

Como ejemplo dibujemos los vectores correspondientes a las siguientes evaluaciones.

$$F(0, 1) = (3, 1), \hspace{1cm} F(0, -2) = (-6, -2), \hspace{1cm} F(-3, 0) = (-6, -6)$$

$$F(0, 3) = (9, 3), \hspace{1cm} F(2, -2) = (-2, 2), \hspace{1cm} F(3, -1) = (3, 5)$$

Bosquejo de vectores dados por $F(x, y)$.

Como se puede notar, si dibujáramos todos los vectores para cada punto $(x, y)$ tendríamos un desastre de vectores, todos de distintos tamaños atravesándose entre sí y no habría forma de observar el patrón que esconde el campo vectorial. Para solucionar este problema existe la convención de escalar todos los vectores a un mismo tamaño, por su puesto esto ya no representa correctamente al campo vectorial, pero sí que es de mucha ayuda visualmente y se convierte en sólo una representación del campo vectorial.

En nuestro ejemplo la función

$$F(x, y) = (2x + 3y, 2x + y)$$

se representa por el siguiente campo vectorial.

Representación del campo vectorial generado por $F(x, y) = (2x + 3y, 2x + y)$.

Cómo $F(x, y) = (x^{\prime}, y^{\prime})$, entonces los vectores del campo vectorial deben ser tangentes a las trayectorias formadas por la función paramétrica $f(t) = (x(t), y(t))$. Concluimos entonces que las soluciones del sistema lineal serán trayectorias cuyos vectores del campo vectorial son tangentes a dichas trayectorias.

Campo vectorial y algunas trayectorias del sistema lineal.

Una característica observable del campo vectorial es que los vectores tienden a alejarse del origen, veremos más adelante que el origen no sólo es una solución constante $x = 0$, $y = 0$ (solución trivial) de todo sistema lineal homogéneo de $2$ ecuaciones lineales, sino que también es un punto importante en el estudio cualitativo de dichos sistemas.

Si pensamos en términos físicos, las puntas de flecha de cada trayectoria en el tiempo $t$ se mueven conforme aumenta el tiempo. Si imaginamos que el tiempo va de $-\infty$ a $\infty$, entonces examinando la solución

$$x(t) = c_{1}e^{ -t} + 3c_{2}e^{4t}, \hspace{1cm} y(t) = -c_{1}e^{ -t} + 2c_{2}e^{4t}, \hspace{1cm} c_{1} \neq 0, \hspace{0.4cm} c_{2} \neq 0$$

muestra que una trayectoria o partícula en movimiento comienza asintótica a una de las semirrectas definidas por $\mathbf{Y}_{1}$ o $ -\mathbf{Y}_{1}$ (ya que $e^{4t}$ es despreciable para $t \rightarrow -\infty$) y termina asintótica a una de las semirrectas definidas por $\mathbf{Y}_{2}$ o $ -\mathbf{Y}_{2}$ (ya que $e^{-t}$ es despreciable para $t \rightarrow \infty$).

El plano fase obtenido representa un diagrama de fase que es característico de todos los sistemas lineales homogéneos de $2 \times 2$ con valores propios reales de signos opuestos.

$\square$

Hemos concluido con el ejemplo. Lo que nos muestra este ejemplo es que es posible hacer un desarrollo geométrico sobre un sistema lineal, sin embargo esto sólo es posible si es un sistema con dos ecuaciones, ya que si aumenta el número de ecuaciones también aumentará el número de dimensiones y ya no seremos capaz de obtener gráficas. Es posible extender el plano fase a tres dimensiones (espacio fase para un sistema lineal con $3$ ecuaciones), pero nos limitaremos sólo a los sistemas de $2$ ecuaciones para hacer más sencilla la tarea. También es importante mencionar que podremos hacer este análisis siempre y cuando los coeficientes sean constantes y las ecuaciones no dependan explícitamente de la variable independiente $t$.

Con este método geométrico será posible estudiar el comportamiento de las soluciones sin la necesidad de resolver el sistema, incluso con este método podremos estudiar sistemas no lineales para los cuales aún no conocemos algún método para resolverlos.

Finalmente veremos que las propiedades del plano fase quedarán determinadas por los valores propios del sistema, de manera que en las siguientes entradas haremos un análisis para cada una de las posibilidades que existen, tales posibilidades son:

Valores propios reales y distintos:

  • $\lambda_{1} < \lambda_{2} < 0$.
  • $\lambda_{1} > \lambda_{2} > 0$.
  • $\lambda_{1} < 0$ y $\lambda_{2} > 0$ (como en nuestro ejemplo).

Valores propios complejos:

  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha < 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha = 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha > 0$.

Valores propios repetidos:

  • $\lambda_{1} = \lambda_{2} < 0$.
  • $\lambda_{1} = \lambda_{2} > 0$.

Valores propios nulos:

  • $\lambda_{1} = 0$ y $\lambda_{2} < 0$.
  • $\lambda_{1} = 0$ y $\lambda_{2} > 0$.
  • $\lambda_{1} = \lambda_{2} = 0$.

En las próximas entradas estudiaremos a detalle cada uno de estos casos.

En este enlace se tiene acceso a una excelente herramienta para visualizar el plano fase de sistemas lineales de dos ecuaciones homogéneas con coeficientes constantes y en este enlace se puede visualizar el campo vectorial asociado, además de algunas trayectorias del sistema dando clic sobre el campo vectorial.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. En la unidad anterior resolviste de tarea moral los siguientes sistemas lineales. En este caso realiza un desarrollo geométrico como lo hicimos en esta entrada e intenta describir el comportamiento de las soluciones en el plano fase. Dibuja a mano algunos vectores del campo vectorial y algunas trayectorias sobre el mismo plano fase, posteriormente verifica tu resultado visualizando el espacio fase y el campo vectorial usando los enlaces proporcionados anteriormente.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    6 & -3 \\ 2 & 1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -3 \\ -2 & 2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -3 & 2 \\ -1 & -1
    \end{pmatrix}\mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & 3 \\ -3 & 5
    \end{pmatrix}\mathbf{Y}$

    ¿Qué características distintas identificas entre los planos fase de cada uno de los sistemas anteriores?.

Más adelante…

Esta entrada nos ha servido de introducción al estudio geométrico y cualitativo de los sistemas lineales. En la siguiente entrada formalizaremos lo que vimos en esta entrada para posteriormente hacer un análisis más detallado sobre los distintos tipos de sistemas tanto lineales como no lineales que se puedan presentar.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Sistemas lineales no homogéneos – Método de variación de parámetros

Por Omar González Franco

Las ciencias matemáticas exhiben particularmente orden, simetría
y límites; y esas son las más grandes formas de belleza.
– Aristóteles

Introducción

Ya sabemos resolver sistemas lineales homogéneos con coeficientes constantes, en esta entrada estudiaremos el caso no homogéneo.

Como hemos visto en las dos unidades anteriores, el método de variación de parámetros ha sido fundamental para resolver ecuaciones diferenciales en el caso no homogéneo. Éste mismo método es el que desarrollaremos en esta entrada para resolver sistemas lineales no homogéneos con coeficientes constantes.

Cabe mencionar que en esta entrada utilizaremos bastante el concepto de exponencial de una matriz y el de matriz fundamental de soluciones.

Sistemas lineales homogéneos

El sistema lineal que hemos estudiado es

$$\mathbf{Y}^{\prime} = \mathbf{A} \mathbf{Y} \label{1} \tag{1}$$

Donde $\mathbf{A}$ es una matriz con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

Ahora sabemos que la solución general del sistema lineal homogéneo (\ref{1}) es de la forma

$$\mathbf{Y}_{c}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t) \label{3} \tag{3}$$

En donde las funciones $\mathbf{Y}_{1}(t), \mathbf{Y}_{2}(t), \cdots, \mathbf{Y}_{n}(t)$ son soluciones linealmente independientes del mismo sistema. Usamos el subíndice $c$ debido a que, como antes, al resolver el caso no homogéneo será necesario resolver primero el sistema homogéneo asociado y la solución general de dicho sistema será la solución complementaria del sistema no homogéneo.

Recordemos que la matriz que tiene por columnas a las funciones $\mathbf{Y}_{i}(t)$, $i = 1, 2, \cdots, n$ de (\ref{3}) corresponde a la matriz fundamental de soluciones.

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix} \mathbf{Y}_{1}(t) & \mathbf{Y}_{2}(t) & \cdots & \mathbf{Y}_{n}(t) \end{pmatrix} = \begin{pmatrix} y_{11}(t) & y_{12}(t) & \cdots & y_{1n}(t) \\
y_{21}(t) & y_{22}(t) & \cdots & y_{2n}(t) \\
\vdots & & & \vdots \\
y_{n1}(t) & y_{n2}(t) & \cdots & y_{nn}(t)
\end{pmatrix} \label{4} \tag{4}$$

Si definimos el vector de constantes

$$\mathbf{C} = \begin{pmatrix}
c_{1} \\ c_{2} \\ \vdots \\ c_{n}
\end{pmatrix} \label{5} \tag{5}$$

podemos escribir la solución (\ref{3}) como

$$\mathbf{Y}_{c}(t) = \hat{\mathbf{Y}}(t) \mathbf{C} \label{6} \tag{6}$$

Recordemos este resultado para más adelante.

Sistemas lineales no homogéneos

El sistema lineal no homogéneo que intentaremos resolver es de la forma

$$\mathbf{Y}^{\prime} = \mathbf{A} \mathbf{Y} + \mathbf{G} \label{7} \tag{7}$$

Donde $\mathbf{G} = \mathbf{G}(t)$ es una matriz de $n \times 1$ con componentes dependientes de $t$.

$$\mathbf{G}(t) = \begin{pmatrix}
g_{1}(t) \\ g_{2}(t) \\ \vdots \\ g_{n}(t)
\end{pmatrix} \label{8} \tag{8}$$

Dada la forma de la solución general de un sistema lineal homogéneo (\ref{3}), parecería natural pensar que el sistema lineal no homogéneo tiene por solución una función de la forma

$$\mathbf{Y}_{p}(t) = u_{1}(t) \mathbf{Y}_{1}(t) + u_{2}(t) \mathbf{Y}_{2}(t) + \cdots + u_{n}(t) \mathbf{Y}_{n}(t) \label{9} \tag{9}$$

En donde $u_{i}(t)$, $i = 1, 2, \cdots, n$ son funciones escalares de $t$ derivables y las funciones $\mathbf{Y}_{i}(t)$, $i = 1, 2, \cdots, n$ forman una matriz fundamental de soluciones $\hat{\mathbf{Y}}(t)$. Si definimos el vector

$$\mathbf{U}(t) = \begin{pmatrix}
u_{1}(t) \\ u_{2}(t) \\ \vdots \\ u_{n}(t)
\end{pmatrix} \label{10} \tag{10}$$

Entonces la solución propuesta (\ref{9}) adquiere la forma

$$\mathbf{Y}_{p}(t) = \hat{\mathbf{Y}}(t) \mathbf{U}(t) \label{11} \tag{11}$$

El método de variación de parámetros nos permitirá obtener la forma del vector $\mathbf{U}(t)$, una vez obtenida podremos formar la solución general del sistema lineal no homogéneo (\ref{7}) que, como siempre, será la superposición de la solución complementaria del sistema lineal homogéneo asociado $\mathbf{Y}_{c}(t)$ más la solución particular del sistema lineal no homogéneo $\mathbf{Y}_{p}(t)$, esto es

$$\mathbf{Y}(t) = \mathbf{Y}_{c}(t) + \mathbf{Y}_{p}(t) \label{12} \tag{12}$$

Variación de parámetros

Comencemos a desarrollar el método de variación de parámetros, como mencionamos antes, el objetivo es encontrar la forma explícita del vector (\ref{10}) para formar la solución particular del sistema lineal no homogéneo.

Consideremos la función propuesta (\ref{11}) y derivémosla.

$$\mathbf{Y}_{p}^{\prime}(t) = \hat{\mathbf{Y}}^{\prime}(t) \mathbf{U}(t) + \hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) \label{13} \tag{13}$$

Si sustituimos (\ref{11}) y (\ref{13}) en el sistema lineal no homogéneo (\ref{7}), se tiene

$$\hat{\mathbf{Y}}^{\prime}(t) \mathbf{U}(t) + \hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) = \mathbf{A} [\hat{\mathbf{Y}}(t) \mathbf{U}(t)] + \mathbf{G}(t) \label{14} \tag{14}$$

Como $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones sabemos que satisface el sistema homogéneo, es decir,

$$\hat{\mathbf{Y}}^{\prime}(t) = \mathbf{A} \hat{\mathbf{Y}}(t) \label{15} \tag{15}$$

Si sustituimos en (\ref{14}) la ecuación queda como

$$\mathbf{A} \hat{\mathbf{Y}}(t) \mathbf{U}(t) + \hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) = \mathbf{A} \hat{\mathbf{Y}}(t) \mathbf{U}(t) + \mathbf{G}(t)$$

O bien,

$$\hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) = \mathbf{G}(t) \label{16} \tag{16}$$

La matriz fundamental es no singular, de manera que siempre existe su inversa, esto nos permite establecer que

$$\mathbf{U}^{\prime}(t) = \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) \label{17} \tag{17}$$

Esta ecuación es matricial y sabemos que es posible integrar sobre matrices, así que integremos la ecuación anterior con el objetivo de hallar la forma de $\mathbf{U}$.

$$\mathbf{U}(t) = \int \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) dt \label{18} \tag{18}$$

Ahora que conocemos la forma de $\mathbf{U}(t)$, sustituimos en la solución propuesta (\ref{11}), de forma que una solución particular del sistema lineal no homogéneo es

$$\mathbf{Y}_{p}(t) = \hat{\mathbf{Y}}(t) \int \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) dt \label{19} \tag{19}$$

Por lo tanto, de (\ref{6}) y el resultado (\ref{19}) concluimos que la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \mathbf{C} + \hat{\mathbf{Y}}(t) \int \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) dt \label{20} \tag{20}$$

Si $\hat{\mathbf{Y}}(t)$ es la matriz fundamental de soluciones $e^{\mathbf{A} t}$ y considerando que $\hat{\mathbf{Y}}^{-1}(t) = e^{-\mathbf{A} t}$, el resultado anterior queda como

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{C} + e^{\mathbf{A}t} \int e^{-\mathbf{A} t} \mathbf{G}(t) dt \label{21} \tag{21}$$

Problema con valores iniciales

Consideremos el problema con valores iniciales

$$\mathbf{Y}^{\prime} = \mathbf{A} \mathbf{Y} + \mathbf{G}; \hspace{1cm} \mathbf{Y}(t_{0}) = \mathbf{Y}_{0} \label{22} \tag{22}$$

De nuestro desarrollo anterior consideremos la relación (\ref{17}).

$$\mathbf{U}^{\prime}(t) = \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t)$$

En esta ocasión integremos de $t_{0}$ a $t$ y usemos el teorema fundamental del cálculo.

$$\mathbf{U}(t) = \mathbf{U}(t_{0}) + \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{23} \tag{23}$$

Notemos que si aplicamos la condición inicial $\mathbf{Y}(t_{0}) = \mathbf{Y}_{0}$ sobre la función (\ref{11}), se obtiene

$$\mathbf{Y}_{p}(t_{0}) = \hat{\mathbf{Y}}(t_{0}) \mathbf{U}(t_{0}) = \mathbf{Y}_{0} \label{24} \tag{24}$$

De donde,

$$\mathbf{U}(t_{0}) = \hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} \label{25} \tag{25}$$

Sustituimos este resultado en la ecuación (\ref{23}).

$$\mathbf{U}(t) = \hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} + \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{26} \tag{26}$$

Aquí debemos tener cuidado, si sustituimos la función (\ref{26}) en (\ref{11}), se obtiene

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} + \hat{\mathbf{Y}}(t) \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{27} \tag{27}$$

Pero $\hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0}$ es una matriz de constantes, digamos

$$\hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} = \mathbf{C}$$

Entonces el resultado (\ref{27}) queda como

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \mathbf{C} + \hat{\mathbf{Y}}(t) \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{28} \tag{28}$$

Este resultado se parece a la ecuación (\ref{20}), es decir, a pesar de que sustituimos (\ref{26}) en (\ref{11}) esperando obtener la solución particular $\mathbf{Y}_{p}(t)$, en realidad estamos obteniendo la solución general, la solución general del problema de valores iniciales.

Si consideramos nuevamente que $\hat{\mathbf{Y}}(t) = e^{\mathbf{A} t}$, el resultado (\ref{27}) se reduce significativamente.

$$\mathbf{Y}(t) = e^{\mathbf{A} t} e^{-\mathbf{A} t_{0}} \mathbf{Y}_{0} + e^{\mathbf{A}t} \int_{t_{0}}^{t} e^{-\mathbf{A} s} \mathbf{G}(s) ds \label{29} \tag{29}$$

O bien,

$$\mathbf{Y}(t) = e^{\mathbf{A}(t -t_{0})} \mathbf{Y}_{0} + \int_{t_{0}}^{t}e^{\mathbf{A} (t -s)} \mathbf{G}(s) ds \label{30} \tag{30}$$

Por otro lado, si $t_{0} = 0$, de (\ref{27}) se obtiene que

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{ -1}(0) \mathbf{Y}_{0} + \hat{\mathbf{Y}}(t) \int_{0}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds$$

Pero recordemos que

$$e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(0) \label{31} \tag{31}$$

Entonces la solución anterior queda como

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0} + \hat{\mathbf{Y}}(t) \int_{0}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{32} \tag{32}$$

Si nuestro propósito es determinar la solución general de un sistema lineal no homogéneo (\ref{7}), primero resolvemos el sistema lineal homogéneo asociado para obtener la solución complementaria en la forma (\ref{3}). Con las funciones $\mathbf{Y}_{i}(t)$, $i = 1, 2, \cdots, n$ obtenidas formamos una matriz fundamental $\hat{\mathbf{Y}}(t)$, se calcula su inversa y se sustituyen las matrices correspondientes en la solución particular (\ref{19}). Una vez obtenidas ambas soluciones, la solución general del sistema lineal no homogéneo será

$$\mathbf{Y}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t) + \mathbf{Y}_{p}(t) = \mathbf{Y}_{c}(t) + \mathbf{Y}_{p}(t)$$

Sin embargo, si lo que tenemos es un problema de valores iniciales, debemos nuevamente obtener la solución del sistema lineal homogéneo asociado ya que eso es lo que nos permite formar la matriz fundamental de soluciones $\hat{\mathbf{Y}}(t)$, una vez obtenida esta función calculamos su inversa y se sustituyen las matrices correspondientes en la ecuación (\ref{27}), esto nos dará la solución completa del problema de valores iniciales, es decir, no es necesario aplicar las condiciones iniciales en la solución complementaria para obtener los valores de las constantes $c_{1}, c_{2}, \cdots, c_{n}$.

Para concluir con esta entrada realicemos dos ejemplos, en el primero de ellos obtendremos la solución general de un sistema lineal no homogéneo y en el segundo ejemplo resolveremos un problema con valores iniciales. Con estos ejemplos se espera que el método quede claro.

Ejemplo: Obtener la solución general del siguiente sistema lineal no homogéneo.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
0 & 2 \\ -1 & 3
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
1 \\ -1
\end{pmatrix} e^{t}$$

Solución: Resolvamos primero el sistema homogéneo asociado.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
0 & 2 \\ -1 & 3
\end{pmatrix} \mathbf{Y}$$

En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
0 & 2 \\ -1 & 3
\end{pmatrix}$$

Determinemos los valores y vectores propios de esta matriz.

$$|\mathbf{A} -\lambda \mathbf{I}| = \begin{vmatrix}
-\lambda & 2 \\ -1 & 3 -\lambda
\end{vmatrix} = 0$$

La ecuación característica es

$$\lambda^{2} -3 \lambda + 2 = 0$$

Resolviendo para $\lambda$ se obtiene que los valores propios son

$$\lambda_{1} = 1\hspace{1cm} y \hspace{1cm} \lambda_{2} = 2$$

Determinemos los vectores propios correspondientes a cada valor propio.

Caso 1: $\lambda_{1} = 1$.

Buscamos un vector $\mathbf{K} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -\mathbf{I}) \mathbf{K} = \begin{pmatrix}
-1 & 2 \\ -1 & 2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

$$-k_{1} + 2 k_{2} = 0$$

Es decir, $2 k_{2} = k_{1}$. Elegimos $k_{2} = 1$, entonces $k_{1} = 2$. Por lo tanto el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 \\ 1
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 2$.

Buscamos un vector $\mathbf{K} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} = \begin{pmatrix}
-2 & 2 \\ -1 & 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

$$-k_{1} + k_{2} = 0$$

Es decir, $k_{1} = k_{2}$. Elegimos $k_{1} = k_{2} = 1$. Por lo tanto, el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Con estos resultados concluimos que la solución general del sistema lineal homogéneo asociado es

$$\mathbf{Y}_{c}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ 1
\end{pmatrix} + c_{2} e^{2t} \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Para determinar la solución particular $\mathbf{Y}_{p}(t)$, formemos, con el resultado anterior, la matriz fundamental de soluciones (\ref{4}).

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix}$$

Como también requerimos de la matriz inversa, verifica que

$$\hat{\mathbf{Y}}^{-1}(t) = \begin{pmatrix}
e^{-t} & -e^{-t} \\ -e^{-2t} & 2e^{-2t}
\end{pmatrix}$$

La matriz $\mathbf{G}$ en este caso es

$$ \mathbf{G}(t) = \begin{pmatrix}
e^{t} \\ -e^{t}
\end{pmatrix}$$

Sustituyamos estas matrices en la solución particular (\ref{19}).

\begin{align*}
\mathbf{Y}_{p}(t) &= \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix} \int \begin{pmatrix}
e^{-t} & -e^{-t} \\ -e^{-2t} & 2e^{-2t}
\end{pmatrix} \begin{pmatrix}
e^{t} \\ -e^{t}
\end{pmatrix} dt \\
&= \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix} \int \begin{pmatrix}
2 \\ -3e^{-t}
\end{pmatrix} dt
\end{align*}

Resolviendo la integral (sin considerar constantes de integración), se obtiene

$$\int \begin{pmatrix}
2 \\ -3e^{-t}
\end{pmatrix} dt = \begin{pmatrix}
2t \\ 3e^{-t}
\end{pmatrix}$$

Entonces,

$$\mathbf{Y}_{p}(t) = \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix} \begin{pmatrix}
2t \\ 3e^{-t}
\end{pmatrix} = \begin{pmatrix}
4t e^{t} + 3e^{t} \\ 2te^{t} + 3e^{t}
\end{pmatrix}$$

Esto es,

$$\mathbf{Y}_{p}(t) =\begin{pmatrix}
4 \\ 2
\end{pmatrix} te^{t} + \begin{pmatrix}
3 \\ 3
\end{pmatrix} e^{t}$$

Por lo tanto, la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ 1
\end{pmatrix} + c_{2} e^{2t} \begin{pmatrix}
1 \\ 1
\end{pmatrix} + \begin{pmatrix}
3 \\ 3
\end{pmatrix}e^{t} + \begin{pmatrix}
4 \\ 2
\end{pmatrix} t e^{t}$$

$\square$

Realicemos ahora un problema con valores iniciales.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
0 \\ 0 \\ e^{t} \cos(2t)
\end{pmatrix}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix}$$

Solución: Primero debemos obtener la solución del sistema lineal homogéneo asociado

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix} \mathbf{Y}$$

Ello nos permitirá obtener la matriz fundamental de soluciones. En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix}$$

Determinemos los valores y vectores propios de esta matriz. La ecuación característica se obtendrá de calcular el determinante

$$|\mathbf{A} -\lambda \mathbf{I}| = \begin{vmatrix}
1-\lambda & 0 & 0 \\ 2 & 1 -\lambda & -2 \\ 3 & 2 & 1 -\lambda
\end{vmatrix} = 0$$

Desarrollando el determinante obtendremos que

$$(1 -\lambda )(\lambda ^{2} -2 \lambda + 5) = 0$$

Resolviendo para $\lambda$ se obtiene que los valores propios de $\mathbf{A}$ son

$$\lambda_{1} = 1 \hspace{1cm} y \hspace{1cm} \lambda_{2} = 1 + 2i, \hspace{1cm} \lambda_{3} = 1 -2i$$

De acuerdo a los valores propios obtenidos, la manera de resolver el sistema homogéneo será aplicando la teoría vista en la entrada sobre valores propios complejos.

Determinemos los vectores propios correspondientes a cada valor propio.

Caso 1: $\lambda_{1} = 1$.

Buscamos un vector $\mathbf{K} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -\mathbf{I}) \mathbf{K} = \left[ \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix} -\begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} \right] \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\ 2 & 0 & -2 \\ 3 & 2 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

El sistema que se obtiene es

\begin{align*}
2 k_{1} -2 k_{3} &= 0 \\
3 k_{1} + 2 k_{2} &= 0
\end{align*}

De este sistema se observa que

\begin{align*}
k_{1} &= k_{3} \\
k_{2} &= -\dfrac{3k_{1}}{2}
\end{align*}

Elegimos $k_{1} = 2 = k_{3}$, de tal manera que $k_{2} = -3$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 \\ -3 \\ 2
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 1 + 2i$.

Buscamos un vector $\mathbf{K}$, diferente de cero, tal que

$$[\mathbf{A} -(1 + 2i) \mathbf{I}] \mathbf{K} = \begin{pmatrix}
-2i & 0 & 0 \\ 2 & -2i & -2 \\ 3 & 2 & -2i
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
-2i k_{1} &= 0 \\
2k_{1} -2i k_{2} -2k_{3} &= 0 \\
3k_{1} + 2k_{2} -2i k_{3} &= 0
\end{align*}

De este sistema se observa que $k_{1} = 0$ y $k_{3} = -ik_{2}$. Elegimos $k_{2} = 1$, de manera que el segundo vector propio sea

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix}$$

Caso 3: $\lambda_{2} = 1 -2i$.

Sabemos que este caso es el conjugado del caso anterior, por lo que directamente establecemos que el tercer vector propio es

$$\mathbf{K}_{3} = \begin{pmatrix}
0 \\ 1 \\ i
\end{pmatrix}$$

La solución general del sistema lineal homogéneo asociado, en su forma compleja, es

$$\mathbf{Y}_{c}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ -3 \\ 2
\end{pmatrix} + c_{2} e^{(1 + 2i) t} \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix} + c_{3} e^{(1 -2i) t} \begin{pmatrix}
0 \\ 1 \\ i
\end{pmatrix}$$

Sin embargo esta solución no nos sirve de mucho, pues desearíamos construir la matriz fundamental de soluciones con valores reales. Recordando lo visto en la entrada sobre valores propios complejos, podemos encontrar dos funciones $\mathbf{W}_{1}(t)$ y $\mathbf{W}_{2}(t)$, tal que la solución general sea de la forma

$$\mathbf{Y}_{c}(t) = c_{1} e^{\lambda_{1} t} + c_{2} \mathbf{W}_{1}(t) + c_{3} \mathbf{W}_{2}(t) \label{33} \tag{33}$$

Recordemos que las funciones $\mathbf{W}_{1}(t)$ y $\mathbf{W}_{2}(t)$ están dadas por

$$\mathbf{W}_{1}(t) = e^{\alpha t} [\mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t)] \label{34} \tag{34}$$

y

$$\mathbf{W}_{2}(t) = e^{\alpha t} [\mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t)] \label{35} \tag{35}$$

Consideremos el caso 2 en el que $\lambda_{2} = 1 + 2i$ y

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + i \begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix} $$

De estos resultados obtenemos que $\alpha = 1$, $\beta = 2$ y

$$\mathbf{U} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{V} = \begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix}$$

Sustituyamos en la funciones (\ref{34}) y (\ref{35}). Por un lado,

\begin{align*}
\mathbf{W}_{1}(t) &= e^{t} \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \cos(2t) -\begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix} \sin(2t) \right] \\
&= e^{t} \left[ \begin{pmatrix}
0 \\ \cos(2t) \\ 0
\end{pmatrix} -\begin{pmatrix}
0 \\ 0 \\ -\sin(2t)
\end{pmatrix} \right]
\end{align*}

Esto es,

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) \\ \sin(2t)
\end{pmatrix}$$

Por otro lado,

\begin{align*}
\mathbf{W}_{2}(t) &= e^{t} \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \sin(2t) + \begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix} \cos(2t) \right] \\
&= e^{t} \left[ \begin{pmatrix}
0 \\ \sin(2t) \\ 0
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ -\cos(2t)
\end{pmatrix} \right]
\end{align*}

Esto es,

$$\mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \sin(2t) \\ -\cos(2t)
\end{pmatrix}$$

Recordemos que estas funciones también se pueden obtener considerando la identidad de Euler. Del caso 2 la solución que se obtiene es

$$\mathbf{Y}_{2c}(t) = e^{(1 + 2i) t} \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix}$$

Así,

$$\mathbf{W}_{1}(t) = Re \{ \mathbf{Y}_{2c}(t) \} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = Im \{ \mathbf{Y}_{2c}(t) \}$$

Usando la identidad de Euler sobre esta solución obtenemos lo siguiente.

\begin{align*}
e^{(1 + 2i)t} \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix} &= e^{t}[\cos(2t) + i \sin(2t)] \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} -i \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] \\
&= e^{t} \left[ \cos(2t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + \sin(2t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] + i e^{t} \left[ \sin(2t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} -\cos(2t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] \\
&= e^{t} \left[ \begin{pmatrix}
0 \\ \cos(2t) \\ 0
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ \sin(2t)
\end{pmatrix} \right] + ie^{t} \left[ \begin{pmatrix}
0 \\ \sin(2t) \\ 0
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ -\cos(2t)
\end{pmatrix} \right]
\end{align*}

De donde,

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) \\ \sin(2t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \sin(2t) \\ -\cos(2t)
\end{pmatrix}$$

De esta forma, la solución general del sistema lineal homogéneo asociado es

$$\mathbf{Y}_{c}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ -3 \\ 2
\end{pmatrix} + c_{2} e^{t} \begin{pmatrix}
0 \\ \cos(2t) \\ \sin(2t)
\end{pmatrix} + c_{3} e^{t} \begin{pmatrix}
0 \\ \sin(2t) \\ -\cos(2t)
\end{pmatrix} \label{36} \tag{36}$$

Esta solución es de la forma (\ref{3}) por lo que la matriz fundamental de soluciones, formada por estos vectores linealmente independientes, es

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix}
2e^{t} & 0 & 0 \\ -3e^{t} & e^{t} \cos(2t) & e^{t} \sin(2t) \\ 2e^{t} & e^{t} \sin(2t) & -e^{t} \cos(2t)
\end{pmatrix}$$

Para obtener la solución del problema con valores iniciales usaremos el resultado (\ref{29}) para $t_{0} = 0$.

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0} + e^{\mathbf{A}t} \int_{0}^{t} e^{-\mathbf{A} s} \mathbf{G}(s) ds \label{37} \tag{37}$$

Es decir, consideraremos a la matriz $e^{\mathbf{A} t}$ como la matriz fundamental de soluciones. También es posible usar la relación (\ref{32}) usando la matriz $\hat{\mathbf{Y}}(t)$ antes establecida. ¿Por qué son equivalentes ambas formas?.

Determinemos la matriz $e^{\mathbf{A} t}$ usando la relación (\ref{31}). Si evaluamos $t = 0$ en la matriz $\hat{\mathbf{Y}}(t)$ se obtiene la matriz

$$\hat{\mathbf{Y}}(0) = \begin{pmatrix}
2 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & 0 & -1
\end{pmatrix}$$

Comprueba que la matriz inversa es

$$\hat{\mathbf{Y}}^{ -1}(0) = \begin{pmatrix}
2 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & 0 & -1
\end{pmatrix}^{ -1} = \begin{pmatrix}
\dfrac{1}{2} & 0 & 0 \\ \dfrac{3}{2} & 1 & 0 \\ 1 & 0 & -1
\end{pmatrix}$$

Sustituyamos en (\ref{31}).

\begin{align*}
e^{\mathbf{A}t} &= \begin{pmatrix}
2e^{t} & 0 & 0 \\ -3e^{t} & e^{t} \cos(2t) & e^{t} \sin(2t) \\ 2e^{t}& e^{t} \sin(2t) & -e^{t} \cos(2t)
\end{pmatrix} \begin{pmatrix}
\dfrac{1}{2} & 0 & 0 \\ \dfrac{3}{2} & 1 & 0 \\ 1 & 0 & -1
\end{pmatrix} \\
&= e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix}
\end{align*}

Por lo tanto, la matriz que consideraremos como matriz fundamental de soluciones es

$$e^{\mathbf{A}t} = e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix}$$

Como también requerimos de la inversa de esta matriz, verifica que

$$e^{-\mathbf{A}t} = e^{-t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) -\sin(2t) & \cos(2t) & \sin(2t) \\ 1 -\dfrac{3}{2} \sin(2t) -\cos(2t) & -\sin(2t) & \cos(2t)
\end{pmatrix}$$

En este caso la matriz $\mathbf{G}(t)$ es

$$\mathbf{G}(t) = \begin{pmatrix}
0 \\ 0 \\ e^{t} \cos(2t)
\end{pmatrix}$$

Sustituyamos todos estos resultados en la solución (\ref{37}).

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix} + e^{\mathbf{A} t} \int_{0}^{t} e^{-s} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2s) -\sin(2s)
& \cos(2s) & \sin(2s) \\ 1 -\dfrac{3}{2} \sin(2s) -\cos(2s) & -\sin(2s) & \cos(2s)
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ e^{s} \cos(2s)
\end{pmatrix}ds$$

Por un lado,

$$e^{\mathbf{A} t} \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix} = e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix} \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix} = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix}$$

De tarea moral, determina las constantes $c_{1}$, $c_{2}$ y $c_{3}$ aplicando los valores iniciales sobre la solución complementaria (\ref{36}). ¿Qué relación tiene tu resultado con la operación anterior?.

Por otro lado,

$$e^{-s} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2s) -\sin(2s)
& \cos(2s) & \sin(2s) \\ 1 -\dfrac{3}{2} \sin(2s) -\cos(2s) & -\sin(2s) & \cos(2s)
\end{pmatrix} e^{s} \begin{pmatrix}
0 \\ 0 \\ \cos(2s)
\end{pmatrix} = \begin{pmatrix}
0 \\ \sin(2s) \cos(2s) \\ \cos^{2}(2s)
\end{pmatrix}$$

Sustituimos estas matrices en $\mathbf{Y}(t)$.

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix} + e^{\mathbf{A} t} \int_{0}^{t} \begin{pmatrix}
0 \\ \sin(2s) \cos(2s) \\ \cos^{2}(2s)
\end{pmatrix} ds$$

Resolvamos la integral.

\begin{align*}
\int_{0}^{t} \begin{pmatrix}
0 \\ \sin(2s) \cos(2s) \\ \cos^{2}(2s)
\end{pmatrix} ds &= \left. \begin{pmatrix}
0 \\ -\dfrac{1}{8} \cos(4s) \\ \dfrac{s}{2} + \dfrac{\sin(4s)}{8}
\end{pmatrix} \right|_{t} – \left. \begin{pmatrix}
0 \\ -\dfrac{1}{8} \cos(4s) \\ \dfrac{s}{2} + \dfrac{\sin(4s)}{8}
\end{pmatrix} \right|_{0} \\
&= \begin{pmatrix}
0 \\ -\dfrac{1}{8} \cos(4t) \\ \dfrac{t}{2} + \dfrac{\sin(4t)}{8}
\end{pmatrix} -\begin{pmatrix}
0 \\ -\dfrac{1}{8} \\ 0
\end{pmatrix} \\
&= \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix}
\end{align*}

Entonces,

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix} + e^{\mathbf{A}t} \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix}$$

Ahora realicemos el producto del segundo sumando.

\begin{align*}
e^{\mathbf{A}t} \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix} &= e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix} \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix} \\
&= e^{t} \begin{pmatrix}
0 \\ \cos(2t) \left( \dfrac{1 -\cos(4t)}{8} \right) -\sin(2t) \left( \dfrac{4t + \sin(4t)}{8} \right) \\ \sin(2t) \left( \dfrac{1 -\cos(4t)}{8} \right) + \cos(2t) \left( \dfrac{4t + \sin(4t)}{8} \right)
\end{pmatrix} \\
&= e^{t} \begin{pmatrix}
0 \\ -\dfrac{t \sin(2t)}{2} + \dfrac{\cos(2t) -\cos(4t) \cos(2t) -\sin(4t) \sin(2t)}{8}
\\ \dfrac{t \cos(2t)}{2} + \dfrac{\sin(2t) + \sin(4t) \cos(2t) -\cos(4t) \sin(2t)}{8}
\end{pmatrix}
\end{align*}

Así,

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix} + e^{t} \begin{pmatrix}
0 \\ -\dfrac{t \sin(2t)}{2} + \dfrac{\cos(2t) -\cos(4t) \cos(2t) -\sin(4t) \sin(2t)}{8}
\\ \dfrac{t \cos(2t)}{2} + \dfrac{\sin(2t) + \sin(4t) \cos(2t) -\cos(4t) \sin(2t)}{8}
\end{pmatrix}$$

Haciendo las operaciones correspondientes se obtiene finalmente que la solución al problema con valores iniciales es

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\left( 1+ \dfrac{1}{2}t \right) \sin(2t) \\ \left( 1 + \dfrac{1}{2}t \right) \cos(2t) + \dfrac{5}{4} \sin(2t)
\end{pmatrix}$$

$\square$

Vemos que este método puede ser bastante largo y complicado, de hecho se puede volver una tarea imposible de hacer a mano si se tienen sistemas con matriz $\mathbf{A}$ de $3 \times 3$ o más. Se recomienda, en la medida de lo posible, usar algún programa computacional para llevar a cabo algunas de las operaciones, lo importante es entender como llevar a cabo el método.

Con esto concluimos lo que corresponde al estudio de los distintos métodos para resolver sistemas lineales. Prácticamente hemos concluido con la unidad 3 del curso.

En las siguientes dos entradas de esta unidad trataremos de justificar los teoremas de existencia y unicidad en el caso de los sistemas lineales, esto con el propósito de justificar toda la teoría desarrollada a lo largo de la unidad.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener la solución general de los siguientes sistemas lineales no homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -1 \\ 1 & 1
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    \cos(t) \\ \sin(t)
    \end{pmatrix} e^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 2 \\ -\dfrac{1}{2} & 1
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    \csc(t) \\ \sec(t)
    \end{pmatrix} e^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    e^{t} \\ e^{2t} \\ te^{3t}
    \end{pmatrix}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 3
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    1 \\ 0 \\ 1
    \end{pmatrix} e^{2t}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 1 \\ 1
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & -1 & -2 \\ 1 & 1 & 1 \\ 2 & 1 & 3
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    1 \\ 0 \\ 0
    \end{pmatrix} e^{t}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    0 \\ 0 \\ 0
    \end{pmatrix}$

Más adelante…

En la siguiente entrada demostraremos los teoremas de existencia y unicidad para el caso de los sistemas lineales de primer orden con coeficientes constantes homogéneos y no homogéneos y posteriormente, en la última entrada de esta unidad, justificaremos el teorema de existencia y unicidad en el caso general, es decir, para sistemas lineales y no lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»