Nota 16. Números naturales.

Introducción

En esta nota iniciaremos el estudio de los números naturales, hasta ahora sabemos trabajar con conjuntos, podemos considerar su complemento, unirlos, intersecarlos, considerar subconjuntos de ellos, considerar particiones y relaciones de equivalencia, etc. Con estas herramientas vamos a dar una definición de los números naturales basada en el sucesor, esta definición implicará los llamados axiomas de Peano, en honor al matemático Giuseppe Peano quien en el siglo XIX, los estableció para definir los números naturales. Así nuestro primer objetivo es dar una definición conjuntista de los números naturales y ver que implica los axiomas de Peano. Puedes consultar el siguiente enlace para conocer más a profundidad la historia de cómo se formalizó la aritmética: Los axiomas de Peano.

Empecemos definiendo lo que es el sucesor de un conjunto $x.$

Definición

Sea $x$ un conjunto, el sucesor de $x$ es:

$x^+=x\cup\set{x}$

Observa que si definimos al cero como el conjunto vacío tenemos que:

$0=\emptyset$

Y entonces su sucesor $0^+$ es:

$0^+=\emptyset^+ =\emptyset\cup \set{ \emptyset}= \set{ \emptyset} =\set{ 0}$

Ese sucesor $0^+$ será el natural $1$, entonces:

$1^+=1\cup\set{1}=\set{0}\cup \set{1}=\set{0,1}=2$

que es el número 2, y así sucesivamente:

$2^+=2\cup \set{2}= \set{0,1}\cup \set{2}=\set{0,1,2}=3$

$3^+=3\cup \set{3}= \set{0,1,2}\cup \set{3}=\set{0,1,2,3}=4$

$\vdots$

$n^+=n\cup \set{n}= \set{0,\dotsc,n-1}\cup \set{n}=\set{0,\dotsc,n}=n+1$

Aceptaremos que esta construcción puede ser llevada a infinito, y lo postularemos como un axioma.

Axioma del infinito

Existe un conjunto que tiene al cero y al sucesor de cada uno de sus elementos.

Démosle ahora nombre a un tipo especial de conjuntos, aquellos que tienen al cero y todos sus sucesores.

Definición

Sea $A$ un conjunto. Decimos que $A$ es un conjunto de sucesores si tiene como elemento al cero y al sucesor de cada uno de sus elementos.

Observemos que el Axioma del infinito asegura la existencia de al menos un conjunto de sucesores. Tiene sentido entonces considerar la intersección de todos los conjuntos de sucesores y veremos que la intersección también es un conjunto de sucesores.

Lema

Si $\set{A_i\mid i\in I}$ es una familia no vacía con $A_i$ un conjunto de sucesores $\forall i\in I,$ entonces $\bigcap\limits_{i\in I} A_{i}$ es un conjunto de sucesores.

Demostración

Sea $\set{A_i\mid i\in I}$ una familia no vacía con $A_i$ un conjunto de sucesores $\forall i\in I$.

Como $A_i$ es un conjunto de sucesores $\forall i\in I$, etonces $0\in A_i\,\,\forall i\in I$, así $0\in \bigcap\limits_{i\in I} A_i$.

Veamos ahora que $ \bigcap\limits_{i\in I} A_i$ tiene al sucesor de cada uno de sus elementos.

Sea $x\in \bigcap\limits_{i\in I} A_i$ entonces $x\in A_i$ $\forall i\in I$. Como cada $A_i$ es un conjunto de sucesores, se tiene que $x^+\in A_i$ $\forall i\in I$, así $x^+\in \bigcap\limits_{i\in I} A_i$ y por lo tanto $\bigcap\limits_{i\in I} A_i$ es un conjunto de sucesores.

$\square$

Con esta definición de conjunto de sucesores y el lema anterior vamos a definir a los números naturales como la intersección de todos los $S$ que son conjunto de sucesores.

Definición

El conjunto de los números naturales es:

$\mathbb N= \bigcap\limits_{S\text{ es un conjunto de sucesores}} S$

Por el lema anterior, $\mathbb N$ es un conjunto de sucesores, así $0\in \mathbb N$ y si $x\in \mathbb N$ entonces $x^+\in \mathbb N$.

Proposición

Si $A\subseteq \mathbb N$ es tal que:

$i)$ $0\in A$

$ii)$ $\forall n$, si $n\in A$ entonces $n^+\in A$

Se tiene que $\mathbb N\subseteq A$ y así $A=\mathbb N$.

Demostración

Sea $A\subseteq \mathbb N$ que cumple las condiciones $i$ y $ii$, entonces $A$ es un conjunto de sucesores por definición, y así $A$ es uno de los conjuntos que se intersecan para formar a $\mathbb N$. Por lo tanto:

$\mathbb N= \bigcap\limits_{S\text{ es un conjunto de sucesores}} S\subseteq A.$ Así, $\mathbb N\subseteq A$.

Y por hipotesis $A\subseteq \mathbb N$ , por lo tanto $A=\mathbb N$.

$\square$

Veremos que la definición que dimos de los números naturales anteriormente implica los axiomas de Peano. Enunciemos dichos axiomas y notemos cómo se derivan de nuestra definición.

Axiomas de Peano

1. $0\in \mathbb N$.

2. Si $n\in \mathbb N$, entonces $n^+\in \mathbb N$.

3. $\forall n\in \mathbb N$, $n^+\neq 0$.

4. $\forall n,m\in \mathbb N$ si $n^+=m^+$ entonces $n=m$.

5. Si $A\subseteq \mathbb N$ es tal que:

$i)$ $0\in A$

$ii)$ $\forall n$, si $n\in A$ entonces $n^+\in A$

Se tiene que $\mathbb N\subseteq A$ y así $A=\mathbb N$.

Vamos a proceder a su demostración en base a la definición de los naturales como:

$\mathbb N= \bigcap\limits_{S\text{ es un conjunto de sucesores}} S$.

El quinto axioma de Peano se conoce como el Principio de inducción y se usa mucho para hacer pruebas referentes a afirmaciones de los números naturales.

Observa que en nuestro caso estas afirmaciones no se están tomando como axiomas pues hemos construido los números naturales a partir de conjuntos, así que verificaremos que con esta construcción los naturales cumplen las condiciones enunciadas.

Demostración

Observa que $1$ y $2$ se cumplen ya que por el lema $\mathbb N$ es un conjunto de sucesores, $5$ se cumple por la proposición antes demostrada.

Demostración de 3

Queremos demostrar que: $\forall n\in \mathbb N$, $n^+\neq 0$.

Sea $n\in \mathbb N$, por definición $n^+=n\cup\set{n}$, así $n\in n^+$ y entonces $n^+\neq \emptyset=0$.

Para probar $4$ requerimos un resultado.

Lema

Todo elemento de un número natural es también subconjunto de éste.

Demostración

Sea $A=\set{n\in \mathbb N\mid si\,\,x\in n \,\, entonces \,\, x\subseteq n}\subseteq \mathbb N$. Probaremos que $A$ cumple $i$ y $ii$ y usando el inciso 5 ya demostrado concluiremos que $A=\mathbb N.$

Como $0=\emptyset$, $0$ no tiene elementos, así $0\in A$ y se cumple $i$.

Ahora, sea $n\in A$. Por demostrar que $n^+\in A.$

Sea $x\in n^+=n\cup \set{n}$.

Caso $1$, $x\in n$

Como $n\in A$ y $x\in n$ entonces $x\subseteq n$, además $n\subseteq n\cup \set{n}= n^+$, entonces $x\subseteq n^+$.

Caso $2$, $x\in \set{n}$

En este caso $x=n$ y como $x=n\subseteq n\cup \set{n}=n^+$, así $x\subseteq n^+.$

En ambos casos se tiene que $x\in n^+$ implica que $x\subseteq n^+,$ así $n^+$ es un elemento de $A$. El conjunto $A$ cumple entonces las condiciones del quinto axioma de Peano que ya hemos demostrado, y por lo tanto $A=\mathbb N$.

$\square$

Demostración de 4

Sea $n,m\in \mathbb N$ tales que $n^+=m^+$, entonces $n\cup \set{n}= m\cup \set{m}$. Así $n\in n\cup \set{n}= m\cup \set{m}$, lo que implica que $n\in m$ o $n=m$. Por otro lado $m\in m\cup \set{m}= n\cup \set{n}$, entonces $m\in n$ o $m=n$.

Supongamos por reducción al absurdo que $n\neq m$, entonces se concluye de lo anterior que $n\in m$ y $m\in n$. Por el lema previo $n\subseteq m$ y $m\subseteq n$, así $n=m$, lo cual es una contradicción y por lo tanto $n=m$.

Y con esto hemos verificado que la construcción que dimos de los números naturales cumple los axiomas de Peano.

$\square$

Para concluir esta nota mencionemos la definición y propiedades de la suma y el producto en estos números que acabamos de definir.

Definición. Suma en $\mathbb N$

Dado $n\in \mathbb N$ definimos:

$n+0=n$

$n+m^+=(n+m)^+$ $\forall m\in \mathbb N$

Propiedades de la suma

Sean $n,m,l\in \mathbb N.$

  1. $n+0=n$
  2. $(n+m)+l=n+(m+l)$
  3. Si $n+l=m+l$, entonces $n=m$.
  4. $n+m=m+n$.
  5. Si $n\neq 0$ o $m\neq 0$, entonces $n+m\neq 0$

Definición. Producto en $\mathbb N$

Dado $n\in \mathbb N$ definimos:

$n\cdot 1=n$

$n\cdot m^+=n \cdot m+n$ $\forall m\in\mathbb N$

Propiedades del producto

Sean $n,m,l\in \mathbb N.$

  1. $n\cdot 1=n$
  2. $(n+m)\cdot l=n\cdot l+m\cdot l$.
  3. $n\cdot m=m\cdot n$.
  4. $(n\cdot m)\cdot l=n\cdot (m\cdot l)$.
  5. Si $n\neq 0$ y $m\neq 0$, entonces $n\cdot m\neq 0$
  6. Si $l\neq 0$ y $n\cdot l=m\cdot l$ entonces $n=m$.

Tarea Moral

1. Describe a los números naturales $3$, $5$, $7$, como conjuntos, usando la definición conjuntista.

2. Determina si las siguientes afirmaciones se cumplen o no.

  • $3\subseteq 5$
  • $7\subseteq 5$
  • $3\in 5$
  • $7\in 3$

Más adelante

En la siguiente nota definiremos el orden en los números naturales y veremos distintos ejemplos donde aplicaremos el principio de inducción matemática para hacer demostraciones.

Enlaces relacionados

Nota anterior. Nota 15. Relaciones de equivalencia y particiones.

Nota 15. Relaciones de equivalencia y particiones.

Introducción

En esta nota veremos cómo las relaciones de equivalencia generan particiones y finalmente concluiremos que toda relación de equivalencia tiene asociada una partición y viceversa, toda partición tiene asociada una única relación de equivalencia, con esto concluiremos esta primera unidad de conjuntos y funciones.

Teorema

Sea $A$ un conjunto, $\mathcal R$ una relación de equivalencia en $A$, entonces $\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Demostración

Sea $A$ un conjunto, $\mathcal R$ una relación de equivalencia en $A$

Por demostrar que:

$\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Vamos a mostrar que el conjunto $\set{\overline{x}\mid x\in A}$ cumple la definición de partición.

i) Por demostrar que $\overline{x}\neq \emptyset$, $\forall x\in A$.

Sea $x\in A$, como $\mathcal R$ es reflexiva $x\sim x$, así $x\in \overline{x}$ y entonces $\overline{x}\neq \emptyset$.

ii) Por demostrar que si $x,y\in A$ son tales que $\overline{x}\neq \overline{y} $, entonces $\overline{x}\cap \overline{y}=\emptyset$.

En la nota anterior mostramos que: $x\sim y\Longrightarrow \overline{x}=\overline{y}$, que es equivalente a: $\overline{x}\neq \overline{y} \Longrightarrow x\nsim y $ (llamada la contrapositiva de la implicación ). También mostramos que $x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset$, así tenemos que:

$ \overline{x}\neq \overline{y} \Longrightarrow x\nsim y $

y

$x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset$

Por lo tanto se sigue que:

$\overline{x}\neq \overline{y} \Longrightarrow x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset $.

Así tenemos lo que queríamos mostrar pues si $\overline{x}\neq \overline{y}$, entonces $\overline{x}\cap \overline{y}=\emptyset $.

iii) Por demostrar que $\bigcup\limits_{x\in A} \overline{x}=A$

Prueba por doble contención

$\subseteq$ primera contención.

Sea $z\in \bigcup\limits_{x\in A} \overline{x}$, entonces $z\in \overline{x}=\set{y\in A\mid y\sim x}$ para alguna $x\in A$, en particular $z\in A$, y por lo tanto $ \bigcup\limits_{x\in A}\subseteq A$.

$\supseteq$ segunda contención.

Sea $z\in A$, como $\mathcal R$ es reflexiva $z\sim z$ así $z\in \overline{z}$, concluimos que $z\in \bigcup\limits_{x\in A} \overline{x}$.

Como se cumplen las tres condiciones para que sea una partición entonces $\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Ejemplos

1. $A=\set{1,2,3,4,5}$

$\mathcal R=\set{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (1,5), (5,1) (2,5), (5,2) , (3,4),(4,3)}$

$\overline{1}=\set{1,2,5}$

$\overline{3}=\set{3,4}$

$\set{ \overline{1}, \overline{3}}=\set{ \set{1,2,5}, \set{3,4}} $

2. $A=\set{1,2,3,4,5}$

$\mathcal R$ una relación de equivalencia en $A$. Si la partición en $A$ inducida por $\mathcal R$ es:

$ \set{ \set{3}, \set{2,4}, \set{1,5} } $

¿Quién es $\mathcal R$?

$\mathcal R=\set{ (3,3), (2,2), (2,4), (4,4), (4,2), (1,1), (1,5), (5,5), (5,1) }$

Es una relación de equivalencia que induce la partición $\set{ \overline{3}, \overline{2}, \overline{1} }=\set{ \set{3}, \set{2,4}, \set{1,5} } $.

Teorema

Sea $A$ un conjunto, consideremos:

$\mathcal R_A=\set{r\mid r \, \,es \, \, una \, \, relación \, \, de \, \, equivalencia }$

$\mathcal P_A=\set{p\mid p \, \,es \, \, una \, \, partición \, \, de \, \, A }$

Afirmación: Existe una biyección entre $\mathcal R_A$ y $\mathcal P_A$

Demostración

Sea $A$ un conjunto, consideremos:

$\mathcal R_A=\set{r\mid r \, \,es \, \, una \, \, relación \, \, de \, \, equivalencia }$

$\mathcal P_A=\set{p\mid p \, \,es \, \, una \, \, partición \, \, de \, \, A }$

Definimos:

$\psi: \mathcal R_A\to \mathcal P_A$ con

$\psi(r)=\set{\overline{x}^r\mid x\in A}\, \, \, \forall r\in \mathcal R_A$

donde $ \overline{x}^r =\set{y\in A\mid (y,x)\in r} $, es decir $\psi(r)$ es la colección de clases de equivalencia dadas por la relación $r$.

Veamos que $\psi$ es inyectiva.

Sean $r,\rho\in \mathcal R_A$ tales que $\psi(r)=\psi(\rho)$.

Por demostrar que $r=\rho$.

La prueba se hará por doble contención

$\subseteq$ primera contención.

Sea $(a,b)\in r$ entonces por simetría $(b,a)\in r$ y entonces $b\in \overline{a}^r$.

Por otro lado $ \overline{a}^r\in \set{ \overline{x}^r\mid x\in A }=\psi(r)$ que por hipótesis es igual $\psi(\rho)= \set{ \overline{x}^{\rho}\mid x\in A }$ , de manera que $ \overline{a}^r = \overline{c}^{\rho}$ para alguna $c\in A$, como $b\in \overline{a}^r$ entonces $b\in \overline{c}^{\rho}$, así $(b,c)\in \rho$, por simetría $(c,b)\in \rho$. También $a\in \overline{a}^r= \overline{c}^{\rho}$ así $(a,c)\in \rho$. Como $(a,c)\in \rho$ y $(c,b)\in \rho$, por transitividad $(a,b)\in \rho$ y así $r\subseteq \rho$.

$\supseteq$ Segunda contención. Es análoga y por lo tanto $r=\rho$ y así la función $\psi: \mathcal R_A\to \mathcal P_A$ es inyectiva.

Veamos ahora que $\psi$ es suprayectiva.

Sea $p=\set{A_i\mid i\in I}$ una partición de $A$.

Definimos $r$ una relación en $A$ como:

$(x,y)\in r$ si y sólo si existe $i\in I$ tal que $(x,y)\in A_i$.

Ésta es una relación de equivalencia (demuéstralo).

Por demostrar que $\psi(r)=p$, es decir que $\set{\overline{x}^r\mid x\in A}=p$

La prueba es por doble contención.

$\subseteq$ primera contención.

Sea $\overline{a}^r\in \set{ \overline{x}^r\mid x\in A }$.

Por demostrar que $\overline{a}^r\in p$.

Como $A= \bigcup\limits_{i\in I}A_i$ entonces $a\in A_j$ para alguna $j\in I$. De hecho como $p$ es una partición, $A_j$ es el único elemento de $p$ al que pertenece $a$.

Pero

$\overline{a}^r=\set{b\in A\mid (b,a)\in r}=\set{b\in A\mid \exists i\in I \,\, tal \,\, que \,\, b,a\in A_i}=\set{b\in A\mid b\in A_j}=A_j\in p,$ y por lo tanto $\overline{a}^r\in p,$ y así $\psi(r)\subseteq p$.

$\supseteq$ segunda contención.

Sea $A_j\in p$ con $j\in I$. Sabemos que $A_j\neq \emptyset$, consideremos $a\in A_j$, como acabamos de ver en la primera contención , $A_j=\overline{a}^r\in \set{\overline{x}^r\mid x\in A}=\psi(r)$ y así $p\subseteq \psi(r)$.

Como se cumplen las dos contenciones $p=\psi(r)$. Y de esta forma dada una partición $p$ existe una relación de equivalencia que bajo $psi$ da por resultado $p$ y por lo tanto $\psi$ es suprayectiva.

Como $\psi$ es suprayectiva e inyectiva $\psi$ es biyectiva.

$\square$

Tarea Moral

  1. Encuentra todas las posibles particiones de $\set{3,6,7,9}$, y para cada una de ellas encuentra la relación de equivalencia asociada.
  2. Considera la relación $\mathcal R$ en $\mathbb Z$, dada por: $(a,b)\in \mathcal R$ si y sólo si $4$ divide a $b-a$. Verifica que las distintas clases de equivalencia forman una partición de $\mathbb Z$.
  3. Sea $A=\set{1,2,3,4,5}$ y considera la relación dada por:
    $R=\set{(1,1),(2,3),(3,3),(4,4),(5,5),(2,4),(4,2),(2,5),(5,2),(4,5),(5,4)}$
    Encuentra la partición asociada.

Más adelante

Con esta nota hemos terminado la unidad 1 del curso de álgebra superior I. En las siguiente nota pasaremos a la unidad 2 donde haremos un estudio de los números naturales a partir de la definición conjuntista.

Enlaces relacionados

Nota siguiente. Nota 16. Los números naturales.

Álgebra Moderna I: Producto de subconjuntos y Clases Laterales

Introducción

Antes de comenzar conviene que recordemos que estamos trabajando con grupos. Un conjunto con una operación da lugar a un grupo si cumple ciertas condiciones, entre ellas tener un neutro y ser cerrado bajo su operación. Ahora nos interesamos por los subconjuntos cualquiera del grupo, no necesariamente subgrupos. Esta entrada está dedicada al estudio del producto de dichos subconjuntos.

La primera parte comienza definiendo a nuestro producto y lo ilustramos con unos ejemplos. La segunda parte pretende responder a la pregunta ¿cuándo es el producto de dos subconjuntos un subgrupo? En la tercera parte, nos imaginamos un caso particular, ¿qué pasa cuando uno de los subconjuntos elegidos es unitario? Es decir, estamos multiplicando un subgrupo de $G$ por un solo elemento de $G$.

Producto de $S$ con $T$

Definición. Sea $G$ un grupo, $S,T$ subconjuntos no vacíos de $G$. El producto de $S$ con $T$ es el conjunto

$$ST = \{st|s\in S, t\in T\}.$$

El orden de los elementos de $ST$ es importante, recordemos que $G$ no es necesariamente abeliano. Más adelante analizaremos más al respecto.

Nota: Cuando escribimos $st$ nos referimos a la operación que pertenece al grupo $(G, \cdot)$. Por ejemplo, si tomamos a $\z$, la operación sería la suma $+$ usual.

Tomamos dos subgrupos $S$ y $T$ de $G$. Si multiplicamos sus elementos, el resultado queda en $G$

Ejemplos.

  1. Tomemos las permutaciones de $S_3 = \{(1), (1\;2), (1 \;3), (2 \; 3), (1 \; 2 \; 3), (1\;3\;2)\}$. Consideramos a $S$ como $S=\{(1\;2)\}$ y a $T$ como $T=\{(1\;2\;3), (1\;3\;2)\}$. Entonces, su producto queda
    \begin{align*}
    ST &= \{(1\;2) (1\;2\;3), (1\;2)(1\;3\;2)\}\\
    &= \{(2\;3), (1\;3)\}.
    \end{align*}
  2. Si consideramos $(\z, +)$, podemos tomar a $S$ y a $T$ como
    \begin{align*}
    S &= 2\z = \{2n|n\in \z\},\\
    T &= 3\z = \{3m|m\in\z\}.
    \end{align*}
    En este caso, el producto se denota como $S+T$ y este conjunto es
    \begin{align*}
    S+T = 2\z + 3\z = \{2n+3m|n,m\in\z\} = \z.
    \end{align*}
    Donde la última igualdad se da porque $(2,3) = 1$ (es decir, $2$ y $3$ son primos relativos).

¿Cuándo es el producto un subgrupo de $G$?

Vamos a ver qué pasa ahora a la hora de multiplicar subgrupos. Durante la demostración del siguiente teorema, observaremos que en general, el producto no es un subgrupo debido a un detalle de la conmutatividad de los elementos.

Teorema. Sea $G$ un grupo, $H$, $K$ subgrupos de $G$. Entonces,
\begin{align*}
HK \leq G \; \text{ si y sólo si } \; HK = KH.
\end{align*}

Demostración.
Sea $G$ un grupo, $H,K$ subgrupos de $G$.

$\Rightarrow]$ Supongamos que $HK \leq G$.
P.D. $KH=HK$
$\subseteq]$ Sea $x\in KH$, entonces existen $k \in K$ y $h \in H$ tales que $x = kh$.

Como $HK$ es subgrupo de $G$, entonces $h^{-1}k^{-1} \in HK$, así
\begin{align*}
x^{-1} = (kh)^{-1} = h^{-1}k^{-1} \in HK.
\end{align*}

Entonces, $x^{-1} \in HK$, y como $HK$ es subgrupo, $x \in HK$. Por lo tanto $KH \subseteq HK$.

$\supseteq]$ Sea $x \in HK$.

Observación: Si intentamos hacer lo mismo de antes, tomaríamos $h \in H$ y $k \in K$ tales que $x = hk$, así $x^{-1} = k^{-1}h^{-1}$ ya que en el inverso se invierte el orden, es decir $x^{-1} \in KH$. Pero como no sabemos nada de $KH$, nos atoramos aquí. Por lo tanto, tomaremos un camino un tanto diferente.

Sabemos que $HK\leq G$, entonces sabemos que $x^{-1} \in HK$. Entonces existen $h \in H$ y $k\in K$ tales que $x^{-1}=hk$. Así,

\begin{align*}
&x = (x^{-1})^{-1} = (hk)^{-1} = k^{-1}h^{-1} \in KH
\end{align*}
Por lo tanto $HK \subseteq KH$.

Así, $HK = KH$.

$\Leftarrow]$ Supongamos que $HK = KH$.
P.D. $HK \leq G$.

Observemos primero que $e = ee \in HK$.

Ahora consideremos $x,y \in HK$, entonces
\begin{align*}
x = hk && h, \overline{h} \in H \\
y = \bar{h} \bar{k} && k,\overline{k} \in K
\end{align*}

Entonces
\begin{align*}
xy^{-1} = (hk)(\bar{h} \bar{k})^{-1} &= (hk)(\bar{k}^{-1} \bar{h}^{-1})\\
&= h \left( (k\bar{k}^{-1})\bar{h}^{-1} \right).
\end{align*}

Pero
\begin{align*}
&(k\bar{k}^{-1}) \bar{h}^{-1} \in KH = HK &\text{Por la hipótesis} \\
\Rightarrow &\,(k \bar{k}^{-1})\bar{h}^{-1} =\hat{h}\hat{k} & \text{ con } \hat{h}\in H,\hat{k}\in K.
\end{align*}

Sustituyendo los valores $$xy^{-1} = h(\hat{h}\hat{k}) = (h\hat{h})\hat{k} \in HK.$$

Por lo tanto $HK \leq G$.

$\square$

Del teorema anterior se sigue este corolario,

Corolario. Sea $G$ un grupo abeliano, $H,K$ subgrupos de $G$. Tenemos que $HK$ es un subgrupo de $G$.

Clases Laterales

Ahora, tomemos $T = \{a\}$ con $a \in G$. De esta manera $TH = \{a\}H$, pero para simplificar la notación, usaremos $\{a\}H = aH$. A este caso específico, lo llamaremos clase lateral. A continuación lo definiremos de una manera más formal.

Definición. Sean $G$ un grupo, $H$ un subgrupo de $G$, $a\in G$.
La clase lateral izquierda de $H$ en $G$ con representante $a$ es
$$ aH = \{ah | h\in H\}. $$
La clase lateral derecha de $H$ en $G$ con representante $a$ es
$$Ha = \{ha|h\in H\}.$$

Ambas clases son análogas, aunque como veremos más adelante no necesariamente iguales, y para fines prácticos trabajaremos sólo con una, pero es importante definir ambas.

Ejemplos.

  1. $G = S_n\, ,$ $H =A_n\, ,$ $n\geq 2$
    \begin{align*}
    (1\;2)\;A_n &= \{ (1\;2)\alpha \,|\, \alpha\in A_n\} \\
    & = \{\beta \in S_n \,| \, sgn\,\beta = -1\}.
    \end{align*}
  2. $G=\r^2$ con la suma usual,
    \begin{align*}
    H &= \{(x,x) \,|\, x\in\r\}\\
    &\text{y }(a,b) \in\r^2 \\
    \text{Entonces, } \\
    (a,b) + H &= \{(a,b) +(x,x) \,|\, x\in \r\},
    \end{align*} que geométricamente es la diagonal trasladada por el vector $(a,b).$
Representación de $(a,b) + H$.

Tarea moral

  1. Prueba o da un contraejemplo: Si $G$ es un grupo y $S$ y $T$ son subconjuntos de $G$ tales que $ST$ es un subgrupo de $G$, entonces $S$ y $T$ son subgrupos de $G$.
  2. Sea $D_{2(6)} = \{\text{id}, a, \dots, a^5, b, ab, \dots, a^5b \}$ el grupo diédrico formado por las simetrías de un hexágono, con $a$ la rotación de $\frac{\pi}{3}$ y $b$ la reflexión con respecto al eje $x$. Calcula las clases laterales izquierdas y derechas de $\left< a \right>$ en $D_{2(6)}$.
  3. En cada inciso calcula $HK$ y determina si es un subgrupo de $S_4$.
    1. $H = \{(1), (1\;2)\}$ y $K = \{(1), (1\;3)\}$.
    2. $H = \{(1), (1\;2)\}$ y $K = \{(1), (3\;4)\}$.

Más adelante…

En la siguiente entrada definiremos una relación de equivalencia y, al tratar de describir las clases de equivalencias inducidas, podremos relacionar las clases laterales con los elementos de $H$. Además, continuaremos respondiendo a las preguntas: ¿qué relación existe entre el número de elementos de las clases laterales derechas e izquierdas? y ¿qué es el índice de $H$ en $G$?

Entradas relacionadas

Teoría de los Conjuntos I: Construcción de los números naturales

Introducción

Hasta ahora hemos usado a los números naturales como los conocemos desde la educación básica, sin embargo dado que estamos en un curso de teoría de conjuntos hablaremos de los números naturales desde la perspectiva de los conjuntos. En esta sección comenzaremos con la construcción rigurosa de los números naturales, sin dejar de lado la noción intuitiva que ya tenemos.

Construcción

Al principio del curso hablamos acerca de los primeros axiomas de la teoría de los conjuntos, vimos que existía un conjunto y que tal conjunto (vacío) no tiene elementos, además probamos su unicidad. Con base a los demás axiomas y al conjunto vacío construimos más conjuntos como $\set{\emptyset}$, $\set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}$, $\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$, etcétera.

Si nos fijamos en la cantidad de elementos que tienen estos conjuntos notaremos que varía o que algunos tienen la misma cantidad pero son conjuntos distintos, como $\set{\emptyset}$ y $\set{\set{\emptyset}}$.

Dado que queremos construir a los números naturales lo que intentaremos hacer es asociarle a cada número un conjunto según la cantidad de elementos que tenga. Por el argumento anterior podemos deducir que existe más de una forma de hacer esto, por ejemplo:

\begin{align*}
0 &-\emptyset\\
1&-\set{\set{\emptyset}}\\
2&-\set{\emptyset, \set{\set{\emptyset}}}\\
3&-\set{\emptyset, \set{\set{\emptyset}}, \set{\emptyset, \set{\set{\emptyset}}}}\\
\vdots
\end{align*}

Otra forma posible es la siguiente:

\begin{align*}
0 &-\emptyset\\
1&-\set{\emptyset}\\
2&-\set{\emptyset, \set{\emptyset}}\\
3&-\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}\\
\vdots
\end{align*}

Sin embargo, según la definición que daremos más adelante, vamos a requerir que nuestra construcción tenga ciertas características, por lo que aunque exista más de una forma de asociarle un número a un conjunto según la cantidad de elementos que este tenga nos quedaremos con la segunda forma.

Para definir formalmente a los números naturales comenzaremos definiendo una de las características que a simple vista cumplirá un número natural, tal característica es la de ser un conjunto transitivo.

Conjuntos transitivos

Definición: Sea $x$ un conjunto. Decimos que $x$ es un conjunto transitivo si para cualquier $y\in x$ se cumple que $y\subseteq x$.

Ejemplo:

Dado que nos quedamos con la segunda forma que dimos para identificar a los números naturales, al vacío le asociamos el número natural 0, por lo que este conjunto tendría que ser transitivo. En efecto, si $x=\emptyset$, se cumple por vacuidad que para cualquier $y\in \emptyset$, $y\subseteq \emptyset$. Por lo tanto, $\emptyset$ es un conjunto transitivo.

$\square$

Ejemplo:

Sea $x=\set{\emptyset}$. Dado que su único elemento es $y=\emptyset$, para ver que $x$ es transitivo basta ver que $\emptyset\subseteq \set{\emptyset}$ lo cuál sabemos que es cierto. Por lo tanto, $\set{\emptyset}$ es un conjunto transitivo.

$\square$

Ejemplo:

Sea $x=\set{\emptyset, \set{\set{\emptyset}}}$. Tenemos que $x$ no es transitivo. En efecto, pues $\set{\set{\emptyset}}\in x$ pero $\set{\set{\emptyset}}\not\subseteq x$ dado que $\set{\emptyset}\in \set{\set{\emptyset}}$ pero $\set{\emptyset}\notin x$. Por lo tanto, $\set{\emptyset, \set{\set{\emptyset}}}$ no es un conjunto transitivo.

$\square$

A continuación veremos algunas equivalencias para conjunto transitivo.

Proposición: Sea $x$ un conjunto. Entonces, $x$ es un conjunto transitivo si y sólo si $x\subseteq \mathcal{P}(x)$.

Demostración:

Si $x=\emptyset$, entonces se cumple que $\emptyset\subseteq \mathcal{P}(x)=\set{\emptyset}$.

Supongamos ahora que $x\not=\emptyset$. Sea $y\in x$, como $x$ es un conjunto transitivo se tiene que $y\subseteq x$ y por lo tanto, $y\in \mathcal{P}(x)$. Así, $x\subseteq \mathcal{P}(x)$.

Ahora, supongamos que $x\subseteq \mathcal{P}(x)$ y veamos que $x$ es un conjunto transitivo. Sea $y\in x$, tenemos que $y\in \mathcal{P}(x)$ y así, $y\subseteq x$.

Por lo tanto, $x$ es un conjunto transitivo.

$\square$

Proposición: Sea $x$ un conjunto. Si $x$ es un conjunto transitivo, entonces $\bigcup x\subseteq x$.

Demostración:

Si $x=\emptyset$, entonces $\bigcup x= \emptyset\subseteq \emptyset=x$.

Si $x\not=\emptyset$.
Sea $y\in \bigcup x$, entonces existe $z\in x$ tal que $y\in z$. Luego, como $z\in x$ y $x$ es un conjunto transitivo entonces $z\subseteq x$ y así, $y\in x$. Por lo tanto, $\bigcup x\subseteq x$.

$\square$

Otros resultados para conjuntos transitivos

A continuación y para concluir esta entrada veremos algunos resultados para conjuntos transitivos, esta vez con respecto a la intersección y la unión.

Proposición: Si $x$ y $y$ son conjuntos transitivos, entonces $x\cap y$ es un conjunto transitivo.

Demostración:

Sean $x$ y $y$ conjuntos transitivos. Veamos que $x\cap y$ es un conjunto transitivo, es decir, para cada $z\in x\cap y$ se cumple que $z\subseteq x\cap y$.

  1. Como $x$ es un conjunto transitivo, entonces para cualquier $z\in x$ se cumple que $z\subseteq x$.
  2. Dado que $y$ es un conjunto transitivo, entonces para cualquier $z\in y$ se cumple que $z\subseteq y$.

De $1$ y $2$ podemos concluir que para cualquier $z\in x\cap y$ se satisface que $z\subseteq x\cap y$.

Por lo tanto, $x\cap y$ es un conjunto transitivo.

$\square$

Proposición: Si $x$ y $y$ son conjuntos transitivos, $x\cup y$ es un conjunto transitivo.

Demostración:

Sean $x$ y $y$ conjuntos transitivos. Veamos que $x\cup y$ es un conjunto transitivo, es decir, para cada $z\in x\cup y$ se cumple que $z\subseteq x\cup y$.

  1. Como $x$ es un conjunto transitivo, entonces para cualquier $z\in x$ se cumple que $z\subseteq x$.
  2. Dado que $y$ es un conjunto transitivo, entonces para cualquier $z\in y$ se cumple que $z\subseteq y$.

De $1$ y $2$ podemos concluir que para cualquier $z\in x\cup y$ se satisface que $z\subseteq x\cup y$.

$\square$

Tarea moral

  • ¿Cuál de los siguientes conjuntos es transitivo?
    1. $\set{\emptyset, \set{\emptyset}}$,
    2. $\set{\set{\emptyset}}$,
    3. $\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$.
  • Demuestra que $(\set{\emptyset, \set{\emptyset}}, \in)$ es un conjunto totalmente ordenado.
  • Demuestra que $x=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$ tiene elemento máximo y elemento mínimo en el orden $\in_x$.
  • Sea $x$ un conjunto. Demuestra que si $\bigcup x\subseteq x$, entonces $x$ es un conjunto transitivo.

Más adelante

En la siguiente entrada daremos la definición formal y rigurosa de que es un número natural. Además demostraremos algunas de sus propiedades.

Enlaces

Para ver contenido acerca de números naturales puedes consultar el siguiente enlace: Álgebra Superior I: Introducción a números naturales.

Para recordar la definición de orden total puedes consultar el siguiente enlace: Teoría de los Conjuntos I: Orden total

Para recordar las definiciones de mínimo y máximo consulta el siguiente enlace: Teoría de los Conjuntos I: Mínimos, máximos, minimales y maximales

Teoría de los Conjuntos I: Buenos órdenes

Introducción.

En esta sección trataremos con un tipo particular de conjuntos ordenados, en donde será de mucha importancia el concepto de mínimo.

Concepto

Definición: Sea $(A,\leq)$ un conjunto parcialmente ordenado. Decimos que $A$ es un conjunto bien ordenado si cada subconjunto no vacío de $A$ tiene elemento mínimo. En este caso al orden $\leq$ se le llama buen orden.

Ejemplo:

Consideremos el conjunto $A=\set{\emptyset,\set{\emptyset}}$ ordenado con la inclusión. Afirmamos que $(A,\subseteq)$ es un buen orden. En efecto: supongamos que $B\subseteq A$ es un conjunto no vacío. Tenemos distintas posibilidades para $B$ y son las siguientes: $B=\set{\emptyset}$ o bien $B=\set{\set{\emptyset}}$ o bien $B=\set{\emptyset,\set{\emptyset}}$.

Si $B=\set{\emptyset}$, entonces $B$ tiene mínimo y es $\emptyset$. Si $B=\set{\set{\emptyset}}$, entonces $B$ tiene mínimo y es $\set{\emptyset}$. Finalmente, si $B=\set{\emptyset,\set{\emptyset}}$, entones $B$ tiene mínimo y es $\emptyset$, pues $\emptyset\subseteq\emptyset$ y $\emptyset\subseteq\set{\emptyset}$.

Así, en cualquier caso $B$ tiene mínimo. Por lo tanto, $(A,\subseteq)$ es un conjunto bien ordenado.

$\square$

Ejemplo:

Supongamos que tenemos un conjunto bien ordenado $(A,\leq)$. A partir de este conjunto bien ordenado construiremos otro conjunto que también resultará ser bien ordenado.

Por el Axioma de Buena Fundación sabemos que $A\notin A$, por lo cual, $W=A\cup\set{A}$ es un conjunto no vacío distinto de $A$. Definamos la relación de orden $\preceq$ en $W$ como sigue: $A\preceq A$, $a\preceq A$ para todo $a\in A$ y $a_1\preceq a_2$ si y sólo si $a_1\leq a_2$ para cualesquiera $a_1,a_2\in A$.

Notemos que esta nueva relación de orden definida en $W$ coincide con la relación de orden de $A$ si nos restringimos únicamente a comparar elementos de $A$.

Afirmamos que $(W,\preceq)$ es un conjunto bien ordenado. Para mostrarlo supongamos que $B\subseteq W=A\cup\set{A}$ es un conjunto no vacío y veamos que tiene mínimo en el orden $\preceq$. Si $B=\set{A}$, entonces el mínimo de $B$ es $A$.

Podemos suponer ahora que $B\cap A\not=\emptyset$.

Como $B\cap A\subseteq A$ es un conjunto no vacío, entonces tiene un elemento mínimo en el orden $\leq$. Sea $b\in B\cap A$ el mínimo de este conjunto en el orden $\leq$ y veamos que $b\preceq x$ para cualquier $x\in B$. Supongamos entonces que $x\in B$ es cualquier elemento. Si $x\in B\cap A$, entonces $b\leq x$ y en consecuencia, $b\preceq x$. Si ahora $x\notin B\cap A$ se sigue que $x=A$ y, por definición de la relación $\preceq$, sabemos que $b\preceq A$, por lo que $b\preceq x$. De esta manera, $b=\min(B)$ en el orden $\preceq$.

Esto demuestra que cualquier subconjunto no vacío de $W$ tiene mínimo y, por tanto, $(W,\preceq)$ es un conjunto bien ordenado.

$\square$

Ahora, veamos una consecuencia directa de que un conjunto sea bien ordenado.

Proposición: Si $(A,\leq)$ es un conjunto bien ordenado, entonces, $(A,\leq)$ es un conjunto totalmente ordenado.

Demostración:

Como $(A,\leq)$ es un conjunto bien ordenado, entonces, todo subconjunto no vacío de $A$ tiene elemento mínimo. Así, si tomamos dos elementos cualesquiera $a_1,a_2\in A$ se sigue que $\set{a_1,a_2}$ es un subconjunto no vacío de $A$, por lo que tiene elemento mínimo. En consecuencia, $a_1\leq a_2$ o $a_2\leq a_1$.

Esto demuestra que cualesquiera dos elementos de $A$ son $\leq-$comparables, por lo que $(A,\leq)$ es un conjunto totalmente ordenado.

$\square$

Veamos ahora algunos resultados relacionados con conjuntos acotados en un conjunto bien ordenado.

Proposición: Sea $(A,\leq)$ un conjunto bien ordenado. Se cumple lo siguiente:
Si $B\subseteq A$ es un conjunto acotado superiormente, entonces, $B$ tiene supremo.

Demostración:

Sea $(A,\leq)$ un conjunto bien ordenado.
Supongamos que $B\subseteq A$ es un conjunto acotado superiormente. Sea $C=\set{a\in A:(\forall b\in B)(b\leq a)}$, el cual es un subconjunto no vacío de $A$, pues por hipótesis $B$ está acotado superiormente, es decir, existe $a\in C$.

Como $A$ está bien ordenado por $\leq$, entonces, existe el mínimo de $C$ en el orden $\leq$, es decir, existe $c\in A$ tal que $c=\min(C)$. Luego, como $c$ es el mínimo del conjunto de cotas superiores de $B$, concluimos que $c=\sup(B)$.

Esto demuestra que todo subconjunto de $A$ que esté acotado superiormente tiene supremo, lo cual concluye la prueba.

Por la proposición anterior y el hecho de que todo subconjunto no vacío de un conjunto bien ordenado tiene mínimo, podemos concluir lo siguiente:

Si $(A,\leq)$ es un conjunto bien ordenado y $B\subseteq A$ es no vacío y acotado superiormente (inferiormente), entonces, $B$ tiene una mínima cota superior (máxima cota inferior).

$\square$

Tarea moral

La siguiente lista de ejercicios te ayudará a reforzar lo aprendido en esta sección:

  • Sean $(A, \leq_A)$ y $(B, \leq_B)$ conjuntos bien ordenados. Demuestra que el orden lexicográfico horizontal en $A\times B$ es un buen orden.
  • Demuestra que si $A$ admite un buen orden, entonces $\mathcal{P}(A)$ admite un orden lineal.
  • Sea $(A, \leq_A)$ un conjunto totalmente ordenado. Prueba que existe $L\subseteq A)$ tal que
    1) $\leq_A$ es un buen orden en $L$,
    2) para cualquier $x\in A$ existe $y\in L$ tal que $x\leq_A y$.

Más adelante

En la siguiente entrada hablaremos acerca de funciones que relacionan conjuntos ordenados, tales funciones poseerán la característica de ser biyectivas y llevaran el nombre de isomorfismos.

Enlaces

En el siguiente enlace podrás encontrar más contenido acerca de buenos órdenes:

Álgebra Superior II: El principio del buen orden