Archivo de la etiqueta: álgebra

1.7. (IN)DEPENDENCIA LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

En matemáticas es de mucho interés estudiar aquello que es único (por qué lo es, «quién» es y cómo encontrarlo). En este punto de la teoría, sabemos que el neutro aditivo de un campo $K$ cualquiera siempre existe y es único, al igual que el neutro de un $K$ – espacio vectorial $V$ cualquiera.

Sabemos que las combinaciones lineales son elementos del espacio vectorial donde estamos trabajando y ahora estudiaremos conjuntos de vectores y la(s) combinación(es) lineale(s) que podemos obtener igualadas al neutro de nuestro espacio vectorial. Este sutil detalle de que sea sólo una o resulten existir más combinaciones lineales que cumplan la igualdad será el centro del tema… al fin y al cabo, sí sabemos que al menos existe una: la trivial, obtenida si todos los escalares involucrados son el neutro aditivo del campo.

LISTA LINEALMENTE (IN)DEPENDIENTE

Definición: Sea $V$ un $K$ – espacio vectorial. Una lista $v_1,v_2,…,v_m$$\in V$ en una lista linealmente dependiente si existen $\lambda_1,\lambda_2,…,\lambda_m\in K$ no nulos tales que $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$.
Decimos que es una lista linealmente independiente en caso contrario. Es decir, si $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ con $\lambda_1,\lambda_2,…,\lambda_m\in K$, entonces $\lambda_1,\lambda_2,…,\lambda_m=0_K$ necesariamente.

Nota: Es común abreviar «linealmente dependiente» con l.d. y «linealmente independiente» con l.i.

Ejemplos

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_3[\mathbb{R}]$
    Sean $v_1=1+x-x^2+2x^3$, $v_2=2-3x+x^3$, $v_3=4-x-2x^2+5x^3$
    La lista $v_1,v_2,v_3$ es l.d.

Justificación. Se cumple que $2v_1+1v_2-1v_3=0x^3+0x^2+0x+0=\theta_V$

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^n$
    La lista $e_1,e_2,…,e_n$ es l.i.

Justificación. Tenemos que $e_i$ se define como el vector de $n$ entradas donde la $i$-ésima es $1$ y las demás son $0$. Así, $\lambda_1e_1+\lambda_2e_2+…+\lambda_ne_n=(\lambda_1,\lambda_2,…,\lambda_n)$. Por lo que, si $\lambda_1e_1+\lambda_2e_2+…+\lambda_ne_n=(0,0,…,0)=\theta_V$, entonces $(\lambda_1,\lambda_2,…,\lambda_n)=(0,0,…,0)$ y en consecuencia $\lambda_i=0$ para toda $i\in{1,2,…,n}.$

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^2$
    Sean $v_1=(x_1,0)$, $v_2=(x_2,0)$, $v_3=(x_3,y_3)$ con $x_i\not= 0$ para toda $i\in\{1,2,3\}$.
    La lista $v_1,v_2,v_3$ es l.d.

Justificación. Consideremos $\lambda_1,\lambda_2,\lambda_3$ tales que
$\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=(0,0).$
Entonces $\lambda_1(x_1,0)+\lambda_2(x_2,0)+\lambda_3(x_3,y_3)=(0,0).$
Desarrollando el lado izquierdo de esta igualdad tenemos que $(\lambda_1x_1+\lambda_2x_2+\lambda_3x_3,y_3)=(0,0).$ Por lo tanto $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=(0,0)$ si y sólo si
a) $\lambda_1x_1+\lambda_2x_2+\lambda_3x_3=0$ y b) $\lambda_3y_3=0$.
Si $\lambda_3=0$, b) se cumple para cualesquiera $\lambda_1,\lambda_2\in\mathbb{R}$. Veamos si se le puede asignar un valor distinto de cero a $\lambda_1$ o a $\lambda_2$ y que se cumpla a).
Tenemos que a) se cumple si y sólo si $\lambda_1x_1=-(\lambda_2x_2+\lambda_3x_3)$. Por lo tanto, si $\lambda_3=0$, tenemos que $\lambda_1x_1=-\lambda_2x_2$, y dado que $x_1$ es no nulo esto implica que $\lambda_1=-\lambda_2\frac{x_2}{x_1}$. Así, eligiendo $\lambda_2=1$, $\lambda_1=-\frac{x_2}{x_1}$ y $\lambda_3=0$ se cumplen a) y b), existiendo así una combinación lineal no trivial de $v_1,v_2$ y $v_3$ igualada al vector cero.

CONJUNTO LINEALMENTE (IN)DEPENDIENTE

Definición: Sea $V$ un $K$ – espacio vectorial. Un subconjunto $S$ de $V$ es un conjunto linealmente dependiente si existe $m\in\mathbb{N}^+$ tal que $S$ contiene $m$ elementos distintos que forman una lista dependiente.
Decimos que es un conjunto linealmente independiente en caso contrario. Es decir, si para cualquier $m\in\mathbb{N}^+$ todas las listas que se pueden formar con $m$ elementos distintos de $S$ son linealmente independientes.

Observación: Si $S$ es un conjunto finito con $m$ vectores distintos, digamos $\{v_1,v_2,…,v_m\}$, entonces:
i) Si se puede encontrar una combinación lineal $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ donde $\lambda_1, \dots, \lambda_m\in \mathbb{R}$ con al menos una $\lambda_j$ distinta de $0_K$ para alguna $j\in\{1,2,…,m\}$, entonces $S$ es l.d.
ii) Si el hecho de que se tenga una combinación lineal $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ donde $\lambda_1, \dots, \lambda_m\in \mathbb{R}$, implica que $\lambda_j$ debe ser $0_K$ para toda $j\in\{1,2,…,m\}$, entonces $S$ es l.i.

Ejemplos

  • Sean $K$ un campo y $V=\mathcal{P}_m(K)$
    $S=\{1,x,x^2,…,x^m\}$$\subseteq\mathcal{P}_m(K)$ es l.i.

Justificación. Sean $\lambda_0,\lambda_1,\lambda_2,…,\lambda_m\in\mathbb{R}$ tales que $\lambda_01+\lambda_1x+\lambda_2x^2+…+\lambda_mx^m=\theta_V$, es decir $\lambda_01+\lambda_1x+\lambda_2x^2+…+\lambda_mx^m=0+0x+0x^2+…+0x^m$.
Recordando que dos polinomios so iguales si y sólo si coinciden coeficiente a coeficiente concluimos que $\lambda_i=0$ para toda $i\in\{0,1,2,…,m\}.$

  • Sean $K=\mathbb{R}$ y $V=\mathbb{R}^3$
    $S=\{(1,3,-7),(2,1,-2),(5,10,-23)\}$$\subseteq\mathbb{R}^3$ es l.d.

Justificación. Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1(1,3,-7)+\lambda_2(2,1,-2)+\lambda_3(5,10,-23)=(0,0,0)$.
Entonces $(\lambda_1+2\lambda_2+5\lambda_3,3\lambda_1+\lambda_2+10\lambda_3,-7\lambda_1-2\lambda_2-23\lambda_3)=(0,0,0)$. De donde:
\begin{align*}
\lambda_1+2\lambda_2+5\lambda_3&=0…(1)\\
3\lambda_1+\lambda_2+10\lambda_3&=0…(2)\\
-7\lambda_1-2\lambda_2-23\lambda_3&=0…(3)\\
\end{align*}
De $(1)$: $\lambda_1=-2\lambda_2-5\lambda_3…(4)$
Sustituyendo $(4)$ en $(2)$: $3(-2\lambda_2-5\lambda_3)+\lambda_2+10\lambda_3=0$
$\Longrightarrow-5\lambda_2-5\lambda_3…(5)\Longrightarrow\lambda_2=-\lambda_3…(5)$
Sustituyendo $(5)$ en $(4)$: $\lambda_1=-2(-\lambda_3)-5\lambda_3$
$\Longrightarrow\lambda_1=-3\lambda_3…(6)$
En particular, si $\lambda_3=1$tenemos que $\lambda_2=-1$ y $\lambda_1=-3$, y encontramos así una solución no trivial del sistema dado por $(1)$, $(2)$ y $(3)$.

  • Sean $K=\mathbb{R}$ y $V=\mathcal{M}_{2\times 2}(\mathbb{R})$
    $S=\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}$$\subseteq\mathcal{M}_{2\times 2}(\mathbb{R})$ es l.i.

Justificación. Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} +\lambda_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\lambda_3\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Entonces $\begin{pmatrix} \lambda_1 & \lambda_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \lambda_2 \\ 0 & \lambda_2 \end{pmatrix}+ \begin{pmatrix} 0 & 0 \\ \lambda_3 & \lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $\begin{pmatrix} \lambda_1 & \lambda_1+\lambda_2 \\ \lambda_3 & \lambda_2+\lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. De donde:
\begin{align*}
\lambda_1&=0…(1)\\
\lambda_1+\lambda_2&=0…(2)\\
\lambda_3&=0…(3)\\
\lambda_2+\lambda_3&=0…(4)\\
\end{align*}
Sustituyendo $(1)$ en $(2)$: $\lambda_2=0$
Por lo tanto, $\lambda_1,\lambda_2,\lambda_3=0.$

  • Sean $K=\mathbb{R}$ y $V=\mathbb{R}^3$
    $S=\{(n,n,n)|n\in\mathbb{Z}\}$$\subseteq\mathbb{R}^3$ es l.d.

Justificación. La lista en $S$ dada por $(1,1,1),(5,5,5)$ es l.d. porque $-5(1,1,1)+(5,5,5)=(0,0,0)$.

Tarea Moral

Sean $K$ un campo y $V$ un $K$ – espacio vectorial.

  1. Sean $S,\tilde{S}\subseteq V$ tales que $S\subseteq\tilde{S}$.
    Para cada inciso, responde y justifica tu respuesta demostrándolo o dando un contraejemplo.
    • Si $S$ es l.d., ¿es posible determinar si $\tilde{S}$ es l.d. o l.i.?
    • Si $S$ es l.i., ¿es posible determinar si $\tilde{S}$ es l.d. o l.i.?
    • Si $\tilde{S}$ es l.d., ¿es posible determinar si $S$ es l.d. o l.i.?
    • Si $\tilde{S}$ es l.i., ¿es posible determinar si $S$ es l.d. o l.i.?
  2. Sea $S=\{v_1,v_2,…,v_m\}\subseteq V$
    Demuestra que son equivalentes:
    • $S$ es l.d.
    • Existe $v_j\in S$ tal que $\langle S\rangle=\langle S-\{v_j\}\rangle$

Más adelante…

El segundo ejercicio de la tarea moral se refiere al subespacio generado por un conjunto linealmente dependiente.
Veamos ahora más relaciones que existen entre los conjuntos linealmente dependientes, los linealmente independientes y los espacios que estos conjuntos generan.

Entradas relacionadas

Álgebra Superior I: Determinante de matrices y propiedades

Por Eduardo García Caballero

Introducción

Uno de los conceptos más importantes en el álgebra lineal es la operación conocida como determinante. Si bien este concepto se extiende a distintos objetos, en esta entrada lo revisaremos como una operación que se puede aplicar a matrices cuadradas. Como veremos, el determinante está muy conectado con otros conceptos que hemos platicado sobre matrices

Definición para matrices de $2\times 2$

A modo de introducción, comenzaremos hablando de determinantes para matrices de $2\times 2$. Aunque este caso es sencillo, podremos explorar algunas de las propiedades que tienen los determinantes, las cuales se cumplirán de manera más genera. Así, comencemos con la siguiente definición.

Definición. Para una matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, definimos su determinante como
\[
\operatorname{det}(A) = ad – bc.
\]

Basándonos en esta definición, podemos calcular los determinantes
\[
\operatorname{det}
\begin{pmatrix} 9 & 3 \\ 5 & 2 \end{pmatrix}=9\cdot 2 – 3\cdot 5 = 3
\]
y
\[
\operatorname{det}
\begin{pmatrix} 4 & -3 \\ 12 & -9 \end{pmatrix}
=
4\cdot (-9)-(-3)\cdot 12= 0.
\]

Otra notación que podemos encontrar para determinantes es la notación de barras. Lo que se hace es que la matriz se encierra en barras verticales, en vez de paréntesis. Así, los determinantes anteriores también se pueden escribir como
\[
\begin{vmatrix} 9 & 3 \\ 5 & 2 \end{vmatrix} = 3
\qquad
\text{y}
\qquad
\begin{vmatrix} 4 & -3 \\ 12 & -9 \end{vmatrix} = 0.
\]

Primeras propiedades del determinante

El determinante de una matriz de $2\times 2$ ayuda a detectar cuándo una matriz es invertible. De hecho, esto es algo que vimos previamente, en la entrada de matrices invertibles. En ella, dijimos que una matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es invertible si y sólo si se cumple que $ad – bc \ne 0$. ¡Aquí aparece el determinante! Podemos reescribir el resultado de la siguiente manera.

Teorema. Una matriz de la forma $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es invertible si y sólo si $\det(A) \ne 0$. Cuando el determinante es distinto de cero, la inversa es $A^{-1} = \frac{1}{\det(A)}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Otra propiedad muy importante que cumple el determinante para matrices de $2\times 2$ es la de ser multiplicativo; es decir, para matrices $A$ y $B$ se cumple que $\operatorname{det}(AB) = \operatorname{det}(A) \operatorname{det}(B)$. La demostración de esto se basa directamente en las definiciones de determinante y de producto de matrices. Hagamos las cuentas a continuación para matrices $A=\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}$ y $B=\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}.$

Tenemos que:
\begin{align*}
\operatorname{det}(AB)
&=
\operatorname{det}
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\operatorname{det}
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}
\\[5pt]
&=
(a_{11}b_{11} + a_{12}b_{21})(a_{21}b_{12} + a_{22}b_{22})-(a_{11}b_{12} + a_{12}b_{22})(a_{21}b_{11} + a_{22}b_{21})
\\[5pt]
&=
a_{11}a_{22}b_{11}b_{22} – a_{12}a_{21}b_{11}b_{22} – a_{11}a_{22}b_{12}b_{21} + a_{12}a_{21}b_{12}b_{21}
\\[5pt]
&=
(a_{11}a_{22} – a_{12}a_{21})(b_{11}b_{22} – b_{12}b_{21})
\\[5pt]
&=
\operatorname{det}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\operatorname{det}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\\[5pt]
&=
\operatorname{det}(A)\operatorname{det}(B).
\end{align*}

Interpretación geométrica del determinante de $2\times 2$

El determinante también tiene una interpretación geométrica muy interesante. Si tenemos una matriz de $2\times 2$, entonces podemos pensar a cada una de las columnas de esta matriz como un vector en el plano. Resulta que el determinante es igual al área del paralelogramo formado por estos vectores.

Por ejemplo, si consideramos la matriz
\[
\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix},
\]
podemos ver que el vector asociado a su primera columna es el vector $(4,1)$, mientras que el vector asociado a su segunda columna es $(2,3)$:

Así, el paralelogramo $ABDC$ de la figura anterior formado por estos dos vectores tiene área igual a
\[
\operatorname{det}
\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}
= 4\cdot 3 – 2\cdot 1 = 10.
\]

No daremos la demostración de este hecho, pues se necesita hablar más sobre la geometría del plano. Sin embargo, las ideas necesarias para este resultado pueden consultarse en un curso de Geometría Analítica I.

Definición recursiva

También nos interesa hablar de determinantes de matrices más grandes. De hecho, nos interesa hablar del determinante de cualquier matriz cuadrada. La definición formal requiere de varios conocimientos de Álgebra Lineal I. Sin embargo, por el momento podemos platicar de cómo se obtienen los determinantes de matrices recursivamente. Con esto queremos decir que para calcular el determinante de matrices de $3\times 3$, necesitaremos calcular varios de matrices de $2\times 2$. Así mismo, para calcular el de matrices de $4\times 4$ requeriremos calcular varios de matrices de $3\times 3$ (que a su vez requieren varios de $2\times 2$).

Para explicar cómo es esta relación de poner determinantes de matrices grandes en términos de matrices más pequeñas, primeramente definiremos la función $\operatorname{sign}$, la cual asigna a cada pareja de enteros positivos $(i,j)$ el valor
\[
\operatorname{sign}(i,j) = (-1)^{i+j}.
\]
A partir de la función $\operatorname{sign}$ podemos hacer una matriz cuya entrada $a_{ij}$ es $\operatorname{sign}(i,j)$. Para visualizarla más fácilmente, podemos pensar que a la entrada $a_{11}$ (la cual se encuentra en la esquina superior izquierda) le asigna el signo “$+$”, y posteriormente va alternando los signos del resto de entradas. Por ejemplo, los signos correspondientes a las entradas de la matriz de $3 \times 3$
\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\]
serían
\[
\begin{pmatrix}
+ & – & + \\
– & + & – \\
+ & – & +
\end{pmatrix},
\]
mientras que los signos correspondientes a las entradas de la matriz de $4 \times 4$
\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}
\]
serían
\[
\begin{pmatrix}
+ & – & + & – \\
– & + & – & + \\
+ & – & + & – \\
– & + & – & +
\end{pmatrix}.
\]

Ya que entendimos cómo se construyen estas matrices, el cálculo de determinantes se realiza como sigue.

Estrategia. Realizaremos el cálculo de determinante de una matriz de $n \times n$ descomponiéndola para realizar el cálculo de determinantes de matrices de $(n-1) \times (n-1)$. Eventualmente llegaremos al calcular únicamente determinantes de matrices de $2 \times 2$, para las cuales ya tenemos una fórmula. Para esto, haremos los siguientes pasos repetidamente.

  1. Seleccionaremos una fila o columna arbitraria de la matriz original (como en este paso no importa cuál fila o columna seleccionemos, buscaremos una que simplifique las operaciones que realizaremos; generalmente nos convendrá seleccionar una fila o columna que cuente en su mayoría con ceros).
  2. Para cada entrada $a_{ij}$ en la fila o columna seleccionada, calculamos el valor de
    \[
    \operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{ij}),
    \]
    donde $A_{ij}$ es el la matriz que resulta de quitar la fila $i$ y la columna $j$ a la matriz original.
  3. El determinante de la matriz será la suma de todos los términos calculados en el paso anterior.

Veamos algunos ejemplos de cómo se utiliza la estrategia recién descrita.

Ejemplo con matriz de $3\times 3$

Consideremos la matriz de $3 \times 3$
\[
\begin{pmatrix}
3 & 1 & -1 \\
6 & -1 & -2 \\
4 & -3 & -2
\end{pmatrix}.
\]

A primera vista no hay alguna fila o columna que parezca simplificar los cálculos, por lo cual podemos proceder con cualquiera de estas; nosotros seleccionaremos la primera fila.
\[
\begin{pmatrix}
\fbox{3} & \fbox{1} & \fbox{-1} \\
6 & -1 & -2 \\
4 & -3 & -2
\end{pmatrix}.
\]

Para cada término de la primera fila, calculamos el producto
\[
\operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{i,j}),
\]
obteniendo
\begin{align*}
\operatorname{sign}(1,1) \cdot (a_{11}) \cdot \operatorname{det}(A_{11})
&= +(3)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
\blacksquare & -1 & -2 \\
\blacksquare & -3 & -2
\end{pmatrix}
\\[5pt]
&= +(3)\operatorname{det} \begin{pmatrix} -1 & -2 \\ -3 & -2 \end{pmatrix}
\\[5pt]
&= +(3)[(-1)(-2) – (-2)(-3)]
\\[5pt]
&= +(3)(-4)
\\[5pt]
&= -12,
\\[10pt]
\operatorname{sign}(1,2) \cdot (a_{12}) \cdot \operatorname{det}(A_{12})
&= -(1)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
6 & \blacksquare & -2 \\
4 & \blacksquare & -2
\end{pmatrix}
\\[5pt]
&= -(1)\operatorname{det}
\begin{pmatrix} 6 & -2 \\ 4 & -2 \end{pmatrix}
\\[5pt]
&=-(1)[(6)(-2) – (-2)(4)]
\\[5pt]
&=-(1)(-4)
\\[5pt]
&=4,
\\[10pt]
\operatorname{sign}(1,3) \cdot (a_{13}) \cdot \operatorname{det}(A_{13})
&= +(-1)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
6 & -1 & \blacksquare \\
4 & -3 & \blacksquare
\end{pmatrix}
\\[5pt]
&= +(-1)\operatorname{det} \begin{pmatrix} 6 & -1 \\ 4 & -3 \end{pmatrix}
\\[5pt]
&= +(-1)[(6)(-3) – (-1)(4)]
\\[5pt]
&= +(-1)(-14)
\\[5pt]
&= 14.
\end{align*}

Finalmente, el determinante de nuestra matriz original será la suma de los términos calculados; es decir,
\[
\begin{pmatrix}
3 & 1 & -1 \\
6 & -1 & -2 \\
4 & -3 & -1
\end{pmatrix}
=
(-12) + (4) + (14) = 6.
\]

Ejemplo con matriz de $4\times 4$

En el siguiente ejemplo veremos cómo el escoger una fila o columna en específico nos puede ayudar a simplificar mucho los cálculos.

Consideremos la matriz
\[
\begin{pmatrix}
4 & 0 & 2 & 2 \\
-1 & 3 & -2 & 5 \\
-2 & 0 & 2 & -3 \\
1 & 0 & 4 & -1
\end{pmatrix}.
\]

Observemos que el valor de tres de las entradas de la segunda columna es $0$. Por esta razón, seleccionaremos esta columna para descomponer la matriz:
\[
\begin{pmatrix}
4 & \fbox{0} & 2 & 2 \\
-1 & \fbox{3} & -2 & 5 \\
-2 & \fbox{0} & 2 & -3 \\
1 & \fbox{0} & 4 & -1
\end{pmatrix}.
\]

El siguiente paso será calcular el producto
\[
\operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{ij}),
\]
para cada entrada de esta columna. Sin embargo, por la elección de columna que hicimos, podemos ver que el valor de $a_{ij}$ es 0 para tres de las entradas, y por tanto también lo es para el producto que deseamos calcular. De este modo, únicamente nos restaría calcular el producto
\begin{align*}
\operatorname{sign}(2,2) \cdot a_{22} \cdot \operatorname{det}(A_{22})
&=
+(3)\operatorname{det}
\begin{pmatrix}
4 & \blacksquare & 2 & 2 \\
\blacksquare & \blacksquare & \blacksquare & \blacksquare \\
-2 & \blacksquare & 2 & -3 \\
1 & \blacksquare & 4 & -1
\end{pmatrix}
\\[5pt]
&= +(3)\operatorname{det}
\begin{pmatrix}
4 & 2 & 2 \\
-2 & 2 & -3 \\
1 & 4 & -1
\end{pmatrix}.
\end{align*}
Se queda como ejercicio al lector concluir que el resultado de este último producto es 30.

De este modo, obtenemos que
\[
\operatorname{det}
\begin{pmatrix}
4 & 0 & 2 & 2 \\
-1 & 3 & -2 & 5 \\
-2 & 0 & 2 & -3 \\
1 & 0 & 4 & -1
\end{pmatrix}
= 0 + 30 + 0 + 0 = 30.
\]

Aunque esta definición recursiva nos permite calcular el determinante de una matriz cuadrada de cualquier tamaño, rápidamente se vuelve un método muy poco práctico (para obtener el determinante de una matriz de $6 \times 6$ tendríamos que calcular hasta 60 determinantes de matrices de $2 \times 2$). En el curso de Álgebra Lineal I se aprende otra definición de determinante a través de permutaciones, de las cuales se desprenden varios métodos más eficientes para calcular determinante. Hablaremos un poco de estos métodos en la siguiente entrada.

Las propiedades de $2\times 2$ también se valen para $n\times n$

Las propiedades que enunciamos para matrices de $2\times 2$ también se valen para determinantes de matrices más grandes. Todo lo siguiente es cierto, sin embargo, en este curso no contamos con las herramientas para demostrar todo con la formalidad apropiada:

  • El determinante es multiplicativo: Si $A$ y $B$ son matrices de $n\times n$, entonces $\operatorname{det}(AB) = \operatorname{det}(A)\operatorname{det}(B)$.
  • El determinante detecta matrices invertibles: Una matriz $A$ de $n\times n$ es invertible si y sólo si su determinante es distinto de $0$.
  • El determinante tiene que ver con un volumen: Los vectores columna de una matriz $A$ de $n\times n$ hacen un paralelepípedo $n$-dimensional cuyo volumen $n$-dimensional es justo $\det{A}$.

Más adelante…

En esta entrada conocimos el concepto de determinante de matrices, vimos cómo calcularlo para matrices de distintos tamaños y revisamos cómo se interpreta cuando consideramos las matrices como transformaciones de flechas en el plano. En la siguiente entrada enunciaremos y aprenderemos a usar algunas de las propiedades que cumplen los determinantes.

Tarea moral

  1. Calcula los determinantes de las siguientes matrices:
    • $\begin{pmatrix} 5 & 8 \\ 3 & 9 \end{pmatrix}, \begin{pmatrix} 10 & 11 \\ -1 & 9 \end{pmatrix}, \begin{pmatrix} 31 & 38 \\ 13 & -29 \end{pmatrix}$
    • $\begin{pmatrix} 1 & 5 & 2 \\ 3 & -1 & 8 \\ 0 & 2 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 8 & 4 \\ 0 & 5 & -3 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$
    • $\begin{pmatrix} 5 & 7 & -1 & 2 \\ 3 & 0 & 1 & 0 \\ 2 & -2 & 2 & -2 \\ 5 & 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}$
  2. Demuestra que para una matriz $A$ y un entero positivo $n$ se cumple que $\det(A^n)=\det(A)^n$.
  3. Sea $A$ una matriz de $3\times 3$. Muestra que $\det(A)=\det(A^T)$.
  4. Sea $A$ una matriz invertible de $2\times 2$. Demuestra que $\det(A)=\det(A^{-1})^{-1}$.
  5. ¿Qué le sucede al determinante de una matriz $A$ cuando intercambias dos filas? Haz algunos experimentos para hacer una conjetura, y demuéstrala.

Entradas relacionadas

Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Hace algunas entradas, comenzamos dando una motivación usando a los enteros. En ésta, nos encontramos de nuevo con la necesidad de retomarlos para darle introducción al tema principal de la entrada. Sabemos que $(\z, +)$ es un grupo, de ahí podemos considerar el subgrupo $n\z$ formado por los múltiplos de $n$, y trabajar con las clases módulo $n$. Supongamos que tenemos $a,b\in \z$ y las clases de equivalencia de $a$ y $b$ módulo $n$ . Éstas se definen de la siguiente manera:
\begin{align*}
\bar{a} = a + n\z, \quad \bar{b} = b + n\z.
\end{align*}

Si queremos sumar dos clases de equivalencia, usamos la suma usual en $\z$. Digamos
\begin{align*}
\bar{a} + \bar{b} = \overline{a+b}.
\end{align*}

Aunque lo escribamos así, en realidad lo que estamos haciendo, es definir la suma $+_n$ en $\z_n$ usando $+_\z$ que es la suma del grupo $(\z,+)$. Entonces lo anterior quedaría:
\begin{align*}
\bar{a} +_n \bar{b} = \overline{a+_\z b}.
\end{align*}

Resulta que $+_n$ es una operación bien definida y $(\z_n,+_n)$ es un grupo.

Otra manera de escribirlo sería:
\begin{align*}
(a+\z) +_n (b+\z) = (a+_\z b) + \z.
\end{align*}
Donde, en este caso estamos usando la notación aditiva.

Entonces, ahora nos preguntamos, ¿cómo podemos generalizar esta propiedad?

Tomemos $G$ un grupo y $H$ un subgrupo y consideremos dos clases laterales izquierdas de $H$, digamos $aH$ y $bH$, lo que queremos es definir, en caso de ser posible, un producto entre clases del siguiente modo:
\begin{align*}
aH \cdot_H bH = ab H.
\end{align*}

donde $\cdot_H$ es el nuevo producto entre clases y $ab$ se hace con el producto en $G$.

Sin embargo, debemos verificar que este producto $\cdot_H$ esté bien definido. Para ello tenemos que ver que no depende de los representantes elegidos. Tomemos entonces otros representantes de las clases, para simplificarlo, cambiemos sólo el representante de una de las dos clases, digamos $\tilde{a}\in G$ tal que $\tilde{a}H = aH$.

Entonces, quisiéramos que $abH = \tilde{a}bH$, pero esto sucedería sólo de la siguiente manera,
\begin{align*}
abH = \tilde{a}b H \Leftrightarrow\;& (ab)^{-1} \tilde{a}b\in H\\
\Leftrightarrow\;& b^{-1}a^{-1}\tilde{a}b\in H.
\end{align*}

Entonces, ¿cómo sabemos que $b^{-1}a^{-1}\tilde{a}b\in H$? Lo que sí sabemos es que $a^{-1}\tilde{a} \in H$, pues $\tilde{a}H= aH$. Entonces, bastaría pedir que si $h\in H$, al multiplicar a $h$ a un lado por un elemento de $G$, y al otro por su inverso, sigamos obteniendo elementos en $H$.

En esta entrada usaremos la idea anterior para definir un producto entre dos clases izquierdas usando el producto en $G$.

Subgrupos normales

Primero necesitamos definir formalmente qué es un conjugado.

Definición. Sea $G$ un grupo, $b,c \in G$. Decimos que $b$ es conjugado de $c$ si $b = aca^{-1}$ para alguna $a\in G$.

Dado $a\in G$ y $H$ un subgrupo de $G$,el conjugado de $H$ por el elemento $a$ es
$$aHa^{-1} = \{aha^{-1}|h\in H\}.$$

Observación. $aHa^{-1}$ es un subgrupo de $G$, para toda $a \in G$.

La demostración de esta observación queda de tarea moral.

Definición. Sea $G$ un grupo, $N$ subgrupo de $G$. Decimos que $N$ es normal en $G$ si $ana^{-1} \in N$ para todas $a\in G$, $n\in N$.

Notación. $N\unlhd G$.

Ahora, veamos una proposición. Recordemos que en una entrada pasada vimos que las clases laterales izquierdas no siempre coinciden con las clases laterales derechas y dimos algunos ejemplos. La siguiente proposición nos dirá que con subgrupos normales, la igualdad de clases derechas e izquierdas siempre se da.

Proposición. Sea $G$ un grupo, $N$ subgrupo de $G$. Las siguientes condiciones son equivalentes:

  1. $N\unlhd G$.
  2. $a N a^{-1} = N$ para todo $a\in G$.
  3. Toda clase laterial izquierda de $N$ en $G$ es una clase lateral derecha de $N$ en G.

Demostración. Sea $G$ un grupo, $N \leq G$.

$|1) \Rightarrow 2)]$ Supongamos que $N \unlhd G$. Sea $a\in G$.

P.D. $aNa^{-1} = N$.
Probaremos esto por doble contención.

$\subseteq]$ Como $N\unlhd G$, $ana^{-1} \in N$ para toda $n\in N$. Entonces el conjunto $aNa^{-1} = \{ana^{-1}|n\in N\}$ está contenido en $N$.

$\supseteq]$ Sea $n\in N$, como $N\unlhd G$, $a^{-1}na = a^{-1}n(a^{-1})^{-1} \in N$. Entonces $n = a(a^{-1}n a)a^{-1} \in a N a^{-1}$.

Por lo tanto $aNa^{-1} = N$.

$|2) \Rightarrow 3)]$ Supongamos que para todo $a \in G$, entonces $aNa^{-1} = N$. Sea $a\in G$.

P.D. $aN = Na$.
De nuevo, probaremos esto por doble contención.

$\subseteq]$ Tomemos $an \in aN$ con $n\in N$, como $ana^{-1} \in aNa^{-1}$, y $ aNa^{-1}= N$ por hipótesis, entonces $an = (ana^{-1}) a \in Na$.

$\supseteq]$ Tomemos $na \in Na$ con $n\in N$, como $a^{-1}na \in a^{-1}Na$, y $a^{-1}Na = N$ por hipótesis, entonces $na = a(a^{-1}na) \in aN$.

Por lo tanto $aN = Na$.

$|3)\Rightarrow 1)]$ Supongamos que para todo $a\in G$, existe $b\in G$ tal que $aN = Nb$. Sean $a \in G$ y $n \in N$.

P.D. $ana^{-1} \in N$.

Por hipótesis $aN = Nb$ para alguna $b\in G$. Pero $a \in aN = Nb$, entonces $a\in Nb$, por lo que $a$ es otro representante de la clase lateral $Nb$, y en consecuencia $Na = Nb$. Tenemos entonces que $aN = Nb=Na$

Así, $an\in aN = Na$ y entonces $an = \tilde{n}a$ para alguna $\tilde{n}\in N$. Entonces

\begin{align*}
ana^{-1} = (an)a^{-1} = (\tilde{n}a)a^{-1} = \tilde{n} \in N.
\end{align*}
Por lo tanto $N \unlhd G$.

Así 1), 2) y 3) son equivalentes.

$\blacksquare$

Observación. (Conmutatividad parcial)
Si $N\unlhd G$, dados $n\in N$ y $a\in G$, tenemos que $an = \tilde{n}a$ para alguna $\tilde{n}\in N$, también $na = a \hat{n}$ para alguna $\hat{n} \in N$.

Ejemplos

  1. $A_n \unlhd S_n$ ya que si $\beta \in A_n$ y $\alpha\in S_n$.
    \begin{align*}
    sgn \,(\alpha\beta\alpha^{-1}) &= sgn \,\alpha \; sgn \,\beta \:sgn \,\alpha^{-1}\\
    & = sgn \,\alpha \;(+1) \;sgn \, \alpha \\
    & = +1
    \end{align*}
    Por lo tanto $\alpha\beta\alpha^{-1}\in A_n$.
  2. Consideremos
    \begin{align*}
    Q &= \{\pm 1, \pm i, \pm j, \pm k\}\\
    H &= \{\pm 1, \pm i\}
    \end{align*}
    Las clases laterales izquierdas de $H$ en $Q$ son: $H$ y $jH$.
    Las clases laterales derechas de $H$ en $Q$ son: $H$ y $Hj$.
    Además $jH = \{\pm j, \pm k\} = Hj$. Por lo tanto $H \unlhd Q$.
  3. Consideremos $D_{2(4)}$ las simetrías del cuadrado. Sea $a$ la rotación $\frac{\pi}{2}$, $b$ la reflexión con respecto al eje $x$.
    Sea $H = \{e, b\}$.
    Si tomamos la transformación $aba^{-1}$ podemos desarrollarla algebraicamente y geométricamente. Primero lo haremos de manera algebraica y interpretación geométrica la podrás encontrar en una imagen más abajo.
    Así, como vimos cuando trabajamos con el grupo diédrico:
    $aba^{-1} = aab = a^2b \not\in H$
    con $a^2b$ la reflexión con respecto al eje $y$.
    Por lo tanto $H \not\unlhd D_{2(4)}$.
Representación gráfica de la transformación $aba^{-1}$.

Tarea moral

  1. Sean $W = \left< (1\;2)(3\;4)\right>$, $V = \{(1), (1\;2)(3\;4),(1\;3)(2\;4),(1\;4)(2\;3)\}\leq S_4$. Verifica si $W$ es normal en $V$, si $V$ es normal en $S_4$ y si $W$ es normal en $S_4$ ¿qué puedes concluir con ello?
  2. Sea $G$ un grupo, $H$ y $N$ subgrupos de $G$ con $N$ normal en $G$, prueba o da un contraejemplo:
    1. $N\cap H$ es normal en $H$.
    2. $N\cap H$ es normal en $G$.
  3. Demuestra o da un contraejemplo: Si $G$ es un grupo tal que cada subgrupo de él es normal, entonces $G$ es abeliano.
  4. Sea $G$ un grupo finito con un único subgrupo $H$ de orden $|H|$. ¿Podemos concluir que $H$ es normal en $G$?

Más adelante…

Como ya es costumbre, después de dar las definiciones y de practicarlas un poco con ejemplos, toca profundizar y hablar más sobre las proposiciones y teoremas que involucran a los subgrupos normales. En la siguiente entrada veremos esto.

Entradas relacionadas

Álgebra Superior II: Ideales en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada pasada hablamos del concepto de divisibilidad en los números enteros. Enunciamos y demostramos varias de sus propiedades. La noción de divisibilidad da lugar a muchos otros conceptos importantes dentro de la teoría de los números enteros, como el máximo común divisor, el mínimo común múltiplo y los números primos. Así mismo, la noción de divisibilidad está fuertemente ligada con los ideales en los enteros.

En esta entrada hablaremos de este último concepto a detalle. Es una entrada un poco técnica, pero nos ayudará para asentar las bases necesarias para poder hablar de los máximos comunes divisores y los mínimos comunes múltiplos con comodidad un poco más adelante.

Ideales en los enteros y una equivalencia

Los ideales son ciertas estructuras importantes en matemáticas. En el caso particular de los números enteros, tenemos la siguiente definición.

Definición. Un ideal de $\mathbb{Z}$ es un subconjunto $I$ de $\mathbb{Z}$ que cumple las siguientes dos propiedades:

  • No es vacío.
  • Es cerrado bajo restas, es decir, si $a$ y $b$ están en $I$, entonces $a-b$ también.

Veamos un ejemplo sencillo. Diremos que un número entero es par si es múltiplo de $2$ y que es impar si no es múltiplo de dos.

Ejemplo. El conjunto de todos los números pares son un ideal de $\mathbb{Z}$. Este conjunto claramente no es vacío, pues adentro de él está, por ejemplo, el $2$. Además, si tenemos que dos números $a$ y $b$ son pares, entonces por definición podemos encontrar enteros $k$ y $l$ tales que $a=2k$ y $b=2l$, de modo que $$a-b=2k-2l=2(k-l),$$ lo cual nos dice que $a-b$ también es par.

$\triangle$

Como veremos un poco más adelante, el ejemplo anterior se puede generalizar. Antes de ver esto, veremos una caracterización un poco distinta de lo que significa ser un ideal.

Proposición. Un subconjunto $I$ de $\mathbb{Z}$ es un ideal si y sólo si cumple las siguientes tres propiedades:

  • No es vacío.
  • Es cerrado bajo sumas, es decir, si $a$ y $b$ están en $I$, entonces $a+b$ también.
  • Es absorbente, es decir, si $a$ está en $I$ y $b$ está en $\mathbb{Z}$, entonces $ab$ también está en $I$.

Demostración. Primero veremos que si $I$ es un ideal, entonces cumple las tres propiedades anteriores. Luego veremos que si $I$ cumple las tres propiedades anteriores, entonces es un idea.

Supongamos que $I$ es un ideal. Por definición, no es vacío, que es lo primero que queríamos ver. Veamos ahora que es cerrado bajo sumas. Supongamos que $a$ y $b$ están en $I$. Como $I$ es cerrado bajo restas y $b-b=0$, obtenemos que $b$ está en $I$. Usando nuevamente que $b$ es cerrado bajo restas para $0$ y $b$, obtenemos que $0-b=-b$ también está en $I$. Usando una última vez la cerradura de la resta, obtenemos ahora que $a+b=a-(-b)$ está en $I$, como queríamos.

La tercera propiedad la demostraremos primero para los $b\geq 0$ por inducción. Si $b=0$, debemos ver que $0\cdot a=0$ está en $I$. Esto es cierto pues en el párrafo anterior ya vimos por qué $0$ está en $I$. Supongamos ahora que para cierta $b$ fija se tiene que $ab$ está en $I$. Por la cerradura de la suma obtenemos que $$ab+a=ab+a\cdot 1=a(b+1)$$ también está en $I$, como queríamos. Aquí usamos que $1$ es identidad multiplicativa, la distributividad, la hipótesis inductiva y la cerradura de la suma.

Nos falta ver qué pasa con los $b<0$. Sin embargo, si $b<0$, tenemos que $a(-b)$ sí está en $I$ (pues $-b>0$). Así, por la cerradura de la resta tenemos que $0-a(-b)=ab$ está en $I$.

Apenas llevamos la mitad de la demostración, pues vimos que la definición de ideal implica las tres propiedades que se mencionan. Pero el regreso es más sencillo. Supongamos que un conjunto $I$ cumple las tres propiedades mencionadas. Como cumple la primera, entonces no es vacío. Ahora vemos que es cerrado bajo restas. Tomemos $a$ y $b$ en $I$. Como cumple la segunda propiedad, tenemos que $(-1)b=-b$ está en $I$. Como cumple la cerradura de la suma, tenemos que $a+(-b)=a-b$ está en $I$. Así, $I$ es cerrado bajo restas.

$\square$

La ventaja del resultado anterior es que nos permitirá pensar a los ideales de una o de otra forma, de acuerdo a lo que sea más conveniente para nuestros fines más adelante.

Clasificación de ideales

Veamos la generalización de nuestro ejemplo de números pares e impares.

Definición. Sea $n$ un entero. Al conjunto de todos los múltiplos de $n$ lo denotaremos por $n\mathbb{Z}$ y lo llamaremos el conjunto de los múltiplos de $n$, es decir:

$n\mathbb{Z}=\{nm: m\in \mathbb{Z}\}.$

Proposición. Si $n$ es cualquier entero, entonces $n\mathbb{Z}$ es un ideal de $\mathbb{Z}$.

Demostración. Claramente $n\mathbb{Z}$ no es vacío pues, por ejemplo, $0=0\cdot n$ está en $n\mathbb{Z}$. La demostración de la cerradura de la resta se sigue de un corolario de la entrada anterior. Si $a,b$ están en $n\mathbb{Z}$, entonces ambos son divisibles entre $n$, así que su resta $a-b$ también. Así, $a-b$ está en $n\mathbb{Z}$.

$\square$

El ejemplo anterior de hecho da todos los posibles ideales que existen en $\mathbb{Z}$. El siguiente teorema enuncia esto con precisión.

Teorema. Un conjunto $I$ de $\mathbb{Z}$ es un ideal si y sólo si existe un entero no negativo $n$ tal que $I=n\mathbb{Z}$.

Demostración. Tomemos $I$ un ideal de $\mathbb{Z}$. Existe la posibilidad de que $I=\{0\}$, pues en efecto este es un ideal: es no vacío (pues tiene a $0$) y es cerrado bajo restas (pues sólo hay que verificar que $0-0=0$ está en I). Si este es el caso, entonces $I=0\mathbb{Z}$, como queríamos. Así, a partir de ahora supondremos que $I$ no es este conjunto. Veremos que $I$ tiene por lo menos un elemento positivo.

Sea $a\in I$ cualquier elemento que no sea $0$. Si $a$ es positivo, entonces ya lo logramos. Si $a$ es negativo, entonces notamos que $0=a-a$ está en $I$, y que entonces $-a=0-a$ está en $I$. Pero entonces $-a$ es un número positivo en $I$.

Debido a esto, por el principio del buen orden podemos tomar al menor entero positivo $n$ que está en $I$. Afirmamos que $I=n\mathbb{Z}$. Por la caracterización de ideales que dimos en la sección anterior, todos los múltiplos de $n$ están en $I$, así que $I\supseteq n\mathbb{Z}$.

Veamos que $I\subseteq n\mathbb{Z}$ procediendo por contradicción. Supongamos que este no es el caso, y que entonces existe un $m\in I$ que no sea múltiplo de $n$. Por el algoritmo de la división, podemos escribir $m=qn+r$ con $0<r<n$. Como $m$ está en $I$ y $qn$ está en $I$, tendríamos entonces que $m-qn=r$ está en $I$. ¡Pero esto es una contradicción! Tendríamos que $r$ está en $I$ y que $0<r<n$, lo cual contradice que $n$ era el menor entero positivo en $I$ que tomamos con el principio del buen orden. Esta contradicción sólo puede evitarse si $m$ es múltiplo de $n$, como queríamos.

$\square$

Un teorema como el anterior se conoce como un teorema de clasificación pues nos está diciendo cómo son todas las posibles estructuras que definimos a partir de un criterio fácil de enunciar.

Ideal generado por dos elementos

Dado un conjunto de números enteros $S$, podríamos preguntarnos por el ideal más chiquito que contenga a $S$. Un ejemplo sencillo es tomar $S$ con sólo un elemento, digamos $S=\{n\}$. En este caso, es fácil convencerse de que el ideal más pequeño que contiene a $S$ es precisamente $n\mathbb{Z}$ (ve los problemas de la tarea moral).

Un caso un poco más interesante es, ¿qué sucede si tenemos dos elementos?

Ejemplo. ¿Cuál será el menor ideal posible $I$ que tiene a los números $13$ y $9$? Empecemos a jugar un poco con la propiedad de la cerradura de la resta. Como $13$ y $9$ están, entonces también está $4=13-9$. Como $9$ y $4$ están, entonces también está $5=9-4$. Así mismo, debe estar $1=5-4$. Pero aquí ya llegamos a algo especial: que el $1$ está. Recordemos los ideales también cumplen que una vez que está un número, están todos sus múltiplos. Así, $1\mathbb{Z}$ está contenido en $I$. Pero entonces $I=1\mathbb{Z}=\mathbb{Z}$.

$\square$

No siempre obtenemos $\mathbb{Z}$ como respuesta. Para un ejemplo en donde se obtiene $2\mathbb{Z}$, ve los problemas de la tarea moral. En la siguiente entrada hablaremos con más detalle de la respuesta, pero por el momento probaremos lo siguiente.

Proposición. Si $a$ y $b$ son enteros, entonces:

  • El conjunto $M=\{ra+sb: r,s\in \mathbb{Z}\}$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$.
  • Si $I$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$, entonces $M\subseteq I$.

En otras palabras, «$M$ es el ideal más pequeño (en contención) que tiene a $a$ y a $b$».

Demostración. Veamos primero que $M$ en efecto es un ideal. Para ello, notemos que no es vacío pues, por ejemplo, $0=0\cdot a+0\cdot b$ está en $M$. Además, es cerrado bajo restas pues si tenemos dos elementos en $M$, son de la forma $ra+sb$ y $ka+lb$, y su resta es $$(ra+sb)-(ka+lb)=(r-k)a+(s-l)b,$$ que vuelve a estar en $M$ pues $r-k$ y $s-l$ son enteros. Además, $a=1\cdot a+ 0\cdot b$, lo que muestra que $a$ está en $M$ y $b=0\cdot a + 1 \cdot b$, lo que muestra que $b$ está en $M$ también. Con esto demostramos el primer punto.

Para el segundo punto, supongamos que $a$ está en $I$ y que $b$ está en $I$ también. Como $I$ es idea, tiene a todos los múltiplos de $a$ y los de $b$, es decir, a todos los números de la forma $ra$ y $sb$. Como es ideal, también es cerrado bajo sumas, así que tiene todas las formas de números de este estilo. En particular, tiene a todos los números de la forma $ra+sb$ (variando $r$ y $s$), es decir, a todos los elementos de $I$, como queríamos.

$\square$

Quizás notaste algo raro. El conjunto $M$ es un ideal, pero se ve un poco distinto de los que obtuvimos con nuestra caracterización de la sección anterior. Parece más bien que «está hecho por dos enteros» en vez de estar hecho sólo por uno. Esto no es problema. Nuestra caracterización nos dice que debe existir un entero $d$ tal que $M=d\mathbb{Z}$. Esto nos llevará en la siguiente entrada a estudiar el máximo común divisor.

Intersección de ideales

Los ideales de $\mathbb{Z}$ son subconjuntos, así que podemos aplicarles operaciones de conjuntos. ¿Qué sucede si intersectamos dos ideales? La siguiente operación nos dice que

Proposición. Si $I$ y $J$ son ideales de $\mathbb{Z}$, entonces $I\cap J$ también.

Demostración. La demostración es sencilla. Como $I$ y $J$ son ideales, se puede ver que ambos tienen al $0$, y que por lo tanto su intersección también. Ahora veamos que $I\cap J$ es cerrada bajo restas. Si $a$ y $b$ están en $I\cap J$, entonces $a$ y $b$ están en $I$. Como $I$ es cerrado bajo restas, $a-b$ está en $I$. Análogamente, está en $J$. Así, $a-b$ está en $I\cap J$, como queríamos.

$\square$

Este resultado motivará nuestro estudio del mínimo común múltiplo un poco más adelante.

Más adelante…

Esta fue una entrada un poco técnica, pero ahora ya conocemos a los ideales en los enteros, algunas de sus propiedades y hasta los caracterizamos. La idea de tomar el ideal generado por dos elementos nos llevará a estudiar en la siguiente entrada el concepto de máximo común divisor. Y luego, la idea de intersectar ideales nos llevará en un par de entradas a explorar la noción de mínimo común múltiplo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Imagina que sabes que un ideal tiene al número $6$. Esto forza a que también tenga a $6-6=0$. Así, esto forza a que también tenga el $0-6=-6$. Sigue así sucesivamente, jugando con todas las nuevas restas que deben quedarse dentro del ideal. ¿Cuál es el menor ideal que puede tener al $6$?
  2. Repite lo anterior, pero ahora suponiendo que tu ideal tiene a los números $10$ y $12$. ¿Qué números puedes obtener si repetidamente puedes hacer restas? ¿Quién sería el menor ideal que tiene a ambos números?
  3. Sean $I_1,\ldots,I_k$ ideales de $\mathbb{N}$. Demuestra que $I_1\cap I_2 \cap \ldots \cap I_k$ también es un idea. Como sugerencia, usa inducción.
  4. Toma a los ideales $6\mathbb{Z}$ y $8\mathbb{Z}$. Por el resultado de la entrada, tenemos que su intersección $A$ también es un ideal. Intenta averiguar y demostrar quién es el $k$ tal que $A=k\mathbb{Z}$.
  5. ¿Es cierto que la unión de dos ideales siempre es un ideal? Si es falso, encuentra contraejemplos. Si es verdadero, da una demostración. Si es muy fácil, ¿puedes decir exactamente para qué enteros $m$ y $n$ sucede que $m\mathbb{Z}\cup n\mathbb{Z}$ es un ideal?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

1.4. SUBESPACIO: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

Si tenemos un conjunto $C$ con ciertas propiedades de nuestro interés, no forzosamente todo subconjunto de $C$ va a conservar esas propiedades, pero nos interesa encontrar condiciones suficientes (y de preferencia también necesarias) para saber si un subconjunto $D$ de $C$ dado tiene o no las propiedades que queremos.

Si $C$ es un conjunto que contiene a hombres y a mujeres, podemos definir un subconjunto que no contenga hombres y un subconjunto que no tenga mujeres, con lo que ya no preservan la propiedad deseada.

En esta entrada analizaremos qué se requiere para que un subconjunto de un espacio vectorial, tenga también estructura de espacio vectorial. Veremos que aunque aparentemente se requiere pedir muchas condiciones, en realidad éstas se pueden reducir sólo a unas cuantas.

SUBESPACIO

Definición: Sea $V$ un $K$ – espacio vectorial y $W$ un subconjunto de $V$. Decimos que $W$ es un subespacio de $V$, y se le denota como $W\leqslant V$ si:

i) $W$ contiene al neutro del espacio $V$,
i.e. $\theta_V\in W$

ii) La suma es cerrada en $W,$
i.e. $\forall u,v\in W:$
$u+v\in W$

iii) El producto por escalar es cerrado en $W$,
i.e. $\lambda\in K$, $w\in W:$
$\lambda w\in W$

Veamos una equivalencia a esta definición que nos facilitará demostrar si un subconjunto dado de un espacio vectorial es por sí mismo un espacio vectorial.

Proposición: Sean $V$ un $K$ – espacio vectorial y $W$ un subconjunto de $V$. Se cumple que $W\leqslant V$ si y sólo si $W$ con las operaciones restringidas de $V$ es un $K$ – espacio vectorial.

Demostración: Veamos que se cumplen ambas implicaciones.

$\Longrightarrow )$ Sup. que $W\leqslant V$.
Por ii) y iii) la suma y el producto por escalar son cerrados en $W$, entonces las operaciones restringidas de $V$ dan una suma y un producto por escalar en $W$.
Propiedades $1$, $2$, $5$, $6$, $7.1$ y $7.2$ de espacio vectorial: Como $u+v=v+u$ para cualesquiera $u,v\in V$, en particular $u+v=v+u$ para toda $u,v\in W$. Por lo tanto, la suma en $W$ es conmutativa.
Nota: Decimos en este caso que la conmutatividad de la suma se hereda de $V$.
Análogamente se heredan la asociatividad de la suma en $W$ y las propiedades $5$, $6$, $7.1$ y $7.2$ de espacio vectorial.
Propiedad $4$ de espacio vectorial: Para cada $w\in W$ se cumple que $-w=(-1_K)w\in W$ ya que el producto es cerrado en $W$.
Propiedad $5$ de espacio vectorial: Por hipótesis $\theta_V\in W$ y como es el neutro en $V$, $\theta_V+v=v+\theta_V=v$ para todo $v\in V$, en particular $\theta_V+w=w+\theta_V=w$ para todo $w\in W$, así $\theta_V$ funciona como neutro en $W$.
$\therefore W$ con las operaciones restringidas de $V$ es un $K$ – espacio vectorial.

$\Longleftarrow )$ Sup. que $W$ es un $K$ – espacio vectorial con las operaciones restringidas de $V$.
Entonces la suma y el producto por escalar son cerrados en $W$, es decir, se cumplen ii. y iii.
Además $W$ tiene un neutro, digamos $\theta_W\in W$.
Por un lado $\theta_V+\theta_W=\theta_W$ en $V$, pues $\theta_V$ es neutro en $V$.
Por otro lado $\theta_W+\theta_W=\theta_W$ en $W$, pues $\theta_W$ es neutro en $W$.
Así, $\theta_V+\theta_W=\theta_W+\theta_W$ en $V$ y por cancelación en $V$, $\theta_V=\theta_W$.
De donde $\theta_V\in W$
$\therefore W\leqslant V$ .

Obs. Sean $V$ un $K$ – espacio vectorial, $W$ un subconjunto de $V$. Resulta que
$W\leqslant V$ si y sólo si se cumple que: a) $W\not=\emptyset$ y b) $\forall u,v\in W$ $\forall\lambda\in K(\lambda u+v\in W)$.

La implicación de ida es muy directa y queda como ejercicio. Para justificar el regreso sup. que se cumplen a) y b). Dados $u,v\in W$ se tiene que $u+v=1_Ku+v$ y gracias a b) sabemos que $1_Ku+v\in W$, así se cumple la propiedad ii). Por otro lado, como se cumple a) podemos asegurar que existe $v \in W$, y por la propiedad b) $\theta_V=-v+v=(-1_K)v+v\in W$, por lo que $\theta_V\in W$ y se cumple i). Finalmente dados $u\in W, \lambda \in K$ como $\theta_V\in W$, usando b) se tiene que $\lambda u=\lambda u+\theta_V\in W$ por lo que se cumple la propiedad iii).

Ejemplos:

  • $\{ (x,y,0)|x,y\in\mathbb{R}\}$ es un subespacio de $\mathbb{R}^3.$
  • $\{\begin{pmatrix}a&b\\b&a\end{pmatrix}|a,b\in\mathbb{R}\}$ es un subespacio de $\mathcal{M}_{2\times 2}(\mathbb{R})$.
  • $\mathcal{P}_n(\mathbb{R})$ (el conjunto de polinomios de grado mayor o igual a $n$ con coeficientes en $\mathbb{R}$) es un subespacio de $\mathbb{R}[x]$
  • $\{ f:\mathbb{R}\longrightarrow\mathbb{R}| f$ es continua$\}$ es un subespacio de $\{ f|f:\mathbb{R}\longrightarrow\mathbb{R}\}.$
  • $\{(x,y,z)|x=y=z\in \mathbb{R}\}$ es un subespacio de $\mathbb{R}^3.$

EJEMPLO SISTEMA HOMOGÉNEO

Sean $V=\mathcal{M}{n\times 1}(K)$ y $A\in\mathcal{M}{m\times n}(K)$.
$W={X\in V|AX=0}$$\leqslant V$.

Recordemos que si tenemos el sistema de ecuaciones homogéneo de $m$ ecuaciones con $n$ incógnitas:

\begin{align*}
\begin{matrix}a_{11}x_1 & +a_{12}x_2 & \cdots & +a_{1n}x_n=0\\ a_{21}x_1 & +a_{22}x_2 & \cdots & +a_{2n}x_n=0 \\ \vdots & & \ddots & \vdots \\ a_{m1} x_1& +a_{m2}x_2 & \cdots & +a_{mn}x_n=0, \end{matrix} \end{align*}
entonces su forma matricial es:
\begin{align*}
AX=\begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}
= \begin{pmatrix}0\\ \vdots\\ 0\end{pmatrix} = 0 \end{align*}
Recordemos que estamos usando al $0$ para denotar a la matriz $n\times 1$ con todas sus entradas iguales al cero del campo. Veamos que las soluciones del sistema homogéneo dado por $A$ es un subespacio del espacio vectorial de matrices de $n\times 1$ con entradas en el campo $K$.

DEMOSTRACIÓN

Vamos a ver que $W$ cumple las tres condiciones suficientes y necesarias (por definición) para ser subespacio de $V$:

Sean $X,Y\in W$, $\lambda\in K$.

  1. P.D. $W$ tiene al neutro de $V$
    $i.e.$ $\theta_V\in W.$

Sabemos que $A\theta_V=A0=0$.
$\therefore\theta_V\in W.$

  1. P.D. La suma es cerrada en $W$
    $i.e.$ $X+Y\in W$.

Como $X,Y\in W$, $AX=AY=0$ y por lo tanto, $AX+AY=0+0=0$.
Basta recordar que por distributividad en las matrices $A(X+Y)=AX+AY$ para obtener que $A(X+Y)=0$.
$\therefore X+Y\in W.$

  1. P.D. El producto por escalar es cerrado en $W$
    $i.e.$ $\lambda X\in W$.

Como $X\in W$, $AX=0$ y por lo tanto, $\lambda (AX)=0$.
Basta recordar que por propiedad del producto por escalar en matrices $A(\lambda X)=\lambda(AX)$ para obtener que $A(\lambda X)=0$
$\therefore\lambda X\in W.$

Así, concluimos que $W=\{X\in V|AX=0\}$, donde $A\in\mathcal{M}_{m\times n}(K)$, es un subespacio de $V=\mathcal{M}_{n\times 1}(K)$.

Proposición: La intersección de una familia no vacía de subespacios es un subespacio.

Demostración: Sean $V$ un $K$ – espacio vectorial y $W=\{W_i|i\in I\}$ una familia no vacía de subespacios de $V$.

Sean $V$ un $K$ – espacio vectorial y $W=\{W_i|i\in I\}$ una familia no vacía de subespacios de $V$. Vamos a ver que $W$ cumple las tres condiciones suficientes y necesarias (por definición) para ser subespacio de $V$:

Sean $u,v\in W$, $\lambda\in K$.

  1. P.D. $W$ contiene al neutro de $V$
    $i.e.$ $\theta_V\in W.$

Sabemos que $\forall i\in I(\theta_V\in W_i)$ porque todos los $W_i$ son subespacios de $V$.
$\displaystyle\therefore\theta_V\in\bigcap_{i\in I}W_i.$

  1. P.D. La suma es cerrada en $W$
    $i.e.$ $u+v\in W$.

Dado que $u,v\in W$, $\forall i\in I(u,v\in W_i)$ y como todos los $W_i$ son subespacios de $V$, entonces $\forall i\in I(u+v\in W_i)$.
$\displaystyle\therefore u+v\in\bigcap_{i\in I}W_i.$

  1. P.D. El producto por escalar es cerrado en $W$
    $i.e.$ $\lambda u\in W$.

Dado que $u\in W$, $\forall i\in I(u\in W_i)$ y como todos los $W_i$ son subespacios de $V$, entonces $\forall i\in I(\lambda u\in W_i)$.
$\displaystyle\therefore\lambda u\in\bigcap_{i\in I}W_i.$

Concluimos así que $W\leqslant V.$

Tarea Moral

  1. Dado $V$ un $K$ – espacio vectorial. Sean $W_1, W_2\leqslant V$. Demuestra que si $W_1\bigcup W_2\leqslant V$, entonces $W_1\subseteq W_2$, o bien, $W_2\subseteq W_1$.
    Para lograrlo se te sugiere lo siguiente:
    • Sup. que $W_1 \nsubseteq W_2$.
    • Observamos que para cualesquiera $w_1\in W_1\backslash W_2$ y $w_2\in W_2$, tenemos que $w_1,w_2\in W_1\bigcup W_2$. Y como $W_1\bigcup W_2\leqslant V$, entonces $w_1+w_2\in W_1\bigcup W_2$. Además, gracias a la primera proposición de esta entrada, sabemos que $W_1$ y $W_2$ son $K$ – espacios vectoriales, de modo que los inversos aditivos de $w_1$ y $w_2$ son elementos de $W_1$ y $W_2$ respectivamente.
    • Ahora argumenta por qué $w_1+w_2\notin W_2$ para concluir que $w_1+w_2\in W_1$.
    • Por último argumenta por qué gracias a que $w_1+w_2\in W_1$, obtenemos que $w_2\in W_1$ para concluir que $W_2\subseteq W_1$.
  1. Sean $K=\mathbb{R}$ y $V=\{a+bx+cx^2+dx^3\mid a,b,c,d\in\mathbb{R}\}$.
    Determina si $U=\{p(x)\in V|p(1)=0\}$ y $T=\{p(x)\in V|p'(1)=0\}$ son subespacios de $V$ y encuentra $U\cap T$.

MÁS ADELANTE…

Definiremos y analizaremos un nuevo concepto que dará lugar a un nuevo subespacio muy peculiar y central en el Álgebra Lineal.

Entradas relacionadas