Archivo de la etiqueta: polinomios

Álgebra Superior II: El teorema de derivadas y multiplicidad

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores definimos qué quiere decir que un real sea una raíz de un polinomio. Luego, vimos que mediante el teorema del factor se puede definir una relación entre las raíces de un polinomio y los polinomios lineales que lo dividen. Sin embargo, es posible que un real sea una raíz de un polinomio «más de una vez», que fue un concepto que formalizamos en la entrada de desigualdades de polinomios. En esta entrada veremos que a través de las derivadas de polinomios, podemos determinar la multiplicidad de sus raíces.

Como recordatorio, la multiplicidad de una raíz $r$ de un polinomio $p(x)$ en $\mathbb{R}[x]$ es el mayor entero $m$ tal que $(x-r)^m$ divide a $p(x)$ en $\mathbb{R}[x]$. También, en esta entrada haremos uso de la regla del producto para derivadas.

El teorema de derivadas y multiplicidad

El siguiente resultado es fundamental para la detección de raíces múltiples. Su demostración es sencilla pues usamos varios de los resultados que hemos obtenido anteriormente.

Teorema (derivadas y multiplicidad). Sea $r$ una raíz del polinomio $p(x)$ en $\mathbb{R}[x]$ de multiplicidad $m$. Si $m>1$, entonces $r$ es una raíz de la derivada $p'(x)$, y es de multiplicidad $m-1$. Si $m=1$, entonces $r$ no es raíz de $p'(x)$.

Demostración. Como $r$ es una raíz de $p(x)$ de multiplicidad $m$, entonces se puede escribir $p(x)=(x-r)^m q(x)$, en donde $q(x)$ es un polinomio que ya no es divisible entre $x-r$. Derivando, por regla del producto tenemos que
\begin{align*}
p'(x)&=m(x-r)^{m-1}q(x) + (x-r)^m q'(x)\\
&=(x-r)^{m-1}(mq(x)+(x-r)q'(x)).
\end{align*}

Afirmamos que $x-r$ no divide a $mq(x)+(x-r)q'(x)$. Si lo dividiera, como divide a $(x-r)q'(x)$ entonces también tendría que dividir a $mq(x)$ y por lo tanto a $q(x)$. Pero esto sería una contradicción con la elección de $q(x)$.

De esta forma, si $m=1$ entonces $x-r$ no divide a $p'(x)$ y por el teorema del factor entonces $r$ no es raíz de $p'(x)$. Y si $m>1$, entonces $(x-r)^{m-1}$ divide a $p'(x)$ por la expresión que encontramos de la derivada, pero $(x-r)^m$ no, pues $x-r$ no divide al segundo factor. Esto termina la prueba.

$\square$

Ejemplo. Consideremos al polinomio $p(x)=(x-3)^3(x+1)$. Tanto $3$ como $-1$ son raíces de $p(x)$. La multiplicidad de la raíz $3$ es tres y la multiplicidad de la raíz $-1$ es uno. Si derivamos a $p(x)$ usando la regla del producto, tenemos que
\begin{align*}
p'(x)&=3(x-3)^2(x+1)+(x-3)^3\\
&=3(x-3)^2(x+1+x-3)\\
&=3(x-3)^2(2x-2)\\
&=6(x-3)^2(x-1)
\end{align*}

Observa que $p'(x)$ en efecto tiene a $3$ como raíz de multiplicidad dos y ya no tiene a $1$ como raíz.

$\triangle$

Es muy importante respetar la hipótesis de que $r$ sea raíz de $p(x)$. Por ejemplo, en el ejemplo anterior $1$ es raíz de $p'(x)$ de multiplicidad $1$, pero $1$ no es raíz de $p(x)$ (y mucho menos de multiplicidad $2$).

El teorema de derivadas y multiplicidad es interesante, pero todavía no es útil en aplicaciones prácticas. Sin embargo, tiene dos consecuencias que sí se pueden usar para estudiar polinomios concretos.

Encontrar la multiplicidad de una raíz

El teorema de derivadas y multiplicidad nos dice que la multiplicidad de una raíz «baja en uno» al pasar de un polinomio a su derivada, pero aún no nos dice cuál es esa multiplicidad. Sin embargo, lo podemos aplicar repetidamente para obtener esta información. Recuerda que para $k$ un entero no negativo y $p(x)$ en $\mathbb{R}[x]$, usamos $p^{(k)}(x)$ para denotar $k$-ésima derivada de un polinomio. Aquí $p^{(0)}(x)$ es simplemente $p(x)$.

Proposición. Sea $r$ una raíz del polinomio $p(x)$ en $\mathbb{R}[x]$ de multiplicidad $m$. Si $k$ el mayor entero positivo tal que $r$ es raíz de $$p^{(0)}(x), p^{(1)}(x),\ldots,p^{(k)}(x),$$ entonces $m=k+1$.

Demostración. Usando el teorema anterior de manera inductiva, tenemos que para cada entero $0\leq \ell<m$, se tiene que $r$ es raíz de multiplicidad $m-\ell$ de $p^{(\ell)}(x)$ En particular, es raíz de todas estas derivadas. Además, por el mismo teorema, se tiene que $r$ ya no es raíz de $p^{(m)}(x)$. De esta forma, tenemos que $k=m-1$, de donde se obtiene el resultado deseado.

$\square$

La proposición anterior ahora sí nos da una manera de encontrar la multiplicidad de una raíz de un polinomio.

Ejemplo. Sabiendo que $3$ es una raíz del polinomio $$p(x)=x^5-9x^4+28x^3-36x^2+27x-27,$$ vamos a encontrar su multiplicidad.

Para esto, vamos a calcular sus derivadas:
\begin{align*}
p'(x)&=5x^4-36x^3+84x^2-72x+27\\
p^{(2)}(x)&=20x^3-108x^2+168x-72\\
p^{(3)}(x)&=60x^2-216x+168\\
p^{(4)}(x)&=120x-216\\
p^{(5)}(x)&=120\\
p^{(6)}(x)&=0
\end{align*}

Tenemos que
\begin{align*}
p'(3)&=5\cdot 81 – 36 \cdot 27 +84 \cdot 9 -72\cdot 3 + 27\\
&=405-972+756-216+27\\
&=0.
\end{align*}

Hasta aquí, sabemos que $3$ es raíz de multiplicidad al menos dos. Tenemos también que
\begin{align*}
p^{(2)}(3)&=20\cdot 27-108\cdot 9 +168 \cdot 3 – 72\\
&=540-972+504-72\\
&=0.
\end{align*}

Hasta aquí, sabemos que $3$ es raíz de multiplicidad al menos tres. Siguiendo,
\begin{align*}
p^{(3)}&=60\cdot 9-216\cdot 3 +168\\
&=720-648+168\\
&=240.
\end{align*}

Como la tercera derivada ya no se anuló en $3$, la multiplicidad de $3$ como raíz es exactamente tres.

$\triangle$

Es importante que revisemos todas las derivadas, y que sea una por una. En el ejemplo anterior, $p^{(6)}(3)=0$, pero eso no quiere decir que $3$ sea raíz de multiplicidad $7$, pues la evaluación falla desde la tercera derivada.

Simplificar un polinomio para encontrarle sus raíces

Hay otra consecuencia práctica del teorema de multiplicidades y derivadas, que puede ser de utilidad en algunos problemas. Recuerda que para polinomios $p(x)$ y $q(x)$ en $\mathbb{R}[x]$ usamos $\MCD{p(x),q(x)}$ para denotar al máximo común divisor de dos polinomios. En particular, divide a $p(x)$ en $\mathbb{R}[x]$, de modo que $$\frac{p(x)}{\MCD{p(x),q(x)}}$$ es un polinomio en $\mathbb{R}[x]$.

Proposición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ y $p'(x)$ su derivada. El polinomio $$q(x):=\frac{p(x)}{\MCD{p(x),p'(x)}}$$ es un polinomio en $\mathbb{R}[x]$, con las mismas raíces reales que $p(x)$, pero todas ellas tienen multiplicidad $1$.

Demostración. Factoricemos a todas las raíces reales de $p(x)$ con sus multiplicidades correspondientes para escribir $$p(x)=(x-r_1)^{m_1}\cdot \ldots \cdot (x-r_n)^{m_n} r(x),$$ en donde $r(x)$ ya no tiene raíces reales. De acuerdo al teorema de derivadas y multiplicidad, podemos escribir $$p'(x)=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n)^{m_n-1} s(x),$$ en donde ningún $x-r_i$ divide a $s(x)$. Es sencillo entonces mostrar, y queda como tarea moral, que $\MCD{p(x),p'(x)}$ es $$(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \cdot \MCD{r(x),s(x)}.$$

A partir de esto, concluimos que
\begin{align*}
q(x)&=\frac{p(x)}{\MCD{p(x),p'(x)}}\\
&= (x-r_1)\cdot \ldots \cdot (x-r_n) \cdot \frac{r(x)}{\MCD{r(x),s(x)}}.
\end{align*}

De aquí se ve que $r_1,\ldots,r_n$ son raíces de multiplicidad $1$ de $q(x)$. No hay más raíces reales en $\frac{r(x)}{\MCD{r(x),s(x)}}$, pues si hubiera una raíz $\alpha$, entonces por el teorema del factor $x-\alpha$ dividiría a este polinomio, y por lo tanto a $r(x)$, de donde $\alpha$ sería raíz de $r(x)$, una contradicción.

$\square$

La proposición anterior se puede usar de manera práctica como sigue:

  • Para empezar, tomamos un polinomio arbitrario $p(x)$.
  • Luego, lo derivamos para obtener $p'(x)$.
  • Después, usando el algoritmo de Euclides, encontramos al polinomio $\MCD{p(x),q(x)}$.
  • Ya con el máximo común divisor, hacemos división polinomial para encontrar $q(x)=\frac{p(x)}{\MCD{p(x),q(x)}}$.
  • Si $p(x)$ tenía raíces repetidas, entonces ahora $q(x)$ será de grado menor, y quizás más fácil de estudiar. Encontramos las raíces de $q(x)$. Estas son las raíces de $f(x)$.
  • Finalmente, usamos el teorema de la sección anterior para encontrar la multiplicidad de cada raíz.

Veamos un problema interesante en el que se conjuntan varias ideas de esta entrada.

Problema. Factoriza en $\mathbb{R}[x]$ al polinomio $$-x^5+5x^4+5x^3-45x^2+108.$$

Solución. Este es un polinomio de grado cinco, para el cual hasta antes de ahora no teníamos muchas herramientas para estudiarlo. Vamos a aplicar el método explicado arriba. Lo primero que haremos es factorizar un $-1$ para volver este polinomio mónico. Recordaremos poner este signo al final. Tomemos entonces $$p(x)=x^5-5x^4-5x^3+45x^2-108.$$ Su derivada es $$p'(x)=5x^4-20x^3+15x^2+90x,$$

Se puede verificar, y queda como tarea moral, que el máximo común divisor de $p(x)$ y $p'(x)$ es el polinomio $$M(x)=x^3-4x^2-3x+18.$$ Haciendo la división polinomial, tenemos que $$\frac{p(x)}{M(x)}=x^2-x-6=(x+2)(x-3).$$ Como este polinomio tiene las mismas raíces que $p(x)$, concluimos que $-2$ y $3$ son las raíces de $p(x)$.

Usando la proposición para multiplicidades de raíces (que también queda como tarea moral), se puede verificar que $-2$ es raíz de multiplicidad dos y que $3$ es raíz de multiplicidad $3$. Como $p(x)$ es un polinomio de grado $5$ y es mónico, entonces se debe de dar la igualdad $$p(x)=(x+2)^2(x-3)^3.$$

Al regresar al polinomio original, debemos agregar un signo menos. Concluimos que la factorización del polinomio del problema es $$-(x+2)^2(x-3)^3.$$

$\triangle$

Esta proposición nos da una manera de encontrar raíces. En las siguientes dos entradas veremos otras dos formas de encontrarlas. Para cuando los polinomios son de grado $3$ y $4$, podemos encontrar las raíces de manera explícita. Para cuando los polinomios tienen coeficientes enteros, podemos encontrar una cantidad finita de candidatos a ser raíces racionales.

Más adelante…

En esta entrada dimos varias herramientas para encontrar las raíces de un polinomio y por lo tanto, para poder factorizar los polinomios, nota que estas entradas dependieron fuertemente del uso del cálculo, y del concepto de la derivada. Sin embargo, regresaremos una última vez al terreno algebraico para poder dar más formas de poder encontrar raíces de un polinomio.

Sin embargo, en las entradas siguientes, pondremos a prueba todo lo aprendido en el curso, desde las propiedades de la teoría de los números enteros, hasta la de los números complejos, y obviamente seguiremos ocupando los teoremas que hemos desarrollado en esta sección de polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Verifica que $1$ es raíz del polinomio $$x^8-x^7-9x^6+19x^5+5x^4-51x^3+61x^2-31x+6$$ y encuentra su multiplicidad.
  2. En la demostración de la última proposición, muestra la igualdad $$\MCD{p(x),p'(x)}=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \MCD{r(x),s(x)}.$$
  3. En el último ejemplo, aplica el algoritmo de Euclides a $p(x)$ y $p'(x)$ para mostrar que el máximo común divisor es el que se afirma.
  4. Aplica la proposición de multiplicidad de raíces en el último ejemplo para verificar que en efecto las multiplicidades de $2$ y $3$ son las que se afirman.
  5. Aplica el mismo método que en la última sección para factorizar el polinomio $$x^6+8x^5+18x^4-4x^3-47x^2-12x+36.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Propiedades del polinomio característico

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuamos con el estudio de eigenvalores y eigenvectores de matrices y trasformaciones lineales. Para ello, estudiaremos más a profundidad el polinomio característico.

Como recordatorio, en una entrada pasada demostramos que si $A$ es una matriz en $M_n(F)$, entonces la expresión $\det (\lambda I_n – A)$ es un polinomio en $\lambda$ de grado $n$ con coeficientes en $F$. A partir de ello, definimos el polinomio característico de $A$ como $$\chi_A(\lambda)=\det(\lambda I_n – A).$$

En esta entrada probaremos algunas propiedades importantes del polinomio característico de matrices. Además, hablaremos de la multiplicidad algebraica de los eigenvalores. Finalmente enunciaremos sin demostración dos teoremas fundamentales en álgebra lineal: el teorema de caracterización de matrices diagonalizables y el teorema de Cayley-Hamilton.

Las raíces del polinomio característico son los eigenvalores

Ya vimos que las raíces del polinomio característico son los eigenvalores. Pero hay que tener cuidado. Deben ser las raíces que estén en el campo en el cual la matriz esté definida. Veamos un ejemplo más.

Problema. Encuentra el polinomio característico y los eigenvalores de la matriz \begin{align*}
\begin{pmatrix}
0&1&0&0\\
2&0&-1&0\\
0& 7 & 0 & 6\\
0 & 0 & 3 & 0
\end{pmatrix}.
\end{align*}

Solución. Debemos encontrar las raíces del polinomio dado por el siguiente determinante:
\begin{align*}
\begin{vmatrix}
\lambda&-1&0&0\\
-2&\lambda&1&0\\
0& -7 & \lambda & -6\\
0 & 0 & -3 & \lambda
\end{vmatrix}.
\end{align*}

Haciendo expansión de Laplace en la primer columna, tenemos que este determinante es igual a

\begin{align*}
\lambda\begin{vmatrix}
\lambda&1&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}
+2\begin{vmatrix}
-1&0&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}.
\end{align*}

Para calcular los determinantes de cada una de las matrices de $3\times 3$ podemos aplicar la fórmula por diagonales para obtener:
\begin{align*}
\lambda\begin{vmatrix}
\lambda&1&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}&=
\lambda(\lambda^3-18\lambda+7\lambda)\\
&=\lambda(\lambda^3-11\lambda)\\
&=\lambda^4-11\lambda^2
\end{align*}

y
\begin{align*}
2\begin{vmatrix}
-1&0&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}&=
2(-\lambda^2+18)\\
&=-2\lambda^2+36.
\end{align*}

Concluimos que el polinomio característico es
\begin{align*}
\lambda^4-13\lambda^2+36&=(\lambda^2-4)(\lambda^2-9)\\
&=(\lambda+2)(\lambda-2)(\lambda+3)(\lambda-3).
\end{align*}

De esta factorización, las raíces del polinomio (y por lo tanto los eigenvalores que buscamos) son $-2,2,-3,3$.

Si quisiéramos encontrar un eigenvector para, por ejemplo, el eigenvalor $-2$, tenemos que encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo $$(-2I_n-A)X=0.$$

$\triangle$

Propiedades del polinomio característico

Veamos ahora algunas propiedades importantes del polinomio característico. El primer resultado habla del polinomio característico de matrices triangulares superiores. Un resultado análogo se cumple para matrices inferiores, y su enunciado y demostración quedan como tarea moral.

Proposición. Si $A=[a_{ij}]$ es una matriz triangular superior en $M_n(F)$, entonces su polinomio característico es $$\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).$$

Demostración. Como $A$ es triangular superior, entonces $\lambda I_n -A$ también, y sus entradas diagonales son precisamente $\lambda-a_{ii}$ para $i=1,\ldots,n$. Como el determinante de una matriz triangular es el producto de sus entradas en la diagonal, tenemos que $$\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).$$

$\square$

Como el polinomio característico es un determinante, podemos aprovechar otras propiedades de determinantes para obtener otros resultados.

Proposición. Una matriz y su transpuesta tienen el mismo polinomio característico.

Demostración. Sea $A$ una matriz en $M_n(F)$. Una matriz y su transpuesta tienen el mismo determinante. Además, transponer es una transformación lineal. De este modo:
\begin{align*}
\chi_A(\lambda)&=\det(\lambda I_n – A)\\
&=\det({^t(\lambda I_n-A)})\\
&=\det(\lambda({^tI_n})-{^tA})\\
&=\det(\lambda I_n – {^tA})\\
&=\chi_{^tA}(\lambda).
\end{align*}

$\square$

Ya antes habíamos mostrado que matrices similares tienen los mismos eigenvalores, pero que dos polinomios tengan las mismas raíces no necesariamente implica que sean iguales. Por ejemplo, los polinomios $$(x-1)^2(x+1) \quad \text{y} \quad (x+1)^2(x-1)$$ tienen las mismas raíces, pero no son iguales.

De esta forma, el siguiente resultado es más fuerte de lo que ya habíamos demostrado antes.

Proposición. Sean $A$ y $P$ matrices en $M_n(F)$ con $P$ invertible. Entonces $A$ y $P^{-1}AP$ tienen el mismo polinomio característico.

Demostración. El resultado se sigue de la siguiente cadena de igualdades, en donde usamos que $\det(P)\det(P^{-1})=1$ y que el determinante es multiplicativo:

\begin{align*}
\chi_{P^{-1}AP}(\lambda) &= \det(P) \chi_{P^{-1}AP}(\lambda) \det(P)^{-1}\\
&=\det(P) \det(\lambda I_n – P^{-1}AP) \det(P^{-1})\\
&=\det(P(\lambda I_n – P^{-1}AP)P^{-1})\\
&=\det(\lambda PP^{-1}-PP^{-1}APP^{-1})\\
&=\det(\lambda I_n – A)\\
&=\chi_{A}(\lambda)
\end{align*}

$\square$

Ten cuidado. El determinante es multiplicativo, pero el polinomio característico no es multiplicativo. Esto es evidente por el siguiente argumento. Si $A$ y $B$ son matrices en $M_n(F)$, entonces $\chi_A(\lambda)$ y $\chi_B(\lambda)$ son cada uno polinomios de grado $n$, así que su producto es un polinomio de grado $2n$, que por lo tanto no puede ser igual al polinomio característico $\chi_{AB}(\lambda)$ pues este es de grado $n$. Así mismo, $\chi_{A^2}(\lambda)$ no es $\chi_{A}(\lambda)^2$.

Una última propiedad que nos interesa es mostrar que el determinante de una matriz y su traza aparecen en los coeficientes del polinomio característico.

Teorema. Sea $A$ una matriz en $M_n(F)$ y $\chi_A(\lambda)$ su polinomio característico. Entonces $\chi_{A}(\lambda)$ es de la forma $$\lambda^n-(\text{tr} A) \lambda^{n-1}+\ldots+(-1)^n \det A.$$

Demostración. Tenemos que mostrar tres cosas:

  • El polinomio $\chi_{A}$ es mónico, es decir, tiene coeficiente principal $1$,
  • que el coeficiente del término de grado $n-1$ es $-\text{tr} A$ y
  • el coeficiente libre es $(-1)^n \det A$.

El coeficiente libre de un polinomio es su evaluación en cero. Usando la homogeneidad del determinante, dicho coeficiente es:
\begin{align*}
\chi_A(0)&=\det(0\cdot I_n-A)\\
&=\det(-A)\\
&=(-1)^n\det(A).
\end{align*}

Esto muestra el tercer punto.

Para el coeficiente del término de grado $n-1$ y el coeficiente principal analicemos con más detalle la fórmula del determinante
\begin{align*}
\begin{vmatrix}
\lambda – a_{11} & -a_{12} & \ldots & -a_{1n}\\
-a_{21} & \lambda – a_{22} & \ldots & -a_{1n}\\
\vdots & & \ddots & \\
-a_{n1} & -a_{n2} & \ldots & \lambda – a_{nn}
\end{vmatrix}
\end{align*}
en términos de permutaciones.

Como discutimos anteriormente, la única forma de obtener un término de grado $n$ es cuando elegimos a la permutación identidad. Pero esto también es cierto para términos de grado $n-1$, pues si no elegimos a la identidad, entonces la permutación elige por lo menos dos entradas fuera de la diagonal, y entonces el grado del producto de entradas correspondiente es a lo más $n-2$.

De este modo, los únicos términos de grado $n$ y $n-1$ vienen del producto $$(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).$$

El único término de grado $n$ viene de elegir $\lambda$ en todos los factores, y se obtiene el sumando $\lambda^n$, lo cual muestra que el polinomio es mónico.

Los únicos términos de grado $n-1$ se obtienen de elegir $\lambda$ en $n-1$ factores y un término del estilo $-a_{ii}$. Al considerar todas las opciones, el término de grado $n-1$ es $$-(a_{11}+a_{22}+\ldots+a_{nn})\lambda^{n-1}=-(\text{tr} A) \lambda^{n-1},$$ que era lo último que debíamos mostrar.

$\square$

Ejemplo. El teorema anterior muestra que si $A$ es una matriz en $M_2(F)$, es decir, de $2\times 2$, entonces $$\chi_A(\lambda)=\lambda^2 – (\text{tr}A) \lambda +\det A.$$ De manera explícita en términos de las entradas tendríamos entonces que si $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, entonces su polinomio característico es $$\lambda^2-(a+d)\lambda+(ad-bc).$$

Como ejemplo, si $A=\begin{pmatrix} 5 & 2 \\ -8 & -3 \end{pmatrix}$, entonces su polinomio característico es $$\lambda^2 -2\lambda +1=(\lambda-1)^2.$$ Su único eigenvalor sería entonces $1$.

$\triangle$

Suma y producto de eigenvalores de matrices complejas

A veces queremos referirnos al conjunto de todos los eigenvalores de una matriz.

Definición. Para $A$ una matriz en $M_n(F)$, el espectro de $A$ es el conjunto de eigenvalores de $A$. Lo denotamos por $\text{spec} (A)$

Tenemos una definición análoga para el espectro de una transformación lineal. Esa definición da un poco de intuición de por qué los teoremas de diagonalización de matrices se llaman teoremas espectrales. La siguiente definición habla de un sentido en el cual un eigenvalor «se repite».

Definición. Sea $A$ una matriz en $M_n(F)$ y $\lambda$ un eigenvalor de $A$. La multiplicidad algebraica de $\lambda$ es el mayor entero $m_{\lambda}$ tal que $(x-\lambda)^{m_\lambda}$ divide a $\chi_A(x)$.

Cuando estamos en $\mathbb{C}$, por el teorema fundamental del álgebra todo polinomio de grado $n$ se puede factorizar en exactamente $n$ términos lineales. Además, los polinomios característicos son mónicos. De este modo, si tenemos una matriz $A$ en $M_n(\mathbb{C})$, su polinomio característico se puede factorizar como sigue:

$$\chi_A(\lambda) = \prod_{j=1}^n (\lambda-\lambda_j),$$

en donde $\lambda_1,\ldots,\lambda_n$ son eigenvalores de $A$, no necesariamente distintos, pero en donde cada eigenvalor aparece en tantos términos como su multiplicidad algebraica.

Desarrollando parcialmente el producto del lado derecho, tenemos que el coeficiente de $\lambda^{n-1}$ es $$-(\lambda_1+\ldots+\lambda_n)$$ y que el coeficiente libre es $$(-1)^n\lambda_1\cdot\ldots\cdot\lambda_n.$$ Combinando este resultado con el de la sección anterior y agrupando eigenvalores por multiplicidad, se demuestra el siguiente resultado importante. Los detalles de la demostración quedan como tarea moral.

Teorema. Sea $A$ una matriz en $M_n(\mathbb{C})$

  • La traza $A$ es igual a la suma de los eigenvalores, contando multiplicidades algebraicas, es decir: $$\text{tr} A = \sum_{\lambda \in \text{spec}(A)} m_{\lambda} \lambda.$$
  • El determinante de $A$ es igual al producto de los eigenvalores, contando multiplicidades algebraicas, es decir: $$\det A = \prod_{\lambda \in \text{spec} (A)} \lambda^{m_{\lambda}}.$$

Veamos un problema en donde se usa este teorema.

Problema. Sea $A$ una matriz en $M_n(\mathbb{C})$ tal que $A^2-4A+3I_n=0$. Muestra que el determinante de $A$ es una potencia de $3$.

Solución. Sea $\lambda$ un eigenvalor de $A$ y $v$ un eigenvector para $\lambda$. Tenemos que $$A^2v=A(\lambda v) = \lambda(Av)=\lambda^2 v.$$ De esta forma, tendríamos que
\begin{align*}
0&=(A^2-4A+3I_n)v\\
&=(\lambda^2 v – 4\lambda v + 3 v)\\
&=(\lambda^2-4\lambda+3) v.
\end{align*}

Como $v$ no es el vector $0$, debe suceder que $\lambda^2-4\lambda+3=0$. Como $\lambda^2-4\lambda+3 = (\lambda-3)(\lambda-1)$, entonces $\lambda=1$ ó $\lambda=3$. Con esto concluimos que los únicos posibles eigenvectores de $A$ son $1$ y $3$.

Como $A$ es una matriz en $\mathbb{C}$, tenemos entonces que su polinomio característico es de la forma $(x-1)^a(x-3)^b$ con $a$ y $b$ enteros no negativos tales que $a+b=n$. Pero entonces por el teorema de producto de eigenvalores, tenemos que el determinante es $1^a\cdot 3^b=3^b$, con lo que queda demostrado que es una potencia de $3$.

$\square$

Dos teoremas fundamentales de álgebra lineal (opcional)

Tenemos todo lo necesario para enunciar dos resultados de álgebra lineal. Sin embargo, las demostraciones de estos resultados requieren de más teoría, y se ven en un siguiente curso. No los demostraremos ni los usaremos en el resto de este curso, pero te pueden servir para anticipar el tipo de resultados que verás al continuar tu formación en álgebra lineal.

El primer resultado fundamental es una caracterización de las matrices que pueden diagonalizarse. Para ello necesitamos una definición adicional. Hay otro sentido en el cual un eigenvalor $\lambda$ de una matriz $A$ puede repetirse.

Definición. Sea $A$ una matriz en $M_n(F)$ y $\lambda$ un eigenvalor de $A$. La multiplicidad geométrica de $\lambda$ es la dimensión del kernel de la matriz $\lambda I_n -A$ pensada como transformación lineal.

En estos términos, el primer teorema al que nos referimos queda enunciado como sigue.

Teorema. Una matriz $A$ en $M_n(F)$ es diagonalizable si y sólo si su polinomio característico $\chi_A(\lambda)$ se puede factorizar en términos lineales en $F[\lambda]$ y además, para cada eigenvalor, su multiplicidad algebraica es igual a su multiplicidad geométrica.

Ejemplo. La matriz $$A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$ tiene como polinomio característico a $\chi_A(\lambda)=\lambda^2+1$. Este polinomio no se puede factorizar en $\mathbb{R}[x]$, así que $A$ no es diagonalizable con matrices de entradas reales.

Sin embargo, en $\mathbb{C}$ tenemos la factorización en términos lineales $\lambda^2+1=(\lambda+i)(\lambda-i),$ que dice que $i$ y $-i$ son eigenvalores de multiplicidad algebraica $1$. Se puede mostrar que la multiplicidad geométrica también es $1$. Así, $A$ sí es diagonalizable con matrices de entradas complejas.

$\square$

El segundo resultado fundamental dice que «cualquier matriz se anula en su polinomio característico». Para definir correctamente esto, tenemos que decir qué quiere decir evaluar un polinomio en una matriz. La definición es más o menos natural.

Definición. Si $A$ es una matriz en $M_n(F)$ y $p$ es un polinomio en $F[\lambda]$ de la forma $$p(\lambda)=a_0+a_1\lambda+a_2\lambda^2+\ldots+a_n\lambda^n,$$ definimos a la matriz $p(A)$ como la matriz $$a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.$$

En estos términos, el resultado queda enunciado como sigue.

Teorema (Cayley-Hamilton). Si $A$ es una matriz en $M_n(F)$ y $\chi_A(x)$ es su polinomio característico, entonces $$\chi_A(A)=O_n.$$

Ejemplo. Tomemos de nuevo a la matriz $$A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$ del ejemplo anterior. Su polinomio característico es $x^2+1$. En efecto, verificamos que se cumple el teorema de Cayley-Hamilton pues:
\begin{align*}
A^2+I_2 &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}+\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\end{align*}

$\square$

Más adelante…

En esta entrada estudiamos algunas propiedades de los eigenvalores y eigenvectores de transformaciones lineales y matrices; vimos cómo obtener eigenvalores de una matriz a partir del polinomio característico y enunciamos dos teoremas muy importantes como parte opcional del curso.

En la siguiente entrada haremos varios ejercicios para desarrollar un poco de práctica al obtener los eigenvalores y eigenvectores de una transformación lineal y de una matriz.

Entradas relacionadas

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Enuncia y demuestra cómo es el polinomio característico de una matriz triangular inferior.
  • Completa los detalles de la demostración del teorema de suma y producto de eigenvalores. Úsalo para encontrar la suma y producto (con multiplicidades) de los eigenvalores de la matriz $$\begin{pmatrix}5 & 0 & -1 & 2 \\ 3 & -2 & 1 & -2 \\ 0 & 0 & 0 & 5\\ 0 & 2 & 4 & 0 \end{pmatrix}.$$
  • Sea $A$ una matriz en $M_n(F)$. ¿Cómo es el polinomio característico de $-A$ en términos del polinomio característico de $A$?
  • Tomemos $A$ una matriz en $M_n(F)$ y $k$ un entero positivo. Muestra que si $\lambda$ es un eigenvalor de la matriz $A$, entonces $\lambda^k$ es un eigenvalor de la matriz $A^k$.

De la sección opcional:

  • Demuestra, haciendo todas las cuentas, el caso particular del teorema de Cayley-Hamilton para matrices de $2\times 2$.
  • Ya sabemos calcular el polinomio característico de matrices diagonales. Muestra el teorema de Cayley-Hamilton en este caso particular.
  • Las matrices diagonales trivialmente son diagonalizables. Muestra que la multiplicidad algebraica de sus eigenvalores en efecto coincide con la multiplicidad geométrica.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Continuidad y diferenciabilidad de polinomios reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Al inicio de esta unidad, hablamos de las propiedades algebraicas de $\mathbb{R}[x]$, definimos sus operaciones y argumentamos por qué se puede usar la notación de potencias. Luego hablamos de las propiedades aritméticas de los polinomios cuando hablamos de divisibilidad, máximo común divisor y factorización en irreducibles. Vimos una aplicación de esto a la solución de desigualdades. Lo que queremos hacer ahora es pensar a los polinomios como funciones de $\mathbb{R}$ en $\mathbb{R}$ y entender las propiedades analíticas que tienen, es decir en términos de cálculo. Nos interesa saber qué les sucede cuando su entrada es grande, la continuidad y la diferenciabilidad de polinomios.

Estas propiedades tienen consecuencias algebraicas importantes. La continuidad de polinomios nos permite encontrar raíces reales en ciertos intervalos. La diferenciabilidad de polinomios nos ayuda a encontrar la multiplicidad de las raíces. Supondremos que manejas conocimientos básicos de cálculo y de manipulación de límites, pero de cualquier forma recordaremos algunas definiciones y daremos esbozos de la demostración de algunos resultados.

Límites a reales y límites a infinito

Recordemos dos definiciones de cálculo, que se aplican para funciones arbitrarias definidas en todos los reales.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función y $a, b$ reales. Decimos que $$\lim_{x\to a} f(x) = b$$ si para todo $\epsilon >0$ existe un $\delta > 0 $ tal que cuando $0<|x-a|<\delta$, entonces $|f(x)-b|<\epsilon$. En palabras, decimos que el límite de $f$ cuando $x$ tiende a $a$ es $b$.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función. Decimos que $$\lim_{x\to \infty} f(x) = \infty$$ si para todo $M>0$ existe un $r > 0 $ tal que cuando $x>r$, entonces $f(x)>M$. En palabras, decimos que el límite de $f$ cuando $x$ tiende a infinito es infinito.

De manera análoga se pueden definir límites cuando $x$ tiende a menos infinito, y definir qué quiere decir que el límite sea menos infinito. La siguiente proposición se prueba en textos de cálculo.

Proposición (propiedades de límites). Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones y $a$, $b$, $c$ reales. Si $$\lim_{x\to a} f(x) = b \quad \text { y } \quad \lim_{x\to a} g(x)= c,$$ entonces:

  • «El límite de la suma es la suma de los límites», en símbolos, $$\lim_{x\to a} (f+g)(x) = b+c.$$
  • «El límite del producto es el producto de los límites», en símbolos, $$\lim_{x\to a} (fg)(x)=bc.$$

La proposición anterior es sólo para cuando los límites son reales. Hay resultados para cuando algunos de los límites son infinitos, pero en general hay que tener cuidado.

La primer propiedad analítica de los polinomios es saber cómo es su comportamiento cuando $x$ se hace infinito o menos infinito. Si el polinomio es constante, entonces este límite es simplemente su valor en cualquier punto. Para polinomios de grado mayor o igual a $1$, su comportamiento queda resumido en la siguiente proposición.

Proposición (límites a infinito). Tomemos al polinomio $p(x)$ en $\mathbb{R}[x]$ dado por $$p(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n,$$ en donde $n\geq 1$ y $a_n\neq 0$.

  • Si $a_n>0$ y $p(x)$ es de grado par entonces $$\lim_{x\to \infty} p(x) = \lim_{x\to-\infty} p(x)= \infty,$$
  • Cuando $a_n>0$ y $p(x)$ es de grado impar entonces $$\lim_{x\to \infty} p(x) = \infty \quad \text { y } \quad \lim_{x\to -\infty} p(x)=-\infty$$
  • Si $a_n<0$ y $p(x)$ es de grado par entonces $$\lim_{x\to \infty} p(x) = \lim_{x\to-\infty} p(x)= -\infty,$$
  • Cuando $a_n<0$ y $p(x)$ es de grado impar entonces $$\lim_{x\to \infty} p(x) = -\infty \quad \text { y } \quad \lim_{x\to -\infty} p(x)=\infty.$$

Demostración. Vamos a hacer una de las demostraciones. Mostraremos que para cuando $a_n>0$ y el grado es par, entonces $$\lim_{x\to \infty} p(x) = \infty.$$ Las demás se siguen haciendo cambios de signo cuidadosos y usando que una potencia impar de un real negativo es un real negativo, y una potencia par es siempre un real positivo. Pensar en estas demostraciones queda como tarea moral.

Tomemos entonces $p(x)$ un polinomio de grado par y con coeficiente principal $a_n>0$. Intuitivamente, tenemos que mostrar que si $x$ es muy grande, entonces $p(x)$ es tan grande como queramos. Tomemos un real $M>0$. Como haremos $x$ grande, podemos suponer que $x>1$.

Como el término $a_nx^n$ es positivo, basta mostrar como resultado auxiliar que si $x$ es suficentemente grande, entonces $$a_nx^n >M+|a_0+a_1x+\ldots+a_{n-1}x^{n-1}|,$$ ya que si esto sucede, tendríamos que:
\begin{align*}
a_nx^n&>M+|a_0+a_1x+\ldots+a_{n-1}x^{n-1}|\\
&=M+|-a_0-a_1x-\ldots-a_{n-1}x^{n-1}|\\
&>M-a_0-a_1x-\ldots-a_{n-1}x^{n-1},
\end{align*}

y de aquí, pasando todo excepto a $M$ a la izquierda, tendríamos $p(x)>M$.

Para probar el resultado auxiliar, tomemos $A$ como el máximo de los valores absolutos $|a_0|,\ldots,|a_{n-1}|$. Por la desigualdad del triángulo y usando $x>1$ tenemos que

\begin{align*}
M+|a_0&+a_1x+\ldots+a_{n-1}x^{n-1}|\\
&\leq M+|a_0|+|a_1 x| + \ldots + |a_{n-1}x^{n-1}|\\
&\leq M+A(1+x+\ldots+x^{n-1})\\
&< M+nA\\
&<(M+nA)x^{n-1}
\end{align*}

De esta forma, para mostrar nuestra desigualdad auxiliar basta mostrar que para $x$ suficientemente grande, tenemos que $(M+nA)x^{n-1}<a_nx^n$. Pero como $x>0$, esta desigualdad es equivalente a $x>\frac{M+nA}{a_n}$.

Recapitulando, para cualquier $M>0$, si $x>\frac{M+nA}{a_n}$, entonces $p(x)>M$. Esto termina la demostración.

$\square$

Podemos usar la proposición anterior para comparar polinomios cuando su variable tiende a infinito.

Ejemplo. Mostraremos que existe una $M$ suficientemente grande tal que si $x>M$, entonces $$\frac{1}{2}x^7-x^6-x-1>x^6+1000x^5+1000000.$$ Pasando todo del lado izquierdo, nos queda la desigualdad equivalente $$\frac{1}{2}x^7-2x^6-1000x^5-x-999999>0.$$ Aquí tenemos un polinomio $p(x)$ de grado impar y coeficiente principal positivo. Por la proposición anterior, $\lim_{x\to \infty} p(x) = \infty$, de modo que la $M$ que estamos buscando existe.

$\triangle$

Continuidad de polinomios

Antes de llegar a diferenciabilidad de polinomios, haremos un paso intermedio. Recordemos otra definición de cálculo.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función y $a$ un real. Decimos que $f$ es continua en $a$ si $$\lim_{x\to a} f(x) = f(a).$$ Decimos que $f$ es continua si es continua en todo real.

Por la proposición de propiedades de límites, la suma o producto de funciones continuas es continua. Las funciones constantes son continuas. La función identidad $I:\mathbb{R}\to \mathbb{R}$ dada por $I(x)=x$ es continua. Estos tres hechos nos ayudan a demostrar que todos los polinomios son funciones continuas sin tener que recurrir a la definición de límite.

Teorema. Cualquier polinomio $p(x)$ en $\mathbb{R}[x]$ pensado como una función $p:\mathbb{R}\to \mathbb{R}$ es una función continua.

Demostración. Supongamos que $p(x)$ está dado por $$p(x)=a_0+a_1x+\ldots+a_nx^n.$$

Para toda $i$ de $0$ a $n$ tenemos que la función $x\mapsto a_i$ es constante y por lo tanto es continua. Si $i>0$, la función $x\mapsto x^i$ es producto de $i$ veces la identidad consigo misma. Como la identidad es continua y producto de continuas es continua, entonces $x\mapsto x^i$ es continua.

De nuevo, usando que producto de funciones continuas es continua, tenemos que $x\mapsto a_ix^i$ es una función continua. De esta forma, $p(x)$ es la suma de $n+1$ funciones continuas, y por lo tanto es una función continua.

$\square$

El resultado anterior nos ayuda a usar teoremas versátiles de cálculo en nuestro estudio de polinomios. Recordemos el teorema del valor intermedio.

Teorema (del valor intermedio). Sea $f:\mathbb{R}\to \mathbb{R}$ una función continua. Sean $a<b$ dos reales. Entonces entre $a$ y $b$, la función $f$ toma todos los valores entre $f(a)$ y $f(b)$.

Veamos cómo el teorema del valor intermedio nos permite encontrar raíces de polinomios.

Problema 1. Muestra que el polinomio $p(x)=x^7-5x^5+x^2+3$ tiene por lo menos una raíz en el intervalo $[0,2]$.

Solución. Al evaluar al polinomio en cero, obtenemos $p(0)=3$. Al evaluarlo en $2$, obtenemos
\begin{align*}
p(2)&=2^7-5\cdot 2^5+x^2 + 3\\
&=128-160+4+3\\
&=-25.
\end{align*}

Como los polinomios son funciones continuas, podemos aplicar el teorema del valor intermedio. Concluimos que $p(x)$ toma todos los valores de $-25$ a $2$ en el intervalo $[0,2]$. En particular, existe un real $r$ en $[0,2]$ tal que $p(r)=0$.

$\triangle$

El teorema del valor intermedio nos ayuda a demostrar que un polinomio tiene una raíz en cierto intervalo. Sin embargo, no es de tanta utilidad para decir exactamente cuál es esa raíz. Es un resultado existencial en vez de ser constructivo. Veamos un ejemplo más, que muestra una proposición que quedó pendiente en una entrada anterior.

Problema 2. Sea $p(x)$ un polinomio cuadrático, mónico e irreducible en $\mathbb{R}[x]$. Muestra que $p(r)>0$ para todo real $r$.

Solución. Procedamos por contradicción. Supongamos que $p(r)\leq 0$ para algún real $r$.

Como $p(x)$ es mónico, su coeficiente principal es $1$, que es positivo. Como $p(x)$ es cuadrático, es de grado par. Por la proposición de límites a infinito, existe un real $t>r$ tal que $p(t)>0$. Por el teorema del valor intermedio, existiría un real $s$ en el intervalo $[r,t]$ tal que $p(s)=0$. Pero esto es imposible, pues entonces por el teorema del factor $x-s$ divide a $p(x)$ y esto contradice que $p(x)$ es irreducible.

$\triangle$

Como muestra el problema anterior, se pueden combinar los límites de polinomios a infinito y menos infinito, y sus propiedades de continuidad. Otra aplicación es mostrar que todo polinomio de grado impar tiene por lo menos una raíz real. Esto se verá en otra entrada.

Por supuesto, otros resultados de continuidad también se pueden usar en todos los polinomios, como el teorema del valor extremo. Aplicándolo directamente, concluimos lo siguiente.

Proposición. Sean $a<b$ reales y $p(x)$ un polinomio en $\mathbb{R}$. Entonces $p(x)$ está acotado en el intervalo $[a,b]$ y existen reales $r$ y $s$ en dicho intervalo tales que $p(r)$ y $p(s)$ son el mínimo y máximo de $p(x)$ en $[a,b]$, respectivamente.

Diferenciabilidad de polinomios

Es momento de hablar de diferenciabilidad de polinomios. Recordemos una última definición de cálculo.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función. Decimos que $f$ es diferenciable en $a$ si el límite $$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$ existe. En este caso, a ese límite lo denotamos por $f'(a)$. Una función es diferenciable si es diferenciable en todo real. A la función $f’:\mathbb{R}\to \mathbb{R}$ le llamamos la derivada de $f$.

Al igual que en el caso de continuidad, la suma y producto de funciones diferenciales es diferenciable. Si $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ son diferenciables, entonces la derivada de $f+g$ está dada por $$(f+g)'(x)=f'(x)+g'(x)$$ y la derivada de $fg$ está dada por la regla de la cadena $$(fg)'(x)=f'(x)g(x)+f(x)g'(x).$$

Las funciones constantes son diferenciables, y su derivada es la función constante $0$. La función identidad es diferenciable, y su derivada es la función constante $1$. Esto es sencillo de mostrar y queda como tarea moral.

Proposición. Sea $n\geq 1$ un entero. El polinomio $p(x)=x^n$ es diferenciable, y su derivada es la función $p'(x)=nx^{n-1}$.

Demostración. Haremos la prueba por inducción. Si $n=1$, el polinomio es $p(x)=x$, y su derivada es $p'(x)=1=1\cdot x^0$, como queremos. Supongamos que el resultado es cierto para el entero $n\geq 1$ y tomemos $p(x)=x^{n+1}=x^n\cdot x$. Por hipótesis inductiva, $x\mapsto x^n$ es diferenciable. Como $p(x)$ es producto de dos funciones diferenciables, entonces es diferenciable.

Usando la regla de la cadena, la hipótesis inductiva de la fórmula y la derivada de $x\mapsto x$, tenemos que $$p'(x)=(nx^{n-1})(x)+(x^n)(1)=(n+1)x^n.$$ Esto termina la demostración.

$\square$

Con todos estos ingredientes podemos mostrar la diferenciabilidad de todos los polinomios. Los detalles quedan como tarea moral.

Teorema (diferenciabilidad de polinomios). Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ dado por $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ Entonces $p(x)$ pensado como función es diferenciable y su derivada es un polinomio. Si $p(x)$ es constante, su derivada es el polinomio $0$. En otro caso, su derivada es el polinomio $$a_1+2a_2x+3a_3x^2+\ldots+na_nx^{n-1}.$$

Ejemplo. El polinomio $x^7+3x^2-1$ es diferenciable. Su derivada es el polinomio $7x^6+6x$.

$\triangle$

Ya que sabemos que los polinomios son diferenciables, podemos usar todas las herramientas de cálculo diferencial, como:

No profundizaremos en esto, pues es el contenido de un buen curso de cálculo, o bien de material de algún texto en el área, como el libro de Cálculo de Spivak.

A nosotros nos interesa una consecuencia algebraica de que los polinomios tengan derivada. Como la derivada de un polinomio es otro polinomio, entonces la derivada es diferenciable. Por ello, un polinomio $p(x)$ se puede derivar iteradamente tantas veces como se quiera. Al polinomio obtenido de derivar $n$ veces le llamamos la $n$-ésima derivada y lo denotamos por $p^{(n)}(x)$. En la siguiente entrada veremos cómo la repetida diferenciabilidad de polinomios nos ayuda a detectar la multiplicidad de sus raíces.

Más adelante…

En la siguiente sección nos encargaremos de realizar varios problemas para repasar las definiciones y propiedades que acabamos de enunciar, y posteriormente ocuparemos todo lo aprendido para explotar el conocimiento que tenemos de los polinomios.

En particular, nos será útil el concepto de diferenciabilidad pues con este podemos dar una definición precisa de lo que significa que la raíz de un polinomio sea múltiple.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Estudia el resto de los casos de la proposición de límites de polinomios cuando la entrada va a menos infinito y a infinito.
  2. Muestra usando la definición de límite que las funciones constantes y la función identidad son continuas.
  3. Demuestra por definición que las funciones constantes son diferenciables y que su derivada es la función constante $0$. Demuestra por definición que la función identidad es diferenciable y que su derivada es la función constante $1$.
  4. Muestra que existe un real $x$ en el cual los polinomios $p(x)=x^5+x^3+x$ y $q(x)=100x^4+10x^2$ son iguales. Sugerencia. Reescribe esta igualdad en términos de encontrar una raíz de un sólo polinomio.
  5. Completa los detalles del teorema de diferenciabilidad de polinomios.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Desigualdades de polinomios reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior mostramos el teorema de factorización para polinomios con coeficientes reales. Lo que haremos ahora es ver que podemos aplicarlo en la resolución de desigualdades de polinomios en $\mathbb{R}[x]$. El objetivo es que, al final de la entrada, entendamos cómo se pueden resolver problemas como los siguientes:

Problema 1. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$x^6-12x^4-49x^2-30 > 3x^5-48x^3-51x+6.$$

Problema 2. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$\frac{1}{x}>x^3-x^2+1.$$

Antes de hablar de resolución de desigualdades de polinomios, veremos una forma alternativa de factorizar en $\mathbb{R}[x]$ usando potencias.

Teorema de factorización de polinomios reales con potencias

De acuerdo al teorema de factorización en $\mathbb{R}[x]$, un polinomio $p(x)$ se puede factorizar de manera única en factores lineales y factores cuadráticos con discriminante negativo. De ser necesario, podemos agrupar los factores lineales iguales y reordenarlos para llegar a una factorización de la forma $$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ en donde:

  • $a$ es un real distinto de cero,
  • $\alpha_1,\ldots,\alpha_m$ y $n$ son enteros positivos tales que $2n+\sum_{i=1}^m \alpha_i$ es igual al grado de $p(x)$,
  • para cada $i$ en $\{1,\ldots,m\}$ se tiene que $r_i$ es raíz real de $p(x)$ y $r_1<r_2<\ldots<r_m$
  • para cada $j$ en $ \{1,\ldots,n\}$ se tiene que $b_j,c_j$ son reales tales que $b_j^2-4c_j<0$.

Observa que los $r_i$ son ahora distintos y que están ordenados como $r_1<\ldots<r_m$. De aquí, obtenemos que $(x-r_i)^{\alpha_i}$ es la mayor potencia del factor lineal $x-r_i$ que divide a $p(x)$. Este número $\alpha_i$ se usa frecuentemente, y merece una definición por separado.

Definición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ y $r$ una raíz de $p(x)$. La multiplicidad de $r$ como raíz de $p(x)$ es el mayor entero $\alpha$ tal que $$(x-r)^\alpha \mid p(x).$$ Decimos también que $r$ es una raíz de multiplicidad $\alpha$.

Ejemplo. El polinomio $k(x)=x^4-x^3-3x^2+5x-2$ se factoriza como $(x-1)^3(x+2)$. Así, la multiplicidad de $1$ como raíz de $k(x)$ es $3$. Además, $-2$ es una raíz de $k(x)$ de multiplicidad $1$.

$\triangle$

Después hablaremos de una forma práctica en la que podemos encontrar la multiplicidad de una raíz, cuando hablemos de continuidad de polinomios y sus derivadas.

Desigualdades de polinomios reales factorizados

Supongamos que tenemos un polinomio $p(x)$ no constante en $\mathbb{R}[x]$ para el cual conocemos su factorización en la forma $$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ y que queremos determinar para qué valores reales $r$ se cumple que $$p(r)>0.$$

Daremos por cierto el siguiente resultado, que demostraremos cuando hablemos de continuidad de polinomios.

Proposición. Las evaluaciones en reales de un polinomio cuadrático y mónico en $\mathbb{R}[x]$ de discriminante negativo, siempre son positivas.

Lo que nos dice este resultado es que, para fines de la desigualdad que queremos resolver, podemos ignorar los factores cuadráticos en la factorización de $p(x)$ pues

$$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n})$$ y $$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}$$ tienen el mismo signo.

Por la miasma razón, podemos ignorar aquellos factores lineales con exponente par, y de los de exponente impar, digamos $(x-r)^{2\beta +1}$ obtenemos una desigualdad equivalente si los remplazamos por exponente $1$, pues $(x-r)^{2\beta}$ es positivo y por lo tanto no cambia el signo de la desigualdad si lo ignoramos.

En resumen, cuando estamos resolviendo una desigualdad del estilo $p(x)>0$ podemos, sin cambiar el conjunto solución, reducirla a una de la forma $$q(x):=a(x-r_1)(x-r_2)\ldots(x-r_m)>0.$$ La observación clave para resolver desigualdades de este estilo está resumida en el siguiente resultado.

Proposición. Tomemos un polinomio $q(x)$ en $\mathbb{R}[x]$ de la forma $$q(x)=a(x-r_1)(x-r_2)\ldots(x-r_m)$$ con $r_1<\ldots<r_m$ reales.

Si $m$ es par:

  • Para reales $r$ en la unión de intervalos $$(-\infty,r_1)\cup(r_2,r_3)\cup\ldots \cup (r_{m-2},r_{m-1})\cup (r_m,\infty),$$ la evaluación $q(r)$ tiene el mismo signo que $a$
  • Para reales $r$ en la unión de intervalos $$(r_1,r_2)\cup(r_3,r_4)\cup\ldots \cup (r_{m-3},r_{m-2})\cup (r_{m-1},r_m),$$ la evaluación $q(r)$ tiene signo distinto al de $a$.

Si $m$ es impar:

  • Para reales $r$ en la unión de intervalos $$(r_1,r_2)\cup(r_3,r_4)\cup\ldots \cup (r_{m-2},r_{m-1})\cup (r_m,\infty),$$ la evaluación $q(r)$ tiene el mismo signo que $a$.
  • Para reales $r$ en la unión de intervalos $$(-\infty,r_1)\cup(r_2,r_3)\cup\ldots \cup (r_{m-3},r_{m-2})\cup (r_{m-1},r_m),$$ la evaluación $q(r)$ tiene signo distinto al de $a$.

Demostración. El producto $(r-r_1)(r-r_2)\ldots(r-r_m)$ es positivo si y sólo si tiene una cantidad par de factores negativos. Si $r>r_m$, todos los factores son positivos, y por lo tanto $q(r)$ tiene el mismo signo que $a$ cuando $r$ está en el intervalo $(r_m,\infty)$.

Cada que movemos $r$ de derecha a izquierda y cruzamos un valor $r_i$, cambia el signo de exactamente uno de los factores, y por lo tanto la paridad de la cantidad de factores negativos. El resultado se sigue de hacer el análisis de casos correspondiente.

$\square$

Veamos cómo podemos utilizar esta técnica para resolver desigualdades polinomiales que involucran a un polinomio que ya está factorizado en irreducibles.

Problema 1. Determina para qué valores reales $x$ se tiene que $$-2(x-5)^7(x+8)^4(x+2)^3(x+10)(x^2-x+2)^3$$ es positivo.

Solución. Por la discusión anterior, podemos ignorar el polinomio cuadrático del final, pues es irreducible. También podemos ignorar los factores lineales con potencia par, y podemos remplazar las potencias impares por unos. Así, basta con encontrar los valores reales de $x$ para los cuales $$q(x)=-2(x-5)(x+2)(x+10)$$ es positivo. Tenemos $3$ factores, así que estamos en el caso de $m$ impar en la proposición.

Las tres raíces, en orden, son $-10, -2, 5$. Por la proposición, para $x$ en la unión de intervalos $$(-\infty,-10)\cup (-2,5)$$ se tiene que $q(x)$ tiene signo distinto al de $a=-2$ y por lo tanto es positivo. Para $x$ en el conjunto $$(-10,-2)\cup (5,\infty)$$ se tiene que $q(x)$ tiene signo igual al de $a=-2$, y por lo tanto es negativo. De esta forma, la respuesta es el conjunto $$(-\infty,-10)\cup (-2,5).$$

Puedes dar clic aquí para ver en GeoGebra las gráfica de $q(x)$ y del polinomio original, y verificar que tienen el mismo signo en los mismos intervalos.

$\triangle$

Si estamos resolviendo una desigualdad y el valor de $a$ en la factorización es positivo, es un poco más práctico ignorarlo desde el principio, pues no afecta a la desigualdad.

Problema 2. Determina para qué valores reales $x$ se tiene que $$7(x+7)^{13}(x+2)^{31}(x-5)^{18}(x^2+1)$$ es positivo.

Solución. Tras las cancelaciones correspondientes, obtenemos la desigualdad equivalente $$(x+7)(x+2)>0.$$

Las raíces del polinomio que aparece son $-7$ y $-2$. De acuerdo a la proposición, estamos en el caso con $m$ par. De esta forma, la expresión es negativa en el intervalo $(-7,-2)$ y es positiva en la unión de intervalos $$(-\infty,-7)\cup (-2,\infty).$$

$\triangle$

Otras desigualdades de polinomios y manipulaciones algebraicas

Si tenemos otras expresiones polinomiales, también podemos resolverlas con ideas similares, solo que a veces se tienen que hacer algunas manipulaciones previas para llevar la desigualdad a una de la forma $p(x)>0$.

Problema. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$x^6-12x^4-49x^2-30 > 3x^5-48x^3-51x+6.$$

Solución. El problema es equivalente a encontrar los reales $x$ para los cuales $$x^6-3x^5+12x^4+48x^3-29x^2+51x-36>0.$$ El polinomio del lado izquierdo se puede factorizar como $(x-3)^2(x-1)(x+4)(x^2+1)$, así que obtenemos el problema equivalente $$(x-3)^2(x-1)(x+4)(x^2+1)>0,$$ que ya sabemos resolver. El resto de la solución queda como tarea moral.

Puedes ver la gráfica del polinomio $$(x-3)^2(x-1)(x+4)(x^2+1)$$ en GeoGebra si das clic aquí.

$\triangle$

Tener cuidado al multiplicar por denominadores

Hay que tener cuidado al realizar algunas manipulaciones algebraicas, pues pueden cambiar el signo de la desigualdad que estamos estudiando. Veamos un ejemplo donde sucede esto.

Problema. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$\frac{1}{x}>x^3-x^2+1.$$

Solución. La expresión no está definida en $x=0$, pues se anula un denominador. Supongamos entonces que $x\neq 0$, y recordémoslo al expresar la solución final. Vamos a multiplicar la desigualdad por $x$, pero tenemos que hacer casos.

Si $x>0$, entonces el signo de desigualdad no se altera y obtenemos la desigualdad equivalente $$0>x^4-x^3+x-1=(x-1)(x+1)(x^2-x+1).$$ El factor cuadrático es irreducible y lo podemos ignorar. Si estuviéramos trabajando en todo $\mathbb{R}$, el conjunto solución sería el intervalo $(-1,1)$. Sin embargo, tenemos que restringir este conjunto solución sólo al caso en el que estamos, es decir, $x>0$. Así, para este caso sólo los reales en $(0,1)$ son solución.

Si $x<0$, entonces el signo de la desigualdad sí se altera, y entonces obtenemos la desigualdad equivalente $$0<x^4-x^3+x-1=(x-1)(x+1)(x^2-x+1).$$ De nuevo podemos ignorar el factor cuadrático. La desigualdad tiene solución en todo $\mathbb{R}$ al conjunto $(-\infty,-1)\cup (1,\infty)$, pero en este caso debemos limitarlo adicionalmente con la restricción $x<0$. De este modo, las soluciones para este caso están en el intervalo $(-\infty,-1)$.

Ahora sí, juntando ambos casos, tenemos que el conjunto solución final es $$(-\infty,-1)\cup(0,1).$$

Puedes ver la gráfica en GeoGebra de $\frac{1}{x}-x^3+x^2-1$ dando clic aquí. Ahí puedes verificar que esta expresión es positiva exactamente en el conjunto que encontramos.

$\triangle$

Más adelante…

Como queda claro, resulta ser útil tener un polinomio en su forma factorizada para resolver desigualdades de polinomios reales. En los ejemplos que dimos en esta entrada, se dieron las factorizaciones de los polinomios involucrados. En el resto del curso veremos herramientas que nos permitirán encontrar la factorización de un polinomio o, lo que es parecido, encontrar sus raíces:

  • Veremos propiedades de continuidad de polinomios para mostrar la existencia de raíces para polinomios reales en ciertos intervalos.
  • El teorema del factor nos dice que si $r$ es raíz de $p(x)$, entonces $x-r$ divide a $p(x)$. Sin embargo, no nos dice cuál es la multiplicidad de $r$. Veremos que la derivada de un polinomio nos puede ayudar a determinar eso.
  • También veremos el criterio de la raíz racional, que nos permite enlistar todos los cantidatos a ser raíces racionales de un polinomio $p(x)$ con coeficientes racionales.
  • Finalmente, veremos que para los polinomios de grado $3$ y $4$ hay formas de obtener sus raíces de forma explícita, mediante las fórmulas de Cardano y de Ferrari.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Completa la solución del problema enunciado en la sección de manipulaciones algebraicas.
  2. Encuentra el conjunto solución de números reales $x$ tales que $$(x+1)(x+2)^2(x+3)^3(x+4)^4>0.$$
  3. Determina las soluciones reales a la desigualdad $$\frac{x-1}{x+2}>\frac{x+2}{x-1}.$$ Ten cuidado con los signos. Verifica tu respuesta en este enlace de GeoGebra, que muestra la gráfica de $f(x)=\frac{x-1}{x+2}-\frac{x+2}{x-1}$.
  4. Realiza las gráficas de otros polinomios de la entrada en GeoGebra para verificar las soluciones dadas a las desigualdades de polinomios.
  5. Revisa esta entrada, en donde se hablan de aplicaciones de desigualdades polinomiales para un problema de un concurso de matemáticas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Irreducibilidad y factorización en polinomios reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Los números enteros tiene un teorema de factorización en primos: el teorema fundamental de la aritmética. Los polinomios en $\mathbb{R}[x]$ también. En esta entrada hablaremos de la irreducibilidad y factorización en polinomios reales. Lo primero lo haremos para decir «quiénes son los primos» en $\mathbb{R}[x]$. Para lo segundo usaremos el teorema del factor, que demostramos con anterioridad.

Resulta que el teorema de factorización en polinomios reales depende de un resultado importante de polinomios en $\mathbb{C}[x]$, es decir, los de coeficientes complejos. Esto es algo que sucede con frecuencia: a veces para resolver un problema en los números reales, hay que dar un paso hacia los complejos y luego regresar. Por esa razón, para esta entrada es importante que tengas en mente varias propiedades en los complejos, sobre todo cómo se realizan las operaciones y cuales son las propiedades de la conjugación compleja. Esto nos dará la oportunidad de enunciar (sin demostración) el teorema fundamental del álgebra.

Como recordatorio, un polinomio es irreducible en $\mathbb{R}[x]$ si no es un polinomio constante y no se puede escribir como producto de dos polinomios no constantes en $\mathbb{R}[x]$. Además, el teorema del factor nos dice que si $a$ es raíz de un polinomio $p(x)$, entonces $x-a$ divide a $p(x)$. Diremos que un polinomio es lineal si es de grado $1$ y cuadrático si es de grado $2$.

El teorema fundamental del álgebra

Así como construimos a $\mathbb{R}[x]$, se puede hacer algo análogo para construir a $\mathbb{C}[x]$, los polinomios de coeficientes complejos. Puedes practicar todo lo que hemos visto haciendo la construcción formal. Por el momento, para fines prácticos, puedes pensarlos como expresiones de la forma $$a_0+a_1 x + \ldots + a_n x^n$$ con $a_i$ complejos, digamos, $$(1+i)+2i x -3x^3+(5+2i)x^4.$$

Los polinomios en $\mathbb{C}[x]$ cumplen todo lo que hemos dicho de $\mathbb{R}[x]$: se vale el lema de Bézout, el algoritmo de Euclides, el teorema del factor, el teorema del residuo, etc. Una copia de $\mathbb{R}[x]$, con su estructura algebraica, «vive» dentro de $\mathbb{C}[x]$, es decir, todo polinomio con coeficientes reales se puede pensar como uno con coeficientes complejos.

Sin embargo, los polinomios en $\mathbb{R}[x]$ y en $\mathbb{C}[x]$ son muy diferentes en términos de raíces. Esto se nota, pir ejemplo, en el hecho de que el polinomio $x^2+1$ no tiene raíces en $\mathbb{R}$, pero sí en $\mathbb{C}$, donde la raíz es $i$. Resulta que esta $i$ hace toda la diferencia. Al agregarla no solamente hacemos que $x^2+1$ tenga una raíz, sino que ya todo polinomio tiene raíz. Esto está enunciado formalmente por el teorema fundamental del álgebra.

Teorema (teorema fundamental del álgebra). Todo polinomio no constante en $\mathbb{C}[x]$ tiene al menos una raíz en $\mathbb{C}$.

No vamos a demostrar este teorema durante el curso. Hay desde demostraciones elementales (como la que aparece en el bello libro Proofs from the book), hasta algunas muy cortas, pero que usan teoría un poco más avanzada (como las que se hacen en cursos de análisis complejo). Sin embargo, lo usaremos aquí para obtener algunas de sus consecuencias y, al final de esta entrada, demostrar los teoremas de irreducibilidad y factorización en polinomios reales.

Teorema de factorización en $\mathbb{C}[x]$

En la entrada anterior ya demostramos que los polinomios lineales son irreducibles. Veremos ahora que en $\mathbb{C}[x]$ no hay ningún otro polinomio irreducible.

Proposición. Los únicos polinomios irreducibles en $\mathbb{C}[x]$ son los de grado $1$.

Demostración. Tomemos cualquier polinomio $p(x)$ en $\mathbb{C}[x]$ de grado al menos $2$. Por el teorema fundamental del álgebra, $p(x)$ tiene al menos una raíz $z$ en $\mathbb{C}$. Por el teorema del factor, $$x-z \mid p(x),$$ así que podemos escribir $p(x)=(x-z)q(x)$ con $q(x)$ en $\mathbb{C}[x]$ de grado $\deg(p(x))-1\geq 1$.

De esta forma, pudimos factorizar al polinomio $p(x)$ en dos factores no constantes, y por lo tanto no es irreducible.

$\square$

Con esto podemos mostrar que en $\mathbb{C}[x]$ todo polinomio es factorizable como producto de términos lineales.

Teorema (de factorización única en $\mathbb{C}[x]$). Todo polinomio $p(x)$ en $\mathbb{C}[x]$ distinto del polinomio cero se puede factorizar de manera única como $$p(x)=a(x-z_1)(x-z_2)\cdots(x-z_n)$$ en donde $a$ es un complejo no cero, $n$ es el grado de $p(x)$ y $z_1,\ldots,z_n$ son complejos que son raíces de $p(x)$.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Procedemos por inducción en el grado de $p(x)$. Si $p(x)$ es de grado cero, entonces es de la forma $p(x)=a$ con $a$ un complejo, y ya está en la forma que queremos.

Tomemos ahora un entero $n\geq 1$. Supongamos que el resultado es cierto para los polinomios de grado $n-1$ y consideremos un polinomio $p(x)$ de grado $n$. Por el teorema fundamental del álgebra, $p(x)$ tiene al menos una raíz, digamos $z_n$. Usando el teorema del factor, existe un polinomio $q(x)$, que debe de ser de grado $n-1$, tal que $$p(x)=q(x)(x-z_n).$$ Aplicando la hipótesis inductiva a $q(x)$, podemos factorizarlo de la forma $$q(x)=a(x-z_1)(x-z_2)\cdots(x-z_{n-1}),$$ con $z_1,\ldots,z_{n-1}$ raíces de $q(x)$ (y por lo tanto también raíces de $p(x)$). De esta forma, $$p(x)=(x-z_1)(x-z_2)\cdots(x-z_{n-1})(x-z_n)$$ es una factorización que cumple lo que queremos. Esto termina la hipótesis inductiva, y por lo tanto la parte de existencia de la demostración.

$\square$

Ejemplo. Consideremos al polinomio $$p(x)=x^4+5x^2+4$$ en $\mathbb{R}[x]$. Este polinomio no tiene raíces reales, pues sus evaluaciones siempre son positivas. Sin embargo, lo podemos pensar como un polinomio en $\mathbb{C}[x]$. Por el teorema fundamental del álgebra, este polinomio debe tener una raíz en $\mathbb{C}$.

Afortunadamente, podemos encontrarla por inspección. Una de estas raíces es $i$, pues $$i^4+5i^2+4=1-5+4=0.$$ Por el teorema del factor, $x-i$ divide a $p(x)$. Al realizar la división, obtenemos $$p(x)=(x-i)(x^3+ix^2+4x+4i).$$ De aquí, por inspección, obtenemos que $-i$ es una raíz de $x^3+ix^2+4x+4i$, y realizando la división entre $x+i$, tenemos que $$p(x)=(x-i)(x+i)(x^2+4).$$

El polinomio $x^2+4$ claramente tiene como raíces a $2i$ y $-2i$. A partir de todo esto concluimos que $$p(x)=(x-i)(x+i)(x-2i)(x+2i)$$ es la factorización de $p(x)$ en polinomios lineales en $\mathbb{C}[x]$.

$\square$

En el ejemplo anterior podemos agrupar los factores $(x-i)$ y $(x+i)$ para obtener el polinomio $x^2+1$. De aquí obtenemos la factorización alternativa $$p(x)=(x^2+1)(x^2+2).$$ Esta factorización tiene puros coeficientes reales. Aquí hay que hacer una observación importante: esta no es una factorización en irreducibles en $\mathbb{C}[x]$, pero sí es una factorización en irreducibles en $\mathbb{R}[x]$. Retomaremos varias de estas ideas más en general en las siguientes secciones.

Raíces complejas de polinomios en $\mathbb{R}[x]$

En el ejemplo de la sección anterior sucedió que $i$ era una raíz de $p(x)$, y que $-i$ también. Cuando tenemos un polinomio de coeficientes reales y $z$ es un complejo que es raíz, entonces su conjugado también.

Proposición. Tomemos $p(x)$ un polinomio en $\mathbb{R}[x]$ y $z$ un número en $\mathbb{C}$. Si $p(z)=0$, entonces $p(\overline{z})=0$.

Demostración. Si $p(x)$ es el polinomio cero, la afirmación es cierta. En otro caso, sea $n$ el grado de $p(x)$ y escribamos a $p(x)$ como $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ donde $a_i$ son números en $\mathbb{R}$ para $i=0,\ldots,n$. Por lo que sabemos de la conjugación compleja, $\overline{a_i}=a_i$, y además abre sumas y productos. Así,
\begin{align*}
\overline{p(z)}&=\overline{a_0+a_1z+\ldots+a_nz^n}\\
&=\overline{a_0}+\overline{a_1z}+\ldots +\overline{a_nz^n}\\
&=\overline{a_0} + \overline{a_1}\, \overline{z} + \ldots +\overline{a_n}\, \overline{z}^n\\
&=a_0 + a_1 \overline{z} + \ldots + a_n \overline{z}^n\\
&=p(\overline{z}).
\end{align*}

Como $p(z)=0$, concluimos que $$p(\overline{z})=\overline{p(z)}=\overline{0}=0.$$

$\square$

El resultado anterior no es cierto en general para polinomios con coeficientes en $\mathbb{C}[x]$. Esto debe ser muy claro pues, por ejemplo, $i$ es raíz de $x-i$, pero $-i$ no.

Proposición. Tomemos $p(x)$ un polinomio en $\mathbb{R}[x]$ y una raíz $z$ de $p(x)$ en $\mathbb{C}\setminus \mathbb{R}$. Entonces el polinomio $$q(x)=x^2-(z+\overline{z})x+z\overline{z}$$ es un polinomio en $\mathbb{R}[x]$ que divide a $p(x)$ en $\mathbb{R}[x]$.

Demostración. Observa que $q(x)=(x-z)(x-\overline{z})$. Recordemos que
\begin{align*}
z+\overline{z}&=2\Rea{(z)} \\
z\overline{z}&=\norm{z}^2 .
\end{align*}

Esto muestra que los coeficientes de $q(x)$ son reales. Usemos el algoritmo de la división en $\mathbb{R}[x]$ para escribir $$p(x)=q(x)h(x)+r(x),$$ con $r(x)$ el polinomio cero, o de grado a lo más $1$.

Evaluando en $z$ y en $\overline{z}$, se obtiene que $r(z)=r(\overline{z})=0$. Como $z$ no es real, entonces $z$ y $\overline{z}$ son distintos. De este modo, $r(x)$ es el polinomio cero. Así, $p(x)=q(x)h(x)$ es una factorización de $p(x)$ en $\mathbb{R}[x]$ que usa a $q(x)$.

$\square$

Nuevamente, hay que tener cuidado con las hipótesis del resultado anterior. Es muy importante que usemos que $z$ es una raíz compleja y no real de un polinomio con coeficientes reales. En la tarea moral puedes encontrar un contraejemplo si no se satisfacen las hipótesis.

Ejemplo. Consideremos el polinomio $$p(x)=2x^3-16x^2+44x-40.$$ Una de sus raíces complejas es $3+i$, como puedes verificar. Como es un polinomio con coeficientes reales, el conjugado $3-i$ también es una raíz. Tal como lo menciona la proposición anterior, el polinomio
\begin{align*}
q(x):&=(x-(3+i))(x-(3-i))\\
&=x^2-(3+i+3-i)x+(3+i)(3-i)\\
&=x^2-6x+10
\end{align*}

es un polinomio de coeficientes reales. Además, divide a $p(x)$ en $\mathbb{R}[x]$ pues haciendo la división polinomial, tenemos que $$2x^3-16x^2+44x-40=(2x-4)(x^2-6x+10).$$

$\square$

Irreducibilidad y factorización en polinomios reales

Con todo lo que hemos hecho hasta ahora, estamos listos para probar los resultados que queremos en $\mathbb{R}[x]$. Observa que los enunciados de las secciones anteriores involucran a $\mathbb{C}$, pero los de esta sección ya no. Sin embargo, para hacer las demostraciones tenemos que dar un «brinco momentáneo a los complejos».

Recuerda que para un polinomio cuadrático $q(x)=ax^2+bx+c$ su discriminante es $b^2-4ac$.

Teorema (irreducibilidad en polinomios reales). Los únicos polinomios irreducibles en $\mathbb{R}[x]$ son los lineales y los cuadráticos de discriminante negativo.

Demostración. Ya mostramos antes que los polinomios lineales son irreducibles. Si $q(x)=ax^2+bx+c$ es un polinomio cuadrático y $r$ es una raíz real, tenemos que
\begin{align*}
ar^2+br+c&=0\\
r^2+\frac{b}{a}r+\frac{c}{a}&=0\\
r^2+\frac{b}{a}r+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+\frac{c}{a}&=0\\
\left(r+\frac{b}{2a}\right)^2&=\frac{b^2-4ac}{4a^2}.
\end{align*}

De esta igualdad, obtenemos que $\frac{b^2-4ac}{4a^2}\geq 0$ y por lo tanto que $b^2-4ac \geq 0$. Dicho de otra forma, si $b^2-4ac<0$, entonces $q(x)$ no tiene raíces reales. De esta misma equivalencia de igualdades se puede ver que si $b^2-4ac\geq 0$, entonces $q(x)$ sí tiene por lo menos una raíz real.

Supongamos que $q(x)$ es un polinomio cuadrático con discriminante negativo. Si existiera una factorización en $\mathbb{R}[x]$ de la forma $q(x)=a(x)b(x)$, con ninguno de ellos constante, entonces ambos deben tener grado $1$. Podemos suponer que $a$ es mónico. Pero entonces $a(x)=x-r$ para $r$ un real, y por el teorema del factor tendríamos que $r$ sería raíz de $q(x)$, una contradicción a la discusión anterior. Esto muestra que $q(x)$ es irreducible.

Falta ver que no hay ningún otro polinomio irreducible en $\mathbb{R}[x]$. Cuando $p(x)$ es cuadrático de discriminante no negativo, entonces por la fórmula cuadrática tiene al menos una raíz real $r$ y por lo tanto $x-r$ divide a $p(x)$, mostrando que no es irreducible.

Si $p(x)$ es de grado mayor o igual a $3$ y tiene una raíz real $r$, sucede lo mismo. En otro caso, es de grado mayor o igual a $3$ y no tiene raíces reales. Pero de cualquier forma tiene al menos una raíz compleja $z$. Usando la proposición de la sección anterior, tenemos que $x^2-(z+\overline{z})x+z\overline{z}$ es un polinomio de coeficientes reales que divide a $p(x)$ en $\mathbb{R}[x]$, lo cual muestra que no es irreducible.

Concluimos entonces que los únicos polinomios irreducibles en $\mathbb{R}[x]$ son los lineales y los cuadráticos de discriminante negativo.

$\square$

Ahora sí podemos enunciar el resultado estelar de esta entrada.

Teorema (factorización en polinomios reales). Todo polinomio $p(x)$ en $\mathbb{R}[x]$ distinto del polinomio cero se puede factorizar de manera única como $$a(x-r_1)\cdots(x-r_m)(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ en donde:

  • $a$ es un real distinto de cero,
  • $m$ y $n$ son enteros tales que $m+2n$ es igual al grado de $p(x)$,
  • para cada $i$ en $\{1,\ldots,m\}$ se tiene que $r_i$ es raíz real de $p(x)$ y
  • para cada $j$ en $ \{1,\ldots,n\}$ se tiene que $b_j,c_j$ son reales tales que $b_j^2-4c_j<0$.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Si $p(x)$ es irreducible, entonces al factorizar su coeficiente principal $a$ obtenemos la factorización deseada. Si $p(x)$ no es irreducible, procedemos por inducción fuerte sobre el grado $d$ de $p(x)$. El menor grado que debe tener es $2$ para no ser irreducible.

Si $d=2$ y es no irreducible, el resultado es cierto pues se puede factorizar como dos factores lineales y luego factorizar al término $a$ los coeficientes principales de cada factor para que queden mónicos.

Sea $d\geq 3$ y supongamos el resultado cierto para todo polinomio de grado menor a $d$. Tomemos un polinomio $p(x)$ de grado $d$. Por el teorema de irreducibilidad de polinomios reales, $p(x)$ no es irreducible, así que se puede factorizar como $p(x)=r(x)s(x)$ con $r(x)$ y $s(x)$ no constantes, y por lo tanto de grado menor al de $p(x)$. Por hipótesis inductiva, tienen una factorización como la del teorema. La factorización de $p(x)$ se obtiene multiplicando ambas. Esto termina la inducción.

$\square$

Veamos cómo podemos usar todas estas ideas en un problema en concreto de factorización en polinomios reales.

Problema. Factoriza al polinomio $x^{12}-1$ en polinomios irreducibles en $\mathbb{R}[x]$.

Solución. Usando identidades de factorización, podemos avanzar bastante:
\begin{align*}
x^{12}-1&=(x^6-1)(x^6+1)\\
&=(x^3-1)(x^3+1)(x^6+1)\\
&=(x-1)(x^2+x+1)(x+1)(x^2-x+1)(x^2+1)(x^4-x^2+1).
\end{align*}

Hasta aquí, $x+1$ y $x-1$ son factores lineales. Además, $x^2+x+1$, $x^2-x+1$ y $x^2+1$ son factores cuadráticos irreducibles pues sus discriminantes son, respectivamente, $-3,-3,-4$.

Aún queda un factor $x^4-x^2+1$ que por ser de grado $4$ no es irreducible. Sumando y restando $2x^2$, y luego factorizando la diferencia de cuadrados, tenemos:
\begin{align*}
x^4-x^2+1 &= x^4+2x^2+1-3x^2\\
&=(x^2+1)^2-3x^2\\
&=(x^2+1-\sqrt{3}x)(x^2+1+\sqrt{3}x).
\end{align*}

Cada uno de estos factores cuadráticos tiene discriminante $-1$, y por lo tanto es irreducible. Concluimos entonces que la factorización en irreducibles de $x^{12}-1$ en $\mathbb{R}[x]$ es
\begin{align*}
(x-1)(x&+1)(x^2+1)(x^2+x+1)\\
&(x^2-x+1)(x^2+\sqrt{3}x+1)(x^2-\sqrt{3}x+1).
\end{align*}

$\square$

Más adelante…

El teorema fundamental del álgebra y sus consecuencias en $\mathbb{R}$ son los resultados algebraicos más importantes que obtendremos en el estudio de polinomios, ya que nos permite caracterizar, al menos en teoría a todos los polinomios a partir de sus raíces.

En las siguientes entradas ocuparemos las herramientas que hemos desarrollado hasta ahora, sin embargo cambiaremos el enfoque de estudio, usaremos también herramientas de los cursos de cálculo para poder dar un análisis más detallado del comportamiento de los polinomios, y que nos servirán para que en muchos casos podamos encontrar las raíces de un polinomio, o cuando menos tener una idea de cómo son.

Tarea moral

  • Haz la construcción formal de $\mathbb{C}[x]$ a partir de sucesiones de complejos. Muestra que se pueden expresar en la notación de $x$ y sus potencias. Prueba los teoremas que hemos visto hasta ahora. Todo debe ser análogo al caso real, por lo que te servirá mucho para repasar los conceptos vistos hasta ahora.
  • Muestra la unicidad de la factorización en $\mathbb{C}[x]$ y en $\mathbb{R}[x]$.
  • Sea $z$ un complejo no real. Muestra que que $x-z$ y $x-\overline{z}$ son polinomios primos relativos en $\mathbb{C}[x]$.
  • Hay que tener cuidado en las hipótesis de los teoremas de esta entrada. Muestra que $3$ es una raíz del polinomio $x^3-6x^2+11x-6$, pero que $x^2-6x+9$ no divide a este polinomio.
  • Argumenta por qué en el teorema de factorización en polinomios reales sucede que $m+2n$ es el grado de $p(x)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»