Archivo de la etiqueta: matrices

Álgebra Lineal II: Unicidad de la forma de Jordan para nilpotentes

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan para matrices nilpotentes. Demostramos una parte: la existencia de la forma canónica de Jordan. Para ello, nos enfocamos en el teorema en su versión en términos de transformaciones lineales. En esta entrada nos enfocaremos en demostrar la unicidad de la forma canónica de Jordan. Curiosamente, en este caso será un poco más cómodo trabajar con la forma matricial del teorema. Para recordar lo que queremos probar, volvemos a poner el enunciado del teorema a continuación. Lo que buscamos es ver que los enteros $k_1,\ldots, k_d$ que menciona el teorema son únicos.

Teorema. Sea $A$ una matriz nilpotente en $M_n(F)$. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales $A$ es similar a la siguiente matriz de bloques: $$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Nuestra estrategia para mostrar la unicidad será el estudio del rango de las potencias de $A$. Si $A$ es similar a $B$, entonces existe $P$ invertible tal que $A=P^{-1}BP$, de donde se puede mostrar indutivamente que $A^k=P^{-1}B^kP$, mostrando que $A^k$ y $B^k$ son similares. Además, matrices similares tienen el mismo rango. De modo que si $A$ es similar a $B$ entonces todas las potencias de $A$ tienen el mismo rango que todas las potencias de $B$. Con esta idea en mente, ¿cómo son las potencias de las matrices hechas por bloques de Jordan? Comenzaremos estudiando esto.

Rango de potencias de bloques de Jordan

Claramente el rango del bloque de Jordan $J_{0,n}$ es $n-1$, pues ya está en forma escalonada reducida y tiene $n-1$ vectores distintos de cero. El siguiente resultado generaliza esta observación.

Proposición. Sea $n$ un entero positivo, $F$ un campo y $J_{0,n}$ el bloque de Jordan de eigenvalor $0$ y tamaño $n$ en $M_n(F)$. Para $k=1,\ldots,n$ se tiene que el rango de $J_{0,n}^k$ es igual a $n-k$. Para $k$ más grandes, el rango es igual a cero.

Demostración. Si $e_1,\ldots,e_n$ es la base canónica de $F^n$, tenemos que $J_{0,n}e_i=e_{i-1}$ para $i=2,\ldots,n$ y $J_{0,n}e_1=0$. De manera intuitiva, la multiplicación matricial por $J_{0,n}$ va «desplazando los elementos de la base $e_1,\ldots,e_n$ a la izquierda, hasta sacarlos». De este modo, $J_{0,n}^k$ para $k=1,\ldots,n$ hace lo siguiente:

$$J_{0,n}^k e_i=\begin{cases} 0 & \text{para $i\leq k$}\\ e_{i-k} & \text{para $i\geq k+1$.}\end{cases}$$

Así, $J_{0,n}^k$ manda a la base $e_1,\ldots,e_n$ a los vectores $e_1,\ldots,e_{n-k}$ y a $k$ copias del vector cero. Como los primeros son $n-k$ vectores linealmente independientes, obtenemos que el rango de $J_{0,n}^k$ es $n-k$.

Para varlores de $k$ más grandes la potencia se hace la matriz cero, así que su rango es cero.

$\square$

Rango de potencias de matrices diagonales por bloques de Jordan

¿Qué sucede si ahora estudiamos el rango de las potencias de una matriz diagonal por bloques hecha por puros bloques de Jordan? Consideremos, por ejemplo, la siguiente matriz, con $k_1\leq \ldots \leq k_d$ de suma $n$:

$$J=\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Por un lado, es sencillo elevar esta matriz a potencias, pues simplemente los bloques se elevan a las potencias correspondientes. En símbolos:

$$J^r=\begin{pmatrix} J_{0,k_1}^r& 0 & \cdots & 0 \\ 0 & J_{0,k_2}^r& \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}^r\end{pmatrix}.$$

¿Cuál es el rango de esta potencia? Nos conviene cambiar un poco de notación. En vez de considerar a los $k_i$ por separado, los agruparemos de acuerdo a su valor, que puede ir de $1$ a $n$. Así, para cada $j=1,\ldots,n$ definimos $m_j$ como la cantidad de valores $k_i$ iguales a $j$. Bajo esta notación, la igualdad $k_1+\ldots+k_d=n$ se puede reescribir como $$m_1+2m_2+3m_3+\ldots+nm_n=n.$$

Una primera observación es que el rango de $J$ es simplemente la suma de los rangos de cada una de las $J_{0,k_i}$. Cada una de estas contribuye con rango $k_i-1$. Así, en términos de las $m_i$ tenemos lo siguiente:

\begin{align*}
\text{rango}(J)&=\sum_{i=1}^d (k_i-1)\\
&=\sum_{j=1}^n (j-1) m_j \\
&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n.
\end{align*}

De manera similar,

\begin{align*}
\text{rango}(J^r)&=\sum_{i=1}^d \text{rango}(J_{0,k_i}^r)\\
&=\sum_{j=1}^n m_j \text{rango}(J_{0,j}^r).
\end{align*}

El término $\text{rango}(J_{0,j}^r)$ lo podemos calcular con la proposición de la sección anterior, cuidando la restricción entre el tamaño y las potencias que queremos. De aquí y de la restricción original para la las $m_i$ salen todas las siguientes igualdades:

\begin{align*}
n&= 1\cdot m_1 + 2\cdot m_2 + 3 \cdot m_3 + \ldots + n \cdot m_n\\
\text{rango}(J)&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n\\
\text{rango}(J^2)&= 0 \cdot m_1 + 0 \cdot m_2 + 1 \cdot m_3 + \ldots + (n-2)\cdot m_n\\
\text{rango}(J^3)&= 0 \cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + (n-3)\cdot m_n\\
&\vdots\\
\text{rango}(J^{n-1})&= 0\cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + 1 \cdot m_n.
\end{align*}

A partir de aquí el rango de $J^n$ es $0$. Esto nos da una manera de entender con mucha precisión el rango de cualquier potencia de una matriz diagonal por bloques hecha con bloques de Jordan.

Unicidad de la forma canónica de Jordan

Estamos listos para justificar la unicidad de la forma canónica de Jordan. Una matriz diagonal por bloques hecha por bloques de Jordan queda totalmente determinada por los valores de $m_j$ de la sección anterior. Supongamos que $A$ tiene como forma canónica de Jordan tanto a una matriz $J$ con valores $m_j$, como a otra matriz $J’$ con valores $m_j’$.

Como dos matrices similares cumplen que las sus potencias son todas del mismo rango, entonces para cualquier $r$ de $1$ a $n-1$ se cumple que $$\text{rango}(J^r)=\text{rango}(A^r)=\text{rango}(J’^r).$$ Así, tanto $(m_1,\ldots,m_n)$ como $(m_1′,\ldots,m_n’)$ son soluciones al siguiente sistema de ecuaciones en variables $x_1,\ldots,x_n$.

\begin{align*}
n&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + n \cdot x_n\\
\text{rango}(A)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (n-1) \cdot x_n\\
\text{rango}(A^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (n-2)\cdot x_n\\
\text{rango}(A^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (n-3)\cdot x_n\\
&\vdots\\
\text{rango}(A^{n-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_n.
\end{align*}

Pero este es un sistema de ecuaciones de determinante $1$, así que su solución es única. Esto muestra que $(m_1,\ldots,m_n)=(m’_1,\ldots,m’_n)$, con lo cual se deduce que $J=J’$.

Como consecuencia de toda esta discusión, obtenemos de hecho lo siguiente.

Corolario. Dos matrices nilpotentes son semejantes si y sólo si tienen la misma forma canónica de Jordan. Distintas formas canónicas de Jordan dan distintas clases de semejanza.

Una receta para encontrar la forma canónica de Jordan de nilpotentes

La demostración anterior no sólo demuestra la unicidad de la forma canónica de Jordan. Además, nos dice exactamente cómo obtenerla. Para ello:

  1. Calculamos todas las potencias de $A$ hasta $n-1$.
  2. Usando reducción gaussiana (o de otro modo), calculamos el rango de cada una de estas potencias.
  3. Resolvemos el sistema de ecuaciones en variables $x_i$ de la sección anterior.
  4. La forma canónica de Jordan de $A$ tiene $x_i$ bloques de tamaño $i$.

Ejemplo. Consideremos la siguiente matriz en $M_7(\mathbb{R})$: $$C=\begin{pmatrix}-27 & 266 & 1 & -37 & 135 & -125 & 53\\217 & -1563 & 118 & 33 & -1251 & 1020 & 361\\236 & -1784 & 188 & 16 & -1512 & 1234 & 585\\11 & -10 & -25 & 12 & 28 & -29 & -80\\-159 & 1133 & -114 & -98 & 878 & -690 & -232\\197 & -1409 & 88 & -19 & -1151 & 952 & 348\\-230 & 1605 & -179 & -100 & 1316 & -1031 & -440\end{pmatrix}$$

Sus números son muy complicados, sin embargo, nos podemos auxiliar de herramientas computacionales para encontrar sus potencias. Soprendenemente esta es una matriz nilpotente de índice $3$ pues:

$$C^2=\begin{pmatrix}0 & -10209 & -3403 & -6806 & -6806 & 10209 & 0\\0 & 14691 & 4897 & 9794 & 9794 & -14691 & 0\\0 & 2739 & 913 & 1826 & 1826 & -2739 & 0\\0 & 7221 & 2407 & 4814 & 4814 & -7221 & 0\\0 & -14193 & -4731 & -9462 & -9462 & 14193 & 0\\0 & 10956 & 3652 & 7304 & 7304 & -10956 & 0\\0 & -11952 & -3984 & -7968 & -7968 & 11952 & 0\end{pmatrix}$$

y

$$C^3=\begin{pmatrix}0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\end{pmatrix}.$$

Usando reducción gaussiana, o herramientas computacionales, obtenemos que el rango de $C$ es $4$ y que el rango de $C^2$ es $2$. A partir de $j\geq 3$ obtenemos que $\text{rango}(C^j)=0$. Si quieremos encontrar la forma canónica de Jordan de $C$, necesitamos entonces resolver el siguiente sistema de ecuaciones, que nos dirá cuántos bloques $x_i$ de tamaño $i$ hay:

\begin{align*}
7&= x_1+2x_2+3x_3+4x_4+5x_5+6x_6+7x_7\\
4&=x_2 + 2x_3 + 3x_4+4x_5+5x_6+6x_7\\
2&= x_3 + 2x_4+3x_5+4x_6+5x_7 \\
0&= x_4+2x_5+3x_6+4x_7\\
0&= x_5+2x_6+3x_7\\
0&= x_6+2x_7\\
0&= x_7
\end{align*}

Para resolverlo lo mejor es proceder «de abajo hacia arriba». Las últimas cuatro ecuaciones nos dicen que $x_7=x_6=x_5=x_4=0$. Así, el sistema queda un poco más simple, como:

\begin{align*}
7&= x_1+2x_2+3x_3\\
4&=x_2 + 2x_3\\
2&= x_3.
\end{align*}

De la última igualdad, tenemos $x_3=2$, lo que nos dice que la forma canónica de Jordan tendría dos bloques de tamaño $3$. Sustituyendo en la penúltima igualdad obtenemos que $4=x_2+4$, de donde $x_2=0$. Así, no tendremos ningún bloque de tamaño $2$. Finalmente, sustituyendo ambos valores en la primera igualdad obtenemos que $7=x_1+0+6$. De aquí obtenemos $x_1=1$, así que la forma canónica de Jordan tendrá un bloque de tamaño $1$. En resumen, la forma canónica de Jordan es la matriz $$\begin{pmatrix} J_{0,1} & 0 & 0 \\ 0 & J_{0,3} & 0 \\ 0 & 0 & J_{0,3}\end{pmatrix}.$$ Explícitamente, esta es la siguiente matriz:

$$\begin{pmatrix} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Para verla un poco más «como de bloques» la podemos reescribir de la siguiente manera:

$$\left(\begin{array}{c|ccc|ccc} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

$\square$

Más adelante…

Hemos demostrado la existencia y unicidad de la forma canónica de Jordan para matrices nilpotentes. Este es un resultado interesante por sí mismo. Sin embargo, también es un paso intermedio para un resultado más general. En las siguientes entradas hablaremos de una versión más general del teorema de Jordan, para matrices tales que su polinomio característico se descomponga totalmente en el campo en el que estemos trabajando.

Tarea moral

  1. Considera la siguiente matriz: $$M=\begin{pmatrix}11 & 11 & -11 & -11\\-1 & -1 & 1 & 1\\3 & 3 & -3 & -3\\7 & 7 & -7 & -7\end{pmatrix}.$$
    1. Muestra que $M$ es una matriz nilpotente y determina su índice.
    2. ¿Cuál es la forma canónica de Jordan de $M$?
  2. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{5}(F)$ de índice $2$.
  3. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{7}(F)$ de rango $5$.
  4. Encuentra de manera explícita la inversa de la siguiente matriz en $M_n(\mathbb{R})$ y usa esto para dar de manera explícita la solución al sistema de ecuación en las variables $x_i$ que aparece en la entrada: $$\begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 0 & 0 & 1 & \cdots & n-3 & n-2 \\ & \vdots & & \ddots & & \vdots\\ 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & \cdots & 0 & 1\end{pmatrix}.$$
  5. Sea $A$ una matriz nilpotente en $M_n(\mathbb{R})$. Muestra que las matrices $A$ y $5A$ son similares entre sí.

Entradas relacionadas

Geometría Analítica I: Polinomios cuadráticos y curvas cuadráticas

Introducción

Lo primero que queremos determinar en un problema de clasificación es cuáles son los objetos que clasificaremos. En esta entrada los definimos con toda precisión: serán los polinomios cuadráticos en dos variables y las curvas cuadráticas.

Los primeros son expresiones algebraicas que mezclan a dos variables $x$ y $y$ mediante sumas y productos, pero teniendo grado dos. Las segundas son aquellos conjuntos del plano en donde se anula un polinomio cuadrático.

Polinomios cuadráticos en dos variables

Comencemos con una definición algebraica.

Definición. Un polinomio cuadrático en dos variables $P$ es una función $P:\mathbb{R}^2\to \mathbb{R}$ de la forma $$P((x,y))=Ax^2+Bxy+Cy^2+Dx+Ey+F,$$ para algunos reales $A,B,C,D,E,F$, en donde alguno de $A$, $B$ ó $C$ es distinto de cero.

En ocasiones, para abreviar «polinomio cuadrático en dos variables» simplemente usaremos las siglas «PCDV».

Ejemplo. Todas las expresiones que aparecen en las cónicas canónicas que hemos estudiado son PCDVs. Por ejemplo, la ecuación canónica de la elipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$ puede reescribirse como $$b^2x^2+a^2y^2-a^2b^2=0.$$ Del lado izquierdo de esta igualdad tenemos un PCDV. De manera similar, la ecuación canónica de la parábola $y^2=4px$ puede reescribirse como $y^2-4px=0$. Una vez más al lado izquierdo nos aparece un PCDV.

$\square$

Ejemplo. Si consideramos las dos rectas $3x+5y+1=0$ y $2x-2y+1=0$ y «multiplicamos» sus ecuaciones, entonces obtenemos de nuevo un PCDV pues el producto es:

\begin{align*}
(3x+5y+1)(2x-2y+1)&=6x^2-6xy+3x+10xy-10y^2+5y+2x-2y+1\\
&=6x^2+4xy-10y^2+5x+3y+1.
\end{align*}

$\square$

Curvas cuadráticas

Cuando tenemos una expresión algebraica que depende de dos variables $x$ y $y$, entonces podemos preguntarnos por cómo es la figura geométrica que se obtiene al considerar los puntos $(x,y)$ del plano que hacen que la expresión algebraica sea igual a cero. Un ejemplo de esto es cuando consideramos las expresiones del estilo $Ax+By+C$. Las parejas $(x,y)$ que hacen que esta expresión sea igual a cero forman una recta en el plano. En efecto, forman la recta en forma normal dada por la ecuación $(A,B)\cdot (x,y)=-C$, como puedes verificar.

Esta idea es mucho más general. A partir de los polinomios cuadráticos en dos variables también podemos hacernos la misma pregunta: ¿cómo se ven las parejas $(x,y)$ que anulan un polinomio cuadrático? La respuesta será importante, así que las figuras que se construyen así les damos su propio nombre.

Definición. Una curva cuadrática es el conjunto de puntos $(x,y)$ del plano que anulan a un polinomio cuadrático en dos variables $P$. En otras palabras, es un conjunto de la forma $$\mathcal{C}:=\{(x,y)\in \mathbb{R}^2: Ax^2+Bxy+Cy^2+Dx+Ey+F = 0\}.$$

A $P$ le llamamos el polinomio asociado a $\mathcal{C}$. A $\mathcal{C}$ le llamamos la curva descrita (o dada) por $P$. Quizás usaremos terminología un poco distinta, pero que siga dejando evidente que $P$ y $\mathcal{C}$ están relacionados.

Ejemplo. Ya hemos estudiado anteriormente algunas curvas cuadráticas: las cónicas canónicas. Por ejemplo, si tomamos el PCDV $P((x,y))=4x^2-9y^2-36$ y nos preguntamos para cuáles parejas $(x,y)$ esto es igual a cero, como respuesta tenemos que son aquellas parejas $(x,y)$ tales que $ 4x^2-9y^2-36=0$, lo cual podemos reescribir como $$\frac{x^2}{9}-\frac{y^2}{4}=1.$$ Esta es la hipérbola canónica de semieje mayor $3$ y semieje menor $2$. Podemos verla en la siguiente figura.

$\square$

Ejemplo. ¿Qué sucede si nos fijamos en la curva descrita por el polinomio cuadrático en dos variables $$ 6x^2+4xy-10y^2+5x+3y+1$$ que construimos en un ejemplo anterior? Si recuerdas, obtuvimos este polinomio cuadrático en dos variables a partir de multiplicar dos expresiones. De esta forma, tenemos que $$ 6x^2+4xy-10y^2+5x+3y+1=0$$ si y sólo si $$ (3x+5y+1)(2x-2y+1) =0.$$ Pero el producto de dos cosas es igual a cero si y sólo si alguna es igual a cero. Así, alguna de las expresiones $3x+5y+1$ y $2x-2y+1$ debe ser igual a cero. Si la primera es cero, entonces $(x,y)$ es un punto en la recta normal $\ell_1$ de ecuación $(3,5)\cdot (x,y) = -1$. Si la segunda es cero, entonces $(x,y)$ es un punto en la recta normal $\ell_2$ de ecuación $(2,-2)\cdot(x,y) = -1$. Así, la curva cuadrática descrita por el PCDV es la unión de $\ell_1$ con $\ell_2$. Podemos verla en la siguiente figura.

$\square$

Forma matricial de polinomios cuadráticos en dos variables

Cuando trabajamos con rectas, nos convenía tener varias formas de expresarlas: la forma paramétrica ayudaba a determinar fácilmente el paralelismo, la forma baricéntrica nos daba fórmulas sencillas para los puntos medios, la forma normal nos permitía encontrar distancias, etc. Así mismo, cuando trabajamos con polinomios cuadráticos en dos variables es de ayuda tener más de una expresión.

Podemos reescribir un polinomio cuadrático en dos variables $$P((x,y))=Ax^2+Bxy+Cy^2+Dx+Ey+F$$ de una manera más compacta usando multiplicación matricial. Para ello, definimos $$M=\begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix}, k=\begin{pmatrix} D \\ E \end{pmatrix}, v=\begin{pmatrix} x \\ y \end{pmatrix}.$$ Con esta notación, e interpretando a las matrices de $1\times 1$ como reales, tenemos que $P$ se puede reescribir de la siguiente manera: $$P(v)=v.$$

En efecto, al realizar las operaciones en el lado derecho obtenemos:

\begin{align*}
v^t M v + k^t v + F &=\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} D & E \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + F\\
&=\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} Ax + \frac{B}{2} y \\ \frac{B}{2} x + C y \end{pmatrix} + Dx + Ey + F\\
&=Ax^2 + Bxy + Cy^2+Dx+Ey+F.
\end{align*}

Observa que cuando pasamos un polinomio cuadrático en dos variables a forma matricial entonces siempre obtenemos una matriz $M$ simétrica.

Ejemplo. La forma matricial del PCDV que encontramos anteriormente $$6x^2+4xy-10y^2+5x+3y+1$$ es

$$ \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 6 & 2 \\ 2 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 1.$$

nota que el coeficiente de $xy$ se tuvo que dividir entre $2$ para llegar a las entradas de la matriz. Es importante recordar esto al pasar de la forma en coordenadas a la forma matricial.

$\square$

En caso de ser necesario, también podemos pasar fácilmente de la forma matricial de un polinomio cuadrático en dos variables a su forma en coordenadas.

Ejemplo. Si comenzamos con el polinomio cuadrático en dos variables con forma matricial $$ \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} – 1, $$

entonces su forma en coordenadas es $$2x^2-2xy+3y^2 – 3y -1.$$

Observa que las entradas $-1$ fuera de la diagonal principal de la matriz al salir se duplican para conformar el coeficiente de $xy$. Es importante recordar esto al pasar de forma matricial a forma en coordenadas.

$\square$

Más adelante…

En esta entrada definimos qué son los polinomios cuadráticos en dos variables y qué son las curvas cuadráticas.

Por un lado, mencionamos que todas las ecuaciones de cónicas canónicas que hemos visto tienen polinomios cuadráticos en dos variables. ¿Será que todas las ecuaciones de cónicas también tienen polinomios cuadráticos en dos variables? Por otro lado, vimos que algunas curvas cuadráticas son cónicas. Pero nos pasó algo un poco raro: en un ejemplo salieron dos rectas que se intersectan, que quizás estrictamente no pensamos como una cónica usual (elipse, hipérbola, parábola).

¿Cómo serán todas las curvas cuadráticas? ¿Serán sólo las cónicas usuales y algunas excepciones o podrán tener formas muy extrañas? Eso lo estudiaremos después.

También en esta entrada vimos la forma matricial de un polinomio cuadrático en dos variables. De momento, no hemos hablado de la utilidad que tiene pensar a un PCDV así. Sin embargo, en la siguiente entrada veremos que esta expresión es fundamental para ver qué sucede cuando «combinamos» un polinomio cuadrático con una transformación afín.

Tarea moral

  1. Usa alguna herramienta tecnológica (como GeoGebra) para trazar las curvas cuadráticas descritas por los siguientes polinomios cuadráticos en dos variables:
    • $x^2-2xy+3y^2+x-5y+7$
    • $3y^2+5y+x$
    • $x^2+y^2-5x-5y+3$
    • $xy-x-y+7$
    • $-x^2+2xy-3y^2-x+5y-7$
  2. Sea $P:\mathbb{R}^2\to \mathbb{R}$ dada por $P((x,y))=(Ax+By+C)(Dx+Ey+F)$. Demuestra que $P$ es un polinomio cuadrático en dos variables. Luego, demuestra que:
    1. Si $AE-BD\neq 0$, entonces la curva cuadrática dada por $P$ es la unión de dos rectas que se intersectan.
    2. Si $AE-BD=0$, entones la curva cuadrática dada por $P$ es la unión de dos rectas paralelas (no necesariamente distintas).
  3. Demuestra que la intersección de una recta con una curva cuadrática sólo puede ser:
    1. Vacía,
    2. Un punto,
    3. Dos puntos, o
    4. Una infinidad de puntos.
  4. Demuestra que cualquier curva cuadrática $\mathcal{C}$ puede ser descrita a través de una infinidad de polinomios cuadráticos en dos variables.
  5. Considera la gráfica de la función $f(x)=\sin(x)$. ¿Será que esta gráfica es una curva cuadrática? Intenta demostrar por qué sí o por qué no.

Entradas relacionadas

Álgebra Lineal II: Aplicaciones del teorema de Cayley-Hamilton

Introducción

En entradas anteriores ya enunciamos y demostramos el teorema de Cayley-Hamilton. Veremos ahora algunas aplicaciones de este resultado.

Encontrar inversas de matrices

El teorema de Cayley-Hamilton nos puede ayudar a encontrar la inversa de una matriz haciendo únicamente combinaciones lineales de potencias de la matriz. Procedemos como sigue. Supongamos que una matriz $A$ en $M_n(F)$ tiene polinomio característico $$\chi_A(x)=x^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0.$$ Como $a_0=\det(A)$, si $a_0=0$ entonces la matriz no es invertible. Supongamos entonces que $a_0\neq 0$. Por el teorema de Cayley-Hamilton tenemos que $$A^n+a_{n-1}A^{n-1}+\ldots+a_1A+a_0I_n=O_n.$$ De aquí podemos despejar la matriz identidad como sigue:

\begin{align*}
I_n&=-\frac{1}{a_0}\left( A^n+a_{n-1}A^{n-1}+\ldots+a_1A \right)\\
&=-\frac{1}{a_0}\left(A^{n-1}+a_{n-1}A^{n-2}+\ldots+a_1 I\right) A.
\end{align*}

Estos cálculos muestran que la inversa de $A$ es la matriz $$ -\frac{1}{a_0}\left(A^{n-1}+a_{n-1}A^{n-1}+\ldots+a_1 I\right).$$

Ejemplo. Supongamos que queremos encontrar la inversa de la siguiente matriz $$A=\begin{pmatrix} 2 & 2 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$ Su polinomio característico es $\lambda^3-2\lambda^2 – \lambda +2$. Usando la fórmula de arriba, tenemos que

$$A^{-1}=-\frac{1}{2}(A^2-2A-I).$$

Necesitamos entonces $A^2$, que es:

$$A^2=\begin{pmatrix} 4 & 2 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}.$$

De aquí, tras hacer las cuentas correspondientes, obtenemos que:

$$A^{-1}=\begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 0 & -1 & 0 \\ -\frac{1}{2} & 0 & 1\end{pmatrix}.$$

Puedes verificar que en efecto esta es la inversa de $A$ realizando la multiplicación correspondiente.

$\square$

El método anterior tiene ciertas ventajas y desventajas. Es práctico cuando es sencillo calcular el polinomio característico, pero puede llevar a varias cuentas. En términos de cálculos, en general reducción gaussiana funciona mejor para matrices grandes. Como ventaja, el resultado anterior tiene corolarios teóricos interesantes. Un ejemplo es el siguiente resultado.

Corolario. Si $A$ es una matriz con entradas en los enteros y determinante $1$ ó $-1$, entonces $A^{-1}$ tiene entradas enteras.

Encontrar el polinomio mínimo de una matriz

Otra de las consecuencias teóricas del teorema de Cayley-Hamilton con aplicaciones prácticas ya la discutimos en la entrada anterior.

Proposición. El polinomio mínimo de una matriz (o transformación lineal) divide a su polinomio característico.

Esto nos ayuda a encontrar el polinomio mínimo de una matriz: calculamos el polinomio característico y de ahí intentamos varios de sus divisores polinomiales para ver cuál de ellos es el de grado menor y que anule a la matriz. Algunas consideraciones prácticas son las siguientes:

  • Si el polinomio característico se factoriza totalmente sobre el campo y conocemos los eigenvalores, entonces conocemos todos los factores lineales. Basta hacer las combinaciones posibles de factores lineales para encontrar el polinomio característico (considerando posibles multiplicidades).
  • Además, para cada eigenvalor $\lambda$ ya vimos que $\lambda$ debe ser raíz no sólo del polinomio característico, sino también del polinomio mínimo. Así, debe aparecer un factor $x-\lambda$ en el polinomio mínimo para cada eigenvalor $\lambda$.

Ejemplo. Encontramos el polinomio mínimo de la siguiente matriz:

$$B=\begin{pmatrix} 2 & 0 & 4 \\ 3 & -1 & -1 \\0 & 0 & 2 \end{pmatrix}.$$

Una cuenta estándar muestra que el polinomio característico es $(x-2)^2(x+1)$. El polinomio mínimo debe ser mónico, dividir al polinomio característico y debe contener forzosamente a un factor $(x-2)$ y un factor $(x+1)$. Sólo hay dos polinomios con esas condiciones: $(x-2)(x+1)$ y $(x-2)^2(x+1)$. Si $(x-2)(x+1)$ anula a $B$, entonces es el polinomio mínimo. Si no, es el otro. Haciendo las cuentas:

\begin{align*}
(B-2I_3)(B+I_3)&=\begin{pmatrix}0 & 0 & 4 \\ 3 & -3 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 4 \\ 3 & 0 & -1 \\ 0 & 0 & 3 \end{pmatrix}\\
&=\begin{pmatrix} 0 & 0 & 12 \\ 0 & 0 & 12 \\ 0 & 0 & 0 \end{pmatrix}.
\end{align*}

Así, $(x-2)(x+1)$ no anula a la matriz y por lo tanto el polinomio mínimo es justo el polinomio característico $(x-2)^2(x+1)$.

$\square$

Ejemplo. Consideremos la matriz $C=\begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Su polinomio característico es $(x-3)^3$. Así, su polinomio mínimo es $x-3$, $(x-3)^2$ ó $(x-3)^3$. Nos damos cuenta rápidamente que $x-3$ sí anula a la matriz pues $A-3I_3=O_3$. De este modo, el polinomio mínimo es $x-3$.

$\square$

Clasificación de matrices con alguna condición algebraica

Si sabemos que una matriz cumple una cierta condición algebraica, entonces el teorema de Cayley-Hamilton puede ayudarnos a entender cómo debe ser esa matriz, es decir, a caracterizar a todas las matrices que cumplan la condición.

Por ejemplo, ¿quienes son todas las matrices en $M_n(\mathbb{R})$ que son su propia inversa? La condición algebraica es $A^2=I_2$. Si el polinomio característico de $A$ es $x^2+bx+c$, entonces por el teorema de Cayley-Hamilton y la hipótesis tenemos que $O_2=A^2+bA+cI_2=bA+(c+1)I_2$. De aquí tenemos un par de casos:

  • Si $b\neq 0$, podemos despejar a $A$ como $A=-\frac{c+1}{b}I_2$, es decir $A$ debe ser un múltiplo de la identidad. Simplificando la notación, $A=xI_2$. Así, la condición $A^2=I_2$ se convierte en $x^2I_2=I_2$, de donde $x^2=1$ y por lo tanto $x=\pm 1$. Esto nos da las soluciones $A=I_2$ y $A=-I_2$.
  • Si $b=0$, entonces $O_2=(c+1)I_2$, de donde $c=-1$. De este modo, el polinomio característico es $x^2-1=(x+1)(x-1)$. Se puede demostrar que aquí las soluciones son las matices semejantes a la matriz $\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}$, y sólo esas.

Más adelante…

El teorema de Cayley-Hamilton es un resultado fundamental en álgebra lineal. Vimos dos demostraciones, pero existen varias más. Discutimos brevemente algunas de sus aplicaciones, pero tiene otras tantas. De hecho, más adelante en el curso lo retomaremos para aplicarlo nuevamente.

Por ahora cambiaremos ligeramente de tema. De manera muy general, veremos cómo llevar matrices a otras matrices que sean más simples. En las siguientes entradas haremos esto mediante similaridades de matrices. Más adelante haremos esto mediante congruencias de matrices. Hacia la tercer unidad del curso encontraremos un resultado aún más restrictivo, en el que veremos que cualquier matriz simétrica real puede ser llevada a una matriz diagonal mediante una matriz que simultáneamente da una similaridad y una congruencia.

Tarea moral

  1. Encuentra el polinomio mínimo de la matriz $\begin{pmatrix}-3 & 1 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{pmatrix}$
  2. Encuentra la inversa de la siguiente matriz usando las técnica usada en esta entrada: $$\begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & 2\\ 2 & 2 & 1 \end{pmatrix}.$$
  3. Demuestra el corolario de matrices con entradas enteras. De hecho, muestra que es un si y sólo si: una matriz invertibles con entradas enteras cumple que su inversa tiene únicamente entradas enteras si y sólo si su determinante es $1$ ó $-1$.
  4. ¿Cómo son todas las matrices en $M_2(\mathbb{R})$ tales que $A^2=A$?
  5. ¿Cómo son todas las matrices en $M_3(\mathbb{R})$ de determinante $0$ tales que $A^3=O_3$?

Entradas relacionadas

Ecuaciones Diferenciales I: Valores y vectores propios para resolver sistemas lineales

En la vida real, te lo aseguro, no hay algo como el álgebra.
– Fran Lebowitz

Introducción

Ya hemos dado inicio con el desarrollo de métodos de resolución de sistemas lineales de primer orden. En la entrada anterior desarrollamos el método de eliminación de variables que, a pesar de ser muy limitado, es un método sencillo y práctico para resolver sistemas con dos ecuaciones diferenciales lineales de primer orden.

Debido a que un sistema lineal puede ser visto como una ecuación matricial los resultados de álgebra lineal sobre valores y vectores propios de matrices pueden ser aplicados aquí. En esta entrada daremos un breve repaso sobre estos conceptos y veremos cómo es que estos resultados nos pueden ayudar a determinar la solución general de algunos sistemas de ecuaciones diferenciales.

La teoría que desarrollaremos a continuación es aplicable a sistemas lineales homogéneos con coeficientes constantes.

Sistemas lineales homogéneos

Un sistema lineal homogéneo con coeficientes constantes es de la forma

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}y_{1} + a_{12}y_{2} + \cdots + a_{1n}y_{n} \\
y_{2}^{\prime}(t) &= a_{21}y_{1} + a_{22}y_{2} + \cdots + a_{2n}y_{n} \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}y_{1} + a_{n2}y_{2} + \cdots + a_{nn}y_{n} \label{1} \tag{1}
\end{align*}

Si $\mathbf{A}$ es la matriz de $n \times n$ con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

entonces el sistema lineal a resolver es

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

En la segunda entrada de esta unidad vimos que la solución general del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}e^{0t} + c_{2} \begin{pmatrix}
1 \\ 1 \\ 0
\end{pmatrix}e^{2t} + c_{3} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}e^{3t}$$

Y en la entrada anterior vimos que la solución del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t}$$

Aunque para el primer caso aún no sabemos cómo obtener esa solución lo que sabemos es que efectivamente corresponde a la solución general del sistema homogéneo. Notemos que cada vector solución es de la forma

$$\mathbf{Y}_{i} = \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix}e^{\lambda_{i}t}, \hspace{1cm} i = 1, 2 ,3$$

donde $k_{i}$ y $\lambda_{i}$, $i = 1, 2, 3$, son constantes. Lo mismo para el segundo caso, con $k_{i}$, $\lambda_{i}$, $i = 1, 2$, constantes. Esta particularidad nos hace preguntarnos si siempre es posible hallar una solución de la forma

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t} \label{4} \tag{4}$$

como solución general del sistema lineal (\ref{3}).

La respuesta es que sí, pero antes de continuar con nuestro desarrollo nos parece pertinente repasar brevemente algunos conceptos de Álgebra Lineal, en particular el de valores y vectores propios.

Valores y vectores propios

Sea $T: V \rightarrow W$ una transformación lineal, en álgebra lineal muchas veces resulta útil encontrar un vector $v$ en el espacio vectorial $V$ tal que $T\mathbf{v}$ y $\mathbf{v}$ sean paralelos, es decir, se busca un vector $\mathbf{v}$ y un escalar $\lambda$, tal que

$$T\mathbf{v} = \lambda \mathbf{v} \label{5} \tag{5}$$

Recordemos que si $\mathbf{v} \neq \mathbf{0}$ y $\lambda$ satisfacen la ecuación (\ref{5}), entonces $\lambda$ se denomina un valor característico o valor propio de $T$ y $\mathbf{v}$ un vector característico o vector propio de $T$ correspondiente al valor propio $\lambda$.

También recordemos que si $V$ tiene dimensión finita, entonces la transformación $T$ se puede representar por una matriz $\mathbf{A}_{T}$, de manera que se pueden definir los valores y vectores propios de esta matriz.

Denotaremos con $M_{n \times n}$ al conjunto de todas las matrices cuadradas de $n \times n$ con componentes reales y constantes.

Como nota interesante, los valores y vectores propios también son conocidos como valores y vectores característicos o eigenvalores y eigenvectores, donde el término eigen es un término alemán que significa propio. En este curso los llamaremos valores y vectores propios.

Recordemos nuevamente el concepto de matriz inversa.

Para el caso especial $\mathbf{A} = \mathbf{I}$, con $\mathbf{I}$ la matriz identidad, se tiene que para cualquier vector $\mathbf{v} \in V$

$$\mathbf{Av} = \mathbf{Iv} = \mathbf{v} \label{8} \tag{8}$$

Así, el único valor propio de $\mathbf{A}$ es $1$ y todo $\mathbf{v} \neq \mathbf{0} \in V$ es un vector propio de $\mathbf{I}$.

Otra observación interesante es que cualquier múltiplo de un vector propio de $\mathbf{A}$ es también un vector propio de $\mathbf{A}$, con el mismo valor propio.

$$\mathbf{A}(c \mathbf{v}) = c \mathbf{Av} = c \lambda \mathbf{v} = \lambda (c \mathbf{v}) \label{9} \tag{9}$$

Ecuación característica

Supongamos que $\lambda $ es un valor propio de $A$, entonces existe un vector diferente de cero

$$\mathbf{v} = \begin{pmatrix}
v_{1} \\ v_{2} \\ \vdots \\ v_{n}
\end{pmatrix} \neq \mathbf{0}$$

tal que

$$\mathbf{Av} = \lambda \mathbf{v} = \lambda \mathbf{Iv} \label{10} \tag{10}$$

Reescribiendo esto, se tiene

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{v} = \mathbf{0} \label{11} \tag{11}$$

Si $A$ es una matriz de $n \times n$, la ecuación anterior corresponde a un sistema homogéneo de $n$ ecuaciones con las incógnitas $v_{1}, v_{2}, \cdots, v_{n}$. Como se ha supuesto que $ \mathbf{v} \neq \mathbf{0}$, entonces el sistema no tiene solución trivial y por tanto el determinante de (\ref{11}) debe ser cero.

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{12} \tag{12}$$

De manera equivalente, si ocurre que $|\mathbf{A} -\lambda \mathbf{I}| \neq 0$, entonces la única solución a (\ref{11}) es la trivial $\mathbf{v} = \mathbf{0}$, lo que significa que $\lambda$ no es un valor propio de $A$.

Estos resultados quedan establecidos en el siguiente teorema.

La relación (\ref{13}) es muy importante, tanto que merece nombres particulares.

El polinomio $P(\lambda )$ es del mismo grado que el número de filas y columnas de la matriz $\mathbf{A}$. Si $\mathbf{A} \in M_{n \times n}$, entonces $P(\lambda)$ es un polinomio de grado $n$ en $\lambda$. Por ejemplo, si

$$\mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \label{14} \tag{14}$$

entonces,

$$\mathbf{A} -\lambda \mathbf{I} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} -\begin{pmatrix}
\lambda & 0 \\ 0 & \lambda
\end{pmatrix} = \begin{pmatrix}
a -\lambda & b \\ c & d -\lambda
\end{pmatrix} \label{15} \tag{15}$$

y

\begin{align*}
P(\lambda ) &= |\mathbf{A} -\lambda \mathbf{I}| \\
&= (a -\lambda)(d -\lambda) -bc \\
&= \lambda^{2} -(a + d) \lambda + (ad -bc) \label{16} \tag{16}
\end{align*}

La matriz es de $2 \times 2$ y el polinomio característico es un polinomio de grado $2$.

El teorema fundamental del álgebra nos dice que cualquier polinomio de grado $n$ con coeficientes reales o complejos tiene exactamente $n$ raíces contando multiplicidades y dado que cualquier valor propio de $\mathbf{A}$ es una raíz de la ecuación característica de $\mathbf{A}$, se concluye que, contando multiplicidades, toda matriz $\mathbf{A} \in M_{n \times n}$ tiene exactamente $n$ valores propios.

Realicemos dos ejemplos sencillos en donde determinemos los valores y vectores propios de una matriz. Uno en donde los valores propios sean distintos (con multiplicidad $1$) y uno en donde los valores propios sean números complejos.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
-81 & 16 \\ -420 & 83
\end{pmatrix}$$

Solución: De acuerdo a (\ref{13}), determinemos la ecuación característica.

$$\begin{vmatrix}
-81 -\lambda & 16 \\ -420 & 83 -\lambda
\end{vmatrix} = (-81 -\lambda)(83 -\lambda) -16(-420) = 0$$

Reordenando obtenemos que la ecuación característica es

$$\lambda^{2} -2 \lambda -3 = 0$$

y el polinomio característico es

$$P(\lambda) = \lambda^{2} -2 \lambda -3$$

Resolviendo para $\lambda$ se obtienen las raíces $\lambda_{1} = -1$ y $\lambda_{2} = 3$. Para obtener los vectores propios buscamos un vector $\mathbf{v} \neq 0$, tal que se cumpla (\ref{11}) para cada valor propio $\lambda$. Comencemos con $\lambda_{1}$.

Caso 1: $\lambda_{1} = -1$.

$$\begin{pmatrix}
-81 -(-1) & 16 \\ -420 & 83 -(-1)
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-80 & 16 \\ -420 & 84
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Este resultado lo podemos escribir como las siguientes dos ecuaciones.

\begin{align*}
-80 v_{1} + 16 v_{2} &= 0 \\
-420 v_{1} + 84 v_{2} &= 0
\end{align*}

Que en realidad corresponden a una sola.

\begin{align*}
-5v_{1} + v_{2} &= 0 \\
v_{2} &= 5v_{1}
\end{align*}

Si elegimos $v_{1} = 1$, entonces $v_{2} = 5$, así el primer vector propio es

$$\mathbf{v}_{1} = \begin{pmatrix}
1 \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 3$.

$$\begin{pmatrix}
-81 -3 & 16 \\ -420 & 83-3
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-84 & 16 \\ -420 & 80
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
-21v_{1} + 4v_{2} &= 0 \\
v_{2} &= \dfrac{21}{4}v_{1}
\end{align*}

Por conveniencia elegimos $v_{1} = 4$, entonces $v_{2} = 21$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
4 \\ 21
\end{pmatrix}$$

En conclusión, los valores y vectores propios de la matriz $\mathbf{A}$ son $\lambda_{1} = -1$, $\lambda_{2} = 3$, $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ y $\mathbf{v}_{2} = \begin{pmatrix} 4 \\ 21 \end{pmatrix}$, respectivamente.

$\square$

Realicemos el segundo ejemplo.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
2 & -1 \\ 5 & -2
\end{pmatrix}$$

Solución: Determinemos la ecuación característica.

$$\begin{vmatrix}
2 -\lambda & -1 \\ 5 & -2 -\lambda
\end{vmatrix} = (2 -\lambda)(-2 -\lambda) + 5 = 0$$

La ecuación característica es

$$\lambda^{2} + 1 = 0$$

De donde $\lambda_{1} = i$ y $\lambda_{2} = -i$. Determinemos los vectores propios.

Caso 1: $\lambda_{1} = i$.

$$\begin{pmatrix}
2 -i & -1 \\ 5 & -2 -i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 -i)v_{1} -v_{2} &= 0 \\
5v_{1} -(2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 + i$ y $v_{2} = 5$, así

$$\mathbf{v}_{1} = \begin{pmatrix}
2 + i \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -i$

$$\begin{pmatrix}
2 + i & -1 \\ 5 & -2 + i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 + i) v_{1} -v_{2} &= 0 \\
5v_{1} + (-2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 -i$ y $v_{2} = 5$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
2 -i \\ 5
\end{pmatrix}$$

$\square$

En caso de requerir conocer más a fondo sobre el algoritmo que llevamos a cabo para obtener los valores y vectores propios de una matriz se recomienda revisar directamente en el curso de Álgebra Lineal I. Recordemos que aquí sólo estamos haciendo un breve repaso.

Para concluir con nuestro repaso, enunciemos un teorema de suma importancia que nos será de utilidad mas adelante. Haremos la demostración por inducción.

Demostración: Como el caso $m = 1$ se trata de un solo vector es evidente que se satisface el teorema, hagamos el caso $m = 2$, para ello consideremos la combinación lineal

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} = \mathbf{0} \label{17} \tag{17}$$

Multipliquemos ambos lados de la ecuación por la matriz $\mathbf{A}$.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} = \mathbf{0} \label{18} \tag{18}$$

Como $\mathbf{Av}_{i} = \lambda_{i}\mathbf{v}_{i}$, para $i = 1, 2$, entonces

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} = \mathbf{0} \label{19} \tag{19}$$

A la ecuación (\ref{17}) la multiplicamos por $\lambda_{1}$ y la restamos de la ecuación (\ref{19}).

$$(c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2}) -(c_{1} \lambda_{1} \mathbf{v}_{1} -c_{2} \lambda_{1} \mathbf{v}_{2}) = \mathbf{0}$$

que se reduce a

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} = \mathbf{0} \label{20} \tag{20}$$

Como $\mathbf{v}_{2} \neq \mathbf{0}$ por definición de vector característico y por hipótesis $\lambda_{1} \neq \lambda_{2}$, entonces se concluye que $c_{2} = 0$, sustituyendo en (\ref{17}) se ve que $c_{1} = 0$, por tanto se cumple el teorema para $m = 2$, es decir, $\mathbf{v}_{1}$ y $\mathbf{v}_{2}$ son linealmente independientes.

Ahora supongamos que el teorema es cierto para $m = n$, es decir, cualquier conjunto de $n$ vectores propios de $\mathbf{A}$ con valores propios diferentes es linealmente independiente. Hay que demostrar que cualquier conjunto de $n + 1$ vectores propios de $\mathbf{A}$ con valores propios diferentes es también linealmente independiente. La demostración sigue el mismo procedimiento que como lo hicimos para $m = 2$, consideremos la siguiente combinación lineal.

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{21} \tag{21}$$

Multipliquemos por $\mathbf{A}$ en ambos lados.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} + \cdots + c_{n + 1} \mathbf{Av}_{n + 1} = \mathbf{0} \label{22} \tag{22}$$

Aplicando $\mathbf{Av}_{i} = \lambda_{i} \mathbf{v}_{1}$ para $i = 1, 2, 3, \cdots, n + 1$, se tiene

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \lambda_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{23} \tag{23}$$

Si se multiplica ambos lados de la ecuación (\ref{21}) por $\lambda_{1}$ y se resta de (\ref{23}), se obtiene

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} + c_{3}(\lambda_{3} -\lambda_{1}) \mathbf{v}_{3} + \cdots + c_{n + 1}(\lambda_{n + 1} -\lambda_{1})\mathbf{v}_{n + 1} = \mathbf{0} \label{24} \tag{24}$$

Pero $\mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son vectores propios de $\mathbf{A}$ con valores propios distintos $\lambda_{2}, \lambda_{3}, \cdots, \lambda_{n + 1}$, respectivamente. Por hipótesis de inducción, los vectores son linealmente independientes, así que

$$c_{2}(\lambda_{2} -\lambda_{1}) = 0, \hspace{1cm} c_{3}(\lambda_{3} -\lambda_{1}) = 0, \hspace{1cm} \cdots, \hspace{1cm} c_{n + 1}(\lambda_{n + 1} -\lambda_{1}) = 0$$

Como los valores propios son distintos entre sí, entonces necesariamente

$$c_{2} = c_{3} = \cdots = c_{n + 1} = 0$$

Con este resultado la ecuación (\ref{21}) obliga a que $c_{1}$ sea cero. Por lo tanto, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son linealmente independientes. De esta manera queda demostrado el teorema.

$\square$

En conclusión, vectores propios correspondientes a valores propios distintos son linealmente independientes.

Con este breve repaso en mente regresemos a los sistemas de ecuaciones diferenciales.

Valores y vectores propios en sistemas de ecuaciones diferenciales

Ahora que hemos recordado las definiciones de valores y vectores propios y algunas propiedades veamos cómo es que estos conceptos son útiles para resolver sistemas lineales de primer orden homogéneos.

Al inicio de la entrada decíamos que es posible encontrar soluciones de la forma (\ref{4}).

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t}$$

Si derivamos este vector, se obtiene

$$\mathbf{Y}^{\prime} = \mathbf{K} \lambda e^{\lambda t} \label{25} \tag{25}$$

Sustituyamos en el sistema homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$.

$$\mathbf{K} \lambda e^{\lambda t} = \mathbf{AK}e^{\lambda t} \label{26} \tag{26}$$

Si dividimos entre $e^{\lambda t}$ y reordenamos, se tiene

$$\mathbf{AK} = \lambda \mathbf{K}$$

o bien,

$$\mathbf{AK} -\lambda \mathbf{K} = \mathbf{0}$$

Debido a que $\mathbf{K} = \mathbf{IK}$, con $\mathbf{I}$ la matriz identidad, la última expresión se puede escribir como

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0}\label{27} \tag{27}$$

Si $\mathbf{A}$ es la matriz dada en (\ref{2}), entonces la ecuación matricial (\ref{27}) es equivalente a las $n$ ecuaciones algebraicas simultáneas

\begin{align*}
(a_{11} -\lambda)k_{1} + \hspace{1.2cm} a_{12}k_{2} + \cdots + \hspace{1.2cm} a_{1n}k_{n} &= 0 \\
a_{21}k_{1} + (a_{22} -\lambda)k_{2} + \cdots + \hspace{1.2cm} a_{2n}k_{n} &= 0 \\
\vdots \\
a_{n1}k_{1} + \hspace{1.2cm} a_{n2}k_{2} + \cdots + (a_{nn} -\lambda)k_{n} &= 0 \label{28} \tag{28}
\end{align*}

Si queremos encontrar soluciones $\mathbf{Y}(t)$ como (\ref{4}), necesitamos primero encontrar una solución no trivial del sistema (\ref{28}), de lo visto en nuestro repaso de valores y vectores propios, si la solución debe ser la no trivial, entonces se requiere que el determinante sea igual a cero, esto es

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{29} \tag{29}$$

Esta ecuación polinomial corresponde a la ecuación característica de la matriz $\mathbf{A}$. Sus soluciones son los valores propios de $\mathbf{A}$. Una solución $\mathbf{K} \neq 0$ de (\ref{27}) correspondiente a un valor propio $\lambda$ es el vector propio de $\mathbf{A}$.

La ecuación (\ref{29}) al tratarse de una ecuación polinomial existen tres casos posibles, cuando los valores propios son reales y distintos, cuando son repetidos y cuando son complejos. Para cada caso existe una forma particular de la solución de (\ref{3}).

Para concluir con esta entrada demostremos un resultado que establece la forma de la solución general del sistema lineal (\ref{3}).

Demostración: Definamos las funciones

$$\mathbf{Y}_{1}(t) = e^{\lambda_{1}t}\mathbf{K}_{1}, \hspace{1cm} \mathbf{Y}_{2}(t) = e^{\lambda_{2}t}\mathbf{K}_{2}, \hspace{1cm} \cdots, \hspace{1cm} \mathbf{Y}_{n}(t) = e^{\lambda_{n}t} \mathbf{K}_{n}$$

Notemos que para la $i$-ésima función $\mathbf{Y}_{i}(t) = e^{\lambda_{i}t} \mathbf{K}_{i}$ se cumple lo siguiente.

$$\mathbf{Y}^{\prime}_{i} = e^{\lambda_{i}t} (\lambda_{i} \mathbf{K}_{i}) = e^{\lambda_{i}t} (\mathbf{AK}_{i}) = \mathbf{AY}_{i} \label{32} \tag{32}$$

En donde se hecho uso de la relación (\ref{6}). Esto nos muestra que $\mathbf{Y}_{i}(t)$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ para cada $i = 1, 2, \cdots, n$. Basta mostrar que el Wronskiano es distinto de cero para probar que las funciones definidas forman un conjunto fundamental de soluciones. El Wronskiano está dado por

\begin{align*}
W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots,\mathbf{Y}_{n}) &= \begin{vmatrix} e^{\lambda_{1}t} \mathbf{K}_{1} & e^{\lambda_{2}t} \mathbf{K}_{2} & \cdots & e^{\lambda_{n}t} \mathbf{K}_{n} \end{vmatrix} \\
&= e^{(\lambda_{1} + \lambda_{2} + \cdots + \lambda_{n})t} \begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \label{33} \tag{33}
\end{align*}

Como la exponencial nunca se hace cero y por hipótesis los vectores $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$ son linealmente independientes, es decir, el determinante nunca es cero

$$\begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \neq 0 \label{34} \tag{34}$$

entonces el Wronskiano es distinto de cero. Por el teorema de solución general de un sistema homogéneo concluimos que el conjunto

$$S = \{e^{\lambda_{1}t} \mathbf{K}_{1}, e^{\lambda_{2}t} \mathbf{K}_{2}, \cdots, e^{\lambda_{n}t} \mathbf{K}_{n}\}$$

es un conjunto fundamental de soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ y la solución general es

$$\mathbf{Y}(t) = c_{1} e^{\lambda_{1}t} \mathbf{K}_{1} + c_{2} e^{\lambda_{2}t} \mathbf{K}_{2} + \cdots + c_{n} e^{\lambda_{n}t} \mathbf{K}_{n}$$

con $c_{1}, c_{2}, \cdots, c_{n}$ constantes arbitrarias.

$\square$

En la siguiente entrada aplicaremos todo esto en el desarrollo de un nuevo método de resolución de sistemas lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener los valores y vectores propios de las siguientes matrices.
  • $\mathbf{A} = \begin{pmatrix}
    -62 & -20 \\ 192 & 62
    \end{pmatrix}$
  • $\mathbf{A} = \begin{pmatrix}
    -2 & 5 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1
    \end{pmatrix}$
  1. Demostrar que para cualesquiera números reales $\alpha$ y $\beta$, la matriz $$\mathbf{A} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$ tiene valores propios $\alpha \pm i\beta$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar lo siguiente:
  • Demostrar que $\mathbf{A}^{-1}$ (la matriz inversa de $\mathbf{A}$) existe si y sólo si $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ son todos distintos de cero.
  • Si $\mathbf{A}^{-1}$ existe, demostrar que los valores propios de $\mathbf{A}^{-1}$ son $\dfrac{1}{\lambda_{1}}, \dfrac{1}{\lambda_{2}}, \cdots, \dfrac{1}{\lambda_{n}}$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que la matriz $\mathbf{A} -\alpha \mathbf{I}$ tiene valores propios $\lambda_{1} -\alpha, \lambda_{2} -\alpha, \cdots, \lambda_{n} -\alpha$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que los valores propios de $\mathbf{A}^{m}$ son $\lambda^{m}_{1}, \lambda^{m}_{2}, \cdots, \lambda^{m}_{n}$ para $m = 1, 2, 3, \cdots$.

    Recuerda que para calcular la potencia de una matriz, debemos multiplicar la matriz por ella misma tantas veces como indique el exponente, por ejemplo
    $$\mathbf{A}^{5} = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}$$

Más adelante…

Un nuevo método para resolver sistemas de ecuaciones diferenciales lineales de primer orden homogéneas con coeficientes constantes es el que estamos por desarrollar. Dicho método involucra obtener los valores y vectores propios de la matriz que conforma al sistema lineal, es por ello que hemos dedicado esta entrada en hacer un breve repaso sobre estos conceptos y hemos visto cómo es que se ven involucrados en la resolución de estos sistemas.

Como vimos, los valores propios se obtienen de encontrar las raíces del polinomio característico lo que significa que se pueden tener raíces reales y distintas, raíces con multiplicidad mayor a uno, es decir, que se repiten o raíces complejas, para cada caso existe una forma distinta de obtener la solución de los sistemas lineales homogéneos $\mathbf{Y}^{\prime} = \mathbf{AY}$.

En las próximas tres entradas estudiaremos cada caso. Comenzaremos con el caso en el que los valores propios del sistema son todos reales y distintos entre sí.

Entradas relacionadas

Ecuaciones Diferenciales I: Sistemas de ecuaciones diferenciales

El conocimiento de las matemáticas añade vigor a la mente,
la libera del prejuicio, credulidad y superstición.
– John Arbuthnot

Introducción

¡Bienvenidos a la tercera unidad del curso de Ecuaciones Diferenciales I!.

En esta unidad estudiaremos los sistemas de ecuaciones diferenciales lineales de primer orden.

En la unidad 1 de este curso estudiamos el sistema Depredador – Presa, en nuestro análisis el modelo matemático determinado fue el siguiente sistema de ecuaciones diferenciales.

\begin{align*}
\dfrac{dC}{dt} &= aC(t) -bC(t)Z(t) \\
\dfrac{dZ}{dt} &= -cZ(t) + dC(t)Z(t)
\end{align*}

Puedes revisar la entrada correspondiente para recordar que representa cada una de las variables y constantes.

Este sistema fue nuestro primer ejemplo de un sistema de ecuaciones diferenciales y en esta unidad nuestro propósito será desarrollar distintos métodos que nos permitan resolver sistemas de hasta $n > 2$ ecuaciones diferenciales acopladas.

Es importante mencionar que a lo largo de esta unidad usaremos un enfoque matricial, por lo que es recomendable tener presente, al menos, la teoría básica sobre matrices y sus operaciones y propiedades vistas en el curso de Álgebra Lineal I.

En esta entrada comenzaremos por definir los que es un sistema de ecuaciones diferenciales, sus propiedades y veremos cómo es que la notación matricial nos puede ayudar.

¡Comencemos!

Sistemas de ecuaciones diferenciales lineales de primer orden

En esta unidad, a menos que indiquemos lo contrario, la variable independiente se denotará por $t$, mientras que las variables dependientes de $t$ por

$$y_{1} = y_{1}(t), \hspace{0.5cm} y_{2} = y_{2}(t), \hspace{0.5cm} \cdots, \hspace{0.5cm} y_{n} = y_{n}(t)$$

y las funciones $F_{i}$, $i = 1, 2, 3, \cdots, n$ son funciones con valores reales que dependen de las $n + 1$ variables en un intervalo $\delta$.

Notación: Para mayor comodidad, en esta unidad usaremos la notación de prima para la derivada.

$$\dfrac{dy}{dt} = y^{\prime}(t) \label{2} \tag{2}$$

Con esta notación el sistema de ecuaciones (\ref{1}) se puede escribir de la siguiente manera.

\begin{align*}
y_{1}^{\prime}(t) &= F_{1}(t, y_{1}, y_{2}, \cdots, y_{n}) \\
y_{2}^{\prime}(t) &= F_{2}(t, y_{1}, y_{2}, \cdots, y_{n}) \\
&\vdots \\
y_{n}^{\prime}(t) &= F_{n}(t, y_{1}, y_{2}, \cdots, y_{n}) \label{3} \tag{3}
\end{align*}

En el sistema lineal (\ref{5}) se supone que los coeficientes $a_{ij}(t)$, así como las funciones $g_{i}(t)$, $i, j = \{1, 2, 3, \cdots, n \}$ son continuas en un intervalo común $\delta$.

Ejemplo: El sistema de ecuaciones diferenciales

\begin{align*}
y_{1}^{\prime}(t) &= -3y_{1} + 4y_{2} -9y_{3} \\
y_{2}^{\prime}(t) &= 6y_{1} -y_{2} \\
y_{3}^{\prime}(t) &= 10y_{1} + 4y_{2} + 3y_{3}
\end{align*}

es un sistema lineal de primer orden compuesto por tres ecuaciones diferenciales lineales de primer orden cada una.

Notación: Si el sistema es de dos o tres ecuaciones diferenciales denotaremos por $x(t), y(t)$ o $x(t), y(t)$, $z(t)$ a las variables dependientes de $t$, respectivamente.

Considerando esta notación, el sistema del ejemplo anterior se puede escribir de la siguiente manera.

\begin{align*}
x^{\prime}(t) &= -3x + 4y -9z\\
y^{\prime}(t) &= 6x -y \\
z^{\prime}(t) &= 10x + 4y + 3z
\end{align*}

Problema de valores iniciales

Es posible demostrar la existencia y unicidad de soluciones de sistemas tanto lineales como no lineales (caso general) y de soluciones a sistemas lineales homogéneos y no homogéneos (casos particulares), sin embargo las demostraciones de estos teoremas suelen ser bastantes extensas y complejas para nosotros en estos momentos, ya que requieren de herramientas matemáticas que aún desconocemos. A continuación enunciamos el teorema de existencia y unicidad para el caso general y para el caso lineal homogéneo.

En este teorema la región $R$ se construye con el producto cartesiano de los intervalos abiertos en los que $t_{0} \in \delta$, $b_{1} \in \delta_{1}$, $b_{2} \in \delta_{2}$, $\cdots$, $b_{n} \in \delta_{n}$, así $(t_{0}, b_{1}, b_{2}, \cdots, b_{n}) \in R$.

Para el caso particular de sistemas lineales homogéneos, el teorema de existencia y unicidad se puede enunciar de la siguiente forma.

Como mencionamos antes, es complejo demostrar estos teoremas, sin embargo más adelante en esta unidad los retomaremos y los justificaremos. Por ahora hay que tener en cuenta que para el caso general se requiere de volver a algunos de los conceptos vistos para demostrar el teorema de existencia y unicidad de Picard – Lindelöf de la primera unidad y para los casos particulares ¡la definición de exponencial de una matriz nos ayudará a demostrarlos!.

Ahora veamos la utilidad de la notación matricial.

Sistemas lineales de primer orden en forma matricial

Daremos por hecho que se conocen las operaciones y propiedades básicas de las matrices, así como algunas propiedades de espacios vectoriales vistas en el curso de Álgebra Lineal I.

Definamos las siguientes matrices de funciones.

$$\mathbf{Y}(t) = \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)
\end{pmatrix} \hspace{1cm} \Rightarrow \hspace{1cm} \mathbf{Y^{\prime}}(t) = \begin{pmatrix}
y_{1}^{\prime}(t) \\ y_{2}^{\prime}(t) \\ \vdots \\ y_{n}^{\prime}(t)
\end{pmatrix} $$

y

$$\mathbf{A}(t) = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix}, \hspace{1cm}
\mathbf{G}(t) = \begin{pmatrix}
g_{1}(t) \\ g_{2}(t) \\ \vdots \\ g_{n}(t)
\end{pmatrix}$$

Usando estas matrices, el sistema de ecuaciones diferenciales lineales de primer orden (\ref{5}) se puede escribir de la siguiente manera.

$$\begin{pmatrix}
y_{1}^{\prime}(t) \\ y_{2}^{\prime}(t) \\ \vdots \\ y_{n}^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)
\end{pmatrix} + \begin{pmatrix}
g_{1}(t) \\ g_{2}(t) \\ \vdots \\ g_{n}(t)
\end{pmatrix} \label{8} \tag{8}$$

o bien,

$$\mathbf{Y^{\prime}} = \mathbf{AY} + \mathbf{G} \label{9} \tag{9}$$

Si el sistema es homogéneo, entonces escribimos

$$\mathbf{Y^{\prime}} = \mathbf{AY} \label{10} \tag{10}$$

La solución de un sistema lineal la podemos definir como sigue.

Usando la notación matricial, un PVI se puede escribir de la siguiente manera.

El teorema de existencia y unicidad para el caso lineal se puede enunciar de la siguiente forma.

Verifica que el sistema de ecuaciones diferenciales usado como ejemplo al inicio de la entrada se puede escribir en notación matricial de la siguiente forma.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-3 & 4 & -9 \\ 6 & -1 & 0 \\ 10 & 4 & 3
\end{pmatrix} \mathbf{Y}$$

Veamos un ejemplo más.

Ejemplo: Escribir el siguiente sistema lineal en forma matricial.

\begin{align*}
x^{\prime}(t) &= x -y + z + t + 1 \\
y^{\prime}(t) &= 2x + y -z -3t^{2} \\
z^{\prime}(t) &= x + y + z + t^{2} -t + 2
\end{align*}

Solución: Primero escribamos cada lado de las ecuaciones en una matriz.

$$\begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t) \\ z^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
x -y + z + t -1 \\ 2x + y -z -3t^{2} \\ x + y + z + t^{2} -t + 2
\end{pmatrix}$$

La matriz derecha la separamos en dos, una que contenga a las variables dependientes y otra a la variable independiente.

$$\begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t) \\ z^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
x -y + z \\ 2x + y -z \\ x + y + z
\end{pmatrix} + \begin{pmatrix}
t -1 \\ -3t^{2} \\ t^{2} -t + 2
\end{pmatrix}$$

Finalmente podemos escribir

$$\begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t) \\ z^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 1
\end{pmatrix} \begin{pmatrix}
x \\ y \\ z
\end{pmatrix} + \begin{pmatrix}
t -1 \\ -3t^{2} \\ t^{2} -t + 2
\end{pmatrix}$$

O bien,

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 1
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
t -1 \\ -3t^{2} \\ t^{2} -t + 2
\end{pmatrix}$$

Donde,

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{G}(t) = \begin{pmatrix} t -1 \\ -3t^{2} \\ t^{2} -t + 2 \end{pmatrix}$$

$\square$

Usando la notación matricial verifiquemos que un vector solución en efecto es solución de un sistema lineal.

Ejemplo: Probar que el vector

$$\mathbf{Y} = \begin{pmatrix}
5 \cos(t) \\ 3 \cos(t) -\sin(t)
\end{pmatrix}e^{t}$$

es solución del sistema lineal

$$\begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
-2 & 5 \\ -2 & 4
\end{pmatrix} \begin{pmatrix}
x(t) \\ y(t)
\end{pmatrix}$$

Solución: El vector dado es

$$\mathbf{Y} = \begin{pmatrix}
x(t) \\ y(t)
\end{pmatrix} = \begin{pmatrix}
5e^{t} \cos(t) \\ 3e^{t} \cos(t) -e^{t} \sin(t)
\end{pmatrix}$$

Por una lado, derivemos el vector

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
5e^{t} \cos(t) -5e^{t} \sin(t) \\ 3e^{t} \cos(t) -3e^{t} \sin(t) -e^{t} \sin(t) -e^{t} \cos(t)
\end{pmatrix}$$

Esto es,

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
5 \cos(t) -5 \sin(t) \\ 2 \cos(t) -4 \sin(t)
\end{pmatrix} e^{t}$$

Por otro lado, sustituyamos los valores de $x(t)$ y $y(t)$ en el sistema y veamos si se obtiene el mismo resultado.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-2 & 5 \\ -2 & 4
\end{pmatrix} \begin{pmatrix}
5e^{t} \cos(t) \\ 3e^{t} \cos(t) -e^{t} \sin(t)
\end{pmatrix} = \begin{pmatrix}
-10e^{t} \cos(t) + 15e^{t} \cos(t) -5e^{t} \sin(t) \\ -10e^{t} \cos(t) + 12e^{t} \cos(t) -4e^{t} \sin(t)
\end{pmatrix}$$

Esto es,

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
5 \cos(t) -5 \sin(t) \\ 2 \cos(t) -4 \sin(t)
\end{pmatrix} e^{t}$$

Como el resultado es el mismo concluimos que, en efecto, el vector $\mathbf{Y}$ es solución del sistema lineal dado.

$\square$

Para concluir con esta entrada veamos un resultado interesante que nos conecta con la unidad anterior.

¡Una ecuación diferencial de orden $n \geq 2$ lineal puede ser reescrita como un sistema lineal de $n$ ecuaciones de primer orden!.

Reducción de una ecuación de orden $n$ a un sistema de ecuaciones

Consideremos una ecuación diferencial lineal de orden $n$.

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x) \label{13} \tag{13}$$

Para adaptar este ejercicio a la notación que estamos usando en esta entrada tomemos a $x = x(t)$ como la variable dependiente de $t$ y dividamos toda la ecuación por $a_{n}(t) \neq 0$, tal que se obtenga la siguiente ecuación de orden $n$.

$$\dfrac{dx^{n}}{dt^{n}} + b_{1}(t) \dfrac{d^{n -1}x}{dt^{n -1}} + \cdots + b_{n -2}(t) \dfrac{d^{2}x}{dt^{2}} + b_{n -1}(t) \dfrac{dx}{dt} + b_{n}(t)x = g(t) \label{14} \tag{14}$$

Ahora realicemos las siguientes definiciones.

$$y_{1} = x, \hspace{1cm} y_{2} = \dfrac{dx}{dt}, \hspace{1cm} y_{3} = \dfrac{d^{2}x}{dt^{2}}, \hspace{1cm} \cdots, \hspace{1cm} y_{n} = \dfrac{d^{n -1}x}{dt^{n -1}} \label{15} \tag{15}$$

y notemos que

$$y^{\prime}_{1} = \dfrac{dx}{dt}, \hspace{1cm} y^{\prime}_{2} = \dfrac{d^{2}x}{dt^{2}}, \hspace{1cm} y^{\prime}_{3} = \dfrac{d^{3}x}{dt^{3}}, \hspace{1cm} \cdots, \hspace{1cm} y^{\prime}_{n -1} = \dfrac{d^{n -1}x}{dt^{n -1}} \label{16} \tag{16}$$

De los resultados (\ref{15}) y (\ref{16}) obtenemos que

$$y^{\prime}_{1} = y_{2}, \hspace{1cm} y^{\prime}_{2} = y_{3}, \hspace{1cm} y^{\prime}_{3} = y_{4}, \hspace{1cm} \cdots, \hspace{1cm} y^{\prime}_{n -1} = y_{n} \label{17} \tag{17}$$

Para obtener $y^{\prime}_{n}$ sólo despejamos de la ecuación diferencial (\ref{14}).

$$y^{\prime}_{n} = \dfrac{d^{n}x}{dt^{n}} = g(t) -b_{1}(t) \dfrac{d^{n -1}x}{dt^{n -1}} -\cdots -b_{n -2}(t) \dfrac{d^{2}x}{dt^{2}} -b_{n -1}(t) \dfrac{dx}{dt} -b_{n}(t)x$$

Si usamos (\ref{15}) podemos escribir

$$y^{\prime}_{n} = g(t) -b_{1}(t)y_{n} -\cdots -b_{n -2}(t)y_{3} -b_{n -1}(t)y_{2} -b_{n}(t)y_{1} \label{18} \tag{18}$$

Con estos resultados nos damos cuenta que hemos formado un sistema lineal de $n$ ecuaciones diferenciales.

\begin{align*}
y^{\prime}_{1} &= y_{2} \\
y^{\prime}_{2} &= y_{3} \\
y^{\prime}_{3} &= y_{4} \\
&\vdots \\
y^{\prime}_{n -1} &= y_{n} \\
y^{\prime}_{n} &= g(t) -b_{1}(t)y_{n} -\cdots -b_{n -2}(t)y_{3} -b_{n -1}(t)y_{2} -b_{n}(t)y_{1}
\end{align*}

Usando la notación matricial obtenemos finalmente que

$$\begin{pmatrix}
y^{\prime}_{1}(t) \\ y^{\prime}_{2}(t) \\ \vdots \\ y^{\prime}_{n -1}(t) \\ y^{\prime}_{n}(t)
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -b_{n}(t) & -b_{n-1}(t) & -b_{n-2}(t) & \cdots & -b_{1}(t)
\end{pmatrix} \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n -1}(t) \\ y_{n}(t)
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ \vdots \\ 0 \\ g(t)
\end{pmatrix}$$

Esto por supuesto trae muchas ventajas, ya que en ocasiones será mucho más sencillo resolver un sistema de $n$ ecuaciones con los métodos que veremos más adelante que intentar resolver la ecuación de orden $n$ con los métodos desarrollados en la unidad anterior.

Para que quede más claro el procedimiento anterior realicemos un ejemplo.

Ejemplo: Escribir la ecuación diferencial de orden $n = 4$

$$\dfrac{d^{4}x}{dt^{4}} + 12 \dfrac{d^{3}x}{dt^{3}} -5 \dfrac{d^{2}x}{dt^{2}} + 8x = 2 \cos(t)$$

en un sistema lineal usando notación matricial.

Solución: Aplicamos las definiciones de (\ref{15}) y (\ref{16}).

$$y_{1} = x, \hspace{1cm} y_{2} = \dfrac{dx}{dt} = y^{\prime}_{1}, \hspace{1cm} y_{3} = \dfrac{d^{2}x}{dt^{2}} = y^{\prime}_{2} \hspace{1cm} y \hspace{1cm} y_{4} = \dfrac{d^{3}x}{dt^{3}} = y^{\prime}_{3}$$

Y de la ecuación diferencial obtenemos que

$$\dfrac{d^{4}x}{dt^{4}} = 2 \cos(t) -12y_{4} + 5y_{3} -8y_{1} = y^{\prime}_{4}$$

El sistema que se forma, es

\begin{align*}
y^{\prime}_{1} &= y_{2} \\
y^{\prime}_{2} &= y_{3} \\
y^{\prime}_{3} &= y_{4} \\
y^{\prime}_{4} &= 2 \cos(t) -12y_{4} + 5y_{3} -8y_{1}
\end{align*}

Por lo tanto, la ecuación diferencial de orden $4$ es equivalente al sistema lineal de $4$ ecuaciones diferenciales

$$\begin{pmatrix}
y^{\prime}_{1}(t) \\ y^{\prime}_{2}(t) \\ y^{\prime}_{3}(t) \\ y^{\prime}_{4}(t)
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -8 & 0 & 5 & -12
\end{pmatrix} \begin{pmatrix}
y_{1} \\ y_{2} \\ y_{3} \\ y_{4}
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ 0 \\ 2 \cos (t)
\end{pmatrix}$$

$\square$

Hemos concluido con esta entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Escribir los siguientes sistemas lineales en forma matricial.
  • $\begin{align*}
    x^{\prime}(t) &= 3x -5y \\
    y^{\prime}(t) &= 4x + 8y
    \end{align*}$
  • $\begin{align*}
    x^{\prime}(t) &= -3x + 4y + e^{-t} \sin(2t) \\
    y^{\prime}(t) &= 5x + 9z + 4e^{-t} \cos(2t) \\
    z^{\prime}(t) &= y + 6z -e^{-t}
    \end{align*}$
  1. Reescribir los siguientes sistemas lineales sin el uso de matrices.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    7 & 5 & -9 \\ 4 & 1 & 1 \\ 0 & -2 & 3 \\
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    0 \\ 2 \\ 1
    \end{pmatrix} e^{5t} -\begin{pmatrix}
    8 \\ 0 \\ 3
    \end{pmatrix} e^{-2t}$
  • $\begin{pmatrix}
    x^{\prime}(t) \\ y^{\prime}(t) \\ z^{\prime}(t)
    \end{pmatrix} = \begin{pmatrix}
    1 & -1 & 2 \\ 3 & -4 & 1 \\ -2 & 5 & 6
    \end{pmatrix} \begin{pmatrix}
    x \\ y \\ z
    \end{pmatrix} + \begin{pmatrix}
    1 \\ 2 \\ 2
    \end{pmatrix} e^{-t} -\begin{pmatrix}
    3 \\ -1 \\ 1
    \end{pmatrix} t$
  1. Probar que el vector dado $\mathbf{Y}$ es solución del sistema lineal correspondiente.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 1 \\ -1 & 0
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
    1 \\ 3
    \end{pmatrix} e^{t} + \begin{pmatrix}
    4 \\ -4
    \end{pmatrix} te^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & -1
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
    \sin(t) \\ -\dfrac{1}{2} \sin(t) -\dfrac{1}{2} \cos(t) \\ -\sin(t) + \cos(t)
    \end{pmatrix}$
  1. Escribir las siguientes ecuaciones diferenciales de orden superior en un sistema lineal usando notación matricial.
  • $\dfrac{d^{4}x}{dt^{4}} -10 \dfrac{d^{3}x}{dt^{3}} + 35 \dfrac{d^{2}x}{dt^{2}} -50 \dfrac{dx}{dt} + 24x = 0$
  • $\dfrac{d^{4}x}{dt^{4}} -4 \dfrac{d^{3}x}{dt^{3}} + 8 \dfrac{d^{2}x}{dt^{2}} -8 \dfrac{dx}{dt} + 4x = 8 \sin (2t)$

Más adelante…

Nos hemos introducido en los sistemas lineales de primer orden, en la siguiente entrada estudiaremos las propiedades de las soluciones de estos sistemas de manera muy similar que en el caso de las ecuaciones diferenciales de orden superior.

Veremos que mucho de lo visto en la unidad anterior aparecerá nuevamente, pues conceptos como dependencia e independencia lineal, conjunto fundamental de soluciones, Wronskiano, principio de superposición, entre otros, volverán a aparecer, sólo habrá que adaptarlos a los sistemas lineales.

Entradas relacionadas