Archivo de la etiqueta: matrices

Álgebra Superior I: Traza de matrices y propiedades

Por Eduardo García Caballero

Introducción

En esta entrada conoceremos una nueva operación que se puede aplicar a matrices: la traza. Esta operación a primera vista parece bastante sencilla, pero no por eso es menos importante; en futuros cursos conocerás cómo se relaciona estrechamente con otros conceptos matemáticos y sus aplicaciones.

Traza

Definimos la traza de una matriz cuadrada como la suma de los elementos de su diagonal. Es importante destacar que únicament ele aplicaremos la operación de traza a matrices cuadradas pues más adelante las propiedades que nos interesarán requieren de esta condición.

Por ejemplo, las trazas de las matrices
\[
A=
\begin{pmatrix}
4 & 9 \\
1 & -6
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
1 & 0 & 3 \\
11 & 5 & 2 \\
6 & 12 & -5
\end{pmatrix}
\]
son, respectivamente,
\[
\operatorname{tr}(A)
=
\operatorname{tr}
\begin{pmatrix}
4 & 9 \\
1 & -6
\end{pmatrix}
=
4+ (-6)
=
-2
\]
y
\[
\operatorname{tr}(B)
=
\operatorname{tr}
\begin{pmatrix}
1 & 0 & 3 \\
11 & 5 & 2 \\
6 & 12 & -5
\end{pmatrix}
=
1 + 5 + (-5) = 1.
\]

Propiedades de la traza

La traza cumple un par de propiedades importantes con respecto a otras operaciones que definimos anteriormente. Para la prueba de estas propiedades consideraremos matrices de tamaño $2 \times 2$, pero fácilmente podrás probarlo para cualquier otro tamaño de matrices cuadradas.

Consideremos las matrices
\[
A=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}.
\]

Observemos que la traza se distribuye con respecto a la suma; es decir,
\begin{align*}
\operatorname{tr}(A+B)
&=
\operatorname{tr}
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{pmatrix}
\\[5pt]
&=
(a_{11}+b_{11}) + (a_{22}+b_{22})
\\[5pt]
&=
(a_{11} + a_{22}) + (b_{11}+b_{22})
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
+
\operatorname{tr}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\\[5pt]
&=
\operatorname{tr}(A) + \operatorname{tr}(B).
\end{align*}

Además, la traza saca escalares; es decir, para cualquier escalar $r$ se cumple que
\begin{align*}
\operatorname{tr}(rA)
&=
\operatorname{tr}
\left(
r
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
ra_{11} & ra_{12} \\
ra_{21} & ra_{22}
\end{pmatrix}
\\[5pt]
&=
ra_{11} + ra_{22}
\\[5pt]
&=
r(a_{11} + a_{22})
\\[5pt]
&=
r
\operatorname{tr}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\\[5pt]
&=
r\operatorname{tr}(A).
\end{align*}

Problemas

Trabajemos con algunos problemas en los cuales aparece la traza:

Problema. Demuestra que para matrices $A$ y $B$ de $2 \times 2$ se cumple que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Solución. Lo demostraremos directamente por la definición de traza.

Consideremos las matrices
\[
A=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}.
\]

Observemos que
\begin{align*}
\operatorname{tr}(AB)
&=
\operatorname{tr}
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}
\\[5pt]
&=
(a_{11}b_{11} + a_{12}b_{21}) + (a_{21}b_{12} + a_{22}b_{22})
\\[5pt]
&=
(b_{11}a_{11} + b_{12}a_{21}) + (b_{21}a_{12} + b_{22}a_{22})
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
b_{11}a_{11} + b_{12}a_{21} & b_{11}a_{12} + b_{12}a_{22} \\
b_{21}a_{11} + b_{22}a_{21} & b_{21}a_{12} + b_{22}a_{22}
\end{pmatrix}
\\[5pt]
&=
\operatorname{tr}(BA).
\end{align*}

$\square$

Problema. ¿Para qué matrices de $2 \times 2$ se tiene que $\operatorname{tr}(A^2) = (\operatorname{tr}(A))^2$?

Solución. Consideremos la matriz de $2 \times 2$
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}.
\]

Calculamos
\[
\operatorname{tr}(A^2)
=
\operatorname{tr}
\begin{pmatrix}
a^2 + bc & ab + bd \\
ac + cd & bc + d^2
\end{pmatrix}
=
(a^2+bc)+(bc+d^2) = a^2 + 2bc + d^2
\]
y
\[
(\operatorname{tr}(A))^2
=
(a + d)^2
=
a^2 + 2ad + d^2.
\]

Entonces, notamos que
\[
\operatorname{tr}(A^2) = (\operatorname{tr}(A))^2
\]
si y sólo si
\[
a^2 + 2bc + d^2 = a^2 + 2ad + d^2,
\]
lo cual se cumple si y sólo si
\[
bc = ad.
\]

Entonces, las matrices de $2\times 2$ que cumplen que $\operatorname{tr}(A^2) = (\operatorname{tr}(A))^2$ son aquellas de la forma $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tales que $bc = ad$. ¿Podrías dar un ejemplo de una matriz que cumpla esto?

$\square$

Nota. El hecho de que la matriz $A$ anterior cumpla que $bc = ad$ equivale a que $ac – bd = 0$, y esto equivale, como verás en la siguiente entrada, a que “el determinante de $A$ sea cero”.

Más adelante…

En esta entrada aprendimos la definición de traza y vimos algunas de sus propiedades.

Además, en el problema 2, mencionamos un concepto que hasta ahora no hemos visto. En la siguiente entrada conoceremos una de las operaciones más importantes que se pueden aplicar a matrices cuadradas: el determinante.

Tarea moral

  1. Encuenta la traza de las siguientes matrices:
    \[
    \begin{pmatrix}
    3 & 4 \\
    5 & 6
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    \sqrt{2} & 3/\sqrt{2} \\
    \sqrt{3} & \sqrt{6}
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    2x & 9y \\
    4y & -5x
    \end{pmatrix},
    \]
    \[
    \begin{pmatrix}
    1 & 2 & 1 \\
    1 & -3 & 4 \\
    -1 & 0 & 4
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    -3 & 2 & 4 \\
    -4 & 2 & 4 \\
    1 & -1 & 1
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    a & b & c \\
    d & e & f \\
    1 & 2 & 3
    \end{pmatrix}.
    \]
  2. Demuestra que $\text{tr}(AB)=\text{tr}(BA)$ para matrices $A$ y $B$ de $3\times 3$. Intenta también hacerlo para matrices de $n\times n$.
  3. Determina si el siguiente enunciado es verdadero o falso. Si $A$ y $B$ son matrices de $2\times 2$ tales que $\text{tr}(A)=\text{tr}(B)$ y $\text{tr}(A^2)=\text{tr}(B^2)$, entonces $A=B$.
  4. ¿Será cierto que la traza es multiplicativa? Es decir, ¿para cualesquiera matrices $A$ y $B$ se cumple que $\text{tr}(AB)=\text{tr}(A)\text{tr}(B)$?
  5. Sea $A$ una matriz de $2\times 2$. Demuestra que $\text{tr}(AA^T)$ siempre es un número real mayor o igual que cero. ¿Es cierto esto mismo si la matriz es de $3\times 3$? ¿Es cierto siempre que $\text{tr}(A^2)$ es un número mayor o igual a cero?

Entradas relacionadas

Álgebra Superior I: Reducción de Gauss-Jordan

Por Eduardo García Caballero

Introducción

En la entrada anterior vimos que los sistemas de ecuaciones se encuentran íntimamente relacionados con los vectores y las matrices. Teniendo esto en cuenta, en esta entrada abordaremos una estrategia que nos permitirá encontrar soluciones de los sistemas de ecuaciones lineales.

Operaciones elementales por filas

Antes de pasar a describir el algoritmo con el cual podremos resolver un sistema de ecuaciones lineales, deberemos definir algunas operaciones y conceptos que nos ayudaran a efectuarlo. Empecemos con una lista de operaciones que se pueden aplicar a las matrices, las cuales son con conocidas como operaciones elementales por filas.

Para esto, consideremos una matriz
\[
A=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix},
\]
y veamos cómo la afecta cada una de estas operaciones.

La primera de estas operaciones es el reescalamiento. Esta operación consiste en seleccionar una fila de una matriz, y multiplicar cada una de las entradas de esta fila por un mismo número real distinto de cero. Por ejemplo, si reescalamos la tercera fila de $A$ por el número $-3$, obtendremos la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
(-3)(-1/3) & (-3)(4) & (-3)(0) \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
1& -12 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Otra operación que podemos aplicar a las matrices es la trasposición, la cual consiste en intercambiar el contenido de dos filas distintas. Por ejemplo, si transponemos las filas 2 y 4 de $A$, el resultado será la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
9 & -3 & 2/3 \\
-1/3 & 4 & 0 \\
\sqrt{2} & -1 & 2
\end{pmatrix}.
\]

La última de las operaciones que nos interesa es la transvección. Esta consiste en sumar el múltiplo de una fila (el resultado de multiplicar cada entrada de una fila por un mismo escalar) a otra fila (la suma se realiza entrada por entrada). Por ejemplo, si en $A$ realizamos la transvección que corresponde a “sumar 3/2 de la cuarta fila a la primera fila”, obtendremos la matriz
\[
\begin{pmatrix}
5 + (3/2)(9) & \pi+(3/2)(-3) & 3+(3/2)(2/3) \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
37/2 & -9/2+\pi & 4 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Si recuerdas, todos los sistemas de ecuaciones se pueden escribir como $Ax=b$. Las operaciones elementales son muy importantes por las siguientes dos razones:

  • Si aplicamos la misma operación elemental a $A$ y $b$ para obtener la matriz $A’$ y el vector $b’$, entonces $Ax=b$ y $A’x=b’$ tienen exactamente el mismo conjunto solución. Decimos que «las operaciones elementales no cambian las soluciones del sistema».
  • Usando operaciones elementales se puede llevar el sistema $Ax=b$ a un sistema mucho más sencillo $A_{red}x=b_{red}$ (que discutiremos más abajo). Entonces «las operaciones ayudan a simplificar un sistema de ecuaciones».

Juntando ambas observaciones, con operaciones elementales podemos llevar cualquier sistema de ecuaciones a uno mucho más sencillo y con el mismo conjunto solución.

Puedes intentar convencerte de la primera afirmación pensando en lo siguiente. En un reescalamiento de filas corresponde a multiplicar por una constante no nula ambos lados de una ecuación; la transposición corresponde a cambiar el orden en el que aparecen dos ecuaciones diferentes; mientras que la transvección corresponde a sumar un múltiplo de una ecuación a otra ecuación, y el sistema tiene las mismas soluciones pues, si un conjunto de valores es solución para dos ecuaciones, entonces es solución para cualquier combinación lineal de estas. En un curso de Álgebra Lineal I puedes encontrar las justificaciones con mucho más detalle.

En las siguientes secciones hablamos un poco más de la segunda afirmación.

Forma escalonada y escalonada reducida para una matriz

Además de las operaciones elementales por filas, es importante definir algunos conceptos.

Comencemos con el concepto de pivote: diremos que una entrada de una matriz es un pivote si es el primer elemento distinto de cero en una fila.

Diremos que una matriz se encuentra en forma escalonada si se cumple: 1. Todas las filas nulas se encuentran hasta abajo; 2. Todos los pivotes de filas no-nulas tienen valor 1; 3. El pivote de cada fila se encuentra la derecha del pivote de una fila superior. Es fácil identificar las matrices en forma escalonada porque parecen “estar en escalerita”. Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 9 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1
\end{pmatrix}
\]
se encuentra en forma escalonada, mientras que las matrices
\[
\begin{pmatrix}
1 & 0 & 2 & 4 \\
0 & 0 & 9 & 2 \\
0 & 3 & 0 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
0 & 6 & 8 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 9 & 2
\end{pmatrix}
\]
no lo están. ¿Puedes justificar por qué?

Por su parte, diremos que una matriz se encuentra en forma escalonada reducida si está en forma escalonada y, además, si hay un pivote en alguna fila, todas las entradas que no sean pivote en la misma columna del pivote son iguales a $0$ (Ojo. Siempre hablamos de pivotes de renglones).

Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
está en forma escalonada reducida.

Como recordarás de la entrada anterior, un sistema de ecuaciones lineales
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = b_2 \\
& \vdotswithin{\mspace{15mu}} \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\]
se puede codificar como
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

Como podemos cambiar el nombre de las variables, pero el vector de soluciones sigue siendo el mismo, es común codificar el sistema como una única matriz aumentada
\[
\left(
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\
\middle|
\
\begin{matrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{matrix}
\right).
\]

Aquí pusimos una línea vertical, pero sólo es por ayuda visual. Esa matriz la puedes tratar como cualquier matriz que hemos platicado.

Teniendo esto en cuenta, las matrices en forma escalonada reducida nos son de gran utilidad al resolver sistemas de ecuaciones lineales. Por ejemplo, consideremos el sistema
\[
\begin{cases}
x + 3y + 2w &= 8 \\
z + w &= 9,
\end{cases}
\]
el cual tiene como matriz aumentada a
\[
\left(
\begin{matrix}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
8 \\
9
\end{matrix}
\right),
\]
la cual se encuentra en forma escalonada.

Gracias a que la matriz está en forma escalonada, podemos elegir en orden inverso $w$, $z$, $y$, $x$ a las variables libres y pivote como en la entrada anterior. En este caso, podemos elegir como queramos el valor de $w$ ($w$ es variable libre). Usando la segunda ecuación, podemos despejar $z$ en términos de $w$ ($z$ es variable pivote). Estos dos valores los sustituimos en la primera ecuación y notamos que $y$ puede ser lo que queramos ($y$ es variable libre). Finalmente, $x$ queda totalmente determinado por las demás variables ($x$ es pivote). Las variables pivote justo corresponden a columnas de la matriz que tengan pivote de alguna fila.

La ventaja de la forma escalonada es que podremos ir obteniendo fácilmente el valor de cada variable “de abajo hacia arriba”. En el caso de un sistema cuya matriz se encuentre en forma escalonada reducida, será aún más sencillo pues ya no tendremos que sustituir valores y obtenemos el despeje directamente.

Teorema de reducción de Gauss-Jordan

El siguiente teorema relaciona las operaciones elementales por filas con la forma escalonada reducida de una matriz.

Teorema (de reducción de Gauss-Jordan o reducción gaussiana). Cualquier matriz con entradas reales se puede a una forma escalonada reducida aplicando una cantidad finita de pasos.

A continuación presentamos un algoritmo con el cual podemos pasar de una matriz arbitraria a una matriz en su forma escalonada reducida. Para hacer más sencilla su aplicación, nos enfocaremos en comprender la estrategia que sigue el algoritmo. La descripción formal del algoritmo y demostración de que en efecto funciona como esperamos es un tema que abordarás en el curso de Álgebra Lineal I (puedes echarle un ojo a esta entrada).

Primeramente, describiremos los pasos del algoritmo, al que se le conoce como reducción de Gauss-Jordan o reducción gaussiana.

Estrategia: Iremos arreglando la matriz de izquierda a derecha. Para ello, haremos los siguientes pasos repetidamente.

  1. Buscamos la primera columna de la matriz (de izquierda a derecha) que no tenga puros ceros.
  2. Una vez encontrada dicha columna, buscamos la primera entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos la fila que contiene a dicha entrada hasta arriba mediante la operación de transposición.
  4. Multiplicamos cada entrada de la fila que acabamos de mover hasta arriba por el inverso multiplicativo de su primera entrada (aquí usamos la operación de reescalamiento). La primera entrada de esta fila ahora será 1.
  5. Mediante la operación de transvección, sustraemos múltiplos de la primera fila al resto de renglones de la matriz, de modo que el resto de los valores en la columna correspondiente a la primera entrada de la fila en la que estamos trabajando pasen a ser 0 (como puedes observar, la entrada primera entrada no-nula de la fila en la que estamos trabajando ahora será un pivote).
  6. Ignorando la primera fila, buscamos la primera columna (de izquierda a derecha) que no tenga puros ceros.
  7. Repetimos los pasos anteriores (2 a 6), pero ahora, en vez de mover la fila con la que estamos trabajando “hasta arriba”, la moveremos inmediatamente después de la última fila con la que trabajamos.
  8. Hacemos esto hasta haber arreglado todas las columnas.

Ejemplo de reducción de Gauss-Jordan

Ahora, como ejemplo, veamos cómo podemos implementar este algoritmo en la matriz
\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
-1 & 0 & 1 & 2 & 3 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
la cual, si la consideramos como la matriz aumentada
\[
\left(
\begin{matrix}
0 & 1 & 2 & 3 \\
-1 & 0 & 1 & 2 \\
3 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
4 \\
3 \\
2 \\
1
\end{matrix}
\right),
\]
corresponde al sistema de ecuaciones
\[
\begin{cases}
y + 2z + 3w &= 4 \\
-x + z + 2w &= 2 \\
3x + y -z &= 0 \\
y + z + w &= 1.
\end{cases}
\]

Buscamos la primera la primera columna no nula, la cual resulta ser la primera columna de la matriz. En esta columna, vemos que la segunda entrada es la primera entrada distinta de cero. Entonces, mediante trasposicón, intercambiamos las filas 1 y 2 (“movemos la segunda columna hasta arriba”):
\[
\begin{pmatrix}
-1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3& 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, nos fijamos en la primera entrada no nula de la primera fila, que es $-1$, y reescalamos la fila por su inverso multiplicativo, que es $-1$:
\[
\begin{pmatrix}
(-1)(-1) & (-1)(0) & (-1)(1) & (-1)(2) & (-1)(3) \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, observamos el valor de la primera entrada de la tercera fila, el cual es $3$. Entonces, mediante transvección, sumamos $-3$ veces la fila 1 a la fila 3:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3+(-3)(1) & 1+(-3)(0) & -1+(-3)(-1) & 0+(-3)(-2) & 2+(-3)(-3) \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
y realizamos lo mismo, pero ahora considerando la fila 4.
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0+(0)(1) & 1+(0)(0) & 1+(0)(-1) & 1+(0)(-2) & 1+(0)(-3)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Como puedes observar, ninguna de las transvecciones influye en la otra, de manera que las podemos enlistar en un único paso. Además, al hacer una transvección con escalar $0$ no cambia nada de la fila, así que estas no se necesita hacerlas.

Ahora, ignorando la última fila con la que trabajamos (que es la primera), buscamos la primera columna no-nula, que en este caso será la segunda, posteriormente buscamos el primer elemento no nulo de la columna, el cual se encuentra en la segunda fila, y la “movemos enseguida de la última fila con la que trabajamos” (en este caso no tendríamos que realizar ninguna transposición, o bien, la transposición sería la de la segunda fila consigo misma, ya que ya se encuentra en seguida de la última fila con la que trabajamos). Después, reescalamos por el inverso multiplicativo del primer elemento no nulo de la fila, que es $1$:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
(1)(0) & (1)(1) & (1)(2) & (1)(3) & (1)(4) \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
(observa que reescalar por $1$ deja todas las entradas iguales) y posteriormente realizamos las transvecciones necesarias para que el resto de entradas de la segunda columna sean cero.
\[
\begin{pmatrix}
1 & 0+(0)(1) & -1+(0)(2) & -2+(0)(3) & -3+(0)(4) \\
0 & 1 & 2 & 3 & 4 \\
0 & 1+(-1)(1) & 2+(-1)(2) & 6+(-1)(3) & 11+(-1)(4) \\
0 & 1+(-1)(1) & 1+(-1)(2) & 1+(-1)(3) & 1+(-1)(4)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 3 & 7 \\
0 & 0 & -1 & -2 & -3
\end{pmatrix}
\]

De manera similar, ignorando ahora las primeras dos filas, buscamos la primera columna no-nula, la cual corresponde ahora a la tercera, y buscamos el primer elemento no-nulo de esta columna, el cual se encuentra en la cuarta fila. Entonces, transponemos las filas 3 y 4 para que el primer elemento no-nulo quede inmediatamente después de la última fila con la que trabajamos:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Seguidamente, reescalamos la tercera fila,
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
(-1)(0) & (-1)(0) & (-1)(-1) & (-1)(-2) & (-1)(-3) \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
\]
y relizamos las transvecciones necesarias:
\[
\begin{pmatrix}
1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(2) & -3+(1)(3) \\
0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(2) & 4+(-2)(3) \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Finalmente, como nuestra última columna no cero es la cuarta y la primera fila no cero (ignorando las filas que ya tienen pivote) tiene un $3$, reescalamos de la siguiente manera:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
(1/3)(0) & (1/3)(0) & (1/3)(0) & (1/3)(3) & (1/3)(7)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix},
\]

Y hacemos las transvecciones necesarias:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0+(1)(0) & 1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(7/3) \\
0+(-2)(0) & 0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(7/3) \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1/3 \\
0 & 0 & 1 & 0 & -5/3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}.
\]

Notemos que si consideramos esta matriz como la matriz aumentada
\[
\left(
\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
0 \\
1/3 \\
-5/3 \\
7/3
\end{matrix}
\right),
\]
este corresponde al sistema
\[
\begin{cases}
x = 0 \\
y = 1/3 \\
z = -5/3 \\
w = 7/3,
\end{cases}
\]
del cual sabemos inmediatamente su solución. Como mencionamos anteriormente, los sistemas de ecuaciones asociados a la matriz original y la matriz escalonada reducida resultante de aplicar operaciones elementales por filas, consideradas como matrices aumentadas, tienen las mismas soluciones. Entonces, ¡este último sistema es la solución para nuestro sistema de ecuaciones original!

Como podemos ver, los sistemas de ecuaciones asociados a una matriz en su forma escalonada reducida son fáciles de resolver por que vamos escogiendo valores arbitrarios para las variables en posición que no es pivote, mientras que podemos obtener el valor de las variables que son pivote mediante despejes sencillos.

Recuerda que este algoritmo funciona para cualquier matriz con entradas reales. ¿Podrías proponer otro sistema de ecuaciones e implementar la misma estrategia para resolverlo?

Más adelante…

Ahora vimos una estrategia para resolver sistemas de ecuaciones lineales de distintos tamaños. En las siguientes entradas conoceremos más propiedades sobre las matrices. Estas nuevas propiedades también juegan un rol fundamental en poder determinar de manera más rápida cuándo un sistema de ecuaciones lineales tiene solución, y tener otras alternativas para resolverlo bajo ciertas condiciones.

Tarea moral

  1. Aplica reducción gaussiana a las siguientes matrices:
    $$\begin{pmatrix} 5 & 2 \\ 13 & 5 \end{pmatrix},\quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$
  2. Resuelve el siguiente sistema de ecuaciones llevándolo a forma escalonada reducida, y luego aplicando a técnica de variables libres y pivote:
    $$\begin{cases} a + b + c + d + e &= -5\\2a+2b-3c-3d+e&=5 \\ a – b + c – d + e &= 0. \end{cases}$$
  3. Sea $I$ la matriz identidad de $n\times n$ y $A$ otra matriz de $n\times n$. Sea $E$ la matriz obtenida de aplicar una transvección a $I$. Sea $B$ la matriz de aplicar esa misma transvección a $A$. Demuestra que $EA=B$.
  4. Demuestra que una matriz $A$ de $2\times 2$ es invertible si y sólo si al aplicar reducción de Gauss-Jordan al final se obtiene la matriz identidad $I$. ¿Puedes hacerlo para matrices de $3\times 3$? ¿De $n\times n$?
  5. Sea $A$ una matriz de $2\times 2$ invertible. A $A$ le «pegamos» una identidad del mismo tamaño a la derecha para llegar a $(A|I)$, por ejemplo $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se convertiría en $\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$. Muestra que si aplicamos reducción de Gauss-Jordan a $(A|I)$, se llega a $(I|A^{-1})$. Intenta extender tu demostración a matrices de $3\times 3$ ó $n\times n$.

Entradas relacionadas

Álgebra Lineal II: Unicidad de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan y demostramos la existencia de dicha forma bajo ciertas hipótesis. Como corolario, quedó pensar cuál es la versión para matrices. En esta entrada enunciamos la versión para matrices (totalmente equivalente a la de transformaciones lineales) y nos enfocamos en mostrar la unicidad de la forma canónica de Jordan.

Unicidad de la forma canónica de Jordan

El siguiente teorema es totalmente análogo al enunciado en la entrada anterior. Recuerda que $\leq$ es un orden total fijo de $F$ (en $\mathbb{R}$, es el orden usual).

Teorema. Sea $A$ una matriz $M_n(F)$ cuyo polinomio característico $\chi_A(X)$ se divide en $F$. Entonces, existen únicos valores $\lambda_1\leq \ldots \leq \lambda_n$ en $F$ y únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} para los cuales $A$ es similar a la siguiente matriz de bloques de Jordan:

$$\begin{pmatrix} J_{\lambda_1,k_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{\lambda_d,k_d}\end{pmatrix}.$$

Usaremos esta versión para demostrar la unicidad, lo cual también implicará la unicidad para la versión de transformaciones lineales.

Mediante la demostración de existencia de la entrada anterior, llegamos a que si el polinomio característico de $A$ es

$$\chi_A(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r},$$

entonces $A$ es similar a una matriz conformada por matrices de bloques de Jordan $J_1,J_2,\ldots,J_r$, en donde cada $J_i$ es de tamaño $m_i$ y de bloques de Jordan de eigenvalor $\lambda_i$.

Si $A$ fuera similar a otra matriz $K$ de bloques de Jordan, podríamos agrupar por eigenvalores de los bloques $\kappa_1< \ldots < \kappa_s$ en matrices de bloques de Jordan tamaños $o_1,\ldots,o_s$, digamos $K_1,\ldots,K_s$. El polinomio característico de $K$ sería entonces

$$\chi_{K}(X)=(X-\kappa_1)^{o_1}(X-\kappa_2)^{o_2}\cdots(X-\kappa_s)^{o_s}.$$

Pero $K$ es similar a $A$, y entonces deben tener el mismo polinomio característico, así que conciden en raíces y multiplicidad. Esto demuestra que $r=s$ y como los $\lambda_i$ y los $\kappa_i$ están ordenados, también demuestra las igualdades $\lambda_i=\kappa_i$ y $m_i=o_i$ para todo $i\in\{1,\ldots,r\}.$

Sólo nos queda argumentar la igualdad entre cada $J_i$ y $K_i$ para $i\in\{1,\ldots,r\}$. Pero ambas una forma canónica de Jordan para la transformación nilpotente que se obtiene de restringir $T_{A-\lambda_i I}$ a $\ker(T_{A-\lambda_i I}^{m_i})$. Por la unicidad que demostramos para la forma canónica de Jordan para transformaciones nilpotentes, concluimos que $J_i=K_i$. Esto termina la demostración de la unicidad de la forma canónica de Jordan.

$\square$

Una receta para encontrar la forma canónica de Jordan

Ya con el teorema demostrado, ¿cómo juntamos todas las ideas para encontrar la forma canónica de Jordan de una matriz $A$ en $M_n(F)$ cuyo polinomio característico se divida en $F$? Podemos proceder como sigue.

  1. Encontramos el polinomio característico $\chi_A(X)$ y su factorización, digamos $$\chi_A(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r}.$$
  2. Nos enfocamos en encontrar las matrices de bloque de Jordan $J_i$ para cada eigenvalor $\lambda_i$. Sabemos que la matriz $J_i$ será de tamaño $m_i$.
  3. Para saber exactamente cuál matriz de bloques de Jordan es $J_i$, pensaremos en que tiene $b_1,b_2,\ldots,b_{m_i}$ bloques de Jordan de eigenvalor $\lambda_i$ de tamaños $1,2, \ldots,m_i$. Consideramos la matriz $A_i=A-\lambda_i I$. Los $b_1,\ldots,b_{m_i}$ son la solución al siguiente sistema de ecuaciones en las variables $x_1,\ldots,x_{m_i}$.
    \begin{align*}
    m_i&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + m_i \cdot x_{m_i}\\
    m_i-n+\text{rango}(A_i-\lambda_i I)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (m_i-1) \cdot x_{m_i}\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (m_i-2)\cdot x_{m_i}\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (m_i-3)\cdot x_{m_i}\\
    &\vdots\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^{m_i-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_{m_i}.
    \end{align*}
  4. Juntamos todos los $J_i$ en una misma matriz y los ordenamos apropiadamente.

El paso número $3$ está motivado por lo que sabemos de las matrices nilpotentes, y es bueno que pienses por qué se estudia específicamente ese sistema de ecuaciones para cada eigenvalor $\lambda_i$ y multiplicidad $m_i$.

Ejemplo de obtener la forma canónica de Jordan

Veamos un ejemplo del procedimiento descrito en la sección anterior.

Ejemplo. Encontraremos la forma canónica de Jordan de la siguiente matriz: $$A=\begin{pmatrix}-226 & -10 & -246 & 39 & 246\\234 & 23 & 236 & -46 & -236\\-198 & -20 & -192 & 41 & 195\\-93 & 10 & -122 & 10 & 122\\-385 & -30 & -393 & 74 & 396\end{pmatrix}.$$

Con herramientas computacionales, podemos darnos cuenta de que el polinomio característico de esta matriz es $$\chi_A(X)=X^{5} – 11 X^{4} + 46 X^{3} – 90 X^{2} + 81 X- 27.$$

Este polinomio se puede factorizar como $$(X-1)^2(X-3)^3.$$ Así, la submatriz de bloques de Jordan $J_1$ de eigenvalor $1$ tendrá tamaño $2$ y la $J_3$ de eigenvalor $3$ tendrá tamaño $3$. Pero, ¿de qué tamaño son cada uno de los bloques de Jordan en cada una de estas matrices?

Para respondernos esto para $J_1$, notamos que sus bloques son de tamaño $1$ y $2$ solamente. Si hay $b_1$ bloques de tamaño $1$ y $b_2$ bloques de tamaño $2$, por la teoría desarrollada arriba tendremos:

\begin{align*}
b_1+2b_2&=2\\
b_2&=2-5+\text{rango}(A-I)=2-5+4=1.
\end{align*}

El rango de $A-I$ lo obtuvimos computacionalmente, pero recuerda que también puede ser obtenido con reducción gaussiana. Resolviendo el sistema, $b_2=1$ y entonces $b_1=0$. Concluimos que en $J_1$ hay un bloque de Jordan de tamaño $2$.

Para $J_3$, reciclemos las variables $b_i$ (para no introducir nuevas). Los bloques pueden ser de tamaño $1,2,3$. Supongamos que de estos tamaños respectivamente hay $b_1,b_2,b_3$ bloques. Los $b_i$ cumplen:

\begin{align*}
b_1+2b_2+3b_3&=3\\
b_2+2b_3&=3-5+\text{rango}(A-3I)=3-5+3=1\\
b_3&=3-5+\text{rango}((A-3I)^2)=3-5+2=0.
\end{align*}

Así, $b_3=0$, y en consecuencia $b_2=1$ y entonces $b_1=1$. Concluimos que $J_3$ tiene un bloque de tamaño $1$ y uno de tamaño $3$. Por lo tanto, la forma canónica de Jordan de $A$ es:

$$\begin{pmatrix} J_1 & 0 \\ 0 & J_3 \end{pmatrix} = \begin{pmatrix} J_{1,2} & 0 & 0 \\ 0 & J_{3,1} & 0 \\ 0 & 0 & J_{3,2} \end{pmatrix} = \begin{pmatrix}1 & 1 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0\\0 & 0 & 3 & 0 & 0\\0 & 0 & 0 & 3 & 1\\0 & 0 & 0 & 0 & 3\end{pmatrix}$$

$\triangle$

Otro problema sobre forma canónica de Jordan

La receta anterior funciona en general y da la forma canónica de Jordan. Esto es algo que probablemente en la práctica en aplicaciones no tendrás que hacer manualmente nunca, pues hay herramientas computacionales que te pueden ayudar. Sin embargo, es importante entender con profundidad el teorema y la receta de manera teórica, pues hay problemas conceptuales en los que no podrás usar herramientas computacionales. A continuación veremos un ejemplo.

Problema. Sea $A$ una matriz en $M_6(\mathbb{R})$ con polinomio característico $$\chi_A(X)=X^6-2X^4+X^2.$$

  • ¿Cuántas posibilidades hay para la forma canónica de Jordan de $A$?
  • Demuestra que si el rango de $A$ es $5$, entonces $A$ no es diagonalizable.

Solución. Podemos factorizar el polinomio característico de $A$ como sigue:

$$\chi_A(X)=X^2(X+1)^2(X-1)^2.$$

Así, la forma canónica de Jordan está conformada por una matriz de bloques de Jordan $J_0$ de eigenvalor $0$ y tamaño $2$; una $J_1$ de eigenvalor $1$ y tamaño $2$; y una $J_{-1}$ de eigenvalor $-1$ y tamaño $2$.

Cada $J_i$ tiene dos chances: o es un bloque de Jordan de tamaño $2$, o son dos bloques de Jordan de tamaño $1$. Así, en total tenemos $2\cdot 2 \cdot 2=8$ posibilidades.

Si $A$ es de rango $5$, entonces tendríamos en las cuentas de cantidad de bloques $b_1$ y $b_2$ para eigenvalor $0$ que

\begin{align*}
b_1+2b_2&=2\\
b_2&=2-6+\text{rango}(A)=2-6+5=1,
\end{align*}

de donde en $J_0$ tendría $1$ bloque de tamaño $2$ y ninguno de tamaño $1$. Si $A$ fuera diagonalizable, su diagonalización sería una forma canónica de Jordan donde para eigenvalor $0$ se tendrían $2$ bloques de tamaño $1$ y ninguno de tamaño $2$. Así, $A$ tendría dos formas canónicas de Jordan distintas, lo cual es imposible.

$\square$

Más adelante…

Con esta entrada terminamos de demostrar el teorema de la forma canónica de Jordan, uno de los teoremas más bonitos de álgebra lineal. ¿Te das cuenta de todo lo que utilizamos en su demostración? Forma matricial de transformaciones lineales, el teorema de Cayley-Hamilton, polinomio característico, subespacios estables, teoría de dualidad, sistemas de ecuaciones lineales, resultados auxiliares de polinomios, etc. Es un resultado verdaderamente integrador.

En la siguiente entrada, la última del curso, hablaremos de algunas de las consecuencias del teorema de la forma canónica de Jordan. Discutiremos cómo lo podemos utilizar para clasificar a las matrices por similaridad. Veremos una aplicación con respecto a una matriz y su transpuesta. También, esbozaremos un poco de por qué en cierto sentido el resultado no sólo vale para las matrices cuyo polinomio se divide sobre el campo, sino que para cualquier matriz. Con ello terminaremos el curso.

Tarea moral

  1. Calcula la forma canónica de Jordan $J$ de la matriz $$A=\begin{pmatrix} 1 & 0 & -3 \\ 1 & -1 & -6 \\ -1 & 2 & 5 \end{pmatrix}.$$ Además de encontrar $J$, encuentra de manera explícita una matriz invertible $P$ tal que $A=P^{-1}JP$.
  2. Calcula la forma canónica de Jordan de la matriz $$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
  3. Explica y demuestra cómo obtener lo siguiente para una matriz de bloques de Jordan:
    • Su polinomio característico.
    • Su polinomio mínimo.
    • Su determinante.
    • Su traza.
    • Sus eigenespacios.
  4. Justifica con más detalle por qué la receta que se propone para calcular la forma canónica de Jordan en efecto funciona. Necesitarás varios de los argumentos que dimos en la entrada anterior.
  5. Demuestra que una matriz $A\in M_n(F)$ para la cual su polinomio característico se divide en $F$ es diagonalizable si y sólo si cada bloque de cada matriz de bloques de la forma canónica de Jordan tiene tamaño $1$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Existencia de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores demostramos que para cualquier matriz nilpotente existe (y es única) una matriz similar muy sencilla, hecha por lo que llamamos bloques de Jordan de eigenvalor cero. Lo que haremos ahora es mostrar una versión análoga de este resultado para una familia mucho más grande de matrices. De hecho, en cierto sentido tendremos un resultado análogo para todas las matrices.

Pensando en ello, lo que haremos en esta entrada es lo siguiente. Primero, generalizaremos nuestra noción de bloques de Jordan para contemplar cualquier eigenvalor. Estudiaremos un poco de los bloques de Jordan. Luego, enunciaremos el teorema que esperamos probar. Finalmente, daremos el primer paso hacia su demostración. En la siguiente entrada terminaremos la demostración y hablaremos de aspectos prácticos para encontrar formas canónicas de Jordan.

Enunciado del teorema de la forma canónica de Jordan

A continuación definimos a los bloques de Jordan para cualquier eigenvalor y tamaño.

Definición. Sea $F$ un campo. El bloque de Jordan de eigenvalor $\lambda$ y tamaño $k$ es la matriz $J_{\lambda,k}$ en $M_k(F)$ cuyas entradas son todas $\lambda$, a excepción de las que están inmediatamente arriba de la diagonal superior, las cuales son unos. En símbolos, $J_{\lambda,k}=[a_{ij}]$ con $$a_{ij}=\begin{cases} 1 & \text{si $j=i+1$}\\ \lambda & \text{si $i=j$} \\ 0 & \text{en otro caso.} \end{cases}$$

También podemos expresarlo de la siguiente manera:

$$J_{\lambda,k}=\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{pmatrix},$$ en donde estamos pensando que la matriz es de $k\times k$.

Una última manera en la que nos convendrá pensar a $J_{\lambda,k}$ es en términos de los bloques de Jordan de eigenvalor cero: $J_{\lambda,k}=\lambda I_k + J_{0,k}$.

Definición. Una matriz de bloques de Jordan en $M_n(F)$ es una matriz diagonal por bloques en la que cada bloque en la diagonal es un bloque de Jordan.

Lo que nos gustaría demostrar es el siguiente resultado. En él, piensa en $\leq$ como algún orden total fijo de $F$ (para $\mathbb{R}$ es el orden usual, pero otros campos no necesariamente tienen un orden natural asociado).

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ sobre el campo $F$ y $T:V\to V$ una transformación lineal tal que $\chi_T(X)$ se divide sobre $F$. Entonces, existen únicos valores $\lambda_1\leq \ldots \leq \lambda_n$ en $F$ y únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} para los cuales existe una base de $V$ en la cual $T$ tiene como forma matricial a la siguiente matriz de bloques de Jordan:

$$\begin{pmatrix} J_{\lambda_1,k_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{\lambda_d,k_d}\end{pmatrix}.$$

Por supuesto, este teorema también tiene una versión matricial, la cuál tendrás que pensar cómo escribir.

Un teorema de descomposición de kernels

Ya tenemos uno de los ingredientes que necesitamos para dar la demostración de la existencia de la forma canónica de Jordan: su existencia para las transformaciones nilpotentes. Otro de los ingredientes que usaremos es el teorema de Cayley-Hamilton. El tercer ingrediente es un resultado de descoposición de kernels de transformaciones evaluadas en polinomios.

Proposición. Sea $V$ un espacio vectorial sobre $F$. Sea $T:V\to V$ una transformación lineal. Y sean $P_1(X),\ldots,P_r(X)$ polinomios en $F[x]$ cuyo máximo común divisor de cualesquiera dos de ellos es el polinomio $1$. Entonces, $$\ker((P_1P_2\cdots P_r)(T))=\bigoplus_{i=1}^r \ker(P_i(T)).$$

Demostración. Para cada $i\in \{1,2,\ldots,r\}$ consideraremos a $Q_i(X)$ como el polinomio que se obtiene de multiplicar a todos los polinomios dados, excepto $P_i(X)$. Y por comodidad, escribiremos $P(X)=(P_1\cdots P_r)(X)$. Notemos que entonces $P(X)=(Q_iP_i)(X)$ para cualquier $i\in\{1,2,\ldots,r\}$.

Primero probaremos un resultado polinomial auxiliar. Veremos que $Q_1(X),\ldots,Q_r(X)$ tienen como máximo común divisor al polinomio $1$. En caso de no ser así, un polinomio $D(X)$ no constante dividiría a todos ellos. Sin pérdida de generalidad, $D$ es irreducible (tomando, por ejemplo $D(X)$ de grado mínimo con esta propiedad). Como $D(X)$ es irreducible y divide a $Q_r(X)$, entonces debe dividir a alguno de los factores de $Q_r(X)$, que sin pérdida de generalidad (por ejemplo, reetiquetando), es $P_1(X)$. Pero $D(X)$ también divide a $Q_1(X)$, así que debe dividir a alguno de sus factores $P_2(X),\ldots,P_r(X)$, sin pérdida de generalidad a $P_2(X)$. Pero entonces $D(X)$ divide a $P_1(X)$ y $P_2(X)$, lo cual contradice las hipótesis. Así, $Q_1(X),\ldots,Q_r(X)$ tienen como máximo común divisor al polinomio $1$. Por el lema de Bézout para polinomios (ver tarea moral), existen entonces polinomios $R_1(X),\ldots,R_r(X)$ tales que

\begin{equation}
\label{eq:bezout}(R_1Q_1 + R_2Q_2 + \ldots + R_rQ_r)(X)=1.
\end{equation}

Estamos listos para pasar a los argumentos de álgebra lineal. Veamos primero que cualquier elemento en la suma de la derecha está en el kernel de $P(T)$. Tomemos $v=v_1+\ldots+v_r$ con $v_i\in \ker(P_i(T))$. Al aplicar $P$ obtenemos

\begin{align*}
P(v)&=P(v_1)+\ldots+P(v_r)\\
&=Q_1(P_1(v_1))+\ldots+Q_r(P_r(v_r))\\
&=0+\ldots+0=0.
\end{align*}

Esto muestra que $v\in \ker(P(T))$, de donde se obtiene la primera contención que nos interesa.

Veamos ahora la segunda contención, que $\ker(P(T))=\bigoplus_{i=1}^r \ker(P_i(T))$. Tomemos $v\in \ker(P(T))$. Al aplicar \eqref{eq:bezout} en $T$ y evaluar en $v$ obtenemos que

\begin{align*}
v&=\text{Id}(v)=(1)(T)(v)\\
&=(R_1Q_1 + R_2Q_2 + \ldots + R_rQ_r)(T)(v)\\
&=(R_1Q_1)(T)(v)+\ldots+(R_rQ_r)(T)(v).
\end{align*}

Pero esto justo expresa a $v$ como elemento de $\ker(P_i(T))$ pues para cada $i$ tenemos

\begin{align*}
P_i(T)((R_iQ_i)(T)(v))&=(P_iR_i Q_i )(T)(v)\\
&=(R_i Q_i P_i)(T)(v)\\
&=R_i(T)P(T)(v)\\
&=R_i(0)=0,
\end{align*}

de modo que expresamos a $v$ como suma de vectores en $\ker(P_1(T)),\ldots,\ker(P_r(T))$.

Ya demostramos la igualdad de conjuntos, pero recordemos que en la igualdad de suma directa hay otra cosa que hay que probar: que el cero tiene una forma única de expresarse como suma de elementos de cada subespacio (aquella en donde cada elemento es cero). Supongamos entonces que $$0=v_1+\ldots+v_r$$ con $v_i\in \ker(P_i(T))$ para cada $i$. Si aplicamos $Q_i$ en esta igualdad, como tiene todos los factores $P_j$ con $j\neq i$ obtenemos $$0=Q_i(0)=Q_i(v_i).$$

Por otro lado, al aplicar nuevamente \eqref{eq:bezout} en $T$ y evaluar en $v_i$

\begin{align*}
v_i&=\text{Id}(v_i)=(1)(T)(v_i)\\
&=(R_1Q_1 + R_2Q_2 + \ldots + R_rQ_r)(T)(v_i)\\
&=(R_1Q_1)(T)(v_1)+\ldots+(R_rQ_r)(T)(v_i)\\
&=(R_iQ_i)(T)(v_i)\\
&=0.
\end{align*}

De esta forma, en efecto tenemos que los espacios están en posición de suma directa, que era lo último que nos faltaba verificar.

$\square$

Existencia de la forma canónica de Jordan

Estamos listos para demostrar la existencia de la forma canónica de Jordan. Supongamos que $V$ es un espacio vectorial de dimensión finita $n$ sobre $F$ y que $T:V\to V$ es una transformación lineal cuyo polinomio característico se divide en $F[x]$. Sabemos entonces que es de la siguiente forma:

$$\chi_T(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r},$$

donde $\lambda_1,\ldots,\lambda_r$ son eigenvalores distintos de $T$ y $m_1,\ldots,m_r$ son las multiplicidades algebraicas respectivas de estos eigenvalores como raíces de $\chi_T(X)$.

Por el teorema de Cayley-Hamilton, sabemos que $\chi_T(T)=0$, de modo que $\ker(\chi_T(T))=V$. Por la proposición de descomposición de la sección anterior aplicada a los polinomios $P_i(X)=(X-\lambda_i)^{m_i}$ (verifica que son primos relativos dos a dos) para $i\in\{1,\ldots,r\}$ tenemos entonces que $$V=\bigoplus_{i=1}^r \ker((T-\lambda_i \text{id})^{m_i}).$$

Pero, ¿cómo es la transformación $T-\lambda_i \text{id}$ restringida a cada $\ker((T-\lambda_i \text{id})^{m_i})$? ¡Es nilpotente! Precisamente por construcción, $(T-\lambda_i \text{id})^{m_i}$ se anula totalmente en este kernel. Así, por la existencia de la forma canónica de Jordan para matrices nilpotentes, hay una base $\beta_i$ para cada $\ker((T-\lambda_i \text{id})^{m_i})$ tal que $T-\lambda_i \text{id}$ restringida a ese kernel tiene como forma matricial una matriz $J_i$ de bloques de Jordan de eigenvalor cero. Pero entonces $T$ (restringida a dicho kernel) tiene como forma matricial a $J_i+\lambda_i I_{m_i}$, que es una matriz de bloques de Jordan de eigenvalor $\lambda$.

Con esto terminamos: como $V$ es la suma directa de todos esos kernel, la unión de bases $\beta_1,\ldots,\beta_r$ es una base para la cual $T$ tiene como forma matricial a una matriz de bloques de Jordan.

$\square$

Más adelante…

Hemos demostrado la existencia de la forma canónica de Jordan, pero aún nos falta demostrar su unicidad. Además de esto, también necesitaremos un mejor procedimiento para encontrarla. Haremos eso en la siguiente entrada.

Tarea moral

  1. Enuncia el teorema de la forma canónica de Jordan versión matrices.
  2. Investiga más sobre el lema de Bézout para polinomios y cómo se demuestra. Después de esto, expresa al polinomio $1$ como combinación lineal de los polinomios $x^2-1, x^3+1, x^2+5x+4$.
  3. Verifica que los polinomios $P_i(X)=(X-\lambda_i)^{k_i}$ de la demostración de la existencia de la forma canónica de Jordan cumplen las hipótesis de la proposición de descomposición de kernels.
  4. Sea $F$ un campo y $r,s$ elementos en $F$. Sea $n$ un entero. Demuestra que los bloques de Jordan $J_{r,n}$ y $J_{s,n}$ en $M_n(F)$ conmutan.
  5. Siguiendo las ideas de la demostración de existencia, encuentra la forma canónica de Jordan de la matriz $$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Producto de matrices con matrices

Por Eduardo García Caballero

Introducción

Hasta ahora hemos conocido varias operaciones que involucran escalares, vectores y matrices. En esta entrada aprenderemos sobre una de las operaciones más importantes en el álgebra lineal: el producto de matrices con matrices.

Definición de producto de matrices

Para poder efectuar el producto de dos matrices, hay que asegurarnos de que el número de columnas de la primera matriz sea igual al número de filas de la segunda matriz.

El resultado de una matriz $A$ de tamaño $m \times n$ por una matriz $B$ de tamaño $n \times \ell$ será la matriz $C = AB$ de tamaño $m \times \ell$, donde la entrada $c_{ij}$ de $C$ está dada por la fórmula
\[
c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}.
\]

A primera vista esta fórmula puede parecer complicada, sin embargo, practicando con algunos ejemplos verás que es muy fácil de implementar.

  • Producto de matrices de tamaño $2 \times 2$:

Sean
\[
A
=
\begin{pmatrix}
1 & 3 \\
5 & 7
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & 4 \\
6 & 8
\end{pmatrix}.
\]

Como estamos multiplicando una matriz de tamaño $2 \times 2$ por una matriz de tamaño $2 \times 2$, sabemos que el resultado será otra matriz de tamaño $2 \times 2$. Ahora, iremos calculando una por una sus entradas.

Sea $C = AB$. Para calcular la entrada $c_{11}$ observamos la primera fila de $A$ y la primera columna de $B$, las cuales son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
de modo que $c_{11} = (1)(2)+(3)(6) = 20$:
\[
AB
=
\begin{pmatrix}
20 & \phantom{28} \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

Para la entrada $c_{12}$, nos fijamos en la primera columna de $A$ y en la segunda columna de $B$, que son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{12} = (1)(4) + (3)(8) = 28$:
\[
AB
=
\begin{pmatrix}
20 & 28 \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

De manera similar, observemos la segunda fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
obteniendo $c_{21} = (5)(2) + (7)(6) = 52$, mientras que la segunda fila de $A$ y la segunda columna de $B$ son
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{22} = (5)(4) + (7)(8) = 76$.

Por lo tanto,
\[
AB
=
\begin{pmatrix}
20 & 28 \\
52 & 76
\end{pmatrix}.
\]

En general, el resultado del producto de las matrices
\[
A
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]
es
\[
AB
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $3 \times 2$ por matriz de $2 \times 2$:

Supongamos que
\[
A
=
\begin{pmatrix}
3 & 5 \\
1 & 0 \\
4 & 3
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
7 & 8 \\
5 & 2
\end{pmatrix}.
\]

En este caso, como estamos multiplicando una matriz de tamaño $3 \times 2$ por una matriz de tamaño $2 \times 2$, la matriz resultante tendrá tamaño $3 \times 2$.

Podemos obtener sus entradas de manera similar al caso anterior. Si $C = AB$, entonces la entrada $c_{12}$ la podemos encontrar revisando la primera fila de $A$ y la segunda columna de $B$,
\[
A
=
\begin{pmatrix}
3 & 5 \\
\phantom{1} & \phantom{0} \\
\phantom{4} & \phantom{3}
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{7} & 8 \\
\phantom{5} & 2
\end{pmatrix}.
\]
de modo que $c_{12} = (3)(8) + (5)(2) = 34$. Por su parte, para obtener la entrada $c_{31}$ nos fijamos en la tercera fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{3} & \phantom{5} \\
\phantom{1} & \phantom{0} \\
4 & 3
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
7 & \phantom{8} \\
5 & \phantom{2}
\end{pmatrix}.
\]
obteniendo $c_{31} = (4)(7) + (3)(5) = 43$.

¿Podrías comprobar que
\[
AB
=
\begin{pmatrix}
46 & 34 \\
7 & 8 \\
43 & 38
\end{pmatrix}?
\]

Así, para el caso general de matrices de $3 \times 2$ por $2 \times 2$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $4 \times 2$ por matriz de $2 \times 3$:

¿Podrías verificar que la siguiente fórmula es correcta?
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
a_{41} & a_{42}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\
a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23}
\end{pmatrix}.
\]

Propiedades del producto de matrices

A continuación revisaremos algunas de las propiedades que cumple la multiplicación de matrices. Para demostrar las siguientes propiedades, consideraremos la matriz $A$ de tamaño $3 \times 2$ y las matrices $B$ y $C$ de tamaño $2 \times 2$, aunque se pueden probar para matrices de cualesquier otro tamaño entre las cuales se puedan efectuar las operaciones.

Veamos que si efectuamos la multiplicación de una matriz de tamaño $m \times n$ por una matriz de tamaño $n \times 1$ siguiendo el algoritmo descrito anteriormente, el resultado coincide con el de multiplicar la matriz de tamaño $m \times n$ por un vector de tamaño $n$. Por ejemplo, si multiplicamos $A$ por una matriz $U$ de tamaño $2 \times 1$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
u_{11} \\
u_{12}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_{11} + a_{12}u_{21} \\
a_{21}u_{11} + a_{22}u_{21} \\
a_{31}u_{11} + a_{32}u_{21}
\end{pmatrix}.
\]

Esta es una observación importante pues todo lo que demostremos para el producto de matrices también lo tendremos para el producto de matriz por vector.

Veamos que la multiplicación de matrices es asociativa:

\begin{align*}
(AB)C
&=
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} \\
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(a_{11}b_{11} + a_{12}b_{21})c_{11} + (a_{11}b_{12} + a_{12}b_{22})c_{21}
& (a_{11}b_{11} + a_{12}b_{21})c_{12} + (a_{11}b_{12} + a_{12}b_{22})c_{22} \\
(a_{21}b_{11} + a_{22}b_{21})c_{11} + (a_{21}b_{12} + a_{22}b_{22})c_{21}
& (a_{21}b_{11} + a_{22}b_{21})c_{12} + (a_{21}b_{12} + a_{22}b_{22})c_{22} \\
(a_{31}b_{11} + a_{32}b_{21})c_{11} + (a_{31}b_{12} + a_{32}b_{22})c_{21}
& (a_{31}b_{11} + a_{32}b_{21})c_{12} + (a_{31}b_{12} + a_{32}b_{22})c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}c_{11} + b_{12}c_{21}) + a_{12}(b_{21}c_{11} + b_{22}c_{21})
& a_{11}(b_{11}c_{12} + b_{12}c_{22}) + a_{12}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{21}(b_{11}c_{11} + b_{12}c_{21}) + a_{22}(b_{21}c_{11} + b_{22}c_{21})
& a_{21}(b_{11}c_{12} + b_{12}c_{22}) + a_{22}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{31}(b_{11}c_{11} + b_{12}c_{21}) + a_{32}(b_{21}c_{11} + b_{22}c_{21})
& a_{31}(b_{11}c_{12} + b_{12}c_{22}) + a_{32}(b_{21}c_{12} + b_{22}c_{22})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}c_{11} + b_{12}c_{21} & b_{11}c_{12} + b_{12}c_{22} \\
b_{21}c_{11} + b_{22}c_{21} & b_{21}c_{12} + b_{22}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
A(BC).
\end{align*}

De manera muy similar, si $u$ es un vector de tamaño 2, podemos ver que se cumple que $A(Bu) = (AB)u$. ¿Puedes demostrarlo? Hazlo por lo menos para matrices $A$ y $B$ ambas de $2\times 2$.

Quizás tengas la impresión de que hay que hacer demasiadas cuentas y que sería sumamente difícil demostrar estas propiedades para matrices más grandes. Sin embargo, en cursos posteriores verás cómo trabajar apropiadamente con la notación para poder hacer estas demostraciones más fácilmente.

El producto de matrices es asociativo. Sin embargo, no es conmutativo. Por ejemplo, consideremos las matrices
\[
E=
\begin{pmatrix}
5 & 7 \\
-3 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
F=
\begin{pmatrix}
1 & 2 \\
9 & -1
\end{pmatrix}.
\]


Veamos que
\[
EF =
\begin{pmatrix}
68 & 3 \\
-3 & -6
\end{pmatrix}
\ne
\begin{pmatrix}
-1 & 7 \\
48 & 63
\end{pmatrix}
=
FE.
\]

En términos de combinar el producto de matrices con otras operaciones, tenemos que el producto de matrices por la izquierda se distribuye sobre la suma de matrices:
\begin{align*}
A(B+C)
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}+c_{11} & b_{12}+c_{12} \\
b_{21}+c_{21} & b_{22}+c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}+c_{11}) + a_{12}(b_{21}+c_{21})
& a_{11}(b_{12}+c_{21}) + a_{12}(b_{22}+c_{22}) \\
a_{21}(b_{11}+c_{11}) + a_{22}(b_{21}+c_{21})
& a_{21}(b_{12}+c_{21}) + a_{22}(b_{22}+c_{22}) \\
a_{31}(b_{11}+c_{11}) + a_{32}(b_{21}+c_{21})
& a_{31}(b_{12}+c_{21}) + a_{32}(b_{22}+c_{22}) \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11}+a_{11}c_{11} + a_{12}b_{21}+a_{12}c_{21}
& a_{11}b_{12}+a_{11}c_{11} + a_{12}b_{22}+a_{12}c_{22} \\
a_{21}b_{11}+a_{21}c_{11}+ a_{22}b_{21}+a_{22}c_{21}
& a_{21}b_{12}+a_{21}c_{12}+ a_{22}b_{22}+a_{22}c_{22} \\
a_{31}b_{11}+a_{31}c_{11} + a_{32}b_{21}+a_{32}c_{21}
& a_{31}b_{12}+a_{31}c_{12} + a_{32}b_{22}+a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11}c_{11} + a_{12}c_{21} & a_{11}c_{12} + a_{12}c_{22} \\
a_{21}c_{11} + a_{22}c_{21} & a_{21}c_{12} + a_{22}c_{22} \\
a_{31}c_{11} + a_{32}c_{21} & a_{31}c_{12} + a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
AB + AC.
\end{align*}

El producto también se distribuye sobre la suma cuando la suma aparece a la izquierda. ¿Podrías probar que si $D$ es una matriz de tamaño $3 \times 2$, entonces se cumple $(A+D)B = AB + DB$?

En entradas anteriores vimos que $\mathcal{I}_n$ tiene la propiedad de ser neutro al multiplicarla por un vector de tamaño $n$. Resulta que $\mathcal{I}_n$ también tiene esta propiedad al multiplicarla por la izquierda por una matriz de tamaño $n\times m$. Por ejemplo, veamos que al multiplicar $\mathcal{I}_3$ por la izquierda por $A$, obtenemos
\begin{align*}
\mathcal{I}_3 A
&=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
1a_{11} + 0a_{21} + 0a_{31} & 1a_{12} + 0a_{22} + 0a_{32} \\
0a_{11} + 1a_{21} + 0a_{31} & 0a_{12} + 1a_{22} + 0a_{32} \\
0a_{11} + 0a_{21} + 1a_{31} & 0a_{12} + 0a_{22} + 1a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
A.
\end{align*}

¿Podrías probar que $A\mathcal{I}_2 = A$ (es decir, que $\mathcal{I}_2$ es neutro por la derecha para $A$)?

Habiendo visto que el producto de matrices es asociativo, conmutativo y tiene neutros, probablemente te estarás preguntando si existen inversos en la multiplicación de matrices. Este cuestionamiento lo dejaremos para la siguiente entrada.

Relación con la composición de transformaciones

Como vimos en la entrada anterior, una forma de visualzar el producto de una matriz $A$ por un vector $u$ es como una transformación que envía el vector $u$ a un único vector $Au$.

Teniendo en mente esto, veamos que la propiedad de que $A(Bu) = (AB)u$ resulta aún más interesante. Para esto, veamos que el siguiente ejemplo: sean
\[
A
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix},
\qquad
\text{y}
\qquad
u
=
\begin{pmatrix}
1 \\
2
\end{pmatrix}.
\]

Si multiplicamos $B$ por $u$, vemos que corresponde a la transformación que envía $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ al vector $Bu = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

Ahora, si multiplicamos $A$ por el vector $Bu$, vemos que corresponde a la transformación que envía $Bu$ al vector $A(Bu) = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$ (Acabamos de obtener el resultado de aplicar a $u$ la composición de las transformaciones $B$ y $A$).

Por otra parte, si realizamos la multiplicación
\[
AB
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix}
=
\begin{pmatrix}
6 & 0 \\
4 & 2
\end{pmatrix},
\]
la transformación asociada a $AB$ envía $u$ al vector $(AB)u = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$.

¡La composición de las transformaciones asociadas a $B$ y $A$ aplicada al vector $u$ coincide con la transformación asociada a la matriz $AB$ aplicada al mismo vector!

Si probamos esto para un vector arbitrario, nos daremos cuenta de que en todos los casos se cumple lo mismo. En realidad, esto no es una coincidencia: como aprenderás en tus cursos de álgebra lineal, la composición de transformaciones lineales está directamente asociada al producto de matrices.

Potencias de matrices

Podemos ver que si una matriz $A$ es cuadrada, al tener el mismo número de filas que de columnas, entonces podemos realizar la multiplicaciones $AA$, $AAA$, $AAAA$, etc., que por asociatividad no importa en qué orden multipliquemos. Esto nos sugiere que podemos cacular potencias de matrices.

Para una matriz cuadrada $A$, definiremos de manera recursiva la potencia $A^n$:

  • Definimos $A^0 = \mathcal{I}$.
  • Dada $A^n$, con $n$ un número natural, definimos $A^{n+1} = A^n A$.

Por ejemplo, si
\[
A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\]
calculemos $A^3$ empleando la definición recursiva. Para esto, iremos calculando una por una las potencias de $A$, hasta llegar a $A^3$:
\begin{align*}
A^0
&=
\mathcal{I}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\\[5pt]
A^1
&=
A^0A
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\\[5pt]
A^2
&=
A^1 A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(2)(2) + (1)(3) & (2)(1) + (1)(4) \\
(3)(2) + (4)(3) & (3)(1) + (4)(4)
\end{pmatrix}
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix},
\\[5pt]
A^3
&=
A^2A
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(7)(2) + (6)(3) & (7)(1) + (6)(4) \\
(18)(2) + (19)(3) & (18)(1) + (19)(4)
\end{pmatrix}
=
\begin{pmatrix}
32 & 31 \\
93 & 94
\end{pmatrix}.
\end{align*}

Prueba calcular algunas potencias de la matriz \(
\begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix}.
\) ¿Notas algún patrón especial?

Más adelante…

En esta entrada aprendimos sobre el producto de matrices con matrices y conocimos algunas de sus propiedades. En la siguiente entrada abordaremos la pregunta sobre si existen los inversos en la multiplicación de matrices.

Tarea moral

  1. Realiza el producto de matrices $$\begin{pmatrix} -1 & -2 & -3 \\ 0 & 1 & 2 \\ 1 & -1 & 3 \end{pmatrix}\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$
  2. Considera la matriz $A=\begin{pmatrix} 3 & -4 \\ 4 & -5 \end{pmatrix}$. Realiza las siguientes operaciones por separado, sin usar la asociatividad del producto de matrices. ¿Cuál de las dos operaciones te resultó más fácil de hacer?
    • $$A\left(A\left(A\left(A\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right)\right)\right).$$
    • $$(((AA)A)A)\begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$
  3. Completa las pruebas faltantes de las propiedades de la multiplicación de matrices.
  4. Demuestra la siguiente ley de exponentes para matrices: $A^mA^n=A^{m+n}$.
  5. Prueba que si
    \[
    A =
    \begin{pmatrix}
    a_{11} & 0 \\
    0 & a_{22}
    \end{pmatrix},
    \]
    y $k$ es un entero mayor o igual que $0$, entonces
    \[
    A^k
    =
    \begin{pmatrix}
    {a_{11}}^k & 0 \\
    0 & {a_{22}}^k
    \end{pmatrix}
    \]
    (Sugerencia: realizarlo por inducción sobre $k$, utilizando la definición recursiva).
  6. Encuentra matrices $A$ y $B$ de $2\times 2$ para las cuales $A^2-B^2\neq (A+B)(A-B)$.

Entradas relacionadas