Archivo de la etiqueta: matrices

Álgebra Lineal II: Teorema de Gauss

Introducción

En la entrada anterior vimos un recordatorio de las formas bilineales, cuadráticas y sus polares, en esta entrada continuaremos recordando algunas propiedades vistas previamente enfocándonos en el teorema de Gauss y su demostración, la cual, cabe decirlo, nos dará una pequeña pista de la relación (que esperaríamos tener, al ser álgebra lineal) entre las formas cuadráticas y matrices.

Además, con el teorema de Gauss obtendremos un algoritmo (aunque ciertamente no es obvio cual es este, basado en la demostración) para poder escribir cualquier forma cuadrática en una forma estandarizada, permitiéndonos así buscar propiedades particulares a cada forma cuadrática que más adelante motivara otro resultado importante.

Preparaciones para el teorema de Gauss

Antes de empezar con el teorema, veamos una propiedad de las formas cuadráticas en $\mathbb{R}^n$.
Sea $q$ una forma cuadrática en $\mathbb{R}^n$ con $b$ su polar, y sea $e_1, \dots , e_n$ la base canónica. sabemos que, dado $x \in \mathbb{R}^n$ con $x=(x_1, \dots , x_n)$
\begin{align*} q(x)=q(x_1,\dots , x_n)=q(\sum_{i=1}^nx_ie_i)=b(\sum_{i=1}^nx_ie_i, \sum_{j=1}^nx_je_j) \end{align*}
Desarrollemos la suma presentada en la primera entrada
\begin{align*} =b(x_1e_1, \sum_{j=1}^nx_je_j)+ b(x_2e_2, \sum_{j=1}^nx_je_j) + \dots + b(x_ne_n, \sum_{j=1}^nx_je_j) \end{align*}
Ahora, desarrollemos únicamente la suma de la segunda entrada de $ b(x_1e_1, \sum_{j=1}^nx_je_j)$
\begin{align*} =b(x_1e_1, x_1e_1)+ b(x_1e_1, x_2e_2) + \dots + b(x_1e_1,x_ne_n) \end{align*}
Haciendo lo mismo en cada sumando hasta desarrollar la suma de $b(x_ne_n, \sum_{j=1}^nx_je_j)$
\begin{align*} =b(x_ne_n, x_1e_1)+ b(x_ne_n, x_2e_2) + \dots + b(x_n e_n ,x_n e_n) \end{align*}
Acomodemos todas estas sumas de la siguiente manera, que si has llevado teoría de conjuntos podría resultarte familiar
\begin{align*} =b(x_1e_1, x_1e_1)+ b(x_1e_1, x_2e_2) + \dots + b(x_1e_1,x_ne_n) \\
+b(x_2e_2, x_1e_1) + b (x_2e_2, x_2e_2) + \dots + b(x_2e_2,x_ne_n) \\
\vdots \qquad \qquad \qquad \qquad \qquad \qquad \\
+b(x_ne_n, x_1e_1) + b (x_n e_n, x_2e_2) + \dots + b (x_n e_n , x_n e_n) \end{align*}
Al encontrarnos con esta notación un tanto engorrosa, intentemos simplificarla, nombremos $b(e_i , e_j)=a_{ij}$ y como sabemos que $b$ es simétrica (¿por qué?), podemos afirmar que $a_{ij}=a_{ji}$ además, en cada uno de estos sumandos utilicemos la linealidad, sacando los coeficientes $x_i$ y $x_j$
\begin{align*} =x_1^2a_{11}+ x_1x_2a_{12} + \dots + x_1x_na_{1n} \\
+x_2x_1a_{21}+ x_2^2a_{22} + \dots +x_2x_na_{2n} \\
\vdots \qquad \qquad \qquad \qquad \qquad \qquad \\
+x_nx_1a_{n1} + x_nx_2a_{n2} + \dots + x_n^2 a_{nn} \end{align*}
No está de más notar la similitud que esta notación tiene con una matriz, ¿será que $q$ se puede representar como una matriz?
Más allá de ello, notemos que las $ij$-esima entrada es igual a la entrada $ji$ por lo que $q$ se puede terminar reescribiendo de la siguiente manera
\begin{align*} q(x_1,\dots , x_n)= \sum_{i=1}^nx_i^2a_{ii} + 2\sum_{1 \leq i < j \leq n} x_i x_j a_{ij} \end{align*}
Al juntar todos los elementos de la diagonal en la primera suma y todos los que están fuera de ella en la segunda.

Habiendo hecho esto, procedamos a el teorema cuya demostración, como es de esperar, utilizará la observación recién hecha.

Teorema de Gauss de formas cuadráticas

Teorema
Sea $q$ una forma cuadrática en $V=\mathbb{R}^n$. Existen $\alpha_1, \dots , \alpha_r \in \mathbb{R}$ y formas (funciones) lineales $l_1, \dots l_r \in V^*$ linealmente independientes tales que, para todo $x \in V$
\begin{align*} q(x)= \sum_{i=1}^r \alpha _i (l_i(x))^2 \end{align*}
Recordemos que $V^*$ es el espacio vectorial dual de $V$.

Demostración

Sea $q$ una forma cuadrática cualquiera en $\mathbb{R}^n$.

Procedamos por inducción sobre $n$.

$\underline{ \text{Cuando }n=1}.$

Utilizando la observación anterior sabemos que $q$ se puede escribir como
\begin{align*} q(x_1)=x_1^2a_{11}=x_1^2b(1,1)=x_1^2q(1) \end{align*}.
Con $b$ la polar de $q$, nombrando $\alpha=q(1)$ y $l: V \rightarrow \mathbb{R}$ la identidad, tenemos que
\begin{align*} q(x_1)= x_1^2q(1)=(l_1(x_1))^2 \alpha_1 \end{align*}.

Por lo que el teorema se cumple cuando n=1.

$\underline{ \text{Supongamos que el teorema se cumple para }n-1}$

Nuevamente, por la observación anterior, sabemos que
\begin{align*} q(x_1,\dots , x_n)= \sum_{i=1}^nx_i^2a_{ii} + 2\sum_{1 \leq i < j \leq n} x_ix_ja_{ij} \end{align*}
Separemos este pedazo de la demostración en dos casos.

  • Si existe $ i \in \{ 1, \dots n\}$ tal que $a_{ii} \neq 0$ sin pérdida de generalidad, supongamos que $a_{nn} \neq 0$ (¿Por qué podemos hacer esto?)

    Observemos que
    \begin{align*} 2\sum_{1 \leq i < j \leq n} x_ix_ja_{ij}= 2\sum_{1 \leq i < j \leq n-1} x_ix_ja_{ij} +2(\sum_{i=1}^{n-1} x_ia_{in})x_n \end{align*}
    y
    \begin{align*} \sum_{i=1}^n x_i^2a_{ii}=x_n^2a_{nn} + \sum_{i=1}^{n-1} x_i^2a_{ii} \end{align*}
    Con esto
    \begin{align*} q(x_1,\dots , x_n)=x_n^2a_{nn} + \sum_{i=1}^{n-1} x_i^2a_{ii}+2\sum_{1 \leq i < j \leq n-1} x_ix_ja_{ij} +2(\sum_{i=1}^{n-1} x_ia_{in})x_n \end{align*}
    Dado esto, utilicemos el primero y último término para completar el cuadrado, viendo a $q$ como un polinomio de segundo grado en $x_n$
    \begin{align*} q(x_1,\dots , x_n)= a_{nn} (x_n+\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i )^2- a_{nn}(\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i )^2 + \sum_{i=1}^{n-1} x_i^2a_{ii}+2\sum_{1 \leq i < j \leq n-1} x_ix_ja_{ij} \end{align*}
    Y finalmente, nombrando
    \begin{align*} q'(x_1,\dots , x_{n-1})= – a_{nn}(\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i )^2 + \sum_{i=1}^{n-1} x_i^2a_{ii}+2\sum_{1 \leq i < j \leq n-1} x_ix_ja_{ij} \end{align*}
    Tenemos que
    \begin{align*} q(x_1,\dots , x_n)= a_{nn} (x_n+\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i )^2+q'(x_1,\dots , x_{n-1}) \end{align*}
    Donde $q’$ es una forma cuadrática en $\mathbb{R}^{n-1}$ (¿Por qué?) por lo que podemos aplicar la hipótesis de inducción, es decir que
    \begin{align*} q'(x_1,\dots , x_{n-1})= \sum_{i=1}^r \alpha_i (l_i'(x))^2 \end{align*}
    Con $\{ l’_1, \dots , l’_r\} \subseteq (\mathbb{R}^{n-1})^*$ linealmente independientes, definamos
    \begin{align*} l_{r+1}(x_1, \dots , x_n)= x_n+\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \text{,} \qquad \alpha_{r+1}=a_{nn}\end{align*}
    Y
    \begin{align*} l_i(x_1, \dots , x_n)=l_i'(x_1, \dots , x_{n-1}) \end{align*}
    con $1 \leq i \leq r$, ya con estos nombres tenemos que
    \begin{align*} q(x_1,\dots , x_n)= \sum_{i=1}^{r+1} \alpha_i (l_i(x_1, \dots , x_n))^2 \end{align*}
    Por lo tanto, para todo $x \in \mathbb{R}^n$
    \begin{align*} q(x)= \sum_{i=1}^{r+1} \alpha_i (l_i(x))^2 \end{align*}
    con $\{ l_1, \dots , l_{r+1} \}$ linealmente independientes (¿Por qué?).
    \begin{align*} \\ \end{align*}
  • Si $ \forall i \in \{ 1, \dots n\}$ $a_{ii}=0$

    De nuevo, separaremos este caso en dos:

    Si suponemos que $\forall i,j \in \{ 1, \dots n\}$ $a_{ij}=0$ entonces debemos tener que $q=0$ así tomando a $\{ l_1, \dots , l_{n} \}$ como la base de $V^*$ que sabemos es linealmente independiente y a $\alpha_i=0$ para todo $1 \leq i \leq n$ es claro que
    \begin{align*} q(x)= \sum_{i=1}^{n} \alpha_i (l_i(x))^2 \end{align*}.

    Así supongamos que existe algún $a_{ij} \neq 0$ sin pérdida de generalidad supongamos que $a_{n-1.n} \neq 0$ (De nuevo ¿Por qué aquí podemos hacer esta afirmación sin pérdida de generalidad?)

    Recordando la observación del principio, tenemos que
    \begin{align*} q(x_1,\dots , x_n)= \sum_{i=1}^nx_i^2a_{ii} + 2\sum_{1 \leq i < j \leq n} x_i x_j a_{ij} \end{align*}
    Además, como $ \forall i \in \{ 1, \dots n\}$ $a_{ii}=0$ tenemos que $q$ se puede simplificar aún más
    \begin{align*} q(x_1,\dots , x_n)= 2\sum_{1 \leq i < j \leq n} x_i x_j a_{ij} \end{align*}
    Más aún esta suma se puede separar como sigue
    \begin{align*} q(x_1,\dots , x_n)= 2a_{n-1.n}x_{n-1}x_n +2\sum_{i=1}^{n-2}a_{in}x_ix_n+ 2\sum_{i=1}^{n-2}a_{i,n-1}x_ix_{n-1} + 2\sum_{1 \leq i < j \leq n-2} x_i x_j a_{ij} \end{align*}.
    Para no alargar esta entrada, te sugiero intentes probar que $q$ efectivamente se puede escribir de esta manera, tal vez te resulte útil volver a pensar a $q$ en la «notación matricial» que utilizamos al principio.
    Prosigamos, utilizaremos la siguiente identidad algebraica
    \begin{align*} axy+bx+cy= a ( x + \frac{c}{a} ) ( y + \frac{b}{a} ) -\frac{bc}{a} \end{align*}
    Y nombrando
    \begin{align*} a =2a_{n-1.n}, \qquad b=2\sum_{i=1}^{n-2}a_{in}x_i, \qquad c=2\sum_{i=1}^{n-2}a_{i,n-1}x_i, \qquad x=x_n, \qquad y=x_{n-1} \end{align*}
    Tenemos que $q$ se puede escribir como sigue
    \begin{align*}2a_{n-1.n}(x_n + \sum_{i=1}^{n-2}\frac{a_{i,n-1}}{a_{n-1.n}} x_i )( x_{n-1} + \sum_{i=1}^{n-2}\frac{a_{i,n}}{a_{n-1.n}} x_i ) – 2\frac{\sum_{i=1}^{n-2}a_{in}x_i \times \sum_{i=1}^{n-2}a_{i,n-1}x_i}{a_{n-1.n}} + 2\sum_{1 \leq i < j \leq n-2} x_i x_j a_{ij} \end{align*}
    Por suerte, para la notación nombraremos
    \begin{align*} q'(x_1,\dots , x_{n-2})= – 2\frac{\sum_{i=1}^{n-2}a_{in}x_i \times \sum_{i=1}^{n-2}a_{i,n-1}x_i}{a_{n-1.n}} + 2\sum_{1 \leq i < j \leq n-2} x_i x_j a_{ij} \end{align*}
    Que es una forma cuadrática en $\mathbb{R}^{n-2}$ por lo que, gracias a la hipótesis de inducción se puede escribir como
    \begin{align*} q'(x_1, \dots , x_{n-2})= \sum_{i=1}^r \alpha’_i (l’_i(x_1, \dots , x_{n-2}))^2 \end{align*}
    Con $\{ l’_1, \dots , l’_r\} \subseteq (\mathbb{R}^{n-2})^*$ linealmente independientes, trabajemos con la otra parte de $q$, para esto usaremos otra identidad algebraica
    \begin{align*} ab=\frac{(a+b)^2 -(a-b)^2 }{4} \end{align*}
    Y nombrando
    \begin{align*} a =(x_n + \sum_{i=1}^{n-2}\frac{a_{i,n-1}}{a_{n-1.n}} x_i ), \qquad b= ( x_{n-1} + \sum_{i=1}^{n-2}\frac{a_{i,n}}{a_{n-1.n}} x_i ) \end{align*}
    Por suerte, aquí no necesitamos sustituir y desarrollar, definamos ingeniosamente $l_{r+1}$ y $l_{r+2}$ como sigue
    \begin{align*} l_{r+1}(x_1, \dots , x_n)= x_n + x_{n-1} + \sum_{i=1}^{n-2}\frac{a_{i,n-1}+a_{i,n}}{a_{n-1.n}} x_i \end{align*}
    Y
    \begin{align*} l_{r+2}(x_1, \dots , x_n)= x_n – x_{n-1} + \sum_{i=1}^{n-2}\frac{a_{i,n-1}-a_{i,n}}{a_{n-1.n}} x_i \end{align*}
    De esta manera
    \begin{align*}2a_{n-1.n}(x_n + \sum_{i=1}^{n-2}\frac{a_{i,n-1}}{a_{n-1.n}} x_i )( x_{n-1} + \sum_{i=1}^{n-2}\frac{a_{i,n}}{a_{n-1.n}} x_i ) \\
    =\frac{a_{n-1.n}}{2} [ (l_{r+1}(x_1, \dots , x_n))^2- (l_{r+2}(x_1, \dots , x_n))^2 ] \end{align*}
    Para finalizar, con todas estas igualdades tenemos que
    \begin{align*} q(x_1,\dots , x_n)= \sum_{i=1}^r \alpha’_i (l’_i(x_1, \dots , x_{n-2} ))^2 + \frac{a_{n-1.n}}{2} [ (l_{r+1}(x_1, \dots , x_n))^2- (l_{r+2}(x_1, \dots , x_n))^2 ]\end{align*}
    Y sólo resta cambiar nombres como sigue
    \begin{align*} l_i(x_1, \dots x_n) = l’_i(x_1, \dots , x_{n-2}) \qquad \text{y} \qquad \alpha_i=\alpha’_i \end{align*}
    Para $ i \in \{1, \dots r \}$ y
    \begin{align*} \alpha_{r+1}=\frac{a_{n-1.n}}{2} \qquad \text{y} \qquad \alpha_{r+2}=-\frac{a_{n-1.n}}{2} \end{align*}
    Ya con estos nombres, $q$ se escribe como sigue
    \begin{align*} q(x_1,\dots , x_n)= \sum_{i=1}^{r+2} \alpha_i (l_i(x_1, \dots , x_n ))^2 \end{align*}
    con $\{ l_1, \dots , l_{r+2} \}$ linealmente independientes (¿Por qué?).

Por lo que, en cualquiera de los dos casos propuestos se cumple que
\begin{align*} q(x)= \sum_{i=1}^{r} \alpha_i (l_i(x))^2 \end{align*}
con con $\{ l_1, \dots , l_{r} \}$ linealmente independientes.

Así por principio de inducción tenemos que el teorema de Gauss se cumple para cualquier forma cuadrática $q$ en $\mathbb{R^n}$ pata todo $n \in \mathbb{N}$.

$\square$

Más adelante

Debido a la longitud de esta demostración, los ejemplos serán reservados para la siguiente entrada, además, al principio de la entrada se dieron pistas a que existe una relación entre formas bilineales y matrices, esto será explorado posteriormente.

Por el momento nos centraremos en utilizar el teorema de Gauss para poder escribir $q$ de una forma estándar y observar que propiedades extra podemos obtener al escribirla de esta manera, esto motivará el siguiente teorema de interés la ley de inercia de Sylvester.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $q$ una forma cuadrática en $\mathbb{R}^n$ y $x=(x_1, \dots x_n)$ muestra que \begin{align*} q(x)=\sum_{i,j=1}^na_{ij}x_ix_j \text{ con } a_{ij}=(b_i,b_j). \end{align*}
  2. Sea $A=[a_{ij}]$ con $a_{ij}$ definida del problema anterior, ¿Qué podrías afirmar acerca de A sin importar la $q$ elegida?
  3. Sea $A=[a_{ij}]$ una matriz simétrica en $M_n(\mathbb{R})$ y definamos
    \begin{align*} q: \mathbb{R}^n \rightarrow \mathbb{R} \text{ con } q(x)=\sum_{i,j=1}^na_{ij}x_ix_j \end{align*} ¿Es $q$ así definida una forma cuadrática?
  4. En el ejercicio anterior, ¿Es necesario que $A$ sea simétrica?
  5. Sean $\alpha _1, \dots , \alpha_r $ números reales y $l_1 , \dots , l_r$ formas lineales, linealmente independientes en $\mathbb{R}^n$ y $x \in \mathbb{R}^n$ definamos $q$ como sigue:
    \begin{align*} q(x)=\sum_{i,j=1}^n \alpha_i(l_i(x)) \end{align*}
    ¿Es $q$ así definida una forma cuadrática en $\mathbb{R}^n$?

Álgebra Lineal II: Polinomio característico

[latexpage]

Introducción

En el transcurso de esta unidad hemos construido varios de los objetos algebraicos que nos interesan. En primer lugar, dejamos claro qué quería decir evaluar un polinomio en una matriz o transformación lineal. Esto nos llevó a preguntarnos por aquellos polinomios que anulan a una matriz o transformación lineal. De manera natural, descubrimos que aquellos polinomios que anulan son múltiplos de un polinomio especial asociado a la matriz o transformación lineal llamado polinomio mínimo.

De manera un poco separada, comenzamos a estudiar los eigenvalores, eigenvectores y eigenespacios de una transformación lineal y en la entrada anterior nos enfocamos en varias de sus propiedades principales. Uno de los resultados clave que encontramos es que los eigenvalores de una matriz o transformación lineal son las raíces del polinomio mínimo que estén en el campo en el que estemos trabajando.

Aunque este resultado sea interesante de manera teórica, en la práctica debemos hacer algo diferente pues no es tan sencillo encontrar el polinomio mínimo de una matriz o transformación lineal. Es por esto que ahora estudiaremos con profundidad otro objeto que resultará fundamental en nuestro estudio: el polinomio característico. Ya nos encontramos con él anteriormente. Si $A$ es una matriz en $M_n(F)$, dicho polinomio en la variable $\lambda$ es el determinante $\det(\lambda I_n-A)$.

Esta entrada es más bien una introducción, así que nos enfocaremos en probar las cosas más básicas de este objeto. Lo primero, y más importante, es verificar que en efecto es un polinomio (y con ciertas características específicas). También, aprovecharemos para calcularlo en varios contextos (y campos) diferentes.

Definición de polinomio característico

Comencemos con una matriz $A\in M_n(F)$. Vimos que encontrar los eigenvalores de $A$ se reduce a encontrar las soluciones de la ecuación

\begin{align*}
\det(\lambda I_n-A)=0
\end{align*}

en $F$. Vamos a estudiar más a detalle la expresión de la izquierda.

El siguiente teorema va un poco más allá y de hecho estudia expresiones un poco más generales.

Teorema. Sean $A,B\in M_n(F)$ dos matrices. Existe un polinomio $P\in F[X]$ tal que para todo $x\in F$ se cumple

\begin{align*}
P(x)=\det(xA+B).
\end{align*}

Si denotamos a este polinomio por $P(X)=\det(XA+B)$, entonces

\begin{align*}
\det(XA+B)=\det(A)X^{n}+\alpha_{n-1}X^{n-1}+\dots+\alpha_1 X+\det B
\end{align*}

para algunas expresiones polinomiales $\alpha_1,\dots, \alpha_{n-1}$ con coeficientes enteros en las entradas de $A$ y $B$.

Demostración. Consideremos el siguiente polinomio en la variable $X$ y coeficientes en $F$, es decir, el siguiente polinomio en $F[X]$:

\begin{align*}
P(X)=\sum_{\sigma\in S_n} \operatorname{sign}(\sigma)\left(a_{1\sigma(1)} X+b_{1\sigma(1)}\right)\cdots \left(a_{n\sigma(n)}X+b_{n\sigma(n)}\right).
\end{align*}

Por construcción, $P$ es un polinomio cuyos coeficientes son expresiones polinomiales enteras en las entradas de $A$ y $B$. Más aún, se cumple que $P(x)=\det(xA+B)$ para $x\in F$ (podría ser útil revisar la entrada sobre determinantes para convencerte de ello). El término constante lo obtenemos al evaluar en $X=0$, pero eso no es más que $P(0)=\det(0\cdot A+B)=\det(B)$. Finalmente para cada $\sigma\in S_n$ tenemos que el primer término de cada sumando es

\begin{align*}
\operatorname{sign}(\sigma)(a_{1\sigma(1)}X+b_{1\sigma(1)})\cdots (a_{n\sigma(n)} X+b_{n\sigma(n)})= \operatorname{sign}(\sigma) a_{1\sigma(1)}\cdots a_{n\sigma(n)}X^{n}+\dots
\end{align*}

En efecto, los términos «ocultos en los puntos suspensivos» todos tienen grado a lo más $n-1$. Agrupando todos los sumandos y comparando con la definición del determinante llegamos a que $$P(X)=\det(A)X^{n}+\ldots,$$ es decir el término de orden $n$ es en efecto $\det(A)$.

$\square$

Del teorema se sigue que si $A$ y $B$ tienen entradas enteras o racionales, $\det(XA+B)$ tiene coeficientes enteros o racionales respectivamente.

Enseguida podemos definir (gracias al teorema) el siguiente objeto:

Definición. El polinomio característico de la matriz $A\in M_n(F)$ es el polinomio $\chi_A\in F[X]$ definido por

\begin{align*}
\chi_A(X)=\det(X\cdot I_n-A).
\end{align*}

Una observación inmediata es que, de acuerdo al teorema, el coeficiente principal de $\chi_A(X)$ tiene coeficiente $\det(I_n)=1$. En otras palabras, acabamos de demostrar la siguiente propiedad fundamental del polinomio característico.

Proposición. El polinomio característico de una matriz en $M_n(F)$ siempre tiene grado exactamente $n$ y además es un polinomio mónico, es decir, que el coeficiente que acompaña al término de grado $n$ es iguala $1$.

Veamos un ejemplo sencillo.

Ejemplo. Si queremos calcular el polinomio característico de

\begin{align*}
A=\begin{pmatrix} 1 & -1\\ 1 &0\end{pmatrix}\in M_2(\mathbb{R})
\end{align*}

entonces usamos la definición

\begin{align*}
\chi_A(X)&=\det(X\cdot I_2-A)\\&=\begin{vmatrix} X-1 & 1\\ -1 & X\end{vmatrix}\\&= X(X-1)+1.
\end{align*}

Y así los eigenvalores de $A$ son las raíces reales de $\chi_A(X)$. Es decir, tenemos que resolver

\begin{align*} 0=x(x-1)+1=x^2-x+1.\end{align*}

Sin embargo, el discriminante de esta ecuación cuadrática es $(-1)^2-4(1)(1)=-3$, el cual es un real negativo, por lo que no tenemos eigenvalores reales. Si estuviéramos trabajando en $\mathbb{C}$ tendríamos dos eigenvalores complejos:

\begin{align*}
x_{1,2}= \frac{1\pm i\sqrt{3}}{2}.
\end{align*}

De aquí, ¿cómo encontramos los eigenvectores y eigenespacios? Basta con resolver los sistemas lineales homogéneos de ecuaciones $(A-x_1I_2)X=0$ para encontrar el $x_1$-eigenespacio y $(A-x_2)X=0$ para encontrar el $x_2$-eigenespacio.

$\square$

Algunos cálculos de polinomios característicos

Ya que calcular polinomios característicos se reduce a calcular determinantes, te recomendamos fuertemente que recuerdes las propiedades que tienen los determinantes. Sobre todo, aquellas que permiten calcularlos.

¡A calcular polinomios característicos!

Problema. Encuentra el polinomio característico y los eigenvalores de $A$ dónde $A$ es

\begin{align*}
A=\begin{pmatrix}
0 & 1 & 0 & 0\\
2 & 0 & -1 & 0\\
0 & 7 & 0 &6\\
0 & 0 & 3 & 0
\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. Usamos la expansión de Laplace respecto al primer renglón:

\begin{align*}
\chi_A(X)&=\det(XI_4-A)\\&= \begin{vmatrix}
X & -1 & 0 & 0\\
-2 & X & 1 & 0\\
0 & -7 & X & -6\\
0 & 0 & -3 & X\end{vmatrix}\\
&= X\begin{vmatrix} X & 1 & 0\\ -7 & X & -6\\ 0 & -3 & X\end{vmatrix}+ \begin{vmatrix}
-2 & 1 & 0\\ 0 & X& -6\\ 0 &-3 & X\end{vmatrix}\\
&= X(X^3-11X)-2(X^2-18)\\
&= X^4-13X^2+36.
\end{align*}

Después, para encontrar los eigenvalores de $A$ tenemos que encontrar las raíces reales de la ecuación

\begin{align*}
x^4-13x^2+36=0.
\end{align*}

Sin embargo, no hay que desalentarse por ver una ecuación de grado $4$. Si hacemos el cambio $y=x^2$ podemos llevar nuestro problema a resolver

\begin{align*}
y^2-13y+36=0.
\end{align*}

¡Es una ecuación de segundo orden! Esta la podemos resolver usando ‘la chicharronera’ y obtenemos como soluciones $y_1=4$ y $y_2=9$. Pero todavía tenemos que resolver $x^2=y_1$ y $x^2=y_2$. Al resolver estas últimas dos ecuaciones obtenemos que $x=\pm 2,\pm 3$ son los eigenvalores de $A$.

$\square$

Problema. Calcula el polinomio característico y los eigenvalores de la matriz

\begin{align*}
A=\begin{pmatrix} 1 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 &1 \end{pmatrix}\in M_3(F_2).
\end{align*}

Solución. Nota que estamos trabajando en el campo de dos elementos $F_2$, por lo que $-1=1$. Usando la definición:

\begin{align*}
\chi_A(X)&=\det(XI_3-A)\\&= \begin{vmatrix} X-1 & 0 & -1\\ -1 & X-1 & 0\\ -1 & 0 &X-1\end{vmatrix}\\
&= \begin{vmatrix} X+1 & 0 & 1\\ 1 & X+1& 0 \\ 1 & 0 &X+1\end{vmatrix}.
\end{align*}

Aquí estamos usando repetidamente $-1=1$. Usamos otra vez la expansión de Laplace en el primer renglón para llegar a

\begin{align*}
\chi_A(X)&= (X+1)\begin{vmatrix} X+1 & 0 \\ 0 & X+1\end{vmatrix}+\begin{vmatrix} 1 & X+1\\ 1 & 0\end{vmatrix}\\
&= (X+1)^3-(X+1).
\end{align*}

Luego, si queremos encontrar los eigenvalores de $A$ tenemos que resolver

\begin{align*}
(x+1)^3-(x+1)=0.
\end{align*}

Si bien existen varias maneras de resolver la ecuación, podemos simplemente sustituir los únicos valores posibles de $x$ : $0$ o $1$. Sustituyendo es fácil ver que ambos satisfacen la ecuación, por lo que los eigenvalores de $A$ son $0$ y $1$.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  • Demuestra que $0$ es un eigenvalor de una matriz $A$ si y sólo si $\det(A)=0$.
  • ¿Una matriz compleja de tamaño $n$ tiene necesariamente $n$ eigenvalores distintos?
  • Calcular el polinomio característico y los eigenvalores de
    \begin{align*}A=\begin{pmatrix} 1 & 2 & 0\\ 0 & 1 &2\\ 2 & 0 & 1\end{pmatrix}\in M_3(F_3).
    \end{align*}
  • Usando la fórmula del determinante para matrices de tamaño $2$, encuentra un criterio simple para saber si una matriz con entradas reales de tamaño $2$ tiene dos, uno o ningún eigenvalor real.
  • Da un criterio simple para saber si una matriz de tamaño $2$ con entradas complejas tiene eigenvalores puramente imaginarios.

Más adelante

En la próxima entrada calcularemos el polinomio característico de una variedad de matrices importantes: triangulares superiores, nilpotentes, etc. Esto nos permitirá entender mejor al polinomio característico y lidiar con muchos casos para facilitarnos los cálculos más adelante.

Álgebra Lineal II: Eigenvectores y eigenvalores

[latexpage]

Introducción

En esta entrada revisitamos los conceptos de eigenvalores y eigenvectores de una transformación lineal. Estos son esenciales para entender a las transformaciones lineales, y tienen un rango de aplicabilidad impresionante: aparecen en la física, las ecuaciones diferenciales parciales, la ciencia de datos, la topología algebraica y la probabilidad.

Primero enunciaremos la definición, después veremos un primer ejemplo para convencernos de que no son objetos imposibles de calcular. Luego daremos un método para vislumbrar una manera más sencilla de hacer dicho cálculo y concluiremos con unos ejercicios.

Eigen-definiciones

Comenzamos con $V$ un espacio vectorial sobre $F$ y $T:V\to V$ una transformación lineal.

Definición. Un eigenvalor (también conocido como valor propio) de $T$ es un escalar $\lambda \in F$ tal que $\lambda \cdot \operatorname{Id}-T$ no es invertible. Un eigenvector (también conocido como vector propio o $\lambda$-eigenvector) correspondiente a $\lambda$ es un vector no-cero de $\ker (\lambda \cdot \operatorname{Id}-T)$. A este kernel se le conoce como el eigenespacio correspondiente a $\lambda$ (o $\lambda$-eigenespacio).

Entonces un $\lambda$-eigenvector es por definición distinto de cero y satisface

\begin{align*}
T(v)=\lambda v.
\end{align*}

Hay que tener cuidado. se permite que $\lambda=0$ sea eigenvalor, pero no se permite que $v=0$ sea eigenvector.

La colección de todos los eigenvectores, junto con el vector cero, es el eigenespacio asociado a $\lambda$. Podemos enunciar definiciones análogas con matrices.

Definición. Sea $A\in M_n(F)$ una matriz cuadrada. Un escalar $\lambda \in F$ es un eigenvalor de $A$ si existe un vector $X\in F^n$ distinto de cero (un eigenvector) tal que $AX=\lambda X$. En este caso el subespacio

\begin{align*}
\ker(\lambda I_n-A):=\lbrace X\in F^n\mid AX=\lambda X\rbrace
\end{align*}

es el $\lambda$-eigenespacio de $A$.

Puedes verificar que ambas definiciones se corresponden en el siguiente sentido:

Si $V$ es un espacio de dimensión finita y $T:V\to V$ es una transformación lineal, podemos escoger cualquier base de $V$ y asociarle a $T$ su forma matricial, digamos $A$, en esta base. Los eigenvalores de $T$ son precisamente los eigenvalores de $A$. ¡Pero cuidado! Los eigenvectores de $A$ dependerán de la base elegida.

Un primer ejemplo

Seguimos con un sencillo pero importante ejemplo.

Ejemplo. Considera la matriz

\begin{align*}
A=\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}.
\end{align*}

Busquemos los eigenvectores y eigenvalores de $A$, pensando a $A$ como una matriz con entradas complejas. Sea $\lambda\in \mathbb{C}$ un eigenvalor y $X$ un eigenvector asociado. Entonces se cumple la relación $AX=\lambda X$. Si $X=(x_1,x_2)$ entonces la condición mencionada es equivalente al par de ecuaciones

\begin{align*}
-x_2=\lambda x_1, \hspace{5mm} x_1=\lambda x_2.
\end{align*}

Sustituyendo una en la otra obtenemos

\begin{align*}
-x_2=\lambda^2 x_2.
\end{align*}

Si $x_2=0$ entonces $x_1=0$ y así $X$ es un vector nulo, lo que es imposible por definición (recuerda que pedimos que los eigenvectores sean distintos de cero). Entonces $x_2\neq 0$ y podemos dividir por $x_2$ a la ecuación previa, de manera que $\lambda^2=-1$, o sea $\lambda=\pm i$. Conversamente, $i$ y $-i$ son eigenvalores. En efecto, podemos tomar $x_2=1$ y $x_1=\lambda$ como soluciones del problema anterior y obtener un vector propio asociado. De hecho, el eigenespacio está dado por

\begin{align*}
\ker (\lambda I_2-A)=\lbrace (\lambda x_2, x_2)\mid x_2\in \mathbb{C}\rbrace
\end{align*}

y esto no es más que la recta generada por el vector $v=(\lambda,1)\in \mathbb{C}^2$. Por lo tanto, vista como una matriz compleja, $A$ tiene dos eigenvalores distintos $\pm i$ y dos eigenespacios, los generados por $(i,1)$ y $(-i,1)$.

Por otro lado, veamos qué pasa si pensamos a $A$ como una matriz con entradas reales. Haciendo las mismas cuentas llegamos a la misma ecuación, $-x_2=\lambda^2 x_2$. Podemos reescribirla factorizando el término $x_2$:

\begin{align*}
(\lambda^2+1)x_2=0.
\end{align*}

Como $\lambda$ esta vez es un número real, $\lambda^2+1$ siempre es distinto de cero. Entonces para que el producto sea cero, tiene que ocurrir que $x_2=0$, ¡pero entonces $x_1=0$ y así $X=0$! En conclusión: vista como una matriz con entradas reales, $A$ no tiene eigenvalores, y por tanto no tiene eigenespacios. La moraleja es que los eigenvalores y eigenvectores dependen mucho del campo en el que trabajemos.

¿Cómo calcularlos?

Si bien el ejemplo anterior resultó simple, no es difícil imaginar que matrices más complicadas y más grandes pueden resultar en procedimientos menos claros. En general:

  • ¿Cómo podemos calcular los eigenvalores?
  • ¿Cómo podemos calcular los eigenespacios de manera eficiente?
  • ¿Cómo podemos calcular los eigenvectores?

Una vez calculados los eigenvalores, calcular los eigenespacios se reduce a resolver el sistema de ecuaciones homogéneo $(A-\lambda I_n)X=0$, lo cual ya hemos hecho muchas veces mediante reducción gaussiana. Luego, calcular los eigenvectores simplemente es tomar los elementos no cero del eigenespacio. Sin embargo, el cálculo de eigenvalores involucra encontrar raíces de polinomios lo cual de entrada no es obvio. Un primer paso es la siguiente observación que enunciamos como proposición.

Proposición. Un escalar $\lambda \in F$ es un eigenvalor de $A\in M_n(F)$ si y sólo si

\begin{align*}
\det(\lambda I_n-A)=0.
\end{align*}

Demostración. El sistema $(\lambda I_n-A)X=0$ tiene soluciones no triviales si y sólo si la matriz $\lambda I_n-A$ no es invertible. A su vez, la matriz $\lambda I_n-A$ no es invertible si y sólo si su determinante es nulo. El resultado se sigue.

$\square$

Regresemos a nuestra pregunta. Si

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n}\\
a_{21} & a_{22} & \dots & a_{2n}\\
\dots & \dots & \dots& \dots\\
a_{n1} & a_{n2}& \dots & a_{nn}
\end{pmatrix}
\end{align*}

entonces la proposición nos dice que podemos calcular los valores propios de $A$ resolviendo la ecuación polinomial

\begin{align*}
\begin{vmatrix}
\lambda- a_{11} & -a_{12} & \dots & -a_{1n}\\
-a_{21} & \lambda -a_{22} & \dots & -a_{2n}\\
\dots & \dots & \dots & \dots \\
-a_{n1} & -a_{n2} & \dots & \lambda-a_{nn}
\end{vmatrix}
=0
\end{align*}

en $F$. Esta es una ecuación polinomial de grado $n$, y si el grado es mayor a $4$ en general no existe una fórmula para resolverla en términos de radicales (aunque claro que hay casos particulares que si podemos resolver sin mucho problema).

Problema. Queremos calcular los eigenvalores de $A$, donde $A$ está dada por

\begin{align*}
A=\begin{pmatrix}
1 & 0 & 0\\
0 & 0 &-1\\
0 & 1 & 0
\end{pmatrix}.
\end{align*}

Solución. Como vimos en la proposición, esto se reduce a calcular las raíces del polinomio

\begin{align*}
\begin{vmatrix}
\lambda -1 & 0 & 0\\
0 & \lambda & 1\\
0 &-1 & \lambda
\end{vmatrix}=0.
\end{align*}

Calculando el determinante vemos que esto es de hecho

\begin{align*}
(\lambda-1)(\lambda^2+1)=0.
\end{align*}

Sin embargo tenemos que recordar que las raíces dependen de nuestro campo de elección. Como no comentamos nada sobre el campo en el cual trabajamos, consideraremos dos casos. Si el campo es $\mathbb{C}$ entonces los eigenvalores son $1$ y $\pm i$. Si trabajamos sobre $\mathbb{R}$ entonces tenemos un único eigenvalor: $1$.

$\square$

Ejercicios

Acabamos esta entrada con unos ejercicios para reforzar lo que vimos.

Problema. Encuentra todos los números reales $x$ tales que la matriz

\begin{align*}
A=\begin{pmatrix}
1 & x\\
2 & 1
\end{pmatrix}
\end{align*}

tiene exactamente dos eigenvalores distintos. La misma pregunta para ningún eigenvalor.

Solución. El número de eigenvalores va a estar dado por el número de raíces del polinomio $\det(\lambda I_2-A)$. Es decir, tenemos que trabajar la ecuación

\begin{align*}
\det(\lambda I_2-A)=\begin{vmatrix} \lambda -1 & -x\\ -2 & \lambda-1\end{vmatrix}=0.
\end{align*}

Que a su vez se reduce a

\begin{align*}
(\lambda-1)^2-2x=0.
\end{align*}

Y para que tenga dos soluciones basta con que $2x$ sea un número positivo. En efecto, en ese caso podemos despejar y resolver

\begin{align*}
\lambda = 1 \pm \sqrt{2x}.
\end{align*}

Como $2x$ es positivo solo si $x$ lo es, podemos concluir que la condición necesaria y suficiente es que $x$ sea un real positivo. Similarmente, si $x$ es un número negativo no tendremos ningún eigenvalor.

$\square$

Problema. Sea $V$ el conjunto de todas las matrices $A\in M_2(\mathbb{C})$ tales que $v=\begin{pmatrix} 1\\ 2 \end{pmatrix}$ es un eigenvector de $A$. Demuestra que $V$ es un subespacio de $M_2(\mathbb{C})$ y da una base.

Solución. Supongamos que $v$ es un eigenvector de $A$, con eigenvalor $\lambda$, y que es eigenvector de $B$, con eigenvalor $\mu$. Entonces

\begin{align*}
(A+c B)(v)= Av+c Bv= \lambda v+c\mu v= (\lambda+c\mu)v
\end{align*}

por lo que $v$ es eigenvector de $A+cB$ con eigenvalor $\lambda +c\mu$. Esto demuestra que $V$ es un subespacio. Para darnos una idea de cómo podría ser una base para $V$, comencemos con una matriz genérica $A=\begin{pmatrix} a & b\\ c & d\end{pmatrix}$ tal que $A\in V$. Entonces $A$ tiene que satisfacer $Av=\lambda v$ para algún $\lambda$. Escribamos esto más explicitamente

\begin{align*}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2\end{pmatrix}= \begin{pmatrix}
a+2b\\
c+2d
\end{pmatrix}=\begin{pmatrix} \lambda \\ 2\lambda\end{pmatrix}.
\end{align*}

Así se desprenden dos ecuaciones

\begin{align*}
\begin{cases}
a+2b=\lambda \\
c+2d=2\lambda
\end{cases}.
\end{align*}

Sabemos que $\lambda$ es un parámetro libre, pues puede ser cualquier eigenvalor. Si conocemos a $\lambda$ entonces necesitamos alguna de las variables, $a$ o $b$ para determinar a la otra y lo mismo con $c$ y $d$. Entonces escojamos $b$ y $d$ como variables libres. Enseguida nuestra matriz es de la forma (reemplazando a $a$ y $c$ por sus valores en $b$ y $d$):

\begin{align*}
A&= \begin{pmatrix}
\lambda -2b & b\\
2\lambda -2d & d
\end{pmatrix}\\
&= b\begin{pmatrix} -2 & 1\\ 0 & 0
\end{pmatrix}+ d \begin{pmatrix} 0 & 0 \\ -2 & 1\end{pmatrix}+\lambda \begin{pmatrix} 1 & 0\\
2 & 0
\end{pmatrix}.
\end{align*}

Entonces proponemos como base

\begin{align*}
\beta = \bigg\lbrace \begin{pmatrix} -2 & 1\\ 0 & 0
\end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -2 & 1\end{pmatrix},\begin{pmatrix} 1 & 0\\
2 & 0
\end{pmatrix}\bigg\rbrace.
\end{align*}

Ya vimos que $\beta$ genera a $V$, y dejamos la independencia lineal como ejercicio.

$\square$

Más adelante

En las próximas entradas desarrollaremos las propiedades relevantes de los eigenvalores y eigenvectores para eventualmente llegar al polinomio característico y establecer el puente con el polinomio mínimo.

Tarea moral

Aquí unos ejercicios para que repases el material de esta entrada.

  1. Encuentra todos los eigenvalores de la matriz $A=\begin{pmatrix} 1 & 1 &0 \\ 0 & 2 &1\\ 0 & 0 & 1\end{pmatrix}\in M_3(\mathbb{C})$.
  2. Completa la demostración del último ejercicio de la sección de ejercicios, verificando que las soluciones encontradas son matrices linealmente independientes. ¿Puedes generalizar este ejercicio de alguna manera?
  3. Encuentra los eigenvalores de la matriz $A\in M_n(\mathbb{R})$ cuyas entradas son puros $2$.
  4. Da contraejemplos para cada una de las siguientes afirmaciones:
    1. Si $u$ y $v$ son eigenvectores de $A$, entonces $u+v$ es eigenvector de $A$.
    2. Si $\lambda$ es eigenvalor de $A$ y $\mu$ es eigenvalor de $B$, entonces $\lambda \mu$ es eigenvalor de $AB$.
    3. Si $A$ y $B$ son formas matriciales de una misma transformación $T$ y $v$ es eigenvector de $A$, entonces $v$ es eigenvector de $B$.
  5. Considera la transformación derivada en $\mathbb{R}[x]$. ¿Quienes son sus eigenvectores y eigenvalores? Como sugerencia, estudia el coeficiente de mayor grado.

Álgebra Lineal II: Polinomio mínimo de transformaciones lineales y matrices

[latexpage]

Introducción

Anteriormente definimos qué quiere decir evaluar un polinomio en una matriz o en una transformación lineal. En esta entrada definiremos uno de los objetos más importantes del álgebra lineal: el polinomio mínimo. Si bien al principio nos va a costar un poco calcularlo, esto se compensa por la cantidad de propiedades teóricas que cumple. Comenzaremos dando su definición, y mostrando su existencia y unicidad. Luego exploraremos algunas propiedades y veremos ejemplos, seguido de un pequeño teorema de cambio de campos. Finalmente introduciremos un objeto similar (el polinomio mínimo puntual) y haremos unos ejercicios para cerrar.

El concepto de polinomio mínimo podría resultarle familiar a los más algebraicos de mente: ¡todo se debe a que trabajamos con dominios de ideales principales, o incluso euclidianos! Si has trabajado anteriormente con conceptos como el mínimo común múltiplo en enteros, puede que varios de los argumentos de esta entrada te suenen conocidos.

Existencia y unicidad

Comenzamos con un espacio vectorial $V$ de dimensión $n$ sobre un campo $F$. Fijando una transformación lineal $T:V\to V$, queremos entender para qué polinomios se cumple que $P(T)=0$. Nota como podríamos haber cambiado la pregunta: si fijamos un polinomio $P$, podríamos buscar todas las transformaciones $T$ tales que $P(T)=0$. Ésta pregunta la estudiaremos más adelante.

Definimos el conjunto

\begin{align*}
I(T)=\lbrace P\in F[X]\mid P(T)=0\rbrace.
\end{align*}

El polinomio cero pertenece a $I(T)$ de manera trivial. Una cosa importante es que este conjunto $I(T)$ que vamos a estudiar en verdad es «interesante», en el sentido de que debemos ver que hay más polinomios adentro y no es únicamente el conjunto $\lbrace 0\rbrace$. Una manera de ver esto es sabiendo que el espacio de transformaciones lineales de $V$ en $V$ tiene dimensión $n^2$ (lo puedes pensar como el espacio de matrices). Entonces, las $n^2+1$ transformaciones $\operatorname{Id}, T, T^2, \dots, T^{n^2}$ no pueden ser todas linealmente independientes: uno de los corolarios del lema de Steinitz es que en un espacio de dimensión $n$ a lo más se pueden tener $n$ vectores linealmente independientes. Entonces existe una combinación lineal no trivial y nula

\begin{align*}
a_0 \operatorname{Id}+a_1 T+\dots + a_{n^2} T^{n^2}=0.
\end{align*}

Luego $a_0+a_1X+\dots+a_{n^2}X^{n^2}$ es un polinomio no cero tal que $P(T)=0$, es decir $P\in I(T)$.

Con el argumento de arriba vimos que $I(T)$ es «interesante» en el sentido de que tiene polinomios no cero. El siguiente teorema se puede entender como que $I(T)$ se puede describir muy fácilmente.

Teorema. Existe un único polinomio mónico, distinto de cero $\mu_T$ tal que $I(T)$ es precisamente el conjunto de múltiplos de $\mu_T$. Es decir

\begin{align*}
I(T)=\mu_T \cdot F[X]=\lbrace \mu_T \cdot P(X)\mid P(X)\in F[X]\rbrace.
\end{align*}

La demostración hará uso del algoritmo de la división para polinomios. Te lo compartimos aquí, sin demostración, por si no lo conoces o no lo recuerdas.

Teorema (algoritmo de la división en $\mathbb{F}[x]$). Sean $f(x)$ y $g(x)$ polinomios en $F[x]$, donde $g(x)$ no es el polinomio cero. Entonces, existen únicos polinomios $q(x)$ y $r(x)$ en $F[x]$ tales que $$f(x)=q(x)g(x)+r(x),$$ en donde $r(x)$ es el polinomio cero, o $\deg(r(x))<\deg(g(x))$.

Si te interesa saber cómo se demuestra, puedes seguir la teoría de polinomios disponible en la Unidad 4 del curso de Álgebra Superior II.

Demostración. Una de las proposiciones de la entrada pasada nos dice que $I(T)$ es un subespacio de $F[X]$. Por otro lado si $P\in I(T)$ y $Q\in F[X]$ entonces

\begin{align*}
(PQ)(T)= P(T)\circ Q(T)=0\circ Q(T)=0.
\end{align*}

Lo que discutimos antes de enunciar el teorema nos dice que $I(T)\neq\{0\}$. Escogemos entonces $P\in I(T)$ un polinomio no cero de grado mínimo. Podemos suponer sin perdida de generalidad que $P$ es mónico, de no serlo, podemos dividir a $P$ por su coeficiente principal sin cambiar el grado.

La ecuación previa nos indica que todos los múltiplos de $P$ también están en $I(T)$. Veamos que todo elemento de $I(T)$ es de hecho un múltiplo de $P$. Si $S\in I(T)$, usamos el algoritmo de la división polinomial para escribir $S=QP+R$ con $Q,R\in F[X]$. Aquí hay dos casos, que $R$ sea el polinomio cero, o bien que no lo sea y entonces $\deg R <\deg P$. Nota que $R=S-QP\in I(T)$ dado que $I(T)$ es un subespacio de $F[X]$ y $S,QP\in I(T)$. Si $R\neq 0$, entonces como $\deg R<\deg P$ llegamos a una contradicción de la minimalidad del grado de $P$. Luego $R=0$ y por tanto $S=QP$. Entonces $I(T)$ es precisamente el conjunto de todos los múltiplos de $P$ y así podemos tomar $\mu_T=P$.

Para verificar la unicidad de $\mu_T$, si otro polinomio $S$ tuviera las mismas propiedades, entonces $S$ dividiría a $\mu_T$ y $\mu_T$ dividiría a $S$. Sin embargo, como ambos son mónicos se sigue que deben ser iguales: en efecto, si $\mu_T=S\cdot Q$ y $S=\mu_T \cdot R$ entonces $\deg Q=\deg R=0$, porlo tanto son constantes, y como el coeficiente principal de ambos es $1$, se sigue que ambos son la constante $1$ y así $\mu_T=S$. Esto completa la demostración.

$\square$

Definición. Al polinomio $\mu_T$ se le conoce como el polinomio mínimo de $T$.

Primeras propiedades y ejemplos

Debido a su importancia, recalcamos las propiedades esenciales del polinomio mínimo $\mu_T$:

  • Es mónico y cumple $\mu_T(T)=0$.
  • Para cualquier otro polinomio $P\in F[X]$, sucede que $P(T)=0$ si y sólo si $\mu_T$ divide a $P$.

Toda la teoría que hemos trabajado hasta ahora se traduce directamente a matrices usando exactamente los mismos argumentos. Lo enunciamos de todas maneras: si $A\in M_n(F)$ es una matriz cuadrada, entonces existe un único polinomio mónico $\mu_A\in F[X]$ con las siguientes propiedades:

  • $\mu_A(A)=O_n$,
  • si $P\in F[X]$, entonces $P(A)=O_n$ si y sólo si $\mu_A$ divide a $P$.

Como jerga, a veces diremos que un polinomio «anula $T$» si $P(T)=0$. En este sentido los polinomios que anulan a $T$ son precisamente los múltiplos de $\mu_T$.

Vimos antes de enunciar el teorema que podemos encontrar un polinomio $P$ no cero de grado menor o igual a $n^2$ tal que $P(T)=0$. Como $\mu_T$ divide a $P$ se sigue que $\deg \mu_T\leq n^2$. Esta cota resulta ser débil, y de hecho un objeto que hemos estudiado previamente nos ayudará a mejorarla: el polinomio característico. Este también va a anular a $T$ y con ello obtendremos una mejor cota: $\deg \mu_T\leq n$.

Ejemplo. Si $A=O_n$, entonces $\mu_A=X$. En efecto, $\mu_A(A)=0$ y además es el polinomio de menor grado que cumple esto, pues ningún polinomio constante y no cero anula a $O_n$ (¿por qué?). Nota como además $I(A)$ es precisamente el conjunto de polinomios sin término constante.

$\square$

Ejemplo. Considera la matriz $A\in M_2(\mathbb{R})$ dada por

\begin{align*}
A= \begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}.
\end{align*}

Nos proponemos calcular $\mu_A$. Nota que $A$ satisface $A^2=-I_2$. Por tanto el polinomio $P(X)=X^2+1$ cumple $P(A)=0$. Así, $\mu_A$ tiene que dividir a este polinomio ¡pero este es irreducible sobre los números reales! En efecto, si existiese un factor propio de $P$ sobre $\mathbb{R}$, tendríamos que la ecuación $X^2=-1$ tiene solución, y sabemos que este no es el caso. Entonces $\mu_A$ tiene que ser $X^2+1$.

$\square$

Ejemplo. Sean $d_1,\dots, d_n\in F$ escalares y $A$ una matriz diagonal tal que $[a_{ii}]=d_i$. Los elementos pueden no ser distintos entre sí, así que escogemos una colección máxima $d_{i_1},\dots, d_{i_k}$ de elementos distintos. Para cualquier polinomio $P$, tenemos que $P(A)$ es simplemente la matriz diagonal con entradas $P(d_i)$ (esto porque el producto $A^n$ tiene como entradas a $d_i^n$). Entonces para que $P(A)=0$ se tiene que cumplir que $P(d_i)=0$, y para que esto pase es suficiente que $P(d_{i_k})=0$. Eso quiere decir que $P$ tiene al menos a los $d_{i_k}$ como raíces, y entonces $(X-d_{i_1})(X-d_{i_2})\cdots (X-d_{i_k})$ divide a $P$.

Nota como esto es suficiente: encontramos un polinomio mónico, $(X-d_{i_1})(X-d_{i_2})\cdots (X-d_{i_k))$ que divide a cualquier $P$ tal que $P(A)=0$. Así

\begin{align*}
\mu_A(X)=(X-d_{i_1})\cdots (X-d_{i_k}).
\end{align*}

$\square$

Cambio de campos

En uno de los ejemplos argumentamos que el polinomio mínimo era $X^2+1$ porque este es irreducible sobre $\mathbb{R}$. Pero, ¿qué pasaría si cambiáramos nuestro campo a $\mathbb{C}$? La situación puede ser incluso más delicada: a una matriz con entradas racionales la podemos considerar como una instancia particular de una matriz con entradas reales, que a su vez podemos considerar como una matriz compleja. ¿Hay tres polinomios mínimos distintos? El siguiente teorema nos da una respuesta tranquilizante.

Teorema. Sean $F_1\subset F_2$ dos campos y $A\in M_n(F_1)$ una matriz, entonces el polinomio mínimo de $A$ vista como elemento de $M_n(F_1)$ y el polinomio mínimo de $A$ vista como elemento de $M_n(F_2)$ son iguales.

Demostración. Sea $\mu_1$ el polinomio de $A\in M_n(F_1)$ y $\mu_2$ el polinomio mínimo de $A\in M_n(F_2)$. Puesto que $F_1[X]\subset F_2[X]$, se tiene que $\mu_1\in F_2[X]$ y además $\mu_1(A)=0$ por definición. Luego $\mu_2$ necesariamente divide a $\mu_1$. Sean $d_1=\deg \mu_1$ y $d_2=\deg \mu_2$, basta verificar que $d_2\geq d_1$ y para que esto se cumpla basta con encontrar $P\in F_1[X]$ de grado a lo más $d_2$ tal que $P(A)=0$ (entonces $\mu_1$ dividiría a este polinomio y se sigue la desigualdad).

Desarrollando que $\mu_2(A)=0$ en todas sus letras (o mejor dicho, en todos sus coeficientes) se tiene

\begin{align*}
a_0 I_n+ a_1 A+\dots + a_{d_2} A^{d_2}=O_n.
\end{align*}

Esto es equivalente a tener $n^2$ ecuaciones homogéneas en las variables $a_0,\dots, a_{d_2}$. Como $A$ tiene entradas en $F_1$ los coeficientes de estas ecuaciones todos pertenecen a $F_1$. Tenemos un sistema de ecuaciones con coeficientes en $F_1$ que tiene una solución no trivial en $F_2$: tiene automáticamente una solución no trivial en $F_1$ por un ejercicio de la entrada de Álgebra Lineal I de resolver sistemas de ecuaciones usando determinantes. Esto nos da el polinomio buscado.

$\square$

Mínimos puntuales

Ahora hablaremos (principalmente a través de problemas resueltos) de otro objeto muy parecido al polinomio mínimo: el polinomio mínimo puntual. Este es, esencialmente un «polinomio mínimo en un punto». Más específicamente si $T:V\to V$ es lineal con polinomio mínimo $\mu_T$ y $x\in V$ definimos

\begin{align*}
I_x=\lbrace P\in F[X]\mid P(T)(x)=0\rbrace.
\end{align*}

Nota que la suma y diferencia de dos elementos en $I_x$ también está en $I_x$.

Problema. Demuestra que existe un único polinomio mónico $\mu_x\in F[X]$ tal que $I_x$ es el conjunto de múltiplos de $\mu_x$ en $F[X]$. Más aún, demuestra que $\mu_x$ divide a $\mu_T$.

Solución. El caso $x=0$ se queda como ejercicio. Asumamos entonces que $x\neq 0$. Nota que $\mu_T\in I_x$ puesto que $\mu_T(T)=0$. Sea $\mu_x$ el polinomio mónico de menor grado en $I_x$. Demostraremos que $I_x=\mu_x\cdot F[X]$.

Primero si $P\in \mu_x \cdot F[X]$ entonces por definición $P=\mu_x Q$ para algún $Q\in F[X]$ y entonces

\begin{align*}
P(T)(x)=Q(T)(\mu_x(T)(x))=Q(T)(0)=0.
\end{align*}

Así $P\in I_x$, y queda demostrado que $\mu_x \cdot F[X]\subset I_x$.

Conversamente, si $P\in I_x$ podemos usar el algoritmo de la división para llegar a una expresión de la forma $P=Q\mu_x+R$ para algunos polinomios $Q,R$ con $\deg R<\deg \mu_x$. Supongamos que $R\neq 0$. Similarmente a como procedimos antes, se cumple que $R= P-Q\mu_x\in I_x$ dado que $I_x$ es cerrado bajo sumas y diferencias. Dividiendo por el coeficiente principal de $R$, podemos asumir que $R$ es mónico. Entonces $R$ es un polinomio mónico de grado estrictamente menor que el grado de $\mu_x$, una contradicción a nuestra suposición: $\mu_x$ es el polinomio de grado menor con esta propiedad. Luego $R=0$ y $\mu_x$ divide a $P$.

Así queda probado que si $P\in I_x$ entonces $P\in \mu_x\cdot F[X]$, lo que concluye la primera parte del problema. Para la segunda, vimos que $\mu_T\in I_x$ y por tanto $\mu_x$ divide a $\mu_T$.

$\square$

Problema. Sea $V_x$ el subespacio generado por $x, T(x), T^2(x), \dots$. Demuestra que $V_x$ es un subespacio de $V$ de dimensión $\deg \mu_x$, estable bajo $T$.

Solución. Es claro que $V_x$ es un subespacio de $V$. Además, dado que $T$ manda a generadores en generadores, también es estable bajo $T$. Sea $d=\deg\mu_x$. Demostraremos que $x, T(x),\dots, T^{d-1}(x)$ forman una base de $V_x$, lo que concluiría el ejercicio.

Veamos que son linealmente independientes. Si $$a_0x+a_1T(x)+a_2T^2(x)+\dots+a_{d-1}T^{d-1}(x)=0$$ para algunos escalares $a_i$ no todos cero, entonces el polinomio

\begin{align*}
P=a_0+a_1X+\dots+a_{d-1}X^{d-1}
\end{align*}

es un elemento de $I_x$, pues $P(T)(x)=0$. Luego $\mu_x$ necesariamente divide a $P$, pero esto es imposible puesto que el grado de $P$ es $d-1$, estrictamente menor que el grado de $\mu_x$. Luego los $a_i$ deben ser todos nulos, lo que muestra que $x,T(x),T^2(x),\dots,T^{d-1}(x)$ es una colección linealmente independiente.

Sea $W$ el espacio generado por $x,T(x),\dots, T^{d-1}(x)$. Afirmamos que $W$ es invariante bajo $T$. Es claro que $T(x)\in W$, similarmente $T(T(x))=T^2(x)\in W$ y así sucesivamente. El único elemento «sospechoso» es $T^{d-1}(x)$, para el cual basta verificar que $T(T^{d-1}(x))=T^d(x)\in W$. Dado que $\mu_x(T)(x)=0$ y $\mu_x$ es mónico de grado $d$, existen escalares $b_i$ (más precisamente, los coeficientes de $\mu_x$) no todos cero tales que

\begin{align*}
T^{d}(x)+b_{d-1}T^{d-1}(x)+\dots+b_0 x=0.
\end{align*}

Esto nos muestra que podemos expresar a $T^d(x)$ en términos de $x, T(x),\dots, T^{d-1}(x)$ y por tanto $T^d(x)$ pertenece a $W$.

Ahora, dado que $W$ es estable bajo $T$ y contiene a $x$, se cumple que $T^{k}(x)\in W$ para todo $k\geq 0$. En particular $V_x\leq W$. Luego $V_x=W$ (la otra contención es clara) y $x,T(x),\dots, T^{d-1}(x)$ genera a $W$, o sea a $V_x$.

Mostramos entonces que $x,T(x),\dots, T^{d-1}(x)$ es una base para $V_x$ y así $\dim V_x=d$.

$\square$

Unos ejercicios para terminar

Presentamos unos últimos ejercicios para calcular polinomios mínimos.

Problema. Calcula el polinomio mínimo de $A$ donde

\begin{align*}
A= \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}.
\end{align*}

Solución. A estas alturas no tenemos muchas herramientas que usar. Comenzamos con calcular $A^2$:

\begin{align*}
A^2= \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}= \begin{pmatrix} 1 & 0 & 0\\ 0 &1 & 0 \\ 0 & 0 & 1\end{pmatrix}.
\end{align*}

Entonces en particular $A^2=I_3$. Así, el polinomio mínimo $\mu_A$ tiene que dividir a $X^2-1$. Este último se factoriza como $(X-1)(X+1)$, pero es claro que $A$ no satisface ni $A-I_3=0$ ni $A+I_3=0$. Entonces $\mu_A$ no puede dividir propiamente a $X^2-1$, y por tanto tienen que ser iguales.

$\square$

Problema. Calcula el polinomio mínimo de la matriz $A$ con

\begin{align*}
A=\begin{pmatrix}
1 & 2\\
0 & 1
\end{pmatrix}.
\end{align*}

Solución. Nota como

\begin{align*}
A-I_2=\begin{pmatrix} 0 & 2\\ 0 & 0\end{pmatrix}
\end{align*}

y es fácil verificar que el cuadrado de la matriz de la derecha es cero. Así $(A-I_2)^2=0$, o sea, el polinomio $P(X)=(X-1)^2$ anula a $A$. Similarmente al problema anterior, $\mu_A$ tiene que dividir a $P$, pero $P$ sólo tiene un factor: $X-1$. Dado que $A$ no satisface $A-I_2=0$ se tiene que $\mu_A$ no puede dividir propiamente a $P$, y entonces tienen que ser iguales. Luego $\mu_A=(X-1)^2=X^2-2X+1$.

$\square$

Más adelante

En las entradas subsecuentes repasaremos los eigenvalores y eigenvectores de una matriz, y (como mencionamos) ligaremos el polinomio característico de una matriz con su polinomio mínimo para entender mejor a ambos.

Tarea moral

Aquí unos ejercicios para practicar lo que vimos.

  1. Encuentra una matriz $A$ cuyo polinomio mínimo sea $X^2$. Para cada $n$, ¿puedes encontrar una matriz cuyo polinomio mínimo sea $X^n$?
  2. Encuentra una matriz $A$ cuyo polinomio mínimo sea $X^2-1$. Para cada $n$, ¿puedes encontrar una matriz cuyo polinomio mínimo sea $X^n-1$?
  3. Encuentra el polinomio de la matriz $A$ en $M_n(F)$ cuyas entradas son todas $1$.
  4. Si $T:M_n(\mathbb{R})\to M_n(\mathbb{R})$ es la transformación que manda a cada matriz en su transpuesta, encuentra el polinomio mínimo de $T$.
  5. Sea $V$ un espacio vectorial y $x,y$ vectores linealmente independientes. Sea $T:V\to V$ una transformación lineal. ¿Cómo son los polinomios $P$ tales que $P(T)$ se anula en todo el subespacio generado por $x$ y $y$? ¿Cómo se relacionan con los polinomios mínimos puntuales de $T$ para $x$ y $y$?

Álgebra Lineal II: Aplicar polinomios a transformaciones lineales y matrices

[latexpage]

Introducción

Varios de los resultados fundamentales de Álgebra Lineal se obtienen al combinar las idea de transformaciones lineales con la de polinomios. El objetivo de esta entrada es introducir el concepto de «aplicar polinomios a matrices» o equivalentemente «aplicar polinomios a transformaciones lineales». La idea fundamental es simple: las potencias en los polinomios se convierten en repetidas aplicaciones de la transformación y las constantes en múltiplos de la identidad. Si bien esta idea es simple, más adelante veremos aplicaciones importantes y con un gran alcance. Uno de los resultados cruciales que surge de esta idea es el conocido teorema de Cayley-Hamilton.

Primeras construcciones

Sea $V$ un espacio vectorial sobre un campo $F$, y sea $T:V\to V$ una transformación lineal. Definimos a la transformación $T^n:V\to V$ para cualquier $n\in \mathbb{N}$ inductivamente a través de

\begin{align*}
T^0=\operatorname{Id}, \hspace{5mm} T^{i+1}= T\circ T^{i},
\end{align*}

donde, recordamos, $\operatorname{Id}$ es la transformación identidad. Intuitivamente, $T^n$ es la «$n$-ésima composición» de $T$. Por ejemplo, $T^3(v)$ no es más que $T(T(T(v)))$ y $T^0(v)$ es simplemente «no usar $T$ para nada», es decir, $\operatorname{Id}(v)=v$. Al componer iteradamente $T$, sigue siendo una transformación lineal de $V$ a $V$, así que $T^n$ es transformación lineal de $V$ a $V$ para todo entero $n\geq 0$.

Ya que hablamos de «potencias» de una transformación lineal, podemos rápidamente hacer sentido de un «polinomio evaluado en una transformación lineal». Si $$P(X)=a_0+a_1X+a_2X^2+\dots + a_n X^n\in F[X]$$ es un polinomio, definimos $P(T):V\to V$ como

\begin{align*}
P(T):= a_0 T^{0}+ a_1 T^1+ a_2 T^2+\dots +a_n T^n.
\end{align*}

Como las transformaciones lineales de $V$ a $V$ son cerradas bajo combinaciones lineales, entonces $P(T)$ también es una transformación lineal de $V$ a $V$.

Ejemplo. Tomemos a la transformación $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T(x,y)=(2x-2y,x+y)$. Tomemos al polinomio $P(x)=x^3-2x+4$. ¿Quién es la transformación $P(T)$? Calculemos primero las «potencias» de $T$:

\begin{align*}
T^0(x,y)&=(x,y)\\
T^1(x,y)&=T(x,y)\\
&=(2x-2y,x+y)\\
T^2(x,y)&=T(T(x,y))\\
&=T(2x-2y,x+y)\\
&=(2(2x-2y)-2(x+y),(2x-2y)+(x+y))\\
&=(2x-6y,3x-y)\\
T^3(x,y)&=T(2x-6y,3x-y)\\
&=(-2x-10y,5x-7y).
\end{align*}

Ahora sí, ya podemos saber qué hace $P(T)$. Tenemos:

\begin{align*}
P(T)(x,y)&=(T^3-2T+4\text{Id})(x,y)\\
&=(-2x-10y,5x-7y)-2(2x-2y,x+y)+4(x,y)\\
&=(-2x-6y,3x-5y).
\end{align*}

$\square$

Sumas y productos de polinomios

Las operaciones suma y producto de polinomios se traducen, respectivamente, a suma y composición de las evaluaciones en transformaciones lineales. Esta es una linda propiedad que podemos hacer precisa gracias a la siguiente proposición.

Proposición. Si $P_1, P_2\in F[X]$ son dos polinomios y $T:V\to V$ es una transformación lineal, entonces

  1. $ (P_1+P_2)(T)=P_1(T)+P_2(T)$,
  2. $(P_1P_2)(T)=P_1(T)\circ P_2(T)$.

Te invitamos a demostrar esta proposición. Advertimos que, sin embargo, no se cumplen identidades como $$P(T_1+T_2)=P(T_1)+P(T_2)$$ o bien $$P(T_1\circ T_2)=P(T_1)\circ P(T_2).$$ Un contraejemplo para la primera identidad podría ser tomar$P(X)=X^2$ y $T_1=T_2=\operatorname{Id}$. En este caso

\begin{align*}
P(T_1+T_2)&=(T_1+T_2)^2\\&= 4\operatorname{Id}\\&\neq 2\operatorname{Id}\\&=P(T_1)+P(T_2).
\end{align*}

Dejamos como ejercicio el verificar que la segunda identidad tampoco es cierta en general. Fijando $T$, podemos juntar a todas las transformaciones de la forma $P(T)$ para algún $P$ en la siguiente estructura.

Definición. La $F$-álgebra generada por la transformación $T$ es el conjunto

\begin{align*}
F[T]=\lbrace P(T)\mid P\in F[X]\rbrace.
\end{align*}

Una consecuencia de la proposición anterior (es más, ¡una mera traducción!) es la siguiente.

Proposición. Para cualesquiera $x,y\in F[T]$ y $c\in F$ se cumple que $x+cy\in F[T]$ y $x\circ y\in F[T].$ Es decir, $F[T]$ es un subespacio del espacio de todas las transformaciones lineales de $V$ en $V$ que además es estable bajo composición.

También puedes verificar que $F[T]$ es el subespacio más chico (en el sentido de contención) del espacio de transformaciones lineales en $V$ que contiene a $T$, a $\operatorname{Id}$ y que es cerrado bajo composiciones.

Lo mismo pero con matrices

Desde Álgebra Lineal I sabemos que una transformación lineal se corresponde de manera biunívoca (fijando una base) con una matriz. Nuestra discusión previa se puede adaptar a este vocabulario, y eso es lo que haremos ahora.

Si $A\in M_n(F)$ es una matriz cuadrada de orden $n$ con coeficientes en $F$, podemos entender a $A^n$ simplemente como el $n$-ésimo producto de $A$ consigo misma. Luego si $$P(X)=a_0+a_1X+a_2 X^2+\dots +a_n X^n\in F[X]$$ es un polinomio, definimos

\begin{align*}
P(A):= a_0 I_n +a_1 A+ a_2 A^2+\dots+ a_n A^n.
\end{align*}

Se cumple que $(PQ)(A)=P(A)\cdot Q(A)$ para cualesquiera polinomios $P,Q$ y cualquier matriz $A$. Similarmente el álgebra generada por $A$ se define como

\begin{align*}
F[A]=\lbrace P(A)\mid P\in F[X]\rbrace,
\end{align*}

y es un subespacio de $M_n(F)$ que es cerrado bajo producto de matrices.

Ejemplo. Consideremos la matriz $A=\begin{pmatrix}2&-2\\1&1\end{pmatrix}$. Consideremos el polinomio $P(x)=x^3-2x+4$. ¿Quién es la matriz $P(A)$? Usando la definición, primero nos enfocaremos en encontrar las potencias de $A$. Puedes verificar por tu cuenta que:

\begin{align*}
A^0&=\begin{pmatrix}1&0\\0&1\end{pmatrix}\\
A^1&=\begin{pmatrix}2&-2\\1&1\end{pmatrix}\\
A^2&=\begin{pmatrix}2&-6\\3&-1\end{pmatrix}\\
A^3&=\begin{pmatrix}-2&-10\\5&-7\end{pmatrix}
\end{align*}

De esta manera,

\begin{align*}
P(A)&=A^3-2A+4I_2\\
&=\begin{pmatrix}-2&-10\\5&-7\end{pmatrix} – 2 \begin{pmatrix}2&-2\\1&1\end{pmatrix} + 4 \begin{pmatrix}1&0\\0&1\end{pmatrix}\\
&=\begin{pmatrix}-2&-6 \\ 3 & -5 \end{pmatrix}.
\end{align*}

$\square$

Este ejemplo se parece mucho al ejemplo que hicimos cuando evaluamos un polinomio en una transformación $T$. Esto no es casualidad, y se puede resumir en la siguiente observación.

Observación. Si $A$ es la matriz asociada a $T$ en alguna base, entonces $P(A)$ es la matriz asociada a $P(T)$ en dicha base.

Unos problemas para calentar

A continuación veremos algunos unos cuantos problemas resueltos para que te familiarices con los conceptos que acabamos de ver de manera un poco más teórica.

Problema.

  1. Si $A,B\in M_n(F)$ son matrices con $B$ invertible, demuestra que para cualquier $P\in F[X]$ se cumple
    \begin{align*}
    P(BAB^{-1})=BP(A)B^{-1}.
    \end{align*}
  2. Demuestra que si $A,B\in M_n(F)$ son similares, entonces $P(A)$ y $P(B)$ son similares para cualquier $P\in F[X]$.

Solución.

  1. Primero supongamos que $P(X)=X^k$ para alguna $k\geq 1$. Necesitamos demostrar que $\left(BAB^{-1}\right)^{k}= BA^{k}B^{-1}$, y esto lo podemos verificar sencillamente pues
    \begin{align*}
    (BAB^{-1})\cdot (BAB^{-1})\cdots (BAB^{-1})&= BA(B^{-1} B) A \cdots (B^{-1}B)AB^{-1}\\
    &= BA^{k}B^{-1},
    \end{align*}
    donde usamos que $BB^{-1}=I_n$. Más generalmente, si $P(X)=a_0+a_1 X+a_2X^2+\dots +a_n X^n$ entonces
    \begin{align*}
    P(BAB^{-1})&= \sum_{i=0}^{n} a_i (BAB^{-1})^{i}\\
    &= \sum_{i=0}^{n}a_i BA^{i}B^{-1}\\
    &= B\left(\sum_{i=0}^{n} a_i A^{i}\right)B^{-1}\\
    &= BP(A)B^{-1}
    \end{align*}
    que es lo que queríamos demostrar.
  2. Como $A$ y $B$ son similares, existe $C$ invertible tal que $A=CBC^{-1}$. Por el inciso anterior tenemos
    \begin{align*}
    P(A)=P(CBC^{-1})=CP(B)C^{-1}.
    \end{align*}
    Así, $P(A)$ y $P(B)$ son similares.

$\square$

Problema. Considera la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 1 & -1\\
-2 & 0 & 3\\
0 & 0 & 4
\end{pmatrix}
\end{align*}

así como el polinomio $P(X)=X^2+2X-1$. Calcula $P(A)$.

Solución. Es cuestión de hacer los cálculos. Vemos que

\begin{align*}
A^2= \begin{pmatrix}
-2 & 0 & -1\\
0 & -2 & 14\\
0 & 0 & 16
\end{pmatrix}
\end{align*}

y así

\begin{align*}
P(A)&=A^2+2A-I_3\\&=\begin{pmatrix}
-2 & 0 & -1\\
0 & -2 & 14\\
0 & 0 & 16
\end{pmatrix} + 2\begin{pmatrix}
0 & 1 & -1\\
-2 & 0 & 3\\
0 & 0 & 4
\end{pmatrix} -\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}\\
&=\begin{pmatrix}
-3 & 2 & -3\\
-4 & -3 & 20\\
0 & 0 & 23
\end{pmatrix}.
\end{align*}

$\square$

Problema. Si $A$ es simétrica, demuestra que $P(A)$ es simétrica para cualquier polinomio $P$.

Solución. La demostración se basa en los siguientes hechos:

  1. Si $A=(a_{ij})$ y $B=(b_{ij})$ son matrices simétricas y $c\in F$ es un escalar, entonces $A+cB$ es simétrica, puesto que
    \begin{align*}
    (A+cB)_{ij}= a_{ij}+cb_{ij}= a_{ji}+cb_{ji}= (A+cB)_{ji}.
    \end{align*}
  2. Si $A,B$ son simétricas, su producto es una matriz simétrica. De nuevo, basta con hacer el cálculo
    \begin{align*}
    (AB)_{ij}=\sum_{k=1}^{n} a_{ik}b_{kj}=\sum_{k=1}^{n} b_{jk}a_{ki}= (AB)_{ji} .
    \end{align*}
  3. Usando el inciso anterior, se sigue que si $A$ es simétrica, entonces $A^{k}$ es simétrica para toda $k\geq 1$. Además, $I_n$ es simétrica y por el primer punto tenemos que toda combinación lineal de matrices simétricas es simétrica. En particular $P(A)$ es simétrica.

$\square$

Problema. Sea $V$ el espacio vectorial de todas las funciones $f:\mathbb{R}\to \mathbb{R}$ infinitamente diferenciables. Sea $T:V\to V$ dada por $T:f\mapsto f’$. ¿Puedes encontrar un polinomio $P\in \mathbb{R}(X)$ distinto de cero tal que $P(T)=0$?

Solución. No es posible encontrar dicho polinomio. Suponiendo que sí, tendríamos que $P(T)$ es una ecuación diferencial polinomial de orden $n$, es decir, a cada función la evaluamos en una combinación

\begin{align*}
a_0f+a_1f’+a_2f»+\dots + a_n f^{n}
\end{align*}

donde $f^n$ es la $n$-ésima derivada. Si $P(T)$ es idénticamente cero, tenemos que toda función suave $f$ satisface esta ecuación. En particular tenemos que la constante $g(x)=1$ la satisface. Así $g’=g»=\dots=g^{n}=0$ y entonces

\begin{align*}
P(T)(g)= a_0 g+a_1g+\dots +a_ng^{n}=a_0=0.
\end{align*}

Concluimos que $a_0=0$. Luego, si consideramos a la función identidad $h(x)=x$ entonces también se tiene que cumplir la ecuación (recordamos que ya eliminamos el término $a_0$). Así

\begin{align*}
P(T)(h)= a_1h’+a_2h»+\dots +a_nh^{n}= a_1=0,
\end{align*}

donde usamos que $h'(x)=1$ y todas las derivadas de orden superior son cero. Continuando con este proceso (evaluando en $x^2,x^3,\ldots$) llegamos a que todos los coeficientes $a_i$ son cero. Esto quiere decir que el polinomio era nulo en primer lugar.

$\square$

Más adelante

En entradas subsecuentes estudiaremos polinomios de matrices con propiedades especiales, como por ejemplo el polinomio mínimo, que se distinguen por sus deseables propiedades algebraicas. Este es el primer paso hacia el teorema de Cayley-Hamilton.

Tarea moral

Aquí hay unos ejercicios para que practiques lo visto en esta entrada.

  1. Compara el ejemplo que se dio de evaluar un polinomio en una transformación $T$ con el de evaluar un polinomio en una matriz $A$. ¿Por qué se parecen tanto?
  2. Considera $V$ el espacio vectorial de funciones $C^\infty$ en el intervalo $[0,2\pi]$ y $D:V\to V$ a la transformación que manda una función a su derivada, es decir $D(f)=f’$. Encuentra un polinomio $P$ tal que $P(D)(\sin(x)+\cos(x))$ sea la función cero.
  3. Demuestra que si $A$ es una matriz diagonal, $P(A)$ también es diagonal.
  4. Si
    \begin{align*}
    A=\begin{pmatrix}
    1 & 2\\
    0 &-1\end{pmatrix}
    \end{align*}
    y $P(X)=X^3-X^2+X-1$, calcula $P(A)$.
  5. Generaliza el último problema de la entrada como sigue: Si $V$ es un espacio vectorial y $T:V\to V$ es tal que existen elementos $v_i$ con $i\in \mathbb{N}$ que cumplen $T^{i}(v_i)\neq 0$ y $T^{j}(v_i)=0$ para $j>i$, entonces no existe $P$ no nulo tal que $P(T)$ sea cero.