Archivo de la etiqueta: teorema del valor medio

Cálculo Diferencial e Integral II: Teorema del valor medio para integrales

Por Miguel Ángel Rodríguez García

Introducción

En las secciones anteriores vimos algunos métodos numéricos de integración que se utilizan para dar solución a la integral de funciones, en esta sección veremos el teorema del valor medio para integrales.

Teorema del valor medio para integrales

El teorema del valor medio es una consecuencia del teorema de valor medio para la derivada y el teorema fundamental del Cálculo [Hipervinculo: Calculo II-Teorema fundamental del calculo], geométricamente significa que para funciones no negativas y continuas en un intervalo $[a, b]$ existe un valor $c$ en el mismo intervalo, tal que, el rectángulo con base $[a, b]$ y altura $f(c)$ tiene la misma área que la región bajo la gráfica de $f$ en el intervalo $[a, b]$ o lo que es lo mismo decir, alcanza su valor promedio en al menos un punto $c$ (ver figura 1).

Figura 1: Teorema del valor medio para integrales.

Enunciamos el siguiente teorema:

Teorema del valor medio para integrales

Sea función continua $f(x)$ en un intervalo $[a, b]$ entonces existe $c \space \epsilon \space [a, b]$, tal que:

$$\int_{a}^{b}f(x)dx=f(c)(b-a)$$

Demostración:

Como $c \space \epsilon \space [a, b]$ supongamos sin perdida de generalidad que $a<c<b$ entonces:

$$\int_{a}^{b} f(x)dx=\int_{a}^{c} f(x)dx+\int_{c}^{b} f(x)dx$$

Por las propiedades de la integral [Hipervinculo: Calculo II-Propiedades de la integral], la función $f$ es integrable en $[a, c]$ y $[c, b]$.

Ahora por el teorema del valor extremo sabemos que $f$ alcanza sus valores máximo y mínimo absolutos en el intervalo, el cual se denotan como $M$ y $m$ respectivamente, así, sabemos que:

$$\int_{a}^{b} mdx\leq \int_{a}^{b} f(x)dx\leq \int_{a}^{b} Mdx$$

Las integrales de la izquierda y derecha se pueden evaluar fácilmente:

$$m(b-a)\leq \int_{a}^{b} f(x)dx\leq M(b-a) \tag{1}$$

Por otro lado, como $c \space \epsilon \space [a, b]$ entonces: $m\leq f(c) \leq M$ para alguna $c \space \epsilon \space [a, b]$.

Si $m$ y $M$ son infinitesimalmente pequeños, entonces $m=f(c)=M$, por lo que en $(1)$:

$$f(c)(b-a)\leq \int_{a}^{b} f(x)dx\leq f(c)(b-a)$$

$$\Rightarrow \int_{a}^{b}f(x)dx=f(c)(b-a)$$

$\square$

Veamos un ejemplo.

Ejemplo

  • Determine el valor promedio de la función $f(x)=1+x^{2}$ en el intervalo $[-1,2]$.

Vemos que $a=-1$ y $b=2$, para calcular el valor promedio de la función $f(x)$ utilizamos el teorema del valor medio como sigue:

$$f_{prom}=f(c)=\frac{1}{b-a}\int_{a}^{b}f(x)dx$$

Así tenemos que:

$$f(c)=\frac{1}{2-(-1)}\int_{-1}^{2}(1+x^{2})dx=\frac{1}{3}\left [ x+\frac{x^{3}}{3} \right ]\bigg{|}_{-1}^{2}$$

$$=\frac{1}{3}\left [ 2+\frac{2^{3}}{3}-(-1)-\frac{(-1)^{3}}{3} \right ]=2$$

Vemos que $f(c)=2$, evaluamos en la función $f(x)$ el valor $c$ para encontrar su valor:

$$f(c)=1+c^{2}=2 \Rightarrow c=\pm 1$$

Sucede que en este caso hay dos números $c=1$ y $c=-1$ que toman el valor medio de la función $f(x)$.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Halle el valor promedio de las siguientes funciones en el intervalo indicado.

  1. $f(x)=4x-x^{2}$, $[0,4]$
  2. $f(x)=4-x$, $[0,3]$
  3. $f(x)=3x^{2}-2x$, $[1,4]$
  • Determine los números $b$ talque el valor promedio de la función $f(x)=2+6x-3x^{2}$ en el intervalo $[0,b]$ sea igual a 3.
  • Demuestre que la velocidad promedio de un automóvil en un intervalo de tiempo $[t_{1}, t_{2}]$ es la misma que el promedio de sus velocidades.

Más adelante…

En esta sección vimos el teorema del valor intermedio aplicado a las integrales, en las siguientes secciones veremos las integrales impropias, es decir, integrales en donde se evalúa una función dentro de un intervalo que tiende a infinito o casos en donde la integral de una función se evalúa en todo $\mathbb{R}$.

Entradas relacionadas

Cálculo Diferencial e Integral I: Teorema de Rolle y Teorema del Valor Medio

Por Juan Manuel Naranjo Jurado

Introducción

Hasta este punto nos hemos enfocado en estudiar la derivada para distintos tipos de funciones, orientando los esfuerzos principalmente en la ejecución, en derivar tal cual. En esta entrada estudiaremos dos teoremas que nos darán visibilidad de algunas propiedades que tienen las funciones que son derivables en un intervalo abierto.

Teorema de Rolle

En el bachillerato revisaste el tema de máximos y mínimos, donde uno de los criterios que se usaban para encontrarlos era usar el hecho de que si $x_0$ es un mínimo o máximo local, entonces la derivada en dicho punto es cero. De momento, formalizaremos tanto la definición de máximo y mínimo local como el criterio antes mencionado, sin embargo, será hasta la siguiente sección donde daremos la demostración con la finalidad de revisarlo junto con sus aplicaciones.

Definición: Consideremos a una función $f$ continua en un intervalo $I$ y $x_0 \in (x_0-r, x_0+r) \subseteq I$ con $r\in \r^{+}$ y tenemos que existe $f'(x_0)$ decimos que:

  • $x_0$ es un máximo local de $f \Leftrightarrow$ existe $r>0$ tal que para todo $x\in (x_0-r, x_0 +r)\subseteq D_f$ ocurre que:
    $$f(x)\leq f(x_0)$$
  • $x_0$ es un mínimo local de $f \Leftrightarrow$ existe $r>0$ tal que para todo $x\in (x_0-r, x_0 +r)\subseteq D_f$ ocurre que:
    $$f(x_0)\leq f(x)$$

Teorema: Consideremos una función $f$ continua en un intervalo $I$ y es derivable en el punto $x_0 \in (x_0-r, x_0+r) \subseteq I$. Si tenemos que $x_0$ es un máximo ó un mínimo de local de $f \Rightarrow f'(x_0)=0$

Ahora veremos el Teorema de Rolle que menciona que si tenemos una función $f:[a,b] \to \RR$ derivable en el intervalo $(a,b)$, que satisface que $f(a) = f(b)$, entonces existe un punto $c$ cuya derivada es cero, es decir, que si la función inicia y termina en el mismo punto, entonces existe un máximo o mínimo local.

Teorema de Rolle. Sea $f:[a,b] \to \RR$ tal que $f$ es continua en $[a,b]$ y derivable en $(a,b)$. Si $f(a) = f(b)$, entonces existe $c$, $a<c<b$ tal que $f'(c) =0$

Demostración.

Caso 1. Para todo $x \in [a,b]$, $f(x) = k$

Como $f$ es constante, entonces $f'(x) = 0$ para todo $x \in [a,b]$.

Así, podemos considerar $c = \frac{a+b}{2}$. Donde se cumple que $a<c<b$ y $f'(c) =0$.

Caso 2. Existe $x_0 \in [a,b]$, tal que $f(x_0) > f(a)$

Por el teorema del máximo-mínimo, existe $c \in [a,b]$ tal que para toda $x \in [a,b]$, $f(x) \leq f(c)$

\begin{gather*}
\Rightarrow & f(a) < f(x_0) \leq f(c) \\ \\
\Rightarrow & f(c) > f(a) = f(b) \\ \\
\Rightarrow & c \neq a, \quad c \neq b \\ \\
\Rightarrow & c \in (a,b), \quad a<c<b
\end{gather*}

Por tanto, para toda $x \in [a,b]$, se cumple que $f(x) \leq f(c)$. Donde se concluye que $f$ es un máximo local en $c$.

Además, $f$ es derivable en $c$, entonces $f'(c) = 0$

Caso 3. Existe $x_0 \in [a,b]$ tal que $f(x_0) < f(a)$

Este caso es análogo al anterior.

$\square$

Teorema del Valor Medio

El siguiente teorema que probaremos indica que si una función es continua en $[a,b]$ y derivable en el intervalo $(a,b)$, entonces existe un punto $c$ cuya derivada es $$f'(c) = \frac{f(b)-f(a)}{b-a}$$

Lo anterior indica que existe un punto $c$ cuya pendiente de la recta tangente es la misma que la pendiente de la recta generada por los puntos extremos del intervalo $a$, $b$. Esto se puede ver gráficamente en la siguiente imagen.

Teorema del Valor Medio. Sea $f:[a,b] \to \RR$ continua en $[a,b]$, derivable en $(a,b)$, entonces existe $c$, $a<c<b$ tal que

$$f'(c) = \frac{f(b)-f(a)}{b-a}$$

Demostración.

Consideremos $g(x) = f(a) + \left( \frac{f(b)-f(a)}{b-a} \right) (x-a)$ y $\rho(x) = f(x)-g(x)$. Así, se tiene que

$$\rho(x) = f(x) – \left(f(a)+\left(\frac{f(b)-f(a)}{b-a} \right) (x-a) \right)$$

Notemos que $\rho: [a,b] \to \RR$, cumple que

  1. $\rho$ es continua en $[a,b]$ pues $f$ lo es.
  2. $\rho$ es derivable en $(a,b)$ pues $f$ lo es.
  3. $\rho(a) = f(a)-(f(a)+0) = 0$ y $\rho(b) = f(b)-(f(a)+f(b)-f(a)) = 0$. Por tanto, $\rho(a) = \rho(b)$.

Por el teorema de Rolle, existe $c$, $a<c<b$ tal que $\rho'(c)=0$. Como

\begin{align*}
\rho'(x) & =f'(x)-\left( \left( f(a) + \frac{f(b)-f(a)}{b-a} \right) (x-a) \right)’ \\ \\
& = f'(x)- \left( 0 + \frac{f(b)-f(a)}{b-a} (1) \right) \\ \\
& = f'(x) – \left( \frac{f(b)-f(a)}{b-a} \right)
\end{align*}

$$\therefore \rho'(x) = f'(x) – \left( \frac{f(b)-f(a)}{b-a} \right)$$

Considerando que $\rho'(c)=0$, de la expresión anterior, se sigue que

$$ f'(c) = \frac{f(b)-f(a)}{b-a}$$

$\square$

Corolario. Si para todo $x \in (a,b)$, $f'(x) = 0$, entonces existe $k \in \RR$ tal que $\forall x \in [a,b]$, $f(x) = k$.

Demostración.

Si $x = a$, entonces $f(x) = f(a)$. Si $x \in [a,b]$, con $x \neq a$, entonces $x>a$. Aplicando el Teorema del Valor Medio en $[a,x]$, existe $c$, $a<c<x \leq b$ tal que

$$f'(c) = \frac{f(x)-f(a)}{x-a}$$

Por hipótesis, $f'(c) = 0$ y $x \neq a$, entonces

\begin{gather*}
\Rightarrow & 0 = \frac{f(x)-f(a)}{x-a} \\ \\
\Rightarrow & f(x)-f(a) = 0 \\ \\
\Rightarrow & f(x) = f(a)
\end{gather*}

Por tanto, para todo $x \in [a,b]$, se tiene que $f(x) = k$, con $k = f(a)$.

$\square$

Corolario. Sean $f,g:[a,b] \to \RR$ continuas en $[a,b]$ y derivables en $(a,b)$. Si para todo $x \in (a,b)$, $f'(x) = g'(x)$, entonces $f(x) = g(x) +k$.

Demostración.

Consideremos $h(x) = f(x)-g(x)$, entonces se tiene que $h'(x) = f'(x)-g'(x)= 0$ para todo $x \in (a,b)$.

Por el corolario anterior, existe $k \in \RR$, constante, tal que para toda $x \in [a,b]$ se tiene $h(x) = k$.

\begin{gather*}
\Rightarrow & f(x)-g(x) = k \\
\therefore & f(x) = g(x) + k \quad \forall x \in [a,b]
\end{gather*}

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  • Comprueba el teorema de Rolle en los intervalos que se muestran y halla los valores de $c$ para las siguientes funciones:
    • $f(x) = x^2-x-6$ en el intervalo $[-2,3]$.
    • $f(x) = x^2-4$ en el intervalo $[-2,2]$.
    • $f(x) = \sqrt{x}-2 \sqrt[4]{x}$ en el intervalo $[0,16]$
  • Comprueba el teorema del valor medio en los intervalos que se muestran y encuentra el valor $c$ para las siguientes funciones:
    • $f(x) = \sqrt{x+1}$ en el intervalo $[-1,3]$
    • $f(x) = sen(x)$ en el intervalo $[0, \pi/4]$
    • $f(x) = ln(2x+5)$ en el intervalo $[0,2]$

Más adelante…

La siguiente entrada será la última de la unidad y revisaremos un potente resultado de la derivada que nos permitirá hacer el cálculo de cierto tipo de límites con mayor facilidad, este resultado es conocido como la regla de L’Hôpital.

Entradas relacionadas

Álgebra Superior II: Continuidad y diferenciabilidad de polinomios reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Al inicio de esta unidad, hablamos de las propiedades algebraicas de $\mathbb{R}[x]$, definimos sus operaciones y argumentamos por qué se puede usar la notación de potencias. Luego hablamos de las propiedades aritméticas de los polinomios cuando hablamos de divisibilidad, máximo común divisor y factorización en irreducibles. Vimos una aplicación de esto a la solución de desigualdades. Lo que queremos hacer ahora es pensar a los polinomios como funciones de $\mathbb{R}$ en $\mathbb{R}$ y entender las propiedades analíticas que tienen, es decir en términos de cálculo. Nos interesa saber qué les sucede cuando su entrada es grande, la continuidad y la diferenciabilidad de polinomios.

Estas propiedades tienen consecuencias algebraicas importantes. La continuidad de polinomios nos permite encontrar raíces reales en ciertos intervalos. La diferenciabilidad de polinomios nos ayuda a encontrar la multiplicidad de las raíces. Supondremos que manejas conocimientos básicos de cálculo y de manipulación de límites, pero de cualquier forma recordaremos algunas definiciones y daremos esbozos de la demostración de algunos resultados.

Límites a reales y límites a infinito

Recordemos dos definiciones de cálculo, que se aplican para funciones arbitrarias definidas en todos los reales.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función y $a, b$ reales. Decimos que $$\lim_{x\to a} f(x) = b$$ si para todo $\epsilon >0$ existe un $\delta > 0 $ tal que cuando $0<|x-a|<\delta$, entonces $|f(x)-b|<\epsilon$. En palabras, decimos que el límite de $f$ cuando $x$ tiende a $a$ es $b$.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función. Decimos que $$\lim_{x\to \infty} f(x) = \infty$$ si para todo $M>0$ existe un $r > 0 $ tal que cuando $x>r$, entonces $f(x)>M$. En palabras, decimos que el límite de $f$ cuando $x$ tiende a infinito es infinito.

De manera análoga se pueden definir límites cuando $x$ tiende a menos infinito, y definir qué quiere decir que el límite sea menos infinito. La siguiente proposición se prueba en textos de cálculo.

Proposición (propiedades de límites). Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones y $a$, $b$, $c$ reales. Si $$\lim_{x\to a} f(x) = b \quad \text { y } \quad \lim_{x\to a} g(x)= c,$$ entonces:

  • «El límite de la suma es la suma de los límites», en símbolos, $$\lim_{x\to a} (f+g)(x) = b+c.$$
  • «El límite del producto es el producto de los límites», en símbolos, $$\lim_{x\to a} (fg)(x)=bc.$$

La proposición anterior es sólo para cuando los límites son reales. Hay resultados para cuando algunos de los límites son infinitos, pero en general hay que tener cuidado.

La primer propiedad analítica de los polinomios es saber cómo es su comportamiento cuando $x$ se hace infinito o menos infinito. Si el polinomio es constante, entonces este límite es simplemente su valor en cualquier punto. Para polinomios de grado mayor o igual a $1$, su comportamiento queda resumido en la siguiente proposición.

Proposición (límites a infinito). Tomemos al polinomio $p(x)$ en $\mathbb{R}[x]$ dado por $$p(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n,$$ en donde $n\geq 1$ y $a_n\neq 0$.

  • Si $a_n>0$ y $p(x)$ es de grado par entonces $$\lim_{x\to \infty} p(x) = \lim_{x\to-\infty} p(x)= \infty,$$
  • Cuando $a_n>0$ y $p(x)$ es de grado impar entonces $$\lim_{x\to \infty} p(x) = \infty \quad \text { y } \quad \lim_{x\to -\infty} p(x)=-\infty$$
  • Si $a_n<0$ y $p(x)$ es de grado par entonces $$\lim_{x\to \infty} p(x) = \lim_{x\to-\infty} p(x)= -\infty,$$
  • Cuando $a_n<0$ y $p(x)$ es de grado impar entonces $$\lim_{x\to \infty} p(x) = -\infty \quad \text { y } \quad \lim_{x\to -\infty} p(x)=\infty.$$

Demostración. Vamos a hacer una de las demostraciones. Mostraremos que para cuando $a_n>0$ y el grado es par, entonces $$\lim_{x\to \infty} p(x) = \infty.$$ Las demás se siguen haciendo cambios de signo cuidadosos y usando que una potencia impar de un real negativo es un real negativo, y una potencia par es siempre un real positivo. Pensar en estas demostraciones queda como tarea moral.

Tomemos entonces $p(x)$ un polinomio de grado par y con coeficiente principal $a_n>0$. Intuitivamente, tenemos que mostrar que si $x$ es muy grande, entonces $p(x)$ es tan grande como queramos. Tomemos un real $M>0$. Como haremos $x$ grande, podemos suponer que $x>1$.

Como el término $a_nx^n$ es positivo, basta mostrar como resultado auxiliar que si $x$ es suficentemente grande, entonces $$a_nx^n >M+|a_0+a_1x+\ldots+a_{n-1}x^{n-1}|,$$ ya que si esto sucede, tendríamos que:
\begin{align*}
a_nx^n&>M+|a_0+a_1x+\ldots+a_{n-1}x^{n-1}|\\
&=M+|-a_0-a_1x-\ldots-a_{n-1}x^{n-1}|\\
&>M-a_0-a_1x-\ldots-a_{n-1}x^{n-1},
\end{align*}

y de aquí, pasando todo excepto a $M$ a la izquierda, tendríamos $p(x)>M$

Para probar el resultado auxiliar, tomemos $A$ como el máximo de los valores absolutos $|a_0|,\ldots,|a_{n-1}|$. Por la desigualdad del triángulo y usando $x>1$ tenemos que

\begin{align*}
M+|a_0&+a_1x+\ldots+a_{n-1}x^{n-1}|\\
&\leq M+|a_0|+|a_1 x| + \ldots + |a_{n-1}x^{n-1}|\\
&\leq M+A(1+x+\ldots+x^{n-1})\\
&< M+nA\\
&<(M+nA)x^{n-1}
\end{align*}

De esta forma, para mostrar nuestra desigualdad auxiliar basta mostrar que para $x$ suficientemente grande, tenemos que $(M+nA)x^{n-1}<a_nx^n$. Pero como $x>0$, esta desigualdad es equivalente a $x>\frac{M+nA}{a_n}$.

Recapitulando, para cualquier $M>0$, si $x>\frac{M+nA}{a_n}$, entonces $p(x)>M$. Esto termina la demostración.

$\square$

Podemos usar la proposición anterior para comparar polinomios cuando su variable tiende a infinito.

Ejemplo. Mostraremos que existe una $M$ suficientemente grande tal que si $x>M$, entonces $$\frac{1}{2}x^7-x^6-x-1>x^6+1000x^5+1000000.$$ Pasando todo del lado izquierdo, nos queda la desigualdad equivalente $$\frac{1}{2}x^7-2x^6-1000x^5-x-999999>0.$$ Aquí tenemos un polinomio $p(x)$ de grado impar y coeficiente principal positivo. Por la proposición anterior, $\lim_{x\to \infty} p(x) = \infty$, de modo que la $M$ que estamos buscando existe.

$\square$

Continuidad de polinomios

Antes de llegar a diferenciabilidad de polinomios, haremos un paso intermedio. Recordemos otra definición de cálculo.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función y $a$ un real. Decimos que $f$ es continua en $a$ si $$\lim_{x\to a} f(x) = f(a).$$ Decimos que $f$ es continua si es continua en todo real.

Por la proposición de propiedades de límites, la suma o producto de funciones continuas es continua. Las funciones constantes son continuas. La función identidad $I:\mathbb{R}\to \mathbb{R}$ dada por $I(x)=x$ es continua. Estos tres hechos nos ayudan a demostrar que todos los polinomios son funciones continuas sin tener que recurrir a la definición de límite.

Teorema. Cualquier polinomio $p(x)$ en $\mathbb{R}[x]$ pensado como una función $p:\mathbb{R}\to \mathbb{R}$ es una función continua.

Demostración. Supongamos que $p(x)$ está dado por $$p(x)=a_0+a_1x+\ldots+a_nx^n.$$

Para toda $i$ de $0$ a $n$ tenemos que la función $x\mapsto a_i$ es constante y por lo tanto es continua. Si $i>0$, la función $x\mapsto x^i$ es producto de $i$ veces la identidad consigo misma. Como la identidad es continua y producto de continuas es continua, entonces $x\mapsto x^i$ es continua.

De nuevo, usando que producto de funciones continuas es continua, tenemos que $x\mapsto a_ix^i$ es una función continua. De esta forma, $p(x)$ es la suma de $n+1$ funciones continuas, y por lo tanto es una función continua.

$\square$

El resultado anterior nos ayuda a usar teoremas versátiles de cálculo en nuestro estudio de polinomios. Recordemos el teorema del valor intermedio.

Teorema (del valor intermedio). Sea $f:\mathbb{R}\to \mathbb{R}$ una función continua. Sean $a<b$ dos reales. Entonces entre $a$ y $b$, la función $f$ toma todos los valores entre $f(a)$ y $f(b)$.

Veamos cómo el teorema del valor intermedio nos permite encontrar raíces de polinomios.

Problema. Muestra que el polinomio $p(x)=x^7-5x^5+x^2+3$ tiene por lo menos una raíz en el intervalo $[0,2]$.

Solución. Al evaluar al polinomio en cero, obtenemos $p(0)=3$. Al evaluarlo en $2$, obtenemos
\begin{align*}
p(2)&=2^7-5\cdot 2^5+x^2 + 3\\
&=128-160+4+3\\
&=-25.
\end{align*}

Como los polinomios son funciones continuas, podemos aplicar el teorema del valor intermedio. Concluimos que $p(x)$ toma todos los valores de $-25$ a $2$ en el intervalo $[0,2]$. En particular, existe un real $r$ en $[0,2]$ tal que $p(r)=0$.

$\square$

El teorema del valor intermedio nos ayuda a demostrar que un polinomio tiene una raíz en cierto intervalo. Sin embargo, no es de tanta utilidad para decir exactamente cuál es esa raíz. Es un resultado existencial en vez de ser constructivo. Veamos un ejemplo más, que muestra una proposición que quedó pendiente en una entrada anterior.

Problema. Sea $p(x)$ un polinomio cuadrático, mónico e irreducible en $\mathbb{R}[x]$. Muestra que $p(r)>0$ para todo real $r$.

Solución. Procedamos por contradicción. Supongamos que $p(r)\leq 0$ para algún real $r$.

Como $p(x)$ es mónico, su coeficiente principal es $1$, que es positivo. Como $p(x)$ es cuadrático, es de grado par. Por la proposición de límites a infinito, existe un real $t>r$ tal que $p(t)>0$. Por el teorema del valor intermedio, existiría un real $s$ en el intervalo $[r,t]$ tal que $p(s)=0$. Pero esto es imposible, pues entonces por el teorema del factor $x-s$ divide a $p(x)$ y esto contradice que $p(x)$ es irreducible.

$\square$

Como muestra el problema anterior, se pueden combinar los límites de polinomios a infinito y menos infinito, y sus propiedades de continuidad. Otra aplicación es mostrar que todo polinomio de grado impar tiene por lo menos una raíz real. Esto se verá en otra entrada.

Por supuesto, otros resultados de continuidad también se pueden usar en todos los polinomios, como el teorema del valor extremo. Aplicándolo directamente, concluimos lo siguiente.

Proposición. Sean $a<b$ reales y $p(x)$ un polinomio en $\mathbb{R}$. Entonces $p(x)$ está acotado en el intervalo $[a,b]$ y existen reales $r$ y $s$ en dicho intervalo tales que $p(r)$ y $p(s)$ son el mínimo y máximo de $p(x)$ en $[a,b]$, respectivamente.

Diferenciabilidad de polinomios

Es momento de hablar de diferenciabilidad de polinomios. Recordemos una última definición de cálculo.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función. Decimos que $f$ es diferenciable en $a$ si el límite $$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$ existe. En este caso, a ese límite lo denotamos por $f'(a)$. Una función es diferenciable si es diferenciable en todo real. A la función $f’:\mathbb{R}\to \mathbb{R}$ le llamamos la derivada de $f$.

Al igual que en el caso de continuidad, la suma y producto de funciones diferenciales es diferenciable. Si $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ son diferenciables, entonces la derivada de $f+g$ está dada por $$(f+g)'(x)=f'(x)+g'(x)$$ y la derivada de $fg$ está dada por la regla de la cadena $$(fg)'(x)=f'(x)g(x)+f(x)g'(x).$$

Las funciones constantes son diferenciables, y su derivada es la función constante $0$. La función identidad es diferenciable, y su derivada es la función constante $1$. Esto es sencillo de mostrar y queda como tarea moral.

Proposición. Sea $n\geq 1$ un entero. El polinomio $p(x)=x^n$ es diferenciable, y su derivada es la función $p'(x)=nx^{n-1}$.

Demostración. Haremos la prueba por inducción. Si $n=1$, el polinomio es $p(x)=x$, y su derivada es $p'(x)=1=1\cdot x^0$, como queremos. Supongamos que el resultado es cierto para el entero $n\geq 1$ y tomemos $p(x)=x^{n+1}=x^n\cdot x$. Por hipótesis inductiva, $x\mapsto x^n$ es diferenciable. Como $p(x)$ es producto de dos funciones diferenciables, entonces es diferenciable.

Usando la regla de la cadena, la hipótesis inductiva de la fórmula y la derivada de $x\mapsto x$, tenemos que $$p'(x)=(nx^{n-1})(x)+(x^n)(1)=(n+1)x^n.$$ Esto termina la demostración.

$\square$

Con todos estos ingredientes podemos mostrar la diferenciabilidad de todos los polinomios. Los detalles quedan como tarea moral.

Teorema (diferenciabilidad de polinomios). Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ dado por $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ Entonces $p(x)$ pensado como función es diferenciable y su derivada es un polinomio. Si $p(x)$ es constante, su derivada es el polinomio $0$. En otro caso, su derivada es el polinomio $$a_1+2a_2x+3a_3x^2+\ldots+na_nx^{n-1}.$$

Ejemplo. El polinomio $x^7+3x^2-1$ es diferenciable. Su derivada es el polinomio $7x^6+6x$.

$\square$

Ya que sabemos que los polinomios son diferenciables, podemos usar todas las herramientas de cálculo diferencial, como:

No profundizaremos en esto, pues es el contenido de un buen curso de cálculo, o bien de material de algún texto en el área, como el libro de Cálculo de Spivak.

A nosotros nos interesa una consecuencia algebraica de que los polinomios tengan derivada. Como la derivada de un polinomio es otro polinomio, entonces la derivada es diferenciable. Por ello, un polinomio $p(x)$ se puede derivar iteradamente tantas veces como se quiera. Al polinomio obtenido de derivar $n$ veces le llamamos la $n$-ésima derivada y lo denotamos por $p^{(n)}(x)$. En la siguiente entrada veremos cómo la repetida diferenciabilidad de polinomios nos ayuda a detectar la multiplicidad de sus raíces.

Tarea moral

  • Estudia el resto de los casos de la proposición de límites de polinomios cuando la entrada va a menos infinito y a infinito.
  • Muestra usando la definición de límite que las funciones constantes y la función identidad son continuas.
  • Demuestra por definición que las funciones constantes son diferenciables y que su derivada es la función constante $0$. Demuestra por definición que la función identidad es diferenciable y que su derivada es la función constante $1$.
  • Muestra que existe un real $x$ en el cual los polinomios $p(x)=x^5+x^3+x$ y $q(x)=100x^4+10x^2$ son iguales. Sugerencia. Reescribe esta igualdad en términos de encontrar una raíz de un sólo polinomio.
  • Completa los detalles del teorema de diferenciabilidad de polinomios.

Más adelante

En la siguiente sección nos encargaremos de realizar varios problemas para repasar las definiciones y propiedades que acabamos de enunciar, y posteriormente ocuparemos todo lo aprendido para explotar el conocimiento que tenemos de los polinomios.

En particular, nos será útil el concepto de diferenciabilidad pues con este podemos dar una definición precisa de lo que significa que la raíz de un polinomio sea múltiple.

Entradas Relacionadas

Seminario de Resolución de Problemas: El teorema del valor medio

Por Leonardo Ignacio Martínez Sandoval

Introducción

Las funciones continuas son bonitas pues tienen la propiedad del valor intermedio y además alcanzan sus valores extremos. Las funciones diferenciables en un intervalo también tienen un par de teoremas que hablan acerca de algo que sucede «dentro del intervalo». Estos son el teorema de Rolle, del cual platicamos en la entrada anterior, y el teorema del valor medio. Ambos nos permiten encontrar en el intervalo un punto en el que la derivada tiene un valor específico.

Teorema de Rolle. Sean $a<b$ reales y $f:[a,b]\to \mathbb{R}$ una función continua en el intervalo $[a,b]$ y diferenciable en el intervalo $(a,b)$. Supongamos que $f(a)=f(b)$. Entonces existe un punto $c\in (a,b)$ tal que $f'(c)=0$.

Teorema del valor medio. Sean $a<b$ reales y $f:[a,b]\to \mathbb{R}$ una función continua en el intervalo $[a,b]$ y diferenciable en el intervalo $(a,b)$. Entonces existe un punto $c\in (a,b)$ tal que $$f'(c)=\frac{f(b)-f(a)}{b-a}.$$

En la entrada anterior vimos aplicaciones del teorema de Rolle a resolución de problemas matemáticos. En esta entrada hablaremos brevemente de la intuición geométrica del teorema del valor medio, de algunas de sus consecuencias inmediatas y de cómo usar al teorema y sus consecuencias para resolver problemas concretos.

La intuición geométrica del teorema del valor medio

El teorema del valor medio dice que una función diferenciable en $(a,b)$ y continua en $[a,b]$ cumple que hay un punto $c$ tal que el valor de la derivada en $c$ es igual a la pendiente de la recta que une los puntos del plano $(a,f(a))$ y $(b,f(b))$. En la siguiente figura, se marca en azul el punto $c$ en donde la pendiente de la tangente es lo que queremos, es decir, la pendiente entre los puntos rojos.

Intuición geométrica del teorema del valor medio
Intuición geométrica del teorema del valor medio

En varios problemas en los que se usa el teorema del valor medio, o bien en los cuales se pide demostrar enunciados parecidos a lo que dice el teorema del valor medio, es conveniente hacer una figura para entender la intuición geométrica del problema.

Consecuencias del teorema del valor medio

Si $f$ y $g$ son funciones continuas en $[a,b]$ y diferenciables en $(a,b)$ entonces se pueden deducir los siguientes resultados a partir del teorema del valor medio. No profundizamos en las demostraciones, y dejamos su verificación como un ejercicio de práctica.

Proposición. Si $f'(x)=0$ para toda $x$ en $(a,b)$, entonces $f$ es constante.

Proposición. Si $f'(x)=g'(x)$ para toda $x$ en $(a,b)$, entonces existe una constante $c$ tal que $f(x)=g(x)+c$ para toda $x$.

Proposición. Si $f'(x)>0$ para toda $x$ en $(a,b)$, entonces $f$ es una función estrictamente creciente. Si $f'(x)<0$ en $(a,b)$, entonces $f$ es una función estrictamente decreciente.

Cuando $f'(x)\geq 0$ y $f'(x)\leq 0$, tenemos resultados análogos que dicen que es no decreciente y no creciente, respectivamente.

Veamos algunas aplicaciones de los resultados anteriores.

Problema. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones tales que para todo par de reales $x$ y $y$ se cumple que $$|f(x)+g(y)-f(y)-g(x)|\leq (x-y)^2.$$ Demuestra que $f$ y $g$ varían sólo por una constante aditiva.

Sugerencia pre-solución. Identifica cuál de las proposiciones anteriores puedes usar. Hay que tener cuidado con las hipótesis, pues en el enunciado no se habla de la diferenciabilidad de ninguna de las funciones involucradas.

Solución. Podría ser tentador usar la segunda proposición que enunciamos arriba, pero no tenemos hipótesis acerca de la diferenciabilidad de $f$ o de $g$. Sin embargo, vamos a mostrar que sí se puede mostrar que $f-g$ es diferenciable en todo real, y que su derivada es $0$ en todo real. Para ello, definamos $h=f-g$ y notemos que la hipótesis dice que $|h(x)-h(y)|\leq (x-y)^2.$

A partir de aquí, notemos que por la hipótesis, para $x\neq y$, $$\frac{|h(y)-h(x)|}{|y-x|}\leq \frac{(y-x)^2}{|y-x|} = |y-x|,$$ y el límite de esta última expresión conforme $y\to x$ es $0$, de modo que $$\left|\lim_{y\to x} \frac{h(y)-h(x)}{y-x}\right|=\lim_{y\to x} \frac{|h(y)-h(x)|}{|y-x|} = 0.$$ Esto muestra que para cualquier $x$ se tiene que $h$ es diferenciable en $x$ y su derivada es igual $0$ en todo $x$. De este modo, $h$ es una función constante, y por lo tanto existe un $c$ tal que $f(x)=g(x)+c$ para todo $x$.

$\square$

Veamos cómo el teorema del valor medio nos puede ayudar a demostrar desigualdades.

Problema. Sea $f:\mathbb{R}\to \mathbb{R}$ una función dos veces diferenciable tal que $f»(x)\geq 0$ para todo $x$. Demuestra que para todo par de reales $a$ y $b$ con $a<b$ se tiene que $$f\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2}.$$

Sugerencia pre-solución. Haz una figura para convencerte de que el resultado es cierto. En el enunciado del problema, la función está siendo enunciada en tres valores, $a$, $b$ y $\frac{a+b}{2}$. Esto te dará una pista de dónde usar el teorema del valor medio.

Solución. Por el teorema del valor medio, existe un real $r$ en el intervalo $\left(a,\frac{a+b}{2}\right)$ para el cual $$\frac{f\left(\frac{a+b}{2}\right)-f(a)}{\frac{a+b}{2}-a} = f'(r).$$

De manera similar, existe un real $s$ en el intervalo $\left(\frac{a+b}{2},b\right)$ para el cual $$\frac{f(b)-f\left(\frac{a+b}{2}\right)}{b-\frac{a+b}{2}} = f'(s).$$

Como $f»(x)>0$ para todo real $x$, tenemos que $f’$ es una función creciente, y como $r<s$, tenemos entonces que $f'(r)<f'(s)$. De esta forma, $$ \frac{f\left(\frac{a+b}{2}\right)-f(a)}{\frac{a+b}{2}-a}<\frac{f(b)-f\left(\frac{a+b}{2}\right)}{b-\frac{a+b}{2}}.$$ Notemos que el denominador de ambos lados es $\frac{b-a}{2}$. Cancelando los denominadores y reacomodando los términos en esta desigualdad, obtenemos la desigualdad deseada.

$\square$

Problemas resueltos con el teorema del valor medio y otras técnicas

Veamos algunos problemas que combinan el teorema del valor medio con otras técnicas de solución de problemas.

Problema. Sea $f(x)$ una función diferenciable en $(0,1)$ y continua en $[0,1]$ con $f(0)=0$ y $f(1)=1$. Muestra que existen puntos distintos $a,b,c,d$ en el intervalo $[0,1]$ tales que $$\frac{1}{f'(a)}+ \frac{1}{f'(b)} + \frac{1}{f'(c)} + \frac{1}{f'(d)} = 4.$$

Sugerencia pre-solución. Para resolver el problema, hay que combinar el teorema del valor medio con el teorema del valor intermedio. El primer paso del problema es encontrar reales $p<q<r$ tales que $f$ valga en ellos $1/4$, $2/4$ y $3/4$.

Solución. Como $f(0)=0$, $f(1)=1$ y $0<1/4<1$, por el teorema del valor intermedio existe un real $p$ en $(0,1)$ tal que $f(p)=1/4$. De manera similar, existe un real $q$ en $(p,1)$ tal que $f(q)=2/4$ y un real $r$ en $(q,1)$ tal que $f(r)=3/4$.

Aplicando el teorema del valor medio a los intervalos $[0,p]$, $[p,q]$, $[q,r]$ y $[r,1]$ obtenemos reales $a,b,c,d$ respectivamente tales que

\begin{align*}
f'(a)&=\frac{f(p)-f(0)}{p-0}=\frac{1/4}{p}\\
f'(b)&=\frac{f(q)-f(p)}{q-p}=\frac{1/4}{q-p} \\
f'(c)&=\frac{f(r)-f(q)}{r-q}=\frac{1/4}{r-q} \\
f'(d)&=\frac{f(1)-f(r)}{1-r}=\frac{1/4}{1-r}.
\end{align*}

Estos son los valores de $a,b,c,d$ que queremos pues

\begin{align*}
\frac{1}{f'(a)}+ \frac{1}{f'(b)} + \frac{1}{f'(c)} + \frac{1}{f'(d)} &= 4(1-r+r-q+q-p+p)\\
&=4.
\end{align*}

$\square$

Problema. Sean $a$, $b$ y $c$ números distintos. Muestra que la siguiente expresión $$\frac{(x-a)(x-b)}{(c-a)(c-b)}+ \frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-c)}$$ no depende del valor de $x$.

Sugerencia pre-solución. Encuentra la derivada de la expresión. Puedes aprovechar la simetría para hacer menos cuentas.

Solución. Usando la regla del producto, la derivada del primer sumando es
\begin{align*}
\frac{(x-a)+(x-b)}{(c-a)(c-b)}&=\frac{(2x-a-b)(b-a)}{(a-b)(b-c)(c-a)}\\
&=\frac{2x(b-a)+a^2-b^2}{(a-b)(b-c)(c-a)}.
\end{align*}

Por simetría, las derivadas de los otros dos términos tienen el mismo denominador que esta y en el numerador tienen, respectivamente,
\begin{align*}
&2x(c-b)+b^2-c^2\quad \text{y}\\
&2x(a-c)+c^2-a^2,
\end{align*} de modo que al sumar las tres expresiones obtenemos cero. Así, la derivada de la expresión es cero y por lo tanto es constante.

$\square$

Hay otro argumento para resolver el problema anterior, que usa teoría de polinomios. A grandes rasgos, la expresión es un polinomio de grado $2$, que toma tres veces el valor $1$, de modo que debe ser igual al polinomio constante $1$.

Más problemas

Hay más ejemplos de problemas relacionados con el teorema del valor medio en la Sección 6.6 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: El teorema de Rolle

Por Leonardo Ignacio Martínez Sandoval

Introducción

Las funciones continuas son bonitas pues tienen la propiedad del valor intermedio y además alcanzan sus valores extremos. Las funciones diferenciables en un intervalo también tienen un par de teoremas que hablan acerca de algo que sucede «dentro del intervalo». Estos son el teorema de Rolle y el teorema del valor medio. Ambos nos permiten encontrar en el intervalo un punto en el que la derivada tiene un valor específico.

Teorema de Rolle. Sean $a<b$ reales y $f:[a,b]\to \mathbb{R}$ una función continua en el intervalo $[a,b]$ y diferenciable en el intervalo $(a,b)$. Supongamos que $f(a)=f(b)$. Entonces existe un punto $c\in (a,b)$ tal que $f'(c)=0$.

Teorema del valor medio. Sean $a<b$ reales y $f:[a,b]\to \mathbb{R}$ una función continua en el intervalo $[a,b]$ y diferenciable en el intervalo $(a,b)$. Entonces existe un punto $c\in (a,b)$ tal que $$f'(c)=\frac{f(b)-f(a)}{b-a}.$$

El teorema del valor medio parece más general. Sin embargo, en cierto sentido, estos dos teoremas son «equivalentes», en el sentido de que uno de ellos nos ayuda a probar al otro de manera fácil, y viceversa.

Ya dimos las demostraciones de ambos teoremas en la entrada anterior, que habla del teorema del valor extremo. En esta entrada nos enfocaremos en ver cómo podemos usar el teorema de Rolle para resolver problemas. En la siguiente veremos algunos ejemplos del uso del teorema del valor medio.

Problemas resueltos con teorema de Rolle

Hay algunos problemas que parece que pueden ser resueltos con el teorema del valor intermedio (el de funciones continuas), pero para los cuales no es sencillo encontrar un intervalo correcto en el cual aplicar el teorema. En estas ocasiones, a veces el teorema de Rolle puede entrar al rescate.

Problema. Muestra que $5x^4-4x+1$ tiene una raíz real entre $0$ y $1$.

Sugerencia pre-solución. Primero, convéncete de que no es sencillo resolver este problema usando el teorema del valor intermedio. Luego, escribe a la función como la derivada de otra y aplica el teorema de Rolle. Funciona trabajar hacia atrás: si $f$ es derivada de una función, ¿quién tendría que ser esta función?

Solución. La idea es expresar a $f(x)=5x^4-4x+1$ como la derivada de una función y aplicar el teorema de Rolle. Para ello, podemos integrar o verificar por inspección que si $g(x)=x^5-2x^2+x$, entonces $g'(x)=f(x)$. Ahora, notemos que $g(0)=g(1)=0$. Por el teorema de Rolle, debe existir un $c$ en $(0,1)$ tal que $f(c)=g'(c)=0$, es decir, esta $c$ es justo una raíz de $f$, como queríamos.

$\square$

En algunas ocasiones hay que aplicar el teorema del valor medio repetidas veces dentro de un mismo problema.

Problema. Demuestra que $f(x)=\frac{x^4}{4}-\frac{3}{2}x^2+bx+c$ puede tener como mucho dos ceros el intervalo $[-1,1]$, sin importar los valores de $b$ y de $c$.

Sugerencia pre-solución. Procede por contradicción, suponiendo que hay más de dos ceros. Aplica el teorema del valor medio dos veces.

Solución. Supongamos que $f$ tiene tres o más ceros en ese intervalo, y que son $r,s,t$, con $-1\leq r < s < t < 1$. Tenemos que $f(r)=f(s)$ y que $f(s)=f(t)$, pues estos tres valores son $0$. Por el teorema de Rolle, tenemos que $f'(x)=x^3-3x+b$ debe tener al menos un cero $p$ en el intervalo $(r,s)$ y al menos un cero $q$ en el intervalo $(s,t)$. Aplicando de nuevo el teorema de Rolle, tenemos que $f»(x)=3x^2-3$ debe tener un cero en el intervalo $(p,q)$. Pero $-1<p<q<1$ y $f»(x)$ sólo tiene como ceros a $1$ y $-1$. Esto es una contradicción.

$\square$

Veamos un ejemplo más, en donde es necesario aplicar el teorema de Rolle varias veces y usar otras propiedades de diferenciabilidad.

Problema. Supongamos que la funciónes $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ son diferenciables y que $f'(x)g(x)\neq f(x)g'(x)$ para todo real $x$. Muestra que si $f(x)=0$ tiene al menos $2020$ soluciones distintas, entonces $g(x)=0$ tiene al menos $1010$ soluciones distintas.

Sugerencia pre-solución. Modifica el problema y generalízalo de la siguiente manera: bajo las hipótesis del problema, se tiene que entre cualesquiera dos ceros de $f$ hay un cero de $g$. Para demostrar esto, procede por contradicción.

Solución. Mostraremos que entre cualesquiera dos ceros de $f$ hay un cero de $g$. Para ello, procedamos por contradicción. Supongamos $a<b$ son ceros de $f$ y que $g$ no tiene ningún cero en el intervalo $[a,b]$.

Consideremos la función $f/g$. Como $g$ no se anula en $[a,b]$, tenemos que $f/g$ es continua en $[a,b]$ y diferenciable en $(a,b)$. Además, $f(a)/g(a)=f(b)/g(b)=0$. Con esto, por el teorema de Rolle tendríamos que la derivada de $f/g$ en algún punto $c$ en $(a,b)$ es cero. Pero esto es una contradicción, pues la derivada en $c$ es $$\frac{f'(c)g(c)-f(c)g'(c)}{g^2(c)},$$ que por hipótesis nunca es $0$. De esta forma, entre cualesquiera dos ceros de $f$ debe haber un cero de $g$.

Para resolver el problema original, consideremos los $2020$ ceros que tiene $f$, digamos $a_1<\ldots<a_{2020}$. En cada uno de los intervalos $[a_{2i-1},a_{2i}]$ para $i=1,\ldots,1010$ debe haber un cero de $g$, y como estos son intervalos disjuntos, estos deben ser ceros distintos. De este modo, tenemos al menos $1010$ ceros de $g$.

$\square$

Más problemas

Hay más problemas en los que se usa el teorema de Rolle en la Sección 6.5 el libro Problem Solving through Problems de Loren Larson.