Archivo de la etiqueta: determinantes

Cálculo Diferencial e Integral III: Divergencia, laplaciano y rotacional

Por Alejandro Antonio Estrada Franco

Introducción

Después de algunas entradas muy técnicas, en las que hemos demostrado dos resultados sumamente importantes (el teorema de la función inversa y el teorema de la función implícita), pasaremos brevemente a una entrada un poco más ligera en términos de teoría, pero también relevante. En esta entrada nos volcaremos a una cara más práctica del cálculo diferencial e integral.

Recordemos que un campo vectorial es una función $F:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$. El nombre de campo vectorial está justificado con que a cada punto de un espacio base $\mathbb{R}^n$, estamos asignando otro vector, en $\mathbb{R}^m$. Si pegamos a cada vector del dominio el vector que le corresponde en a partir de $F$, podemos tener otra intuición geométrica de lo que hacen estas funciones. En la figura 1 apreciamos un ejemplo de esto, donde tenemos un campo vectorial $F$ de $\mathbb{R}^{3}$ en $\mathbb{R}^{3}$ y entonces a cada vector de $\mathbb{R}^3$ le estamos «pegando una flecha».

Figura 1

Esta manera de pensar a los campos vectoriales se presta mucho para entender propiedades físicas de los objetos: flujo eléctrico, flujo de calor, fuerza, trabajo, etc. Si pensamos en esto, otros conceptos que hemos estudiado también comienzan a tener significado. Por ejemplo, el gradiente de un campo escalar está íntimamente relacionado a otras propiedades físicas descritas por el campo escalar. Un ejemplo que hemos discutido es que el gradiente, por ejemplo, nos da la dirección de cambio máximo.

Un ejemplo más concreto sería el siguiente. Pensemos en $\mathbb{R}^{3}$ en un sólido $S$ y un campo escalar $T:S\rightarrow \mathbb{R}$ que da la temperatura de cada punto del sólido. Si consideramos la expresión $\textbf{J}=-k\triangledown T$, obtenemos lo que se conoce como el flujo de calor. Tiene sentido. Por lo que aprendemos en educación elemental, el calor va de los puntos de mayor temperatura a los de menor temperatura. El gradiente $\triangledown T$ da la dirección de máximo crecimiento. Pero entonces $-\triangledown T$ da la dirección de máximo descenso (así como su magnitud). La $k$ que aparece tiene que ver con qué tan bien el material del que hablamos transmite el calor.

Notación tradicional de los campos vectoriales

En el ámbito de las aplicaciones generalmente se usa la notación con gorros. Veamos un ejemplo de cómo escribir con esta notación. En vez de escribir para $\bar{v}\in \mathbb{R}^{3}$ la expresión $\bar{v}=(x,y,z)$, escribimos $$\bar{v}=x\hat{\imath}+y\hat{\jmath}+z\hat{k},$$ es decir, podemos pensar que $\hat{\imath}=(1,0,0)$, $\hat{\jmath}=(0,1,0)$, $\hat{k}=(0,0,1)$.

Si $F:\mathbb{R}^3\to \mathbb{R}^3$ es un campo vectorial, escribimos $$F=P\hat{\imath}+Q\hat{\jmath}+R\hat{k},$$ donde $P$, $Q$ y $R$ son los campos escalares componente, que cada uno de ellos va de $\mathbb{R}^3$ a $\mathbb{R}$.

Generalmente escribimos también $$F(x,y,z)=P(x,y,z)\hat{\imath}+Q(x,y,z)\hat{\jmath}+R(x,y,z)\hat{k}$$ tras evaluar.

Con esta notación también podemos escribir al gradiente y pensarlo como un «operador» que manda campos escalares a campos vectoriales. A este operador se le llama operador nabla. Lo escribimos de la siguiente manera:

\[ \triangledown =\frac{\partial}{\partial x}\hat{\imath}+\frac{\partial}{\partial y}\hat{\jmath}+\frac{\partial}{\partial z}\hat{k}. \]

Si tenemos un campo escalar $\phi:\mathbb{R}^3\to \mathbb{R}$, entonces el operador hace lo siguiente

\[ \triangledown \phi (x,y,z)=\frac{\partial \phi (x,y,z)}{\partial x}\hat{\imath}+\frac{\partial \phi (x,y,z)}{\partial y}\hat{\jmath}+\frac{\partial \phi (x,y,z)}{\partial z}\hat{k}.\]

Es decir, a partir de $\phi$ obtenemos su gradiente.

Líneas de flujo

Ahora introducimos el concepto de línea de flujo el cual es muy usado para campos vectoriales en el modelado fenómenos físicos.

Definición. Si $F:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ es un campo vectorial, una línea de flujo para $F$ es una función $\alpha :U\subseteq \mathbb{R}\rightarrow \mathbb{R}^{n}$ tal que $\alpha^{\prime}(t)=F(\alpha(t))$ para todo $t\in U$.

Es decir una línea de flujo es una trayectoria sobre la cual $F$ asigna en cada punto de ella su correspondiente vector tangente. En la Figura 2 tenemos una ilustración de una línea de flujo en un campo vectorial.

Figura 2

Divergencia

Supongamos que tenemos en el plano (o el espacio) una región $S$. Para cada punto $\bar{x}$ de $S$ sea $\textbf{x}(t)$ una línea de flujo que parte de $\bar{x}$ bajo el campo vectorial $F$. El conjunto de líneas $\textbf{x}(t)$ describe cómo cambia el conjunto $S$ bajo la acción de $F$ a través del tiempo. Formalizando esto un poco, en el caso del plano tomemos $F:S\subseteq \mathbb{R}^{2}\rightarrow \mathbb{R}^{2}$. Para cada $\bar{x}\in S$ podemos considerar $\gamma_x:I_{x}\subset \mathbb{R}\rightarrow \mathbb{R}^{2}$, como la trayectoria $\textbf{x}(t)$ y que es línea de flujo bajo $F$. Estas trayectorias van mostrando «cómo se va deformando $S$ a causa del campo vectorial $F$». También, consideremos al conjunto $S’=\{\bar{x}+F(\bar{x})|\bar{x}\in S \}$, al cual pensaremos como el conjunto resultante de aplicar a $S$ el campo vectorial $F$.

Estas nociones se pueden analizar a través de una herramienta llamada divergencia. La definimos a continuación, pero una demostración formal de que el operador divergencia mide la expansión del efecto de un campo vectorial es un tema que se estudia en un cuarto curso de cálculo diferencial e integral.

Figura 3. Aquí se ilustra el efecto de un campo vectorial sobre una sección $S$ del plano.

Damos la definición en $\mathbb{R}^3$, pero podrías dar una versión análoga para $\mathbb{R}^2$.

Definición. Si $F=P\hat{\imath}+Q\hat{\jmath}+R\hat{k}$ es un campo vectorial definimos la divergencia de $F$ como:

\[ \triangledown \cdot F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}.\]

En dimensiones más altas, si $F=(F_{1},\dots ,F_{n})$, entonces $\triangledown \cdot F=\sum_{i=1}^{n}\frac{\partial F_{i}}{\partial x_{i}}$.

Rotacional

Figura 4

Pensemos en un fluido que se mueve de acuerdo con el flujo marcado por el campo vectorial $F$. Tenemos una forma de determinar la rotación que el fluido imprimiría sobre un sólido llevado por él. Imaginemos un remolino y una pequeña esfera solida llevada por el remolino. Lo que llamaremos el rotacional del vector nos proporcionará la información sobre las rotaciones sobre su eje que el fluido imprime a la pequeña esfera (Figura 4).

Definición. Sea $$F(x,y,z)=F_{1}(x,y,z)\hat{\imath}+F_{2}(x,y,z)\hat{\jmath}+F_{3}(x,y,z)\hat{k}.$$ Entonces definimos al rotacional de $F$ como el siguiente campo vectorial:

\[ \triangledown \times F(x,y,z)=\left( \frac{\partial F_{3}}{\partial y} – \frac{\partial F_{2}}{\partial z} \right)\hat{\imath}+\left( \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x} \right)\hat{\jmath}+\left( \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y} \right)\hat{k}.\]

También suele representarse por el siguiente determinante:

\[ \triangledown \times F=\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ {\large \frac{\partial}{\partial x}} & {\large \frac{\partial}{\partial y}} & {\large \frac{\partial}{\partial z}} \\ F_{1} & F_{2} & F_{3} \end{vmatrix}. \]

Una visión mas clara de por qué esta expresión calcula lo que queremos se puede aprender en un cuarto curso de cálculo diferencial e integral, o bien en algún curso de aplicaciones del cálculo a la física. Por ahora veremos en los ejemplos solamente la parte operativa.

Laplaciano

Hay un operador más que surge naturalmente en las ecuaciones que involucran al gradiente y a la divergencia.

Definición. Sea $f:\mathbb{R}^3\to \mathbb{R}$ un campo escalar. El operador laplaciano se establece de la siguiente manera:

\[ \triangledown ^{2}f=\frac{\partial ^{2}f}{\partial x^{2}}\hat{\imath}+\frac{ \partial^{2}f}{\partial y^{2}}\hat{\jmath}+\frac{\partial ^{2}f}{\partial z^{2}}\hat{k}. \]

Es decir, el laplaciano consiste en aplicar el operador divergencia al gradiente de un campo escalar.

Ejemplos de problemas de los conceptos anteriores

Revisemos algunos problemas que tienen que ver con estos operadores. Esto nos permitirá ampliar nuestra visión en cuanto a la practicidad de esta herramienta matemática.

Consideremos el siguiente campo vectorial en el plano $F(x,y)=x\hat{\imath}$. Pensaremos el signo de la divergencia de $F$ como la razón del cambio de áreas bajo este campo. Interpretaremos a $F$ como aquel que asigna a cada punto del plano un vector velocidad de un fluido en el plano.

Para $x>0$ el campo apunta hacia la derecha con vectores paralelos al eje $x$ con tamaño $|x|$, para $x<0$ los vectores apuntan a la izquierda paralelamente al eje $x$ con tamaño $|x|$ (Figura 5). Por ello las longitudes de las flechas de $F$ son mas cortas en torno al origen; así cuando el fluido se mueve, se expande. Y esto coincide con el hecho de que $\triangledown \cdot F=1$.

Figura 5

En el siguiente ejemplo consideremos el campo vectorial $F(x,y)=-y\hat{\imath}+x\hat{\jmath}$. Las líneas de flujo de $F$ siguen circunferencias concéntricas centradas al origen en dirección contrarias a las manecillas del reloj. Al calcular la divergencia tenemos lo siguiente:

\[ \triangledown \cdot F=\frac{\partial }{\partial x}(-y)+\frac{\partial}{\partial y}(x)=0. \]

En la figura 6 tenemos la ilustración de cómo se ve el campo de este ejemplo. Suena razonable. En este caso el fluido no se está expandiendo, sino que más bien está rotando.

Figura 6

En el laplaciano aplicamos la divergencia a un gradiente. Pero, ¿qué pasa cuando aplicamos el rotacional a un gradiente? Consideremos una función $f$ con derivadas parciales diferenciables continuas es decir, de clase $C^{2}$. Para una función así tenemos

\[ \triangledown f(x,y,z)=(\partial f/\partial x,\partial f/ \partial y,\partial f/\partial z). \]

De acuerdo con la definición de rotacional, tenemos:

\begin{align*} \triangledown \times (\triangledown f)&= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{vmatrix}\\ &= \left( \frac{\partial ^{2}f}{\partial y\partial z}-\frac{\partial ^{2}f}{\partial z\partial y} \right)\hat{\imath}+\left( \frac{\partial ^{2}f}{\partial z\partial x}-\frac{\partial ^{2}f}{\partial x \partial z} \right)\hat{\jmath}+\left( \frac{\partial ^{2}f}{\partial x\partial y}-\frac{\partial ^{2}f}{\partial y\partial x} \right)\hat{k}\\ &=\bar{0} \end{align*}

por la igualdad de las parciales mixtas. Es decir; si $f$ es un campo escalar cuyas derivadas parciales son diferenciables con derivada continua tenemos $\triangledown \times \triangledown f=0$.

Esto nos puede ayudar a saber si una cierta función puede obtenerse como gradiente de otra. Tomemos $G(x,y,z)= y\hat{\imath}-x\hat{\jmath}$. Notemos que las funciones en $\hat{\imath}$ y en $\hat{\jmath}$ son diferenciables con derivada continua. Entonces nos preguntaremos ¿$G$ es gradiente de un campo escalar? Para ello calculemos $\triangledown \times G$ cuyo resultado en caso afirmativo debería ser igual a cero. Sin embargo,

\[ \triangledown \times G=\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & -x & 0 \end{vmatrix}=-2\hat{k}\neq 0,\]

por lo tanto $G$ no es un gradiente.

También tenemos que la divergencia de un rotacional es igual a cero, es decir si $F$ es un campo vectorial $\triangledown \cdot (\triangledown \times F)=0$. Queda como tarea moral demostrar este hecho.

Mas adelante

Con esta entrada terminamos nuestro estudio de conceptos relacionados con campos vectoriales. Sin embargo, aún no los descartaremos por completo. Retomaremos a los campos vectoriales en la última unidad del curso. En ella, retomaremos varias partes de la teoría para establecer resultados de optimización de campos escalares, y de funciones bajo restricciones.

Tarea moral

  1. Para los siguientes campos vectoriales, halla su divergencia
    • $F(x,y)=x^{3}\hat{\imath}+x\hspace{0.1cm}sen\hspace{0.1cm}(xy)\hat{\jmath}$
    • $G(x,y,z)=e^{xy}\hat{\imath}+e^{xy}\hat{\jmath}+e^{yz}\hat{k}$.
  2. Obtén el rotacional de los siguientes campos vectoriales:
    • $F(x,y,z)=(x^{2}+y^{2}+z^{2})(3\hat{\imath}+4\hat{\jmath}+5\hat{k})$
    • $G(x,y,z)=yz\hat{\imath}+xz\hat{\jmath}+xy\hat{k}$.
  3. Dibuja algunas líneas de flujo del campo $F(x,y)=-3x\hat{\imath}-y\hat{\jmath}$. Calcula $\triangledown \cdot F$ y explica el significado del resultado de la divergencia en su relación con las líneas de flujo.
  4. Demuestra que $\triangledown \cdot (\triangledown \times F)=0$
  5. Sean $f$ y $g$ dos campos escalares diferenciables, y $F$, y $G$ dos campos vectoriales diferenciables. Demuestra las siguientes identidades (solo usa la parte operativa, piensa que todos los campos tanto los vectoriales como los escalares tienen el mismo dominio):
    1. $\triangledown \cdot gG =g(\triangledown \cdot G) + G\cdot (\triangledown g)$
    2. $\triangledown (fg)=f(\triangledown g) +g (\triangledown f)$
    3. $\triangledown \cdot (F\times G)= G\cdot (\triangledown \times F)-F\cdot (\triangledown \times G)$

Entradas relacionadas

Cálculo Diferencial e Integral III: Determinantes

Por Alejandro Antonio Estrada Franco

Introducción

El determinante de una matriz cuadrada es un número asociado a esta. Como veremos, los determinantes nos proporcionarán información de interés para varios problemas que se pueden poner en términos de matrices.

Recuerda que los temas de esta unidad son tratados a manera de repaso, por lo cual no nos detenemos en detallar las demostraciones, ni en extender las exposiciones de las definiciones. Para mayor detalle, te remitimos al curso de Álgebra Lineal I, específicamente comenzando con la entrada Transformaciones multilineales. Aún así, es recomendable que revises estas notas en el curso de Cálculo Diferencial e Integral III, pues sintetizamos los temas de tal manera que recuperamos los conceptos relevantes para el cálculo de varias variables. Así mismo, en ocasiones, abordamos las definiciones y resultados de manera un poco distinta, y es muy instructivo seguir los mismos conceptos abordados con un sabor ligeramente distinto.

Permutaciones

Recordemos que en la entrada anterior definimos para cada $n\in \mathbb{N}$ el conjunto $[n]=\{1, 2,\ldots, n\}$.

Definición. Una permutación del conjunto $[n]$ es una función biyectiva $\sigma :[n]\rightarrow [n]$. Una forma de escribir a $\sigma$ de manera más explícita es la siguiente:
\[ \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\
\sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \]

Podemos pensar también a una permutación como un reacomodo de los números $1, 2, …, n$. Pensado de esta manera, escribimos $\sigma =\sigma(1) \sigma(2)\dots \sigma(n)$.

El conjunto de todas las permutaciones del conjunto $[n]$ se denota como $S_n$. Una observación interesante es que $S_{n}$ tiene $n!$ elementos.

Definición. Para $\sigma \in S_{n}$, una inversión en $\sigma$ consiste en un par $(i,k)\in [n]\times [n]$ tal que $i>k$ pero $i$ precede a $k$ en $\sigma$ cuando se considera $\sigma$ como una lista. Diremos que $\sigma$ es permutación par o impar según tenga un número par o impar de inversiones.

Ejemplo. Consideremos $\sigma=12354$ permutación en $[5]$. Tenemos que $(5,4)$ es una inversión en $\sigma$ pues $5>4$ pero en la permutación $5$ precede a $4$. Al tener $\sigma$ una sola inversión, es una permutación impar.

$\triangle$

Definición. El signo de $\sigma$, denotado $\text{sign}(\sigma)$ se define como:
\[
\text{sign}(\sigma )= \begin{cases} 1 & \text{si $\sigma$ es par} \\
-1 & \text{si $\sigma$ es impar.}\end{cases}
\]

Sea $A\in M_{n}(\mathbb{R})$. Pensemos en un producto de $n$ entradas de $A$ tomadas de tal manera que se eligió una y sólo una de cada fila y columna. Podemos reordenar los números para poner en orden la fila de la que tomamos cada uno, y escribir el producto como
\begin{equation}
a_{1j_{1}} a_{2j_{2}}\dots a_{nj_{n}}.
\label{eq:producto}
\end{equation}

Así, $a_{kj_{k}}$ nos dice que en la fila $k$ tomamos la entrada de la columna $j$. Como se eligió una y sólo una entrada por columna, tenemos que $j_1,\ldots,j_n$ es una permutación de $[n]$. Y viceversa, cada permutación $\sigma =j_{1}\dots j_{n} \in S_{n}$ determina un producto como en \eqref{eq:producto}. Por ello la matriz $A$ nos entrega $n!$ productos con esta característica.

Determinantes en términos de permutaciones

A partir de las permutaciones podemos definir a los determinantes.

Definición. El determinante de la matriz $A$, denotado por $\det(A)$, se define como:
\[
\det(A)=\sum_{\sigma \in S_{n}} \left(\text{sign}(\sigma)\prod_{i=1}^{n} a_{i\sigma (i)}\right)
\]
donde
\[
\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\
\sigma (1) & \sigma (2) & \dots & \sigma (n)
\end{pmatrix}
\]

Ejemplo. Para la matriz \[ A= \begin{pmatrix} 0 & 2 & 1 \\ 1 & 2 & 0 \\ 3 & 0 & 1 \end{pmatrix} \] tomemos en cuenta las permutaciones del conjunto $[3]$ las cuales son: \[ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \]

De acuerdo con la definición de determinante, tenemos:

\begin{align*}
\det(A)=&(1)a_{11}a_{22}a_{33}+(-1)a_{11}a_{23}a_{32}+(-1)a_{12}a_{21}a_{33}+\\
&(1)a_{12}a_{23}a_{31}+(1)a_{13}a_{22}a_{31}+(-1)a_{13}a_{21}a_{32}\\
=&0\cdot 2\cdot 1+(-1)0\cdot 0\cdot 0+(-1)2\cdot 1\cdot 1+\\
&(1)2\cdot 0\cdot 3+(1)1\cdot 2\cdot 3+(-1)1\cdot 1\cdot 0\\
=&4.
\end{align*}

$\triangle$

Propiedades de los determinantes

Veamos algunas de las propiedades que tienen los determinantes. Aprovecharemos para introducir algunas matrices especiales.

Definición. La matriz identidad $I\in M_{n}(\mathbb{R})$ es aquella que cumple que en las entradas de la forma $(i,i)$ son iguales a 1 y el resto de las entradas son iguales a 0.

Definición. Diremos que una matriz $A\in M_n(\mathbb{R})$ es una matriz triangular superior si cumple $a_{ij}=0$ para $i>j$. La llamaremos triangular inferior si cumple $a_{ij}=0$ para $i<j$. Finalmente, diremos que es diagonal si cumple $a_{ij}=0$ para $i\neq j$ (en otras palabras, si simultáneamente es triangular superior e inferior).

Definición. Sea $A\in M_{m,n}(\mathbb{R})$. La transpuesta de la matriz $A$, denotada por $A^t$, es la matriz en $M_{n,m}(\mathbb{R})$ cuyas entradas están definidas como $(a^{t})_{ij} =a_{ji}$.

El siguiente resultado enuncia algunas propiedades que cumplen los determinantes de la matriz identidad, de matrices transpuestas, y de matrices triangulares superiores, triangulares inferiores y diagonales.

Proposición. Sea $A\in M_{n}(\mathbb{R})$. Se cumple todo lo siguiente.

  1. $\det(A)=\det(A^{t})$.
  2. Si $A$ tiene dos filas iguales $\det(A)=0$.
  3. Si $A$ tiene dos columnas iguales $\det(A)=0$.
  4. Si $A$ es triangular superior, triangular inferior, o diagonal, $\det(A)=\prod_{i=1}^{n} a_{ii}$.
  5. $\det(I_n)=1$.

Demostración.

  1. Notemos que (tarea moral) $\text{sign}( \sigma )= \text{sign}( \sigma ^{-1})$, así tenemos que
    \begin{align*}
    \det(A^{t})&=\sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{\sigma (1) 1}\dots a_{\sigma (n) n}\\
    &=\sum_{\sigma \in S_{n}} \text{sign}(\sigma ^{-1})a_{1\sigma (1)}\dots a_{n\sigma (n)}\\
    &= \sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{1\sigma (1)}\dots a_{n\sigma (n)}\\&= \det(A).
    \end{align*}
  2. Si tenemos dos filas iguales, en cada producto $a_{1\sigma (1)}\cdots a_{n\sigma (n)}$ tenemos dos factores de la misma fila, por tanto para cada producto tenemos otro igual en la suma solo que con signo contrario (signo de la permutación correspondiente); al hacer la suma estos sumandos se anularán por pares resultando en cero.
  3. Mismo argumento que en el inciso anterior.
  4. Si tenemos una matriz triangular, ya sea superior, o inferior $\prod_{i=1}^{n} a_{i\sigma (i)}\neq 0$ sólo cuando $\sigma(i)=i$ ya que en otro caso este producto siempre tendrá algún factor cero.
  5. Es un corolario de la propiedad anterior, pues la matriz identidad es una matriz diagonal con unos en la diagonal.

$\square$

Otra propiedad muy importante del determinante es que es multiplicativo. A continuación enunciamos el resultado, y referimos al lector a la entrada Propiedades de determinantes para una demostración.

Teorema. Sean $A$ y $B$ matrices en $M_n(\mathbb{R})$. Se tiene que $$\det(AB)=\det(A)\det(B).$$

Mas adelante

En la siguiente entrada revisaremos la teoría de sistemas de ecuaciones lineales. Comenzaremos definiéndolos, y entendiéndolos a partir de las operaciones elementales que definimos en la entrada anterior. Hablaremos un poco de cómo saber cuántas soluciones tiene un sistema de ecuaciones. Así mismo veremos que en ciertos sistemas de ecuaciones lineales, podemos asociar una matriz cuyo determinante proporciona información relevante para su solución.

Un poco más adelante también hablaremos de diagonalizar matrices. A grandes rasgos, esto consiste en encontrar representaciones más sencillas para una matriz, pero que sigan compartiendo muchas propiedades con la matriz original. El determinante jugará de nuevo un papel muy importante en esta tarea.

Tarea moral

  1. Sea $\sigma \in S_{n}$. Muestra que su inversa, $\sigma ^{ -1}$ también es una permutación. Después, muestra que
    \[\text{sign}(\sigma)= \text{sign}(\sigma ^{-1}).\]
    Sugerencia: no es difícil hacerlo por inducción sobre el número de inversiones.
  2. Encuentra explícitamente cuántas inversiones tiene la permutación $\sigma$ en $S_n$ dada por $S(j)=n-j+1$.
  3. Escribe con más detalle la demostración de que una matriz y su transpuesta tienen el mismo determinante. Puedes pensarlo como sigue. Toma \[ \det(A)=\sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{1\sigma(1)}\cdot \dots \cdot a_{n\sigma (n)}.\] Supón que las filas $s$ y $t$ son iguales; para cada factor argumenta por qué \[ a_{1\sigma (1)}\cdots a_{s\sigma (s)} \cdots a_{t\sigma (t)}\cdots a_{n\sigma (n)} \] el factor \[ a_{1\sigma (1)}\cdots a_{t\sigma (t)}\cdots a_{s\sigma (s)} \cdots a_{n\sigma (n)} \] donde permutamos el $t$-ésimo factor con el $s$-ésimo también está en la suma, y por qué ambos son de signos contrarios.
  4. Demuestra que el producto de una matriz triangular superior con otra matriz triangular superior también es una matriz triangular superior. Enuncia y demuestra lo análogo para matrices triangulares inferiores, y para matrices diagonales.
  5. Argumenta con más detalle por qué el determinante de una matriz triangular superior es el produto de las entradas en su diagonal. Específicamente, detalla el argumento de las notas que dice que «en otro caso, este producto siempre tendrá algún factor cero».

Entradas relacionadas

Seminario de Resolución de Problemas: Rango de matrices y el teorema de factorización PJQ

Por Leonardo Ignacio Martínez Sandoval

Introducción

El algunas ocasiones es suficiente saber si una matriz es invertible o no. Sin embargo, esta es una distinción muy poco fina. Hay algunos otros problemas en los que se necesita decir más acerca de la matriz. Podemos pensar que una matriz invertible, como transformación lineal, «guarda toda la información» al pasar de un espacio vectorial a otro. Cuando esto no sucede, nos gustaría entender «qué tanta información se guarda». El rango de matrices es una forma de medir esto. Si la matriz es de $m\times n$, el rango es un número entero que va de cero a $n$. Mientras mayor sea, «más información guarda».

Por definición, el rango de una matriz $A$ de $m\times n$ es igual a la dimensión del subespacio vectorial de $\mathbb{R}^m$ generado por los vectores columna de $A$. Una matriz de $n\times n$ tiene rango $n$ si y sólo si es invertible.

Si pensamos a $A$ como la transformación lineal de $\mathbb{R}^n$ a $\mathbb{R}^m$ tal que $X\mapsto AX$, entonces el rango es precisamente la dimensión de la imagen de $A$. Esto permite extender la definición de rango a transformaciones lineales arbitrarias, y se estudia con generalidad en un curso de álgebra lineal.

En las siguientes secciones enunciaremos sin demostración algunas propiedades del rango de matrices y las usaremos para resolver problemas.

Propiedades del rango de matrices

Comenzamos enunciando algunas propiedades del rango de matrices

Teorema. Sean $m$, $n$ y $p$ enteros. Sea $B$ una matriz de $n\times p$, y $A$, $A’$ matrices de $m\times n$. Sean además $P$ una matriz de $n\times p$ cuya transformación lineal asociada es suprayectiva y $Q$ una matriz de $r\times m$ cuya transformación lineal asociada es inyectiva. Entonces:

  1. $\rank(A)\leq \min(m,n)$
  2. $\rank(AB)\leq \min(\rank(A),\rank(B))$
  3. $\rank(A+A’)\leq \rank(A) + \rank(A’)$
  4. $\rank(QA) = \rank(A)$
  5. $\rank(AP)=\rank(A)$

Consideremos el siguiente problema, tomado del libro Essential Linear Algebra de Titu Andreescu.

Problema. Las matrices $A$ y $B$ tienen entradas reales. La matriz $A$ es de $3\times 3$, la matriz $B$ es de $2\times 3$ y además $$AB=\begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}.$$ Determina el valor del producto $BA$.

Sugerencia pre-solución. Un paso intermedio clave es mostrar que el producto $BA$ es invertible.

Solución. Para empezar, afirmamos que $(AB)^2=AB$. Esto se puede verificar directamente haciendo el producto de matrices.

Luego, afirmamos que el rango de $AB$ es $2$. En efecto, eso se puede hacer fácilmente por definición. Por un lado, la suma de las primeras dos columnas es igual a la tercera, así que el espacio vectorial que generan las tres es de dimensión a lo más dos. Pero es al menos dos, pues las primeras dos columnas son linealmente independientes. Esto muestra la afirmación.

Ahora, usando la propiedad (2) del teorema dos veces, tenemos que
\begin{align*}
\rank(BA)&\geq \rank (A(BA)) \\
&\geq \rank (A(BA)B)\\
&=\rank((AB)^2) \\
&= \rank (AB)\\
&=2.
\end{align*}

Así, $BA$ es una matriz de $2\times 2$ de rango $2$ y por lo tanto es invertible.

Consideremos ahora el producto $(BA)^3$. Desarrollando y usando que $(AB)^2=AB$, tenemos que

\begin{align*}
(BA)^3 &= BABABA \\
&=B(AB)^2 A\\
&=BABA\\
&=(BA)^2.
\end{align*}

Como $BA$ es invertible, entonces $(BA)^2$ tiene inversa. Si multiplicamos la igualdad $(BA)^3 = (BA)^2$ por esa inversa, obtenemos que $$BA=I_2.$$

$\square$

El teorema anterior nos permite acotar por arriba el rango del producto de dos matrices. También hay una desigualdad que nos permite acotar por abajo el rango de dicho producto, cuando las matrices son cuadradas.

Teorema (desigualdad de Sylvester). Para matrices $A$ y $B$ de $n\times n$, se tiene que $$\rank(AB)\geq \rank(A) + \rank(B) – n.$$

Problema. La matriz $A$ es de $2020 \times 2020$. Muestra que:

  • Si $A$ tiene rango $2017$, entonces la matriz $A^{673}$ no puede ser la matriz de $2020\times 2020$ de puros ceros, es decir, $O_{2020}$.
  • Si $A$ tiene rango $2016$, entonces la matriz $A^{673}$ puede ser la matriz $O_{2020}$.

Sugerencia pre-solución. Enuncia una afirmación más general relacionada con el rango que puedas probar por inducción utilizando la desigualdad de Sylvester.

Solución. Para la primer parte, probaremos primero algo más general. Afirmamos que si $M$ es una matriz de $n \times n$ de rango $n-s$ y $k$ es un entero positivo, entonces el rango de la matriz $M^k$ es por lo menos $n-ks$. Procedemos por inducción sobre $k$. Si $k=1$, el resultado es cierto pues $M$ tiene rango $n-s=n-1\cdot s$.

Supongamos el resultado para cierto entero $k$. Usando la desigualdad de Sylverster y la hipótesis inductiva, tenemos que
\begin{align*}
\rank(A^{k+1})&\geq \rank(A^k) + \rank(A) – n\\
&\geq (n-ks) + (n-s) – n\\
&=n-(k+1)s.
\end{align*}

Esto muestra la afirmación general.

Si regresamos a la primer parte del problema original y aplicamos el resultado anterior, tenemos que $A^{673}$ es una matriz de rango por lo menos $$2020 – 673 \cdot 3 = 2020 – 2019 = 1.$$ De esta forma, $A^{673}$ no puede ser la matriz $0$.

Hagamos ahora la segunda parte del problema. Para ello, debemos construir una matriz $A$ de $2020\times 2020$ de rango $2016$ tal que $A^{673}$ sea la matriz $0$. Para ello, consideremos la matriz $A$ tal que sus primeras $4$ columnas sean iguales al vector $0$, y que sus columnas de la $5$ a la $2020$ sean los vectores canónicos $e_1,\ldots, e_{2016}$.

Esta matriz claramente es de rango $2016$, pues el espacio generado por sus columnas es el espacio generado por $e_1,\ldots, e_{2016}$, que es de dimensión $2016$. Por otro lado, se puede mostrar inductivamente que para $k=1,\ldots,505$, se tiene que $A^{k}$ es una matriz en donde sus columnas de $1$ a $4k$ son todas el vector $0$, y sus columnas de $4k+1$ a $2020$ son $e_1,\ldots, e_{2020-4k}$. En particular, $A^{505}=O_{2020}$, y entonces $A^{673}$ también es la matriz de puros ceros.

$\square$

Equivalencias de rango de matrices

Hay muchas formas alternativas para calcular el rango de una matriz. El siguiente teorema resume las equivalencias más usadas en resolución de problemas.

Teorema. Sea $A$ una matriz de $m\times n$ con entradas reales. Los siguientes números son todos iguales:

  • El rango de $A$, es decir, la dimensión del espacio vectorial generado por los vectores columna de $A$.
  • La dimensión del espacio vectorial generado por los vectores fila de $A$. Observa que esto es, por definición, el rango de la transpuesta de $A$.
  • La cantidad de filas no cero que tiene la forma escalonada reducida de $A$.
  • (Teorema de rango-nulidad) $n-\dim \ker(A)$, donde $\ker(A)$ es el espacio vectorial de soluciones a $AX=0$.
  • El tamaño más grande de una submatriz cuadrada de $A$ que sea invertible.
  • La cantidad de eigenvalores complejos distintos de cero contando multiplicidades algebraicas.

Problema. Determina todos los posibles rangos que pueden tener las matrices con entradas reales de la forma $$\begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix}.$$

Sugerencia pre-solución. Comienza haciendo casos pequeños. Para dar los ejemplos y mostrar que tienen el rango deseado, usa el teorema de equivalencia de rango para simplificar algunos argumentos.

Solución. El rango de una matriz de $4\times 4$ es un entero de $0$ a $4$. Debemos ver cuáles de estos valores se pueden alcanzar con matrices de la forma dada.

Tomando $a=b=c=d=0$, obtenemos la matriz $O_4$, que tiene rango $0$. Si $a=b=c=d=1$, obtenemos la matriz de puros unos, que tiene rango $1$. Además, si $a=1$ y $b=c=d=0$, obtenemos la matriz identidad, que tiene rango $4$.

Si $a=b=1$ y $c=d=0$, obtenemos la matriz $$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$ Esta matriz tiene sólo dos columnas diferentes, así que su rango es a lo más dos. Pero tiene como submatriz a la matriz $$I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$ que tiene rango $2$, entonces el rango de $A$ es al menos $2$. De esta forma, el rango de $A$ es $2$.

Veamos ahora que el rango puede ser $3$. Para ello, damos un argumento de determinantes. Llamemos $s=a+b+c+d$. Sumando las tres últimas filas a la primera y factorizando $s$, tenemos que
\begin{align*}
\begin{vmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}&=\begin{vmatrix} s & s & s & s \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}\\
&=s\begin{vmatrix} 1 & 1 & 1 & 1 \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}.
\end{align*}

Así, si tomamos $a=b=c=1$ y $d=-3$, entonces $s=0$ y por lo tanto la matriz $B$ que obtenemos no es invertible, así que su rango es a lo más tres. Pero además es de rango al menos tres pues $B$ tiene como submatriz a $$\begin{pmatrix} 1 & 1 & -3 \\ 1 & -3 & 1 \\ -3 & 1 & 1 \end{pmatrix},$$ que es invertible pues su determinante es $$-3-3-3-1-1+27=16\neq 0.$$

Concluimos que los posibles rangos que pueden tener las matrices de esa forma son $0,1,2,3,4$.

$\square$

El teorema de factorización $PJQ$

Existen diversos teoremas que nos permiten factorizar matrices en formas especiales. De acuerdo a lo que pida un problema, es posible que se requiera usar uno u otro resultado. El teorema de factorización más útil para cuando se están resolviendo problemas de rango es el siguiente.

Teorema (factorización $PJQ$). Sea $A$ una matriz de $m\times n$ y $r$ un entero en $\{0,\ldots,\min(m,n)\}$. El rango de $A$ es igual a $r$ si y sólo si existen matrices invertibles $P$ de $m\times m$ y $Q$ de $n\times n$ tales que $A=PJ_rQ$, en donde $J_r$ es la matriz de $m\times n$ cuyas primeras $r$ entradas de su diagonal principal son $1$ y todas las demás entradas son cero, es decir, en términos de matrices de bloque, $$J_r=\begin{pmatrix}
I_r & O_{r,n-r} \\
O_{m-r,r} & O_{m-r,n-r}
\end{pmatrix}.$$

Como evidencia de la utilidad de este teorema, sugerimos que intentes mostrar que el rango por columnas de una matriz es igual al rango por filas, usando únicamente la definición. Esto es relativamente difícil. Sin embargo, con el teorema $PJQ$ es inmediato. Si $A$ es de $m\times n$ y tiene rango $r$, entonces su factorización $PJQ$ es de la forma $$A=PJ_rQ.$$ Entonces al transponer obtenemos
\begin{align*}
^tA&= {^tQ} {^t J_r} {^tP}.
\end{align*}

Esto es de nuevo un factorización $PJQ$, con ${^t J_r}$ la matriz de $n\times m$ que indica que $^t A$ es de rango $r$.

Veamos ahora un problema clásico en el que se puede usar la factorización $PJQ$.

Problema. Sea $A$ una matriz de $m \times n$ y rango $r$. Muestra que:

  • $A$ puede ser escrita como la suma de $r$ matrices de rango $1$.
  • $A$ no puede ser escrita como la suma de $r-1$ o menos matrices de rango $1$.

Sugerencia pre-solución. Para la primer parte, usa el teorema $PJQ$. Para la segunda parte, usa desigualdades del rango.

Solución. Tomemos $A=PJ_rQ$ una factorización $PJQ$ de $A$.

Hagamos la primer parte. Para ello, para cada $i=1,\ldots,r$, consideremos la matriz $L_i$ de $m\times n$ tal que su $i$-ésima entrada en la diagonal principal es $1$ y el resto de sus entradas son iguales a $0$.

Por un lado, $L_i$ es de rango $1$, pues tiene sólo una columna distinta de cero. De este modo, $$\rank(PL_iQ)\leq \rank(PL_i) \leq \rank(L_i)=1,$$ y como $P$ y $Q$ son invertibles, $$\rank(PL_iQ)\geq \rank(L_i) \geq 1.$$ Así, para cada $i=1,\ldots, r$, se tiene que $L_i$ es de rango $1$.

Por otro lado, $$J_r = L_1 + L_2 + \ldots + L_r,$$ así que
\begin{align*}
A&=PJ_rQ\\
&=P(L_1 + L_2 + \ldots + L_r)Q\\
&=PL_1Q + PL_2Q + \ldots + PL_rQ.
\end{align*}

Esto expresa a $A$ como suma de $r$ matrices de rango $1$.

Para la segunda parte del problema, usamos repetidamente que el rango es subaditivo. Si tenemos matrices $B_1,\ldots,B_s$ matrices de $m\times n$, entonces
\begin{align*}
\rank(B_1&+B_2+\ldots+B_s) & \\
&\leq \rank(B_1) + \rank (B_2 + \ldots + B_s)\\
&\leq \rank(B_1) + \rank(B_2) + \rank(B_3+\ldots+B_s)\\
& vdots \\
&\leq \rank(B_1) + \rank(B_2) + \ldots + \rank(B_s).
\end{align*}

Si cada $B_i$ es de rango $1$, entonces su suma tiene rango a lo más $s$.

Así, la suma de $r-1$ o menos matrices de rango $1$ tiene rango a lo más $r-1$, y por lo tanto no puede ser igual a $A$.

$\square$

Más problemas

Puedes encontrar más problemas de rango de una matriz en la Sección 5.4 del libro Essential Linear Algebra de Titu Andreescu. El teorema $PJQ$, así como muchos problemas ejemplo, los puedes encontrar en el Capítulo 5 del libro Mathematical Bridges de Andreescu, Mortici y Tetiva.

Seminario de Resolución de Problemas: Cálculo de determinantes

Por Leonardo Ignacio Martínez Sandoval

Introducción

Una de las habilidades fundamentales que hay que desarrollar para resolver problemas de álgebra lineal es el cálculo de determinantes. Como vimos en la entrada anterior, conocer el determinante de una matriz nos permite saber si es invertible. Así mismo, los determinantes permiten encontrar soluciones a sistemas de ecuaciones lineales, y más adelante veremos que están relacionados con el rango. Además, los determinantes juegan un papel muy importante en otras áreas de las matemáticas, como cálculo y teoría de gráficas.

Todo parte de la siguiente definición:

Definición. Para una matriz $A$ de $n \times n$ con entradas reales $A=[a_{ij}]$, el determinante de $A$ es $$\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ donde la suma se hace sobre todas las permutaciones (funciones biyectivas) $\sigma$ de $\{1,\ldots,n\}$ a sí mismo y $\text{sign}(\sigma)$ es el signo de la permutación.

A $\det A$ también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:

\begin{align*}
\det A = \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
\vdots & & \ddots & \vdots\\
a_{n1} & a_{n2} & \ldots & a_{nn}.
\end{vmatrix}.
\end{align*}

La definición permite mostrar de maneras muy elegantes las propiedades que cumplen los determinantes, pero no es nada práctica para cuando se quieren hacer las cuentas. Como la suma se hace sobre todas las permutaciones $\sigma$ de un conjunto de $n$ elementos, si quisiéramos calcular determinantes por definición se tendrían que hacer $n!$ productos, y luego sumar todos estos resultados.

Por esta razón, es muy importante encontrar otras formas de evaluar determinantes. Para empezar, esta entrada hará referencia a dos enlaces del blog en los que se discuten las propiedades básicas de determinantes. Luego, se hablará de dos tipos especiales de determinantes: los de Vandermonde y los de matrices circulantes.

Técnicas básicas de cálculo de determinantes

Lo primero y más importante es que conozcas las teoría básica para cálculo de determinantes. Aquí en el blog hay una entrada que sirve justo para conocer las propiedades y técnicas principales para encontrar determinantes.

Técnicas básicas de cálculo de determinantes

Además, es también muy importante que sepas calcular determinantes usando la expansión de Laplace. En la siguiente entrada puedes ver el enunciado de la técnica, y cómo se usa en varios ejemplos:

Problemas de cálculo de determinantes

Para fines de este curso, es importante que revises esas entradas. Puedes saltarte las demostraciones de los resultados principales, pero presta atención a cómo se usan en cada uno de los problemas.

Las siguientes secciones presentan técnicas avanzadas que a veces resultan útiles. Sin embargo, tómalas como temas optativos, dando prioridad a primero dominar los básicos.

Determinantes de Vandermonde

Teorema (determinante de Vandermonde). Sean $a_1,\ldots,a_n$ números reales. El determinante de la matriz de Vandermonde \begin{align*}
\begin{pmatrix}
1&a_1 & a_1^2 & \ldots & a_1^{n-1}\\
1 & a_2 & a_2^2 & \ldots & a_2^{n-1}\\
1&a_3 & a_3^2 & \ldots & a_3^{n-1}\\
\vdots& & & \ddots & \vdots\\
1& a_n & a_n^2 & \ldots & a_n^{n-1}\\
\end{pmatrix}
\end{align*} es igual a $$\prod_{1\leq i < j \leq n} (a_j-a_i).$$

Ejemplo. La matriz $$\begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{pmatrix}$$ es una matriz de Vandermonde, así que su determinante es $$(b-a)(c-a)(c-b).$$

$\square$

Veamos un problema en el que aparece una matriz de Vandermonde.

Problema. Sean $a$, $b$ y $c$ reales distintos de $0$. Muestra que el determinante de $$\begin{vmatrix}a^2 & b^2 & c^2\\ c^2& a^2 & b^2 \\ ca & ab & bc \end{vmatrix}$$ es $$(a^2-bc)(b^2-ca)(c^2-ab).$$

Sugerencia pre-solución. Formula un problema equivalente usando propiedades de determinantes para que quede un determinante del tipo de Vandermonde. Aprovecha la simetría para ahorrar algunas cuentas.

Solución. Como el determinante es homogéneo en cada columna, podemos factorizar $a^2$ de la primera, $b^2$ de la segunda y $c^2$ de la tercera para obtener que
\begin{align*}
\begin{vmatrix}a^2 & b^2 & c^2\\ c^2& a^2 & b^2 \\ ca & ab & bc \end{vmatrix} &= (abc)^2 \begin{vmatrix}1 & 1 & 1 \\ \frac{c^2}{a^2}& \frac{a^2}{b^2} & \frac{b^2}{c^2} \\ \frac{c}{a} & \frac{a}{b} & \frac{b}{c} \end{vmatrix}\\
&=-(abc)^2 \begin{vmatrix}1 & 1 & 1 \\ \frac{c}{a} & \frac{a}{b} & \frac{b}{c} \\ \frac{c^2}{a^2}& \frac{a^2}{b^2} & \frac{b^2}{c^2} \end{vmatrix}.
\end{align*}

Aquí también usamos que al intercambiar dos filas (o columnas), el determinante de una matriz cambia de signo.

Una matriz tiene el mismo determinante que su transpuesta, y la transpuesta de esta última matriz es de Vandermonde, de modo que $$-(abc)^2 \begin{vmatrix}1 & 1 & 1 \\ \frac{c}{a} & \frac{a}{b} & \frac{b}{c} \\ \frac{c^2}{a^2}& \frac{a^2}{b^2} & \frac{b^2}{c^2} \end{vmatrix} = -(abc)^2 \left(\frac{a}{b}-\frac{c}{a}\right)\left(\frac{b}{c}-\frac{c}{a}\right)\left(\frac{b}{c}-\frac{a}{b}\right).$$

Vamos a partir esta última expresión en factores simétricos. Tenemos que $$ab\left(\frac{a}{b}-\frac{c}{a}\right)=a^2-bc.$$ De manera similar, tenemos también $$-ca\left(\frac{b}{c}-\frac{c}{a}\right)=c^2-ab$$ y $$bc\left(\frac{b}{c}-\frac{a}{b}\right)=b^2-ac.$$

Así, concluimos que $$\begin{vmatrix}a^2 & b^2 & c^2\\ c^2& a^2 & b^2 \\ ca & ab & bc \end{vmatrix}= (a^2-bc)(b^2-ca)(c^2-ab).$$

$\square$

Determinantes de matrices circulantes

Teorema (determinantes circulantes) Sean $a_1,\ldots, a_n$ números reales. El determinante de la matriz circulante
\begin{align*}
\begin{pmatrix}
a_1& a_n & a_{n-1} & \ldots & a_2\\
a_2&a_1& a_{n}& \ldots & a_3\\
a_3 & a_2& a_1& \ldots & a_4\\
\vdots& & & \ddots & \vdots\\
a_n& a_{n-1} & a_{n-2} &\ldots & a_1.
\end{pmatrix}
\end{align*}

es $$\prod_{j=0}^{n-1} (a_1 + a_n \omega_j + a_{n-1} \omega_j^2 + \ldots + a_2 \omega_j^{n-1}),$$ en donde $\omega_j$ es la $n$-ésima raíz de la unidad dada por $\omega_j:= e^{j \cdot \frac{2\pi i}{n}}$.

Ejemplo. La matriz $$\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a\end{pmatrix}$$ es una matriz circulante, así que su determinante es $$(a+b+c)(a+\omega b + \omega^2 c)(a+\omega^2 b+ \omega c),$$ donde $\omega$ es la raíz cúbica de la unidad de argumento positivo mínimo.

$\square$

El siguiente problema apareció en la tercera edición de la Olimpiada Iberoamericana de Matemática Universitaria. El enunciado en esa ocasión fue un poco distinto, pero lo adaptamos a la notación de esta entrada.

Problema. Sea $n\geq 3$ un entero Muestra que el determinante de la matriz circulante en donde $a_1=a_n=a_{n-1}=1$ y $a_2=\ldots=a_{n-1}=0$ es $3$ si $n$ no es un múltiplo de $3$ y es $0$ si $n$ es un múltiplo de $3$.

Sugerencia pre-solución. Para empezar, aplica el teorema de determinantes de matrices circulantes. Luego, necesitarás además un argumento de polinomios y de números complejos.

Solución. Para empezar, llamemos $A_n$ a la matriz del problema. Como $A_n$ es una matriz circulante, su determinante es $$\det(A_n) = \prod_{j=0}^{n-1} (1 + \omega_j + \omega_j^2).$$

El polinomio $1+x+x^2$ se factoriza como $(\eta-x)(\eta^2-x)$, donde $\eta$ es la raíz cúbica de la unidad de argumento positivo mínimo. De esta forma, podemos reescribir al determinante de $A_n$ como $$\det(A_n) = \prod_{j=0}^{n-1} (\eta-\omega_j)(\eta^2-\omega_j).$$

El polinomio $h(x)=x^n-1$ se factoriza como $$h(x)=(x-\omega_0)(x-\omega_1)\ldots(x-\omega_{n-1}),$$ así que $\det(A_n)$ es precisamente el producto de $h(\eta)$ con $h(\eta^2)$. En otras palabras,
\begin{align*}
\det(A_n)&= (\eta^n-1)(\eta^{2n}-1)\\
&=\eta^{3n}+1-(\eta^n+\eta^{2n})\\
&=2-(\eta^n+\eta^{2n})
\end{align*}

Finalmente, hacemos un análisis de casos:

  • Si $n$ es múltiplo de $3$, entonces $\eta^n = \eta^{2n} = 1$ y entonces $\det(A_n)=0$.
  • Si $n$ no es múltiplo de $3$, entonces $n$ y $2n$ no son congruentes módulo $3$, y entonces $\eta^n$ y $\eta^{2n}$ son $\eta$ y $\eta^2$ en algún orden. Así, $$(\eta^n+\eta^{2n})=\eta+\eta^2=-1,$$ y por lo tanto $\det(A_n)=3$.

$\square$

Más problemas

Puedes encontrar más problemas de cálculo de determinantes en la Sección 7.4 y la Sección 7.5 del libro Essential Linear Algebra de Titu Andreescu.

Seminario de Resolución de Problemas: Sistemas de ecuaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Finalmente, en esta serie de entradas, veremos temas selectos de álgebra lineal y su aplicación a la resolución de problemas. Primero, hablaremos de sistemas de ecuaciones lineales. Luego, hablaremos de evaluación de determinantes. Después, veremos teoría de formas cuadráticas y matrices positivas. Finalmente, estudiaremos dos teoremas muy versátiles: el teorema de factorización $PJQ$ y el teorema de Cayley-Hamilton.

Como lo hemos hecho hasta ahora, frecuentemente no daremos las demostraciones para los resultados principales. Además, asumiremos conocimientos básicos de álgebra lineal. También, asumiremos que todos los espacios vectoriales y matrices con los que trabajaremos son sobre los reales o complejos, pero varios resultados se valen más en general.

Para cubrir los temas de álgebra lineal de manera sistemática, te recomendamos seguir un libro como el Essential Linear Algebra de Titu Andreescu, o el Linear Algebra de Friedberg, Insel y Spence. Mucho del material también lo puedes consultar en las notas de curso que tenemos disponibles en el blog.

Sistemas de ecuaciones lineales

Una ecuación lineal en $n$ incógnitas en $\mathbb{R}$ consiste en fijar reales $a_1,\ldots,a_n, b$ y determinar los valores de las variables $x_1,\ldots,x_n$ tales que $$a_1x_1+a_2x_2+\ldots+a_nx_n=b.$$

Si $a_1,\ldots,a_n$ no son todos cero, los puntos $(x_1,\ldots,x_n)$ en $\mathbb{R}^n$ que son solución a la ecuación definen un hiperplano en $\mathbb{R}^n$.

Un sistema de ecuaciones lineales con $m$ ecuaciones y $n$ variables consiste en fijar, para $i$ en $\{1,\ldots,m\}$ y $j$ en $\{1,\ldots,n\}$ a reales $a_{ij}$ y $b_i$, y determinar los valores de las variables $x_1,\ldots,x_n$ que simultáneamente satisfacen todas las $m$ ecuaciones
$$\begin{cases}
a_{11}x_1+ a_{12}x_2+\ldots + a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n = b_2\\
\quad \quad \vdots\\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n = b_m.
\end{cases}$$

Este sistema de ecuaciones se puede reescribir en términos matriciales de manera muy sencilla. Si $A$ es la matriz de $m\times n$ de entradas $[a_{ij}]$, $X$ es el vector de variables $(x_1,\ldots,x_n)$ y $b$ es el vector de reales $b_1,\ldots,b_m$, entonces el sistema de ecuaciones anterior se reescribe simplemente como $$AX=b.$$

Sistemas de ecuaciones lineales con mucha simetría

En algunos sistemas de ecuaciones hay mucha simetría, y no es necesario introducir técnicas avanzadas de álgebra lineal para resolverlos. Veamos el siguiente ejemplo.

Problema. Resuelve el sistema de ecuaciones

$$\begin{cases}
7a+2b+2c+2d+2e= -2020\\
2a+7b+2c+2d+2e=-1010\\
2a+2b+7c+2d+2e=0\\
2a+2b+2c+7d+2e=1010\\
2a+2b+2c+2d+7e=2020.
\end{cases}$$

Sugerencia pre-solución. Trabaja hacia atrás, suponiendo que el sistema tiene una solución. A partir de ahí, puedes usar las cinco ecuaciones y combinarlas con sumas o restas para obtener información.

Solución. Al sumar las cinco ecuaciones, obtenemos que $$15(a+b+c+d+e)=0,$$ de donde $2(a+b+c+d+e)=0$. Restando esta igualdad a cada una de las ecuaciones del sistema original, obtenemos que
$$\begin{cases}
5a= -2020\\
5b=-1010\\
5c=0\\
5d=1010\\
5e=2020.
\end{cases}$$

De aquí, si el sistema tiene alguna solución, debe suceder que
\begin{align*}
a&=\frac{-2020}{5}=-404\\
b&=\frac{-2020}{5}=-202\\
c&=\frac{-2020}{5}= 0\\
d&=\frac{-2020}{5}=202\\
e&=\frac{-2020}{5}=404.
\end{align*}

Como estamos trabajando hacia atrás, esta es sólo una condición necesaria para la solución. Sin embargo, una verificación sencilla muestra que también es una condición suficiente.

$\square$

Sistemas de ecuaciones de n x n y regla de Cramer

Si tenemos un sistema de $n$ variables y $n$ incógnitas, entonces es de la forma $$AX=b$$ con una matriz $A$ cuadrada de $n\times n$. Dos resultados importantes para sistemas de este tipo son el teorema de existencia y unicidad, y las fórmulas de Cramer.

Teorema (existencia y unicidad de soluciones). Si $A$ es una matriz cuadrada invertible de $n\times n$ y $b$ es un vector de $n$ entradas, entonces el sistema lineal de ecuaciones $$AX=b$$ tiene una solución única y está dada por $X=A^{-1}b$.

El teorema anterior requiere saber determinar si una matriz es invertible o no. Hay varias formas de hacer esto:

  • Una matriz cuadrada es invertible si y sólo si su determinante no es cero. Más adelante hablaremos de varias técnicas para evaluar determinantes.
  • Una matriz cuadrada es invertible si y sólo si al aplicar reducción gaussiana, se llega a la identidad.
  • También ,para mostrar que una matriz es invertible, se puede mostrar que cumple alguna de las equivalencias de invertibilidad.

Problema. Demuestra que el sistema lineal de ecuaciones

$$\begin{cases}
147a+85b+210c+483d+133e= 7\\
91a+245b+226c+273d+154e=77\\
-119a+903b+217c+220d+168e=777\\
189a+154b-210c-203d-108e=7777\\
229a+224b+266c-133d+98e=77777.
\end{cases}$$

tiene una solución única.

Sugerencia pre-solución. Reduce el problema a mostrar que cierta matriz es invertible. Para ello, usa alguno de los métodos mencionados. Luego, para simplificar mucho el problema, necesitarás un argumento de aritmética modular. Para elegir en qué módulo trabajar, busca un patrón en las entradas de la matriz.

Solución. Primero, notemos que el problema es equivalente a demostrar que la matriz

$$A=\begin{pmatrix}
147 & 85 & 210 & 483 & 133\\
91 & 245 & 226 & 273 & 154\\
-119 & 903 & 217 & 220 & 168\\
189 & 154 & -210 & -203 & -108 \\
229 & 224 & 266 & -133 & 98
\end{pmatrix}$$

es invertible. Mostraremos que su determinante no es $0$. Pero no calcularemos todo el determinante, pues esto es complicado.

Notemos que como $A$ es una matriz de entradas enteras, entonces su determinante (que es suma de productos de entradas), también es entero. Además, como trabajar en aritmética modular respeta sumas y productos, para encontrar el residuo de $\det(A)$ al dividirse entre $7$ se puede primero reducir las entradas de $A$ módulo $7$, y luego hacer la cuenta de determinante.

Al reducir las entradas módulo $7$, tenemos la matriz

$$B=\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0&0 & 2 & 0 & 0\\
0 & 0 & 0 & 3 & 0\\
0&0 & 0 & 0 & 4 \\
5& 0 & 0 & 0 & 0
\end{pmatrix}.$$

El determinante de la matriz $B$ es $-(1\cdot 2 \cdot 3 \cdot 4 \cdot 5)=-120$. Así,
\begin{align*}
\det(A) & \equiv \det(B)\\
&=-120\\
&\equiv 6 \pmod 7.
\end{align*}

Concluimos que $\det(A)$ es un entero que no es divisible entre $7$, por lo cual no puede ser cero. Así, $A$ es invertible.

$\square$

Por supuesto, en cualquier otro módulo podemos hacer la equivalencia y simplificar las cuentas. Pero $7$ es particularmente útil para el problema anterior pues se simplifican casi todas las entradas, y además funciona para dar un residuo no cero.

Ahora veremos otra herramienta importante para resolver problemas de ecuaciones lineales: las fórmulas de Cramer.

Teorema (fórmulas de Cramer). Sea $A$ una matriz invertible de $n\times n$ con entradas reales y $b=(b_1,\ldots,b_n)$ un vector de reales. Entonces el sistema lineal de ecuaciones $AX=b$ tiene una única solución $X=(x_1,\ldots,x_n)$ dada por $$x_i=\frac{\det A_i}{\det A},$$ en donde $A_i$ es la matriz obtenida al reemplazar la $i$-ésima columna de $A$ por el vector columna $b$.

En realidad este método no es tan útil en términos prácticos, pues requiere que se evalúen muchos determinantes, y esto no suele ser sencillo. Sin embargo, las fórmulas de Cramer tienen varias consecuencias teóricas importantes.

Problema. Muestra que una matriz invertible $A$ de $n\times n$ con entradas enteras cumple que su inversa también tiene entradas enteras si y sólo si el determinante de la matriz es $1$ ó $-1$.

Sugerencia pre-solución. Para uno de los lados necesitarás las fórmulas de Cramer, y para el otro necesitarás que el determinante es multiplicativo.

Solución. El determinante de una matriz con entradas enteras es un número entero. Si la inversa de $A$ tiene entradas enteras, entonces su determinante es un entero. Usando que el determinante es multiplicativo, tendríamos que $$\det(A)\cdot \det(A^{-1}) = \det (I) = 1.$$ La única forma en la que dos enteros tengan producto $1$ es si ambos son $1$ o si ambos son $-1$. Esto muestra una de las implicaciones.

Ahora, supongamos que $A$ tiene determinante $\pm 1$. Si tenemos una matriz $B$ de columnas $C_1,\ldots,C_n$, entonces para $j$ en $\{1,\ldots,n\}$ la $j$-ésima columna de $AB$ es $AC_j$. De este modo, si $D_1,\ldots, D_n$ son las columnas de $A^{-1}$, se debe cumplir para cada $j$ en $\{1,\ldots,n\}$ que $$AD_j= e_j,$$ en donde $e_j$ es el $j$-ésimo elemento de la base canónica. Para cada $j$ fija, esto es un sistema de ecuaciones.

Por las fórmulas de Cramer, la $i$-ésima entrada de $C_j$, que es la entrada $x_{ij}$ de la matriz $A^{-1}$, está dada por $$x_{ij}=\frac{\det(A_{ij})}{\det(A)}=\pm \det(A_{ij}),$$ donde $A_{ij}$ es la matriz obtenida de colocar al vector $e_j$ en la $i$-ésima columna de $A$.

La matriz $A_{ij}$ tiene entradas enteras, así que $x_{ij}=\pm \det(A_{ij})$ es un número entero. Así, $A^{-1}$ es una matriz de entradas enteras.

$\square$

Sistemas de ecuaciones de m x n y teorema de Rouché-Capelli

Hasta aquí, sólo hemos hablando de sistemas de ecuaciones que tienen matrices cuadradas asociadas. También, sólo hemos hablado de los casos en los que no hay solución, o bien en los que cuando la hay es única. Los sistemas de ecuaciones lineales en general tienen comportamientos más interesantes. El siguiente resultado caracteriza de manera elegante todo lo que puede pasar.

Teorema (Rouché-Capelli). Sea $A$ una matriz de $m\times n$ con entradas reales, $(b_1,\ldots,b_m)$ un vector de reales y $(x_1,\ldots,x_n)$ un vector de incógnitas. Supongamos que $A$ tiene rango $r$. Entonces:

  • El sistema $AX=b$ tiene al menos una solución $X_0$ si y sólo si el rango de la matriz de $m\times (n+1)$ obtenida de colocar el vector $b$ como columna al final de la matriz $A$ también tiene rango $r$.
  • El conjunto solución del sistema $AX=(0,0,\ldots,0)$ es un subespacio vectorial $\mathcal{S}$ de $\mathbb{R}^n$ de dimensión $n-r$.
  • Toda solución al sistema $AX=b$ se obtiene de sumar $X_0$ y un elemento de $\mathcal{S}$.

Problema. Encuentra todos los polinomios $p(x)$ con coeficientes reales y de grado a lo más $3$ tales que $p(2)=3$ y $p(3)=2$.

Sugerencia pre-solución. Usa notación efectiva, eligiendo variables para cada uno de los coeficientes de $p(x)$. Luego, enuncia cada hipótesis como una ecuación.

Solución. Tomemos $p(x)=ax^3+bx^2+cx+d$. La hipótesis implica que

$$\begin{cases}
8a+4b+2c+d=p(2)= 3\\
27a+9b+3c+d=p(3)=2.
\end{cases}$$

El rango de la matriz $$\begin{pmatrix} 8 & 4 & 2 & 1\\ 27 & 9 & 3 & 1\end{pmatrix}$$ es a lo más $2$, pues tiene $2$ renglones. Pero es al menos $2$, pues los dos vectores columna $(2,3)$ y $(1,1)$ son linealmente independientes. Exactamente el mismo argumento muestra que la matriz aumentada $$\begin{pmatrix} 8 & 4 & 2 & 1 & 3\\ 27 & 9 & 3 & 1 & 2\end{pmatrix}$$ es de rango $2$. Por el primer punto del teorema de Rouché-Capelli, este sistema tiene solución.

Para encontrar esta solución de manera práctica, fijamos reales $a$ y $b$ y notamos que ahora

$$\begin{cases}
2c+d= 3-8a-4b\\
3c+d=2-27a-9b
\end{cases}$$

es un sistema en $2$ variables, y como $$\det\begin{pmatrix} 2 & 1\\ 3 & 1\end{pmatrix}=-1,$$ tiene una única solución para $c$ y $d$. Al hacer las cuentas, o usar fórmulas de Cramer, obtenemos que
\begin{align*}
c&=-1-19a-5b\\
d&=5+30a+6b.
\end{align*}

Así, concluimos que los polinomios $p(x)$ solución consisten de elegir cualesquiera reales $a$ y $b$ y tomar $$p(x)=ax^3+bx^2-(1+19a+5b)x+(5+20a+6b).$$

$\square$

Por supuesto, para usar este teorema es necesario conocer el rango de la matriz $A$. En el problema tuvimos la suerte de que eso es sencillo. Hablaremos más adelante de varias técnicas para encontrar el rango de matrices.

Más problemas

Puedes encontrar más problemas de sistemas de ecuaciones lineales en el Capítulo 3 y en la Sección 7.6 del libro Essential Linear Algebra de Titu Andreescu.