Archivo de la etiqueta: determinantes

Cálculo Diferencial e Integral III: Determinantes

Por Alejandro Estrada

Introducción

El determinante de una matriz cuadrada es un número asociado a esta. Como veremos, los determinantes nos proporcionarán información de interés para varios problemas que se pueden poner en términos de matrices.

Recuerda que los temas de esta unidad son tratados a manera de repaso, por lo cual no nos detenemos en detallar las demostraciones, ni a extender las exposiciones de las definiciones. Para mayor detalle, te remitimos al curso de Álgebra Lineal I, específicamente comenzando con la entrada Transformaciones multilineales. Aún así, es recomendable que revises estas notas en el curso de Cálculo Diferencial e Integra lIII, pues sintentizamos los temas de tal manera que recuperamos los conceptos relevantes para el cálculo de varias variables. Así mismo, en ocasiones, abordamos las definiciones y resultados de manera un poco distinta, y es muy instructivo seguir los mismos conceptos abordados con un sabor ligeramente distinto.

Permutaciones

Recordemos que en la entrada anterior definimos para cada $n\in \mathbb{N}$ el conjunto $[n]=\{1, 2,\ldots, n\}$.

Definición. Una permutación del conjunto $[n]$ es una función biyectiva $\sigma :[n]\rightarrow [n]$. Una forma de escribir a $\sigma$ de manera más explícita es la siguiente:
\[ \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\
\sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \]

Podemos pensar también a una permutación como un reacomodo de los números $1, 2, …, n$. Pensado de esta manera, escribimos $\sigma =\sigma(1) \sigma(2)\dots \sigma(n)$.

El conjunto de todas las permutaciones del conjunto $[n]$ se denota como $S_n$. Una observación interesante es que $S_{n}$ tiene $n!$ elementos.

Definición. Para $\sigma \in S_{n}$, una inversión en $\sigma$ consiste en un par $(i,k)\in [n]\times [n]$ tal que $i>k$ pero $i$ precede a $k$ en $\sigma$ cuando se considera $\sigma$ como lista. Diremos que $\sigma$ es permutación par o impar según tenga un número par o impar de inversiones.

Ejemplo. Consideremos $\sigma=12354$ permutación en $[5]$. Tenemos que $(5,4)$ es una inversión en $\sigma$ pues $5>4$ pero en la permutación $5$ precede a $4$. Al tener $\sigma$ una sola inversión, es una permutación impar.

$\triangle$

Definición. El signo de $\sigma$, denotado $\text{sign}(\sigma)$ se define como:
\[
\text{sign}(\sigma )= \begin{cases} 1 & \text{si $\sigma$ es par} \\
-1 & \text{si $\sigma$ es impar.}\end{cases}
\]

Sea $A\in M_{n}(\mathbb{R})$. Pensemos en un producto de $n$ entradas de $A$ tomadas de tal manera que se eligió una y sólo una de cada fila y columna. Podemos reordenar los números para poner en orden la fila de la que tomamos cada uno, y escribir el producto como
\begin{equation}
a_{1j_{1}} a_{2j_{2}}\dots a_{nj_{n}}.
\label{eq:producto}
\end{equation}

Así, $a_{kj_{k}}$ nos dice que en la fila $k$ tomamos la entrada de la columna $j$. Como se eligió una y sólo una entrada por columna, tenemos que $j_1,\ldots,j_n$ es una permutación de $[n]$. Y viceversa, cada permutación $\sigma =j_{1}\dots j_{n} \in S_{n}$ determina un producto como en \eqref{eq:producto}. Por ello la matriz $A$ nos entrega $n!$ productos con esta característica.

Determinantes en términos de permutaciones

A partir de las permutaciones podemos definir a los determinantes.

Definición. El determinante de la matriz $A$, denotado por $\det(A)$, se define como:
\[
\det(A)=\sum_{\sigma \in S_{n}} \left(\text{sign}(\sigma)\prod_{i=1}^{n} a_{i\sigma (i)}\right)
\]
donde
\[
\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\
\sigma (1) & \sigma (2) & \dots & \sigma (n)
\end{pmatrix}
\]

Ejemplo. Para la matriz \[ A= \begin{pmatrix} 0 & 2 & 1 \\ 1 & 2 & 0 \\ 3 & 0 & 1 \end{pmatrix} \] tomemos en cuenta las permutaciones del conjunto $[3]$ las cuales son: \[ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \]

De acuerdo a la definición de determinante, tenemos:

\begin{align*}
\det(A)=&(1)a_{11}a_{22}a_{33}+(-1)a_{11}a_{23}a_{32}+(-1)a_{12}a_{21}a_{33}+\\
&(1)a_{12}a_{23}a_{31}+(1)a_{13}a_{22}a_{31}+(-1)a_{13}a_{21}a_{32}\\
=&0\cdot 2\cdot 1+(-1)0\cdot 0\cdot 0+(-1)2\cdot 1\cdot 1+\\
&(1)2\cdot 0\cdot 3+(1)1\cdot 2\cdot 3+(-1)1\cdot 1\cdot 0\\
&=4.
\end{align*}

$\triangle$

Propiedades de los determinantes

Veamos algunas de las propiedades que tienen los determinantes. Aprovecharemos para introducir algunas matrices especiales.

Definición. La matriz identidad $I\in M_{n}(\mathbb{R})$ es aquella que cumple que en las entradas de la forma $(i,i)$ son iguales a 1 y el resto las entradas son iguales a 0.

Definición. Diremos que una matriz $A\in M_n(\mathbb{R})$ es una matriz triangular superior si cumple $a_{ij}=0$ para $i>j$. La llamaremos triangular inferior si cumple $a_{ij}=0$ para $i<j$. Finalmente, diremos que es diagonal si cumple $a_{ij}=0$ para $i\neq j$ (en otras palabras, si simultáneamente es triangular superior e inferior).

Definición. Sea $A\in M_{m,n}(\mathbb{R})$. La transpuesta de la matriz $A$, denotada por $A^t$, es la matriz en $M_{n,m}(\mathbb{R})$ cuyas entradas están definidas como $(a^{t})_{ij} =a_{ji}$.

El siguiente resultado enuncia algunas propiedades que cumplen los determinantes de la matriz identidad, de matrices transpuestas, y de matrices triangulares superiores, triangulares inferiores y diagonales.

Proposición. Sea $A\in M_{n}(\mathbb{R})$. Se cumple todo lo siguiente.

  1. $\det(A)=\det(A^{t})$
  2. Si $A$ tiene dos filas iguales $\det(A)=0$.
  3. Si $A$ tiene dos columnas iguales $\det(A)=0$.
  4. Si $A$ es triangular superior, triangular inferior, o diagonal, $\det(A)=\prod_{i=1}^{n} a_{ii}$
  5. $\det(I_n)=1$

Demostración.

  1. Notemos que (tarea moral) $\text{sign}( \sigma )= \text{sign}( \sigma ^{-1})$, así tenemos que
    \begin{align*}
    \det(A^{t})&=\sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{\sigma (1) 1}\dots a_{\sigma (n) n}\\
    &=\sum_{\sigma \in S_{n}} \text{sign}(\sigma ^{-1})a_{1\sigma (1)}\dots a_{n\sigma (n)}\\
    &= \sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{1\sigma (1)}\dots a_{n\sigma (n)}\\&= \det(A).
    \end{align*}
  2. Si tenemos dos filas iguales, en cada producto $a_{1\sigma (1)}\cdots a_{n\sigma (n)}$ tenemos dos factores de la misma fila, por tanto para cada producto tenemos otro igual en la suma solo que con signo contrario (signo de la permutación correspondiente); al hacer la suma estos sumandos se anularán por pares resultando en cero.
  3. Mismo argumento que en el inciso anterior.
  4. Si tenemos una matriz triangular, ya sea superior, o inferior $\prod_{i=1}^{n} a_{i\sigma (i)}\neq 0$ sólo cuando $\sigma(i)=i$ ya que en otro caso este producto siempre tendrá algún factor cero.
  5. Es un corolario de la propiedad anterior, pues la matriz identidad es una matriz diagonal con puros unos en la diagonal.

$\square$

Otra propiedad muy importante del determinante es que es multiplicativo. A continuación enunciamos el resultado, y referimos al lector a la entrada Propiedades de determinantes para una demostración.

Teorema. Sean $A$ y $B$ matrices en $M_n(\mathbb{R})$. Se tiene que $$\det(AB)=\det(A)\det(B).$$

Mas adelante

En la siguiente entrada revisaremos sistemas de ecuaciones lineales. Comenzaremos definiéndolos, y entendiéndolos a partir de operaciones simples que llamaremos operaciones elementales. Hablaremos un poco de cómo saber cuántas soluciones tiene un sistema de ecuaciones. Así mismo veremos que el determinante proporciona información relevante para su solución.

Un poco más adelante también hablaremos de diagonalizar matrices. A grandes rasgos, consiste en encontrar representaciones más sencillas para una matriz, pero que sigan compartiendo muchas propiedades con la matriz original. El determinante jugará de nuevo un papel muy importante en esta tarea.

Tarea moral

  1. Sea $\sigma \in S_{n}$. Muestra que su inversa, $\sigma ^{ -1}$ también es una permutación. Después, muestra que
    \[\text{sign}(\sigma)= \text{sign}(\sigma ^{-1}).\]
    Sugerencia: no es difícil hacerlo por inducción sobre el número de inversiones.
  2. Encuentra explícitamente cuántas inversiones tiene la permutación $\sigma$ en $S_n$ dada por $S(j)=n-j+1$.
  3. Escribe con más detalle la demostración de que una matriz y su transpuesta tienen el mismo determinante. Puedes pensarlo como sigue. Toma \[ \det(A)=\sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{1\sigma(1)}\cdot \dots \cdot a_{n\sigma (n)}.\] Supón que las filas $s$ y $t$ son iguales; para cada factor argumenta por qué \[ a_{1\sigma (1)}\cdots a_{s\sigma (s)} \cdots a_{t\sigma (t)}\cdots a_{n\sigma (n)} \] el factor \[ a_{1\sigma (1)}\cdots a_{t\sigma (t)}\cdots a_{s\sigma (s)} \cdots a_{n\sigma (n)} \] donde permutamos el $t$-ésimo factor con el $s$-ésimo también está en la suma, y por qué ambos son de signos contrarios.
  4. Demuestra que el producto de una matriz triangular superior con otra matriz triangular superior también es una matriz triangular superior. Enuncia y demuestra lo análogo para matrices triangulares inferiores, y para matrices diagonales.
  5. Argumenta con más detalle por qué el determinante de una matriz triangular superior es el produto de las entradas en su diagonal. Específicamente, detalla el argumento de las notas que dice que «en otro caso, este producto siempre tendrá algún factor cero».

Entradas relacionadas

Seminario de Resolución de Problemas: Rango de matrices y el teorema de factorización PJQ

Por Leonardo Ignacio Martínez Sandoval

Introducción

El algunas ocasiones es suficiente saber si una matriz es invertible o no. Sin embargo, esta es una distinción muy poco fina. Hay algunos otros problemas en los que se necesita decir más acerca de la matriz. Podemos pensar que una matriz invertible, como transformación lineal, «guarda toda la información» al pasar de un espacio vectorial a otro. Cuando esto no sucede, nos gustaría entender «qué tanta información se guarda». El rango de matrices es una forma de medir esto. Si la matriz es de $m\times n$, el rango es un número entero que va de cero a $n$. Mientras mayor sea, «más información guarda».

Por definición, el rango de una matriz $A$ de $m\times n$ es igual a la dimensión del subespacio vectorial de $\mathbb{R}^m$ generado por los vectores columna de $A$. Una matriz de $n\times n$ tiene rango $n$ si y sólo si es invertible.

Si pensamos a $A$ como la transformación lineal de $\mathbb{R}^n$ a $\mathbb{R}^m$ tal que $X\mapsto AX$, entonces el rango es precisamente la dimensión de la imagen de $A$. Esto permite extender la definición de rango a transformaciones lineales arbitrarias, y se estudia con generalidad en un curso de álgebra lineal.

En las siguientes secciones enunciaremos sin demostración algunas propiedades del rango de matrices y las usaremos para resolver problemas.

Propiedades del rango de matrices

Comenzamos enunciando algunas propiedades del rango de matrices

Teorema. Sean $m$, $n$ y $p$ enteros. Sea $B$ una matriz de $n\times p$, y $A$, $A’$ matrices de $m\times n$. Sean además $P$ una matriz de $n\times p$ cuya transformación lineal asociada es suprayectiva y $Q$ una matriz de $r\times m$ cuya transformación lineal asociada es inyectiva. Entonces:

  1. $\rank(A)\leq \min(m,n)$
  2. $\rank(AB)\leq \min(\rank(A),\rank(B))$
  3. $\rank(A+A’)\leq \rank(A) + \rank(A’)$
  4. $\rank(QA) = \rank(A)$
  5. $\rank(AP)=\rank(A)$

Consideremos el siguiente problema, tomado del libro Essential Linear Algebra de Titu Andreescu.

Problema. Las matrices $A$ y $B$ tienen entradas reales. La matriz $A$ es de $3\times 3$, la matriz $B$ es de $2\times 3$ y además $$AB=\begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}.$$ Determina el valor del producto $BA$.

Sugerencia pre-solución. Un paso intermedio clave es mostrar que el producto $BA$ es invertible.

Solución. Para empezar, afirmamos que $(AB)^2=AB$. Esto se puede verificar directamente haciendo el producto de matrices.

Luego, afirmamos que el rango de $AB$ es $2$. En efecto, eso se puede hacer fácilmente por definición. Por un lado, la suma de las primeras dos columnas es igual a la tercera, así que el espacio vectorial que generan las tres es de dimensión a lo más dos. Pero es al menos dos, pues las primeras dos columnas son linealmente independientes. Esto muestra la afirmación.

Ahora, usando la propiedad (2) del teorema dos veces, tenemos que
\begin{align*}
\rank(BA)&\geq \rank (A(BA)) \\
&\geq \rank (A(BA)B)\\
&=\rank((AB)^2) \\
&= \rank (AB)\\
&=2.
\end{align*}

Así, $BA$ es una matriz de $2\times 2$ de rango $2$ y por lo tanto es invertible.

Consideremos ahora el producto $(BA)^3$. Desarrollando y usando que $(AB)^2=AB$, tenemos que

\begin{align*}
(BA)^3 &= BABABA \\
&=B(AB)^2 A\\
&=BABA\\
&=(BA)^2.
\end{align*}

Como $BA$ es invertible, entonces $(BA)^2$ tiene inversa. Si multiplicamos la igualdad $(BA)^3 = (BA)^2$ por esa inversa, obtenemos que $$BA=I_2.$$

$\square$

El teorema anterior nos permite acotar por arriba el rango del producto de dos matrices. También hay una desigualdad que nos permite acotar por abajo el rango de dicho producto, cuando las matrices son cuadradas.

Teorema (desigualdad de Sylvester). Para matrices $A$ y $B$ de $n\times n$, se tiene que $$\rank(AB)\geq \rank(A) + \rank(B) – n.$$

Problema. La matriz $A$ es de $2020 \times 2020$. Muestra que:

  • Si $A$ tiene rango $2017$, entonces la matriz $A^{673}$ no puede ser la matriz de $2020\times 2020$ de puros ceros, es decir, $O_{2020}$.
  • Si $A$ tiene rango $2016$, entonces la matriz $A^{673}$ puede ser la matriz $O_{2020}$.

Sugerencia pre-solución. Enuncia una afirmación más general relacionada con el rango que puedas probar por inducción utilizando la desigualdad de Sylvester.

Solución. Para la primer parte, probaremos primero algo más general. Afirmamos que si $M$ es una matriz de $n \times n$ de rango $n-s$ y $k$ es un entero positivo, entonces el rango de la matriz $M^k$ es por lo menos $n-ks$. Procedemos por inducción sobre $k$. Si $k=1$, el resultado es cierto pues $M$ tiene rango $n-s=n-1\cdot s$.

Supongamos el resultado para cierto entero $k$. Usando la desigualdad de Sylverster y la hipótesis inductiva, tenemos que
\begin{align*}
\rank(A^{k+1})&\geq \rank(A^k) + \rank(A) – n\\
&\geq (n-ks) + (n-s) – n\\
&=n-(k+1)s.
\end{align*}

Esto muestra la afirmación general.

Si regresamos a la primer parte del problema original y aplicamos el resultado anterior, tenemos que $A^{673}$ es una matriz de rango por lo menos $$2020 – 673 \cdot 3 = 2020 – 2019 = 1.$$ De esta forma, $A^{673}$ no puede ser la matriz $0$.

Hagamos ahora la segunda parte del problema. Para ello, debemos construir una matriz $A$ de $2020\times 2020$ de rango $2016$ tal que $A^{673}$ sea la matriz $0$. Para ello, consideremos la matriz $A$ tal que sus primeras $4$ columnas sean iguales al vector $0$, y que sus columnas de la $5$ a la $2020$ sean los vectores canónicos $e_1,\ldots, e_{2016}$.

Esta matriz claramente es de rango $2016$, pues el espacio generado por sus columnas es el espacio generado por $e_1,\ldots, e_{2016}$, que es de dimensión $2016$. Por otro lado, se puede mostrar inductivamente que para $k=1,\ldots,505$, se tiene que $A^{k}$ es una matriz en donde sus columnas de $1$ a $4k$ son todas el vector $0$, y sus columnas de $4k+1$ a $2020$ son $e_1,\ldots, e_{2020-4k}$. En particular, $A^{505}=O_{2020}$, y entonces $A^{673}$ también es la matriz de puros ceros.

$\square$

Equivalencias de rango de matrices

Hay muchas formas alternativas para calcular el rango de una matriz. El siguiente teorema resume las equivalencias más usadas en resolución de problemas.

Teorema. Sea $A$ una matriz de $m\times n$ con entradas reales. Los siguientes números son todos iguales:

  • El rango de $A$, es decir, la dimensión del espacio vectorial generado por los vectores columna de $A$.
  • La dimensión del espacio vectorial generado por los vectores fila de $A$. Observa que esto es, por definición, el rango de la transpuesta de $A$.
  • La cantidad de filas no cero que tiene la forma escalonada reducida de $A$.
  • (Teorema de rango-nulidad) $n-\dim \ker(A)$, donde $\ker(A)$ es el espacio vectorial de soluciones a $AX=0$.
  • El tamaño más grande de una submatriz cuadrada de $A$ que sea invertible.
  • La cantidad de eigenvalores complejos distintos de cero contando multiplicidades algebraicas.

Problema. Determina todos los posibles rangos que pueden tener las matrices con entradas reales de la forma $$\begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix}.$$

Sugerencia pre-solución. Comienza haciendo casos pequeños. Para dar los ejemplos y mostrar que tienen el rango deseado, usa el teorema de equivalencia de rango para simplificar algunos argumentos.

Solución. El rango de una matriz de $4\times 4$ es un entero de $0$ a $4$. Debemos ver cuáles de estos valores se pueden alcanzar con matrices de la forma dada.

Tomando $a=b=c=d=0$, obtenemos la matriz $O_4$, que tiene rango $0$. Si $a=b=c=d=1$, obtenemos la matriz de puros unos, que tiene rango $1$. Además, si $a=1$ y $b=c=d=0$, obtenemos la matriz identidad, que tiene rango $4$.

Si $a=b=1$ y $c=d=0$, obtenemos la matriz $$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$ Esta matriz tiene sólo dos columnas diferentes, así que su rango es a lo más dos. Pero tiene como submatriz a la matriz $$I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$ que tiene rango $2$, entonces el rango de $A$ es al menos $2$. De esta forma, el rango de $A$ es $2$.

Veamos ahora que el rango puede ser $3$. Para ello, damos un argumento de determinantes. Llamemos $s=a+b+c+d$. Sumando las tres últimas filas a la primera y factorizando $s$, tenemos que
\begin{align*}
\begin{vmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}&=\begin{vmatrix} s & s & s & s \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}\\
&=s\begin{vmatrix} 1 & 1 & 1 & 1 \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}.
\end{align*}

Así, si tomamos $a=b=c=1$ y $d=-3$, entonces $s=0$ y por lo tanto la matriz $B$ que obtenemos no es invertible, así que su rango es a lo más tres. Pero además es de rango al menos tres pues $B$ tiene como submatriz a $$\begin{pmatrix} 1 & 1 & -3 \\ 1 & -3 & 1 \\ -3 & 1 & 1 \end{pmatrix},$$ que es invertible pues su determinante es $$-3-3-3-1-1+27=16\neq 0.$$

Concluimos que los posibles rangos que pueden tener las matrices de esa forma son $0,1,2,3,4$.

$\square$

El teorema de factorización $PJQ$

Existen diversos teoremas que nos permiten factorizar matrices en formas especiales. De acuerdo a lo que pida un problema, es posible que se requiera usar uno u otro resultado. El teorema de factorización más útil para cuando se están resolviendo problemas de rango es el siguiente.

Teorema (factorización $PJQ$). Sea $A$ una matriz de $m\times n$ y $r$ un entero en $\{0,\ldots,\min(m,n)\}$. El rango de $A$ es igual a $r$ si y sólo si existen matrices invertibles $P$ de $m\times m$ y $Q$ de $n\times n$ tales que $A=PJ_rQ$, en donde $J_r$ es la matriz de $m\times n$ cuyas primeras $r$ entradas de su diagonal principal son $1$ y todas las demás entradas son cero, es decir, en términos de matrices de bloque, $$J_r=\begin{pmatrix}
I_r & O_{r,n-r} \\
O_{m-r,r} & O_{m-r,n-r}
\end{pmatrix}.$$

Como evidencia de la utilidad de este teorema, sugerimos que intentes mostrar que el rango por columnas de una matriz es igual al rango por filas, usando únicamente la definición. Esto es relativamente difícil. Sin embargo, con el teorema $PJQ$ es inmediato. Si $A$ es de $m\times n$ y tiene rango $r$, entonces su factorización $PJQ$ es de la forma $$A=PJ_rQ.$$ Entonces al transponer obtenemos
\begin{align*}
^tA&= {^tQ} {^t J_r} {^tP}.
\end{align*}

Esto es de nuevo un factorización $PJQ$, con ${^t J_r}$ la matriz de $n\times m$ que indica que $^t A$ es de rango $r$.

Veamos ahora un problema clásico en el que se puede usar la factorización $PJQ$.

Problema. Sea $A$ una matriz de $m \times n$ y rango $r$. Muestra que:

  • $A$ puede ser escrita como la suma de $r$ matrices de rango $1$.
  • $A$ no puede ser escrita como la suma de $r-1$ o menos matrices de rango $1$.

Sugerencia pre-solución. Para la primer parte, usa el teorema $PJQ$. Para la segunda parte, usa desigualdades del rango.

Solución. Tomemos $A=PJ_rQ$ una factorización $PJQ$ de $A$.

Hagamos la primer parte. Para ello, para cada $i=1,\ldots,r$, consideremos la matriz $L_i$ de $m\times n$ tal que su $i$-ésima entrada en la diagonal principal es $1$ y el resto de sus entradas son iguales a $0$.

Por un lado, $L_i$ es de rango $1$, pues tiene sólo una columna distinta de cero. De este modo, $$\rank(PL_iQ)\leq \rank(PL_i) \leq \rank(L_i)=1,$$ y como $P$ y $Q$ son invertibles, $$\rank(PL_iQ)\geq \rank(L_i) \geq 1.$$ Así, para cada $i=1,\ldots, r$, se tiene que $L_i$ es de rango $1$.

Por otro lado, $$J_r = L_1 + L_2 + \ldots + L_r,$$ así que
\begin{align*}
A&=PJ_rQ\\
&=P(L_1 + L_2 + \ldots + L_r)Q\\
&=PL_1Q + PL_2Q + \ldots + PL_rQ.
\end{align*}

Esto expresa a $A$ como suma de $r$ matrices de rango $1$.

Para la segunda parte del problema, usamos repetidamente que el rango es subaditivo. Si tenemos matrices $B_1,\ldots,B_s$ matrices de $m\times n$, entonces
\begin{align*}
\rank(B_1&+B_2+\ldots+B_s) & \\
&\leq \rank(B_1) + \rank (B_2 + \ldots + B_s)\\
&\leq \rank(B_1) + \rank(B_2) + \rank(B_3+\ldots+B_s)\\
& vdots \\
&\leq \rank(B_1) + \rank(B_2) + \ldots + \rank(B_s).
\end{align*}

Si cada $B_i$ es de rango $1$, entonces su suma tiene rango a lo más $s$.

Así, la suma de $r-1$ o menos matrices de rango $1$ tiene rango a lo más $r-1$, y por lo tanto no puede ser igual a $A$.

$\square$

Más problemas

Puedes encontrar más problemas de rango de una matriz en la Sección 5.4 del libro Essential Linear Algebra de Titu Andreescu. El teorema $PJQ$, así como muchos problemas ejemplo, los puedes encontrar en el Capítulo 5 del libro Mathematical Bridges de Andreescu, Mortici y Tetiva.

Seminario de Resolución de Problemas: Cálculo de determinantes

Por Leonardo Ignacio Martínez Sandoval

Introducción

Una de las habilidades fundamentales que hay que desarrollar para resolver problemas de álgebra lineal es el cálculo de determinantes. Como vimos en la entrada anterior, conocer el determinante de una matriz nos permite saber si es invertible. Así mismo, los determinantes permiten encontrar soluciones a sistemas de ecuaciones lineales, y más adelante veremos que están relacionados con el rango. Además, los determinantes juegan un papel muy importante en otras áreas de las matemáticas, como cálculo y teoría de gráficas.

Todo parte de la siguiente definición:

Definición. Para una matriz $A$ de $n \times n$ con entradas reales $A=[a_{ij}]$, el determinante de $A$ es $$\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ donde la suma se hace sobre todas las permutaciones (funciones biyectivas) $\sigma$ de $\{1,\ldots,n\}$ a sí mismo y $\text{sign}(\sigma)$ es el signo de la permutación.

A $\det A$ también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:

\begin{align*}
\det A = \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
\vdots & & \ddots & \vdots\\
a_{n1} & a_{n2} & \ldots & a_{nn}.
\end{vmatrix}.
\end{align*}

La definición permite mostrar de maneras muy elegantes las propiedades que cumplen los determinantes, pero no es nada práctica para cuando se quieren hacer las cuentas. Como la suma se hace sobre todas las permutaciones $\sigma$ de un conjunto de $n$ elementos, si quisiéramos calcular determinantes por definición se tendrían que hacer $n!$ productos, y luego sumar todos estos resultados.

Por esta razón, es muy importante encontrar otras formas de evaluar determinantes. Para empezar, esta entrada hará referencia a dos enlaces del blog en los que se discuten las propiedades básicas de determinantes. Luego, se hablará de dos tipos especiales de determinantes: los de Vandermonde y los de matrices circulantes.

Técnicas básicas de cálculo de determinantes

Lo primero y más importante es que conozcas las teoría básica para cálculo de determinantes. Aquí en el blog hay una entrada que sirve justo para conocer las propiedades y técnicas principales para encontrar determinantes.

Técnicas básicas de cálculo de determinantes

Además, es también muy importante que sepas calcular determinantes usando la expansión de Laplace. En la siguiente entrada puedes ver el enunciado de la técnica, y cómo se usa en varios ejemplos:

Problemas de cálculo de determinantes

Para fines de este curso, es importante que revises esas entradas. Puedes saltarte las demostraciones de los resultados principales, pero presta atención a cómo se usan en cada uno de los problemas.

Las siguientes secciones presentan técnicas avanzadas que a veces resultan útiles. Sin embargo, tómalas como temas optativos, dando prioridad a primero dominar los básicos.

Determinantes de Vandermonde

Teorema (determinante de Vandermonde). Sean $a_1,\ldots,a_n$ números reales. El determinante de la matriz de Vandermonde \begin{align*}
\begin{pmatrix}
1&a_1 & a_1^2 & \ldots & a_1^{n-1}\\
1 & a_2 & a_2^2 & \ldots & a_2^{n-1}\\
1&a_3 & a_3^2 & \ldots & a_3^{n-1}\\
\vdots& & & \ddots & \vdots\\
1& a_n & a_n^2 & \ldots & a_n^{n-1}\\
\end{pmatrix}
\end{align*} es igual a $$\prod_{1\leq i < j \leq n} (a_j-a_i).$$

Ejemplo. La matriz $$\begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{pmatrix}$$ es una matriz de Vandermonde, así que su determinante es $$(b-a)(c-a)(c-b).$$

$\square$

Veamos un problema en el que aparece una matriz de Vandermonde.

Problema. Sean $a$, $b$ y $c$ reales distintos de $0$. Muestra que el determinante de $$\begin{vmatrix}a^2 & b^2 & c^2\\ c^2& a^2 & b^2 \\ ca & ab & bc \end{vmatrix}$$ es $$(a^2-bc)(b^2-ca)(c^2-ab).$$

Sugerencia pre-solución. Formula un problema equivalente usando propiedades de determinantes para que quede un determinante del tipo de Vandermonde. Aprovecha la simetría para ahorrar algunas cuentas.

Solución. Como el determinante es homogéneo en cada columna, podemos factorizar $a^2$ de la primera, $b^2$ de la segunda y $c^2$ de la tercera para obtener que
\begin{align*}
\begin{vmatrix}a^2 & b^2 & c^2\\ c^2& a^2 & b^2 \\ ca & ab & bc \end{vmatrix} &= (abc)^2 \begin{vmatrix}1 & 1 & 1 \\ \frac{c^2}{a^2}& \frac{a^2}{b^2} & \frac{b^2}{c^2} \\ \frac{c}{a} & \frac{a}{b} & \frac{b}{c} \end{vmatrix}\\
&=-(abc)^2 \begin{vmatrix}1 & 1 & 1 \\ \frac{c}{a} & \frac{a}{b} & \frac{b}{c} \\ \frac{c^2}{a^2}& \frac{a^2}{b^2} & \frac{b^2}{c^2} \end{vmatrix}.
\end{align*}

Aquí también usamos que al intercambiar dos filas (o columnas), el determinante de una matriz cambia de signo.

Una matriz tiene el mismo determinante que su transpuesta, y la transpuesta de esta última matriz es de Vandermonde, de modo que $$-(abc)^2 \begin{vmatrix}1 & 1 & 1 \\ \frac{c}{a} & \frac{a}{b} & \frac{b}{c} \\ \frac{c^2}{a^2}& \frac{a^2}{b^2} & \frac{b^2}{c^2} \end{vmatrix} = -(abc)^2 \left(\frac{a}{b}-\frac{c}{a}\right)\left(\frac{b}{c}-\frac{c}{a}\right)\left(\frac{b}{c}-\frac{a}{b}\right).$$

Vamos a partir esta última expresión en factores simétricos. Tenemos que $$ab\left(\frac{a}{b}-\frac{c}{a}\right)=a^2-bc.$$ De manera similar, tenemos también $$-ca\left(\frac{b}{c}-\frac{c}{a}\right)=c^2-ab$$ y $$bc\left(\frac{b}{c}-\frac{a}{b}\right)=b^2-ac.$$

Así, concluimos que $$\begin{vmatrix}a^2 & b^2 & c^2\\ c^2& a^2 & b^2 \\ ca & ab & bc \end{vmatrix}= (a^2-bc)(b^2-ca)(c^2-ab).$$

$\square$

Determinantes de matrices circulantes

Teorema (determinantes circulantes) Sean $a_1,\ldots, a_n$ números reales. El determinante de la matriz circulante
\begin{align*}
\begin{pmatrix}
a_1& a_n & a_{n-1} & \ldots & a_2\\
a_2&a_1& a_{n}& \ldots & a_3\\
a_3 & a_2& a_1& \ldots & a_4\\
\vdots& & & \ddots & \vdots\\
a_n& a_{n-1} & a_{n-2} &\ldots & a_1.
\end{pmatrix}
\end{align*}

es $$\prod_{j=0}^{n-1} (a_1 + a_n \omega_j + a_{n-1} \omega_j^2 + \ldots + a_2 \omega_j^{n-1}),$$ en donde $\omega_j$ es la $n$-ésima raíz de la unidad dada por $\omega_j:= e^{j \cdot \frac{2\pi i}{n}}$.

Ejemplo. La matriz $$\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a\end{pmatrix}$$ es una matriz circulante, así que su determinante es $$(a+b+c)(a+\omega b + \omega^2 c)(a+\omega^2 b+ \omega c),$$ donde $\omega$ es la raíz cúbica de la unidad de argumento positivo mínimo.

$\square$

El siguiente problema apareció en la tercera edición de la Olimpiada Iberoamericana de Matemática Universitaria. El enunciado en esa ocasión fue un poco distinto, pero lo adaptamos a la notación de esta entrada.

Problema. Sea $n\geq 3$ un entero Muestra que el determinante de la matriz circulante en donde $a_1=a_n=a_{n-1}=1$ y $a_2=\ldots=a_{n-1}=0$ es $3$ si $n$ no es un múltiplo de $3$ y es $0$ si $n$ es un múltiplo de $3$.

Sugerencia pre-solución. Para empezar, aplica el teorema de determinantes de matrices circulantes. Luego, necesitarás además un argumento de polinomios y de números complejos.

Solución. Para empezar, llamemos $A_n$ a la matriz del problema. Como $A_n$ es una matriz circulante, su determinante es $$\det(A_n) = \prod_{j=0}^{n-1} (1 + \omega_j + \omega_j^2).$$

El polinomio $1+x+x^2$ se factoriza como $(\eta-x)(\eta^2-x)$, donde $\eta$ es la raíz cúbica de la unidad de argumento positivo mínimo. De esta forma, podemos reescribir al determinante de $A_n$ como $$\det(A_n) = \prod_{j=0}^{n-1} (\eta-\omega_j)(\eta^2-\omega_j).$$

El polinomio $h(x)=x^n-1$ se factoriza como $$h(x)=(x-\omega_0)(x-\omega_1)\ldots(x-\omega_{n-1}),$$ así que $\det(A_n)$ es precisamente el producto de $h(\eta)$ con $h(\eta^2)$. En otras palabras,
\begin{align*}
\det(A_n)&= (\eta^n-1)(\eta^{2n}-1)\\
&=\eta^{3n}+1-(\eta^n+\eta^{2n})\\
&=2-(\eta^n+\eta^{2n})
\end{align*}

Finalmente, hacemos un análisis de casos:

  • Si $n$ es múltiplo de $3$, entonces $\eta^n = \eta^{2n} = 1$ y entonces $\det(A_n)=0$.
  • Si $n$ no es múltiplo de $3$, entonces $n$ y $2n$ no son congruentes módulo $3$, y entonces $\eta^n$ y $\eta^{2n}$ son $\eta$ y $\eta^2$ en algún orden. Así, $$(\eta^n+\eta^{2n})=\eta+\eta^2=-1,$$ y por lo tanto $\det(A_n)=3$.

$\square$

Más problemas

Puedes encontrar más problemas de cálculo de determinantes en la Sección 7.4 y la Sección 7.5 del libro Essential Linear Algebra de Titu Andreescu.

Seminario de Resolución de Problemas: Sistemas de ecuaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Finalmente, en esta serie de entradas, veremos temas selectos de álgebra lineal y su aplicación a la resolución de problemas. Primero, hablaremos de sistemas de ecuaciones lineales. Luego, hablaremos de evaluación de determinantes. Después, veremos teoría de formas cuadráticas y matrices positivas. Finalmente, estudiaremos dos teoremas muy versátiles: el teorema de factorización $PJQ$ y el teorema de Cayley-Hamilton.

Como lo hemos hecho hasta ahora, frecuentemente no daremos las demostraciones para los resultados principales. Además, asumiremos conocimientos básicos de álgebra lineal. También, asumiremos que todos los espacios vectoriales y matrices con los que trabajaremos son sobre los reales o complejos, pero varios resultados se valen más en general.

Para cubrir los temas de álgebra lineal de manera sistemática, te recomendamos seguir un libro como el Essential Linear Algebra de Titu Andreescu, o el Linear Algebra de Friedberg, Insel y Spence. Mucho del material también lo puedes consultar en las notas de curso que tenemos disponibles en el blog.

Sistemas de ecuaciones lineales

Una ecuación lineal en $n$ incógnitas en $\mathbb{R}$ consiste en fijar reales $a_1,\ldots,a_n, b$ y determinar los valores de las variables $x_1,\ldots,x_n$ tales que $$a_1x_1+a_2x_2+\ldots+a_nx_n=b.$$

Si $a_1,\ldots,a_n$ no son todos cero, los puntos $(x_1,\ldots,x_n)$ en $\mathbb{R}^n$ que son solución a la ecuación definen un hiperplano en $\mathbb{R}^n$.

Un sistema de ecuaciones lineales con $m$ ecuaciones y $n$ variables consiste en fijar, para $i$ en $\{1,\ldots,m\}$ y $j$ en $\{1,\ldots,n\}$ a reales $a_{ij}$ y $b_i$, y determinar los valores de las variables $x_1,\ldots,x_n$ que simultáneamente satisfacen todas las $m$ ecuaciones
$$\begin{cases}
a_{11}x_1+ a_{12}x_2+\ldots + a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n = b_2\\
\quad \quad \vdots\\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n = b_m.
\end{cases}$$

Este sistema de ecuaciones se puede reescribir en términos matriciales de manera muy sencilla. Si $A$ es la matriz de $m\times n$ de entradas $[a_{ij}]$, $X$ es el vector de variables $(x_1,\ldots,x_n)$ y $b$ es el vector de reales $b_1,\ldots,b_m$, entonces el sistema de ecuaciones anterior se reescribe simplemente como $$AX=b.$$

Sistemas de ecuaciones lineales con mucha simetría

En algunos sistemas de ecuaciones hay mucha simetría, y no es necesario introducir técnicas avanzadas de álgebra lineal para resolverlos. Veamos el siguiente ejemplo.

Problema. Resuelve el sistema de ecuaciones

$$\begin{cases}
7a+2b+2c+2d+2e= -2020\\
2a+7b+2c+2d+2e=-1010\\
2a+2b+7c+2d+2e=0\\
2a+2b+2c+7d+2e=1010\\
2a+2b+2c+2d+7e=2020.
\end{cases}$$

Sugerencia pre-solución. Trabaja hacia atrás, suponiendo que el sistema tiene una solución. A partir de ahí, puedes usar las cinco ecuaciones y combinarlas con sumas o restas para obtener información.

Solución. Al sumar las cinco ecuaciones, obtenemos que $$15(a+b+c+d+e)=0,$$ de donde $2(a+b+c+d+e)=0$. Restando esta igualdad a cada una de las ecuaciones del sistema original, obtenemos que
$$\begin{cases}
5a= -2020\\
5b=-1010\\
5c=0\\
5d=1010\\
5e=2020.
\end{cases}$$

De aquí, si el sistema tiene alguna solución, debe suceder que
\begin{align*}
a&=\frac{-2020}{5}=-404\\
b&=\frac{-2020}{5}=-202\\
c&=\frac{-2020}{5}= 0\\
d&=\frac{-2020}{5}=202\\
e&=\frac{-2020}{5}=404.
\end{align*}

Como estamos trabajando hacia atrás, esta es sólo una condición necesaria para la solución. Sin embargo, una verificación sencilla muestra que también es una condición suficiente.

$\square$

Sistemas de ecuaciones de n x n y regla de Cramer

Si tenemos un sistema de $n$ variables y $n$ incógnitas, entonces es de la forma $$AX=b$$ con una matriz $A$ cuadrada de $n\times n$. Dos resultados importantes para sistemas de este tipo son el teorema de existencia y unicidad, y las fórmulas de Cramer.

Teorema (existencia y unicidad de soluciones). Si $A$ es una matriz cuadrada invertible de $n\times n$ y $b$ es un vector de $n$ entradas, entonces el sistema lineal de ecuaciones $$AX=b$$ tiene una solución única y está dada por $X=A^{-1}b$.

El teorema anterior requiere saber determinar si una matriz es invertible o no. Hay varias formas de hacer esto:

  • Una matriz cuadrada es invertible si y sólo si su determinante no es cero. Más adelante hablaremos de varias técnicas para evaluar determinantes.
  • Una matriz cuadrada es invertible si y sólo si al aplicar reducción gaussiana, se llega a la identidad.
  • También ,para mostrar que una matriz es invertible, se puede mostrar que cumple alguna de las equivalencias de invertibilidad.

Problema. Demuestra que el sistema lineal de ecuaciones

$$\begin{cases}
147a+85b+210c+483d+133e= 7\\
91a+245b+226c+273d+154e=77\\
-119a+903b+217c+220d+168e=777\\
189a+154b-210c-203d-108e=7777\\
229a+224b+266c-133d+98e=77777.
\end{cases}$$

tiene una solución única.

Sugerencia pre-solución. Reduce el problema a mostrar que cierta matriz es invertible. Para ello, usa alguno de los métodos mencionados. Luego, para simplificar mucho el problema, necesitarás un argumento de aritmética modular. Para elegir en qué módulo trabajar, busca un patrón en las entradas de la matriz.

Solución. Primero, notemos que el problema es equivalente a demostrar que la matriz

$$A=\begin{pmatrix}
147 & 85 & 210 & 483 & 133\\
91 & 245 & 226 & 273 & 154\\
-119 & 903 & 217 & 220 & 168\\
189 & 154 & -210 & -203 & -108 \\
229 & 224 & 266 & -133 & 98
\end{pmatrix}$$

es invertible. Mostraremos que su determinante no es $0$. Pero no calcularemos todo el determinante, pues esto es complicado.

Notemos que como $A$ es una matriz de entradas enteras, entonces su determinante (que es suma de productos de entradas), también es entero. Además, como trabajar en aritmética modular respeta sumas y productos, para encontrar el residuo de $\det(A)$ al dividirse entre $7$ se puede primero reducir las entradas de $A$ módulo $7$, y luego hacer la cuenta de determinante.

Al reducir las entradas módulo $7$, tenemos la matriz

$$B=\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0&0 & 2 & 0 & 0\\
0 & 0 & 0 & 3 & 0\\
0&0 & 0 & 0 & 4 \\
5& 0 & 0 & 0 & 0
\end{pmatrix}.$$

El determinante de la matriz $B$ es $-(1\cdot 2 \cdot 3 \cdot 4 \cdot 5)=-120$. Así,
\begin{align*}
\det(A) & \equiv \det(B)\\
&=-120\\
&\equiv 6 \pmod 7.
\end{align*}

Concluimos que $\det(A)$ es un entero que no es divisible entre $7$, por lo cual no puede ser cero. Así, $A$ es invertible.

$\square$

Por supuesto, en cualquier otro módulo podemos hacer la equivalencia y simplificar las cuentas. Pero $7$ es particularmente útil para el problema anterior pues se simplifican casi todas las entradas, y además funciona para dar un residuo no cero.

Ahora veremos otra herramienta importante para resolver problemas de ecuaciones lineales: las fórmulas de Cramer.

Teorema (fórmulas de Cramer). Sea $A$ una matriz invertible de $n\times n$ con entradas reales y $b=(b_1,\ldots,b_n)$ un vector de reales. Entonces el sistema lineal de ecuaciones $AX=b$ tiene una única solución $X=(x_1,\ldots,x_n)$ dada por $$x_i=\frac{\det A_i}{\det A},$$ en donde $A_i$ es la matriz obtenida al reemplazar la $i$-ésima columna de $A$ por el vector columna $b$.

En realidad este método no es tan útil en términos prácticos, pues requiere que se evalúen muchos determinantes, y esto no suele ser sencillo. Sin embargo, las fórmulas de Cramer tienen varias consecuencias teóricas importantes.

Problema. Muestra que una matriz invertible $A$ de $n\times n$ con entradas enteras cumple que su inversa también tiene entradas enteras si y sólo si el determinante de la matriz es $1$ ó $-1$.

Sugerencia pre-solución. Para uno de los lados necesitarás las fórmulas de Cramer, y para el otro necesitarás que el determinante es multiplicativo.

Solución. El determinante de una matriz con entradas enteras es un número entero. Si la inversa de $A$ tiene entradas enteras, entonces su determinante es un entero. Usando que el determinante es multiplicativo, tendríamos que $$\det(A)\cdot \det(A^{-1}) = \det (I) = 1.$$ La única forma en la que dos enteros tengan producto $1$ es si ambos son $1$ o si ambos son $-1$. Esto muestra una de las implicaciones.

Ahora, supongamos que $A$ tiene determinante $\pm 1$. Si tenemos una matriz $B$ de columnas $C_1,\ldots,C_n$, entonces para $j$ en $\{1,\ldots,n\}$ la $j$-ésima columna de $AB$ es $AC_j$. De este modo, si $D_1,\ldots, D_n$ son las columnas de $A^{-1}$, se debe cumplir para cada $j$ en $\{1,\ldots,n\}$ que $$AD_j= e_j,$$ en donde $e_j$ es el $j$-ésimo elemento de la base canónica. Para cada $j$ fija, esto es un sistema de ecuaciones.

Por las fórmulas de Cramer, la $i$-ésima entrada de $C_j$, que es la entrada $x_{ij}$ de la matriz $A^{-1}$, está dada por $$x_{ij}=\frac{\det(A_{ij})}{\det(A)}=\pm \det(A_{ij}),$$ donde $A_{ij}$ es la matriz obtenida de colocar al vector $e_j$ en la $i$-ésima columna de $A$.

La matriz $A_{ij}$ tiene entradas enteras, así que $x_{ij}=\pm \det(A_{ij})$ es un número entero. Así, $A^{-1}$ es una matriz de entradas enteras.

$\square$

Sistemas de ecuaciones de m x n y teorema de Rouché-Capelli

Hasta aquí, sólo hemos hablando de sistemas de ecuaciones que tienen matrices cuadradas asociadas. También, sólo hemos hablado de los casos en los que no hay solución, o bien en los que cuando la hay es única. Los sistemas de ecuaciones lineales en general tienen comportamientos más interesantes. El siguiente resultado caracteriza de manera elegante todo lo que puede pasar.

Teorema (Rouché-Capelli). Sea $A$ una matriz de $m\times n$ con entradas reales, $(b_1,\ldots,b_m)$ un vector de reales y $(x_1,\ldots,x_n)$ un vector de incógnitas. Supongamos que $A$ tiene rango $r$. Entonces:

  • El sistema $AX=b$ tiene al menos una solución $X_0$ si y sólo si el rango de la matriz de $m\times (n+1)$ obtenida de colocar el vector $b$ como columna al final de la matriz $A$ también tiene rango $r$.
  • El conjunto solución del sistema $AX=(0,0,\ldots,0)$ es un subespacio vectorial $\mathcal{S}$ de $\mathbb{R}^n$ de dimensión $n-r$.
  • Toda solución al sistema $AX=b$ se obtiene de sumar $X_0$ y un elemento de $\mathcal{S}$.

Problema. Encuentra todos los polinomios $p(x)$ con coeficientes reales y de grado a lo más $3$ tales que $p(2)=3$ y $p(3)=2$.

Sugerencia pre-solución. Usa notación efectiva, eligiendo variables para cada uno de los coeficientes de $p(x)$. Luego, enuncia cada hipótesis como una ecuación.

Solución. Tomemos $p(x)=ax^3+bx^2+cx+d$. La hipótesis implica que

$$\begin{cases}
8a+4b+2c+d=p(2)= 3\\
27a+9b+3c+d=p(3)=2.
\end{cases}$$

El rango de la matriz $$\begin{pmatrix} 8 & 4 & 2 & 1\\ 27 & 9 & 3 & 1\end{pmatrix}$$ es a lo más $2$, pues tiene $2$ renglones. Pero es al menos $2$, pues los dos vectores columna $(2,3)$ y $(1,1)$ son linealmente independientes. Exactamente el mismo argumento muestra que la matriz aumentada $$\begin{pmatrix} 8 & 4 & 2 & 1 & 3\\ 27 & 9 & 3 & 1 & 2\end{pmatrix}$$ es de rango $2$. Por el primer punto del teorema de Rouché-Capelli, este sistema tiene solución.

Para encontrar esta solución de manera práctica, fijamos reales $a$ y $b$ y notamos que ahora

$$\begin{cases}
2c+d= 3-8a-4b\\
3c+d=2-27a-9b
\end{cases}$$

es un sistema en $2$ variables, y como $$\det\begin{pmatrix} 2 & 1\\ 3 & 1\end{pmatrix}=-1,$$ tiene una única solución para $c$ y $d$. Al hacer las cuentas, o usar fórmulas de Cramer, obtenemos que
\begin{align*}
c&=-1-19a-5b\\
d&=5+30a+6b.
\end{align*}

Así, concluimos que los polinomios $p(x)$ solución consisten de elegir cualesquiera reales $a$ y $b$ y tomar $$p(x)=ax^3+bx^2-(1+19a+5b)x+(5+20a+6b).$$

$\square$

Por supuesto, para usar este teorema es necesario conocer el rango de la matriz $A$. En el problema tuvimos la suerte de que eso es sencillo. Hablaremos más adelante de varias técnicas para encontrar el rango de matrices.

Más problemas

Puedes encontrar más problemas de sistemas de ecuaciones lineales en el Capítulo 3 y en la Sección 7.6 del libro Essential Linear Algebra de Titu Andreescu.

Álgebra Lineal I: Propiedades del polinomio característico

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuamos con el estudio de eigenvalores y eigenvectores de matrices y trasformaciones lineales. Para ello, estudiaremos más a profundidad el polinomio característico.

Como recordatorio, en una entrada pasada demostramos que si $A$ es una matriz en $M_n(F)$, entonces la expresión $\det (\lambda I_n – A)$ es un polinomio en $\lambda$ de grado $n$ con coeficientes en $F$. A partir de ello, definimos el polinomio característico de $A$ como $$\chi_A(\lambda)=\det(\lambda I_n – A).$$

En esta entrada probaremos algunas propiedades importantes del polinomio característico de matrices. Además, hablaremos de la multiplicidad algebraica de los eigenvalores. Finalmente enunciaremos sin demostración dos teoremas fundamentales en álgebra lineal: el teorema de caracterización de matrices diagonalizables y el teorema de Cayley-Hamilton.

Las raíces del polinomio característico son los eigenvalores

Ya vimos que las raíces del polinomio característico son los eigenvalores. Pero hay que tener cuidado. Deben ser las raíces que estén en el campo en el cual la matriz esté definida. Veamos un ejemplo más.

Problema. Encuentra el polinomio característico y los eigenvalores de la matriz \begin{align*}
\begin{pmatrix}
0&1&0&0\\
2&0&-1&0\\
0& 7 & 0 & 6\\
0 & 0 & 3 & 0
\end{pmatrix}.
\end{align*}

Solución. Debemos encontrar las raíces del polinomio dado por el siguiente determinante:
\begin{align*}
\begin{vmatrix}
\lambda&-1&0&0\\
-2&\lambda&1&0\\
0& -7 & \lambda & -6\\
0 & 0 & -3 & \lambda
\end{vmatrix}.
\end{align*}

Haciendo expansión de Laplace en la primer columna, tenemos que este determinante es igual a

\begin{align*}
\lambda\begin{vmatrix}
\lambda&1&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}
+2\begin{vmatrix}
-1&0&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}.
\end{align*}

Para calcular los determinantes de cada una de las matrices de $3\times 3$ podemos aplicar la fórmula por diagonales para obtener:
\begin{align*}
\lambda\begin{vmatrix}
\lambda&1&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}&=
\lambda(\lambda^3-18\lambda+7\lambda)\\
&=\lambda(\lambda^3-11\lambda)\\
&=\lambda^4-11\lambda^2
\end{align*}

y
\begin{align*}
2\begin{vmatrix}
-1&0&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}&=
2(-\lambda^2+18)\\
&=-2\lambda^2+36.
\end{align*}

Concluimos que el polinomio característico es
\begin{align*}
\lambda^4-13\lambda^2+36&=(\lambda^2-4)(\lambda^2-9)\\
&=(\lambda+2)(\lambda-2)(\lambda+3)(\lambda-3).
\end{align*}

De esta factorización, las raíces del polinomio (y por lo tanto los eigenvalores que buscamos) son $-2,2,-3,3$.

Si quisiéramos encontrar un eigenvector para, por ejemplo, el eigenvalor $-2$, tenemos que encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo $$(-2I_n-A)X=0.$$

$\square$

Propiedades del polinomio característico

Veamos ahora algunas propiedades importantes del polinomio característico. El primer resultado habla del polinomio característico de matrices triangulares superiores. Un resultado análogo se cumple para matrices inferiores, y su enunciado y demostración quedan como tarea moral.

Proposición. Si $A=[a_{ij}]$ es una matriz triangular superior en $M_n(F)$, entonces su polinomio característico es $$\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).$$

Demostración. Como $A$ es triangular superior, entonces $\lambda I_n -A$ también, y sus entradas diagonales son precisamente $\lambda-a_{ii}$ para $i=1,\ldots,n$. Como el determinante de una matriz triangular es el producto de sus entradas en la diagonal, tenemos que $$\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).$$

$\square$

Como el polinomio característico es un determinante, podemos aprovechar otras propiedades de determinantes para obtener otros resultados.

Proposición. Una matriz y su transpuesta tienen el mismo polinomio característico.

Demostración. Sea $A$ una matriz en $M_n(F)$. Una matriz y su transpuesta tienen el mismo determinante. Además, transponer es una transformación lineal. De este modo:
\begin{align*}
\chi_A(\lambda)&=\det(\lambda I_n – A)\\
&=\det({^t(\lambda I_n-A)})\\
&=\det(\lambda({^tI_n})-{^tA})\\
&=\det(\lambda I_n – {^tA})\\
&=\chi_{^tA}(\lambda).
\end{align*}

$\square$

Ya antes habíamos mostrado que matrices similares tienen los mismos eigenvalores, pero que dos polinomios tengan las mismas raíces no necesariamente implica que sean iguales. Por ejemplo, los polinomios $$(x-1)^2(x+1) \quad \text{y} \quad (x+1)^2(x-1)$$ tienen las mismas raíces, pero no son iguales.

De esta forma, el siguiente resultado es más fuerte de lo que ya habíamos demostrado antes.

Proposición. Sean $A$ y $P$ matrices en $M_n(F)$ con $P$ invertible. Entonces $A$ y $P^{-1}AP$ tienen el mismo polinomio característico.

Demostración. El resultado se sigue de la siguiente cadena de igualdades, en donde usamos que $\det(P)\det(P^{-1})=1$ y que el determinante es multiplicativo:

\begin{align*}
\chi_{P^{-1}AP}(\lambda) &= \det(P) \chi_{P^{-1}AP}(\lambda) \det(P)^{-1}\\
&=\det(P) \det(\lambda I_n – P^{-1}AP) \det(P^{-1})\\
&=\det(P(\lambda I_n – P^{-1}AP)P^{-1})\\
&=\det(\lambda PP^{-1}-PP^{-1}APP^{-1})\\
&=\det(\lambda I_n – A)\\
&=\chi_{A}(\lambda)
\end{align*}

$\square$

Ten cuidado. El determinante es multiplicativo, pero el polinomio característico no es multiplicativo. Esto es evidente por el siguiente argumento. Si $A$ y $B$ son matrices en $M_n(F)$, entonces $\chi_A(\lambda)$ y $\chi_B(\lambda)$ son cada uno polinomios de grado $n$, así que su producto es un polinomio de grado $2n$, que por lo tanto no puede ser igual al polinomio característico $\chi_{AB}(\lambda)$ pues este es de grado $n$. Así mismo, $\chi_{A^2}(\lambda)$ no es $\chi_{A}(\lambda)^2$.

Una última propiedad que nos interesa es mostrar que el determinante de una matriz y su traza aparecen en los coeficientes del polinomio característico.

Teorema. Sea $A$ una matriz en $M_n(F)$ y $\chi_A(\lambda)$ su polinomio característico. Entonces $\chi_{A}(\lambda)$ es de la forma $$\lambda^n-(\text{tr} A) \lambda^{n-1}+\ldots+(-1)^n \det A.$$

Demostración. Tenemos que mostrar tres cosas:

  • El polinomio $\chi_{A}$ es mónico, es decir, tiene coeficiente principal $1$,
  • que el coeficiente del término de grado $n-1$ es $-\text{tr} A$ y
  • el coeficiente libre es $(-1)^n \det A$.

El coeficiente libre de un polinomio es su evaluación en cero. Usando la homogeneidad del determinante, dicho coeficiente es:
\begin{align*}
\chi_A(0)&=\det(0\cdot I_n-A)\\
&=\det(-A)\\
&=(-1)^n\det(A).
\end{align*}

Esto muestra el tercer punto.

Para el coeficiente del término de grado $n-1$ y el coeficiente principal analicemos con más detalle la fórmula del determinante
\begin{align*}
\begin{vmatrix}
\lambda – a_{11} & -a_{12} & \ldots & -a_{1n}\\
-a_{21} & \lambda – a_{22} & \ldots & -a_{1n}\\
\vdots & & \ddots & \\
-a_{n1} & -a_{n2} & \ldots & \lambda – a_{nn}
\end{vmatrix}
\end{align*}
en términos de permutaciones.

Como discutimos anteriormente, la única forma de obtener un término de grado $n$ es cuando elegimos a la permutación identidad. Pero esto también es cierto para términos de grado $n-1$, pues si no elegimos a la identidad, entonces la permutación elige por lo menos dos entradas fuera de la diagonal, y entonces el grado del producto de entradas correspondiente es a lo más $n-2$.

De este modo, los únicos términos de grado $n$ y $n-1$ vienen del producto $$(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).$$

El único término de grado $n$ viene de elegir $\lambda$ en todos los factores, y se obtiene el sumando $\lambda^n$, lo cual muestra que el polinomio es mónico.

Los únicos términos de grado $n-1$ se obtienen de elegir $\lambda$ en $n-1$ factores y un término del estilo $-a_{ii}$. Al considerar todas las opciones, el término de grado $n-1$ es $$-(a_{11}+a_{22}+\ldots+a_{nn})\lambda^{n-1}=-(\text{tr} A) \lambda^{n-1},$$ que era lo último que debíamos mostrar.

$\square$

Ejemplo. El teorema anterior muestra que si $A$ es una matriz en $M_2(F)$, es decir, de $2\times 2$, entonces $$\chi_A(\lambda)=\lambda^2 – (\text{tr}A) \lambda +\det A.$$ De manera explícita en términos de las entradas tendríamos entonces que si $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, entonces su polinomio característico es $$\lambda^2-(a+d)\lambda+(ad-bc).$$

Como ejemplo, si $A=\begin{pmatrix} 5 & 2 \\ -8 & -3 \end{pmatrix}$, entonces su polinomio característico es $$\lambda^2 -2\lambda +1=(\lambda-1)^2.$$ Su único eigenvalor sería entonces $1$.

$\square$

Suma y producto de eigenvalores de matrices complejas

A veces queremos referirnos al conjunto de todos los eigenvalores de una matriz.

Definición. Para $A$ una matriz en $M_n(F)$, el espectro de $A$ es el conjunto de eigenvalores de $A$. Lo denotamos por $\text{spec} (A)$

Tenemos una definición análoga para el espectro de una transformación lineal. Esa definición da un poco de intuición de por qué los teoremas de diagonalización de matrices se llaman teoremas espectrales. La siguiente definición habla de un sentido en el cual un eigenvalor «se repite».

Definición. Sea $A$ una matriz en $M_n(F)$ y $\lambda$ un eigenvalor de $A$. La multiplicidad algebraica de $\lambda$ es el mayor entero $m_{\lambda}$ tal que $(x-\lambda)^{m_\lambda}$ divide a $\chi_A(x)$.

Cuando estamos en $\mathbb{C}$, por el teorema fundamental del álgebra todo polinomio de grado $n$ se puede factorizar en exactamente $n$ términos lineales. Además, los polinomios característicos son mónicos. De este modo, si tenemos una matriz $A$ en $M_n(\mathbb{C})$, su polinomio característico se puede factorizar como sigue:

$$\chi_A(\lambda) = \prod_{j=1}^n (\lambda-\lambda_j),$$

en donde $\lambda_1,\ldots,\lambda_n$ son eigenvalores de $A$, no necesariamente distintos, pero en donde cada eigenvalor aparece en tantos términos como su multiplicidad algebraica.

Desarrollando parcialmente el producto del lado derecho, tenemos que el coeficiente de $\lambda^{n-1}$ es $$-(\lambda_1+\ldots+\lambda_n)$$ y que el coeficiente libre es $$(-1)^n\lambda_1\cdot\ldots\cdot\lambda_n.$$ Combinando este resultado con el de la sección anterior y agrupando eigenvalores por multiplicidad, se demuestra el siguiente resultado importante. Los detalles de la demostración quedan como tarea moral.

Teorema. Sea $A$ una matriz en $M_n(\mathbb{C})$

  • La traza $A$ es igual a la suma de los eigenvalores, contando multiplicidades algebraicas, es decir: $$\text{tr} A = \sum_{\lambda \in \text{spec}(A)} m_{\lambda} \lambda.$$
  • El determinante de $A$ es igual al producto de los eigenvalores, contando multiplicidades algebraicas, es decir: $$\det A = \prod_{\lambda \in \text{spec} (A)} \lambda^{m_{\lambda}}.$$

Veamos un problema en donde se usa este teorema.

Problema. Sea $A$ una matriz en $M_n(\mathbb{C})$ tal que $A^2-4A+3I_n=0$. Muestra que el determinante de $A$ es una potencia de $3$.

Solución. Sea $\lambda$ un eigenvalor de $A$ y $v$ un eigenvector para $\lambda$. Tenemos que $$A^2v=A(\lambda v) = \lambda(Av)=\lambda^2 v.$$ De esta forma, tendríamos que
\begin{align*}
0&=(A^2-4A+3I_n)v\\
&=(\lambda^2 v – 4\lambda v + 3 v)\\
&=(\lambda^2-4\lambda+3) v.
\end{align*}

Como $v$ no es el vector $0$, debe suceder que $\lambda^2-4\lambda+3=0$. Como $\lambda^2-4\lambda+3 = (\lambda-3)(\lambda-1)$, entonces $\lambda=1$ ó $\lambda=3$. Con esto concluimos que los únicos posibles eigenvectores de $A$ son $1$ y $3$.

Como $A$ es una matriz en $\mathbb{C}$, tenemos entonces que su polinomio característico es de la forma $(x-1)^a(x-3)^b$ con $a$ y $b$ enteros no negativos tales que $a+b=n$. Pero entonces por el teorema de producto de eigenvalores, tenemos que el determinante es $1^a\cdot 3^b=3^b$, con lo que queda demostrado que es una potencia de $3$.

$\square$

Dos teoremas fundamentales de álgebra lineal (opcional)

Tenemos todo lo necesario para enunciar dos resultados de álgebra lineal. Sin embargo, las demostraciones de estos resultados requieren de más teoría, y se ven en un siguiente curso. No los demostraremos ni los usaremos en el resto de este curso, pero te pueden servir para anticipar el tipo de resultados que verás al continuar tu formación en álgebra lineal.

El primer resultado fundamental es una caracterización de las matrices que pueden diagonalizarse. Para ello necesitamos una definición adicional. Hay otro sentido en el cual un eigenvalor $\lambda$ de una matriz $A$ puede repetirse.

Definición. Sea $A$ una matriz en $M_n(F)$ y $\lambda$ un eigenvalor de $A$. La multiplicidad geométrica de $\lambda$ es la dimensión del kernel de la matriz $\lambda I_n -A$ pensada como transformación lineal.

En estos términos, el primer teorema al que nos referimos queda enunciado como sigue.

Teorema. Una matriz $A$ en $M_n(F)$ es diagonalizable si y sólo si su polinomio característico $\chi_A(\lambda)$ se puede factorizar en términos lineales en $F[\lambda]$ y además, para cada eigenvalor, su multiplicidad algebraica es igual a su multiplicidad geométrica.

Ejemplo. La matriz $$A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$ tiene como polinomio característico a $\chi_A(\lambda)=\lambda^2+1$. Este polinomio no se puede factorizar en $\mathbb{R}[x]$, así que $A$ no es diagonalizable con matrices de entradas reales.

Sin embargo, en $\mathbb{C}$ tenemos la factorización en términos lineales $\lambda^2+1=(\lambda+i)(\lambda-i),$ que dice que $i$ y $-i$ son eigenvalores de multiplicidad algebraica $1$. Se puede mostrar que la multiplicidad geométrica también es $1$. Así, $A$ sí es diagonalizable con matrices de entradas complejas.

$\square$

El segundo resultado fundamental dice que «cualquier matriz se anula en su polinomio característico». Para definir correctamente esto, tenemos que decir qué quiere decir evaluar un polinomio en una matriz. La definición es más o menos natural.

Definición. Si $A$ es una matriz en $M_n(F)$ y $p$ es un polinomio en $F[\lambda]$ de la forma $$p(\lambda)=a_0+a_1\lambda+a_2\lambda^2+\ldots+a_n\lambda^n,$$ definimos a la matriz $p(A)$ como la matriz $$a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.$$

En estos términos, el resultado queda enunciado como sigue.

Teorema (Cayley-Hamilton). Si $A$ es una matriz en $M_n(F)$ y $\chi_A(x)$ es su polinomio característico, entonces $$\chi_A(A)=O_n.$$

Ejemplo. Tomemos de nuevo a la matriz $$A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$ del ejemplo anterior. Su polinomio característico es $x^2+1$. En efecto, verificamos que se cumple el teorema de Cayley-Hamilton pues:
\begin{align*}
A^2+I_2 &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}+\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\end{align*}

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Enuncia y demuestra cómo es el polinomio característico de una matriz triangular inferior.
  • Completa los detalles de la demostración del teorema de suma y producto de eigenvalores. Úsalo para encontrar la suma y producto (con multiplicidades) de los eigenvalores de la matriz $$\begin{pmatrix}5 & 0 & -1 & 2 \\ 3 & -2 & 1 & -2 \\ 0 & 0 & 0 & 5\\ 0 & 2 & 4 & 0 \end{pmatrix}.$$
  • Sea $A$ una matriz en $M_n(F)$. ¿Cómo es el polinomio característico de $-A$ en términos del polinomio característico de $A$?
  • Tomemos $A$ una matriz en $M_n(F)$ y $k$ un entero positivo. Muestra que si $\lambda$ es un eigenvalor de la matriz $A$, entonces $\lambda^k$ es un eigenvalor de la matriz $A^k$.

De la sección opcional:

  • Demuestra, haciendo todas las cuentas, el caso particular del teorema de Cayley-Hamilton para matrices de $2\times 2$.
  • Ya sabemos calcular el polinomio característico de matrices diagonales. Muestra el teorema de Cayley-Hamilton en este caso particular.
  • Las matrices diagonales trivialmente son diagonalizables. Muestra que la multiplicidad algebraica de sus eigenvalores en efecto coincide con la multiplicidad geométrica.

Más adelante…

En esta entrada estudiamos algunas propiedades de los eigenvalores y eigenvectores de transformaciones lineales y matrices; vimos cómo obtener eigenvalores de una matriz a partir del polinomio característico y enunciamos dos teoremas muy importantes como parte opcional del curso.

En la siguiente entrada haremos varios ejercicios para desarrollar un poco de práctica al obtener los eigenvalores y eigenvectores de una transformación lineal y de una matriz.

Entradas relacionadas