Archivo de la etiqueta: diagonalización

Álgebra Lineal II: Unicidad de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan y demostramos la existencia de dicha forma bajo ciertas hipótesis. Como corolario, quedó pensar cuál es la versión para matrices. En esta entrada enunciamos la versión para matrices (totalmente equivalente a la de transformaciones lineales) y nos enfocamos en mostrar la unicidad de la forma canónica de Jordan.

Unicidad de la forma canónica de Jordan

El siguiente teorema es totalmente análogo al enunciado en la entrada anterior. Recuerda que $\leq$ es un orden total fijo de $F$ (en $\mathbb{R}$, es el orden usual).

Teorema. Sea $A$ una matriz $M_n(F)$ cuyo polinomio característico $\chi_A(X)$ se divide en $F$. Entonces, existen únicos valores $\lambda_1\leq \ldots \leq \lambda_n$ en $F$ y únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} para los cuales $A$ es similar a la siguiente matriz de bloques de Jordan:

$$\begin{pmatrix} J_{\lambda_1,k_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{\lambda_d,k_d}\end{pmatrix}.$$

Usaremos esta versión para demostrar la unicidad, lo cual también implicará la unicidad para la versión de transformaciones lineales.

Mediante la demostración de existencia de la entrada anterior, llegamos a que si el polinomio característico de $A$ es

$$\chi_A(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r},$$

entonces $A$ es similar a una matriz conformada por matrices de bloques de Jordan $J_1,J_2,\ldots,J_r$, en donde cada $J_i$ es de tamaño $m_i$ y de bloques de Jordan de eigenvalor $\lambda_i$.

Si $A$ fuera similar a otra matriz $K$ de bloques de Jordan, podríamos agrupar por eigenvalores de los bloques $\kappa_1< \ldots < \kappa_s$ en matrices de bloques de Jordan tamaños $o_1,\ldots,o_s$, digamos $K_1,\ldots,K_s$. El polinomio característico de $K$ sería entonces

$$\chi_{K}(X)=(X-\kappa_1)^{o_1}(X-\kappa_2)^{o_2}\cdots(X-\kappa_s)^{o_s}.$$

Pero $K$ es similar a $A$, y entonces deben tener el mismo polinomio característico, así que conciden en raíces y multiplicidad. Esto demuestra que $r=s$ y como los $\lambda_i$ y los $\kappa_i$ están ordenados, también demuestra las igualdades $\lambda_i=\kappa_i$ y $m_i=o_i$ para todo $i\in\{1,\ldots,r\}.$

Sólo nos queda argumentar la igualdad entre cada $J_i$ y $K_i$ para $i\in\{1,\ldots,r\}$. Pero ambas una forma canónica de Jordan para la transformación nilpotente que se obtiene de restringir $T_{A-\lambda_i I}$ a $\ker(T_{A-\lambda_i I}^{m_i})$. Por la unicidad que demostramos para la forma canónica de Jordan para transformaciones nilpotentes, concluimos que $J_i=K_i$. Esto termina la demostración de la unicidad de la forma canónica de Jordan.

$\square$

Una receta para encontrar la forma canónica de Jordan

Ya con el teorema demostrado, ¿cómo juntamos todas las ideas para encontrar la forma canónica de Jordan de una matriz $A$ en $M_n(F)$ cuyo polinomio característico se divida en $F$? Podemos proceder como sigue.

  1. Encontramos el polinomio característico $\chi_A(X)$ y su factorización, digamos $$\chi_A(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r}.$$
  2. Nos enfocamos en encontrar las matrices de bloque de Jordan $J_i$ para cada eigenvalor $\lambda_i$. Sabemos que la matriz $J_i$ será de tamaño $m_i$.
  3. Para saber exactamente cuál matriz de bloques de Jordan es $J_i$, pensaremos en que tiene $b_1,b_2,\ldots,b_{m_i}$ bloques de Jordan de eigenvalor $\lambda_i$ de tamaños $1,2, \ldots,m_i$. Consideramos la matriz $A_i=A-\lambda_i I$. Los $b_1,\ldots,b_{m_i}$ son la solución al siguiente sistema de ecuaciones en las variables $x_1,\ldots,x_{m_i}$.
    \begin{align*}
    m_i&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + m_i \cdot x_{m_i}\\
    m_i-n+\text{rango}(A_i-\lambda_i I)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (m_i-1) \cdot x_{m_i}\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (m_i-2)\cdot x_{m_i}\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (m_i-3)\cdot x_{m_i}\\
    &\vdots\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^{m_i-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_{m_i}.
    \end{align*}
  4. Juntamos todos los $J_i$ en una misma matriz y los ordenamos apropiadamente.

El paso número $3$ está motivado por lo que sabemos de las matrices nilpotentes, y es bueno que pienses por qué se estudia específicamente ese sistema de ecuaciones para cada eigenvalor $\lambda_i$ y multiplicidad $m_i$.

Ejemplo de obtener la forma canónica de Jordan

Veamos un ejemplo del procedimiento descrito en la sección anterior.

Ejemplo. Encontraremos la forma canónica de Jordan de la siguiente matriz: $$A=\begin{pmatrix}-226 & -10 & -246 & 39 & 246\\234 & 23 & 236 & -46 & -236\\-198 & -20 & -192 & 41 & 195\\-93 & 10 & -122 & 10 & 122\\-385 & -30 & -393 & 74 & 396\end{pmatrix}.$$

Con herramientas computacionales, podemos darnos cuenta de que el polinomio característico de esta matriz es $$\chi_A(X)=X^{5} – 11 X^{4} + 46 X^{3} – 90 X^{2} + 81 X- 27.$$

Este polinomio se puede factorizar como $$(X-1)^2(X-3)^3.$$ Así, la submatriz de bloques de Jordan $J_1$ de eigenvalor $1$ tendrá tamaño $2$ y la $J_3$ de eigenvalor $3$ tendrá tamaño $3$. Pero, ¿de qué tamaño son cada uno de los bloques de Jordan en cada una de estas matrices?

Para respondernos esto para $J_1$, notamos que sus bloques son de tamaño $1$ y $2$ solamente. Si hay $b_1$ bloques de tamaño $1$ y $b_2$ bloques de tamaño $2$, por la teoría desarrollada arriba tendremos:

\begin{align*}
b_1+2b_2&=2\\
b_2&=2-5+\text{rango}(A-I)=2-5+4=1.
\end{align*}

El rango de $A-I$ lo obtuvimos computacionalmente, pero recuerda que también puede ser obtenido con reducción gaussiana. Resolviendo el sistema, $b_2=1$ y entonces $b_1=0$. Concluimos que en $J_1$ hay un bloque de Jordan de tamaño $2$.

Para $J_3$, reciclemos las variables $b_i$ (para no introducir nuevas). Los bloques pueden ser de tamaño $1,2,3$. Supongamos que de estos tamaños respectivamente hay $b_1,b_2,b_3$ bloques. Los $b_i$ cumplen:

\begin{align*}
b_1+2b_2+3b_3&=3\\
b_2+2b_3&=3-5+\text{rango}(A-3I)=3-5+3=1\\
b_3&=3-5+\text{rango}((A-3I)^2)=3-5+2=0.
\end{align*}

Así, $b_3=0$, y en consecuencia $b_2=1$ y entonces $b_1=1$. Concluimos que $J_3$ tiene un bloque de tamaño $1$ y uno de tamaño $3$. Por lo tanto, la forma canónica de Jordan de $A$ es:

$$\begin{pmatrix} J_1 & 0 \\ 0 & J_3 \end{pmatrix} = \begin{pmatrix} J_{1,2} & 0 & 0 \\ 0 & J_{3,1} & 0 \\ 0 & 0 & J_{3,2} \end{pmatrix} = \begin{pmatrix}1 & 1 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0\\0 & 0 & 3 & 0 & 0\\0 & 0 & 0 & 3 & 1\\0 & 0 & 0 & 0 & 3\end{pmatrix}$$

$\triangle$

Otro problema sobre forma canónica de Jordan

La receta anterior funciona en general y da la forma canónica de Jordan. Esto es algo que probablemente en la práctica en aplicaciones no tendrás que hacer manualmente nunca, pues hay herramientas computacionales que te pueden ayudar. Sin embargo, es importante entender con profundidad el teorema y la receta de manera teórica, pues hay problemas conceptuales en los que no podrás usar herramientas computacionales. A continuación veremos un ejemplo.

Problema. Sea $A$ una matriz en $M_6(\mathbb{R})$ con polinomio característico $$\chi_A(X)=X^6-2X^4+X^2.$$

  • ¿Cuántas posibilidades hay para la forma canónica de Jordan de $A$?
  • Demuestra que si el rango de $A$ es $5$, entonces $A$ no es diagonalizable.

Solución. Podemos factorizar el polinomio característico de $A$ como sigue:

$$\chi_A(X)=X^2(X+1)^2(X-1)^2.$$

Así, la forma canónica de Jordan está conformada por una matriz de bloques de Jordan $J_0$ de eigenvalor $0$ y tamaño $2$; una $J_1$ de eigenvalor $1$ y tamaño $2$; y una $J_{-1}$ de eigenvalor $-1$ y tamaño $2$.

Cada $J_i$ tiene dos chances: o es un bloque de Jordan de tamaño $2$, o son dos bloques de Jordan de tamaño $1$. Así, en total tenemos $2\cdot 2 \cdot 2=8$ posibilidades.

Si $A$ es de rango $5$, entonces tendríamos en las cuentas de cantidad de bloques $b_1$ y $b_2$ para eigenvalor $0$ que

\begin{align*}
b_1+2b_2&=2\\
b_2&=2-6+\text{rango}(A)=2-6+5=1,
\end{align*}

de donde en $J_0$ tendría $1$ bloque de tamaño $2$ y ninguno de tamaño $1$. Si $A$ fuera diagonalizable, su diagonalización sería una forma canónica de Jordan donde para eigenvalor $0$ se tendrían $2$ bloques de tamaño $1$ y ninguno de tamaño $2$. Así, $A$ tendría dos formas canónicas de Jordan distintas, lo cual es imposible.

$\square$

Más adelante…

Con esta entrada terminamos de demostrar el teorema de la forma canónica de Jordan, uno de los teoremas más bonitos de álgebra lineal. ¿Te das cuenta de todo lo que utilizamos en su demostración? Forma matricial de transformaciones lineales, el teorema de Cayley-Hamilton, polinomio característico, subespacios estables, teoría de dualidad, sistemas de ecuaciones lineales, resultados auxiliares de polinomios, etc. Es un resultado verdaderamente integrador.

En la siguiente entrada, la última del curso, hablaremos de algunas de las consecuencias del teorema de la forma canónica de Jordan. Discutiremos cómo lo podemos utilizar para clasificar a las matrices por similaridad. Veremos una aplicación con respecto a una matriz y su transpuesta. También, esbozaremos un poco de por qué en cierto sentido el resultado no sólo vale para las matrices cuyo polinomio se divide sobre el campo, sino que para cualquier matriz. Con ello terminaremos el curso.

Tarea moral

  1. Calcula la forma canónica de Jordan $J$ de la matriz $$A=\begin{pmatrix} 1 & 0 & -3 \\ 1 & -1 & -6 \\ -1 & 2 & 5 \end{pmatrix}.$$ Además de encontrar $J$, encuentra de manera explícita una matriz invertible $P$ tal que $A=P^{-1}JP$.
  2. Calcula la forma canónica de Jordan de la matriz $$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
  3. Explica y demuestra cómo obtener lo siguiente para una matriz de bloques de Jordan:
    • Su polinomio característico.
    • Su polinomio mínimo.
    • Su determinante.
    • Su traza.
    • Sus eigenespacios.
  4. Justifica con más detalle por qué la receta que se propone para calcular la forma canónica de Jordan en efecto funciona. Necesitarás varios de los argumentos que dimos en la entrada anterior.
  5. Demuestra que una matriz $A\in M_n(F)$ para la cual su polinomio característico se divide en $F$ es diagonalizable si y sólo si cada bloque de cada matriz de bloques de la forma canónica de Jordan tiene tamaño $1$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Cálculo Diferencial e Integral III: Representaciones matriciales, eigenvalores y eigenvectores

Por Alejandro Antonio Estrada Franco

Introducción

Como se ha mencionado anteriormente el objetivo de introducir ideas de álgebra lineal en cálculo diferencial es poder establecer una transformación lineal que sea la mejor aproximación lineal en un punto a una función dada. Esto nos ayudará a entender a la función dada en el punto en términos de otra función «más simple». Pero así mismo, las transformaciones lineales pueden ellas mismas pensarse en términos de transformaciones más sencillas. En esta entrada revisaremos esta idea y la conectaremos con la noción de eigenvectores.

Por un lado, recordaremos cómo es que una transformación lineal puede ser representada mediante una matriz una vez que se ha elegido una base del espacio vectorial. Luego, hablaremos de cómo elegir, de entre todas las bases, aquella que nos de una representación matricial lo más sencilla posible.

Representación matricial de las transformaciones lineales

Comencemos esta entrada repasando la importante relación entre transformaciones lineales y matrices. Denotaremos como $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ al espacio vectorial de transformaciones lineales de $\mathbb{R}^n$ a $\mathbb{R}^m$.

Si tomamos cualquier transformación lineal $T\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, entonces los valores de $T$ en cualquier vector de $\mathbb{R}^n$ quedan totalmente determinados por los valores de $T$ en los elementos de alguna base $\beta$ para $\mathbb{R}^n$. Tomemos $\gamma=\{\bar{w}_{1},\dots ,\bar{w}_{m}\}$ una base ordenada para $\mathbb{R}^m$, y $\beta=\{\bar{e}_{1},\dots ,\bar{e}_{n}\}$ una base ordenada para $\mathbb{R}^n$. Para cada $\bar{e}_{k}$ tenemos:

$$\begin{equation} T(\bar{e}_{k})=\sum_{i=1}^{m}t_{ik}\bar{w}_{i} \end{equation},$$

para algunos escalares $t_{1k},\dots ,t_{mk}$ que justo son las componentes de $T(\bar{e}_{k})$ en la base $\gamma$. Con estos escalares, podemos considerar la matriz: \[ \text{Mat}_{\gamma,\beta}(T)= \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \]

Esta es llamada la representación matricial de la transformación $T$ con respecto a las bases $\beta$ y $\gamma$. Esta matriz ayuda a calcular $T$ en cualquier vector de $\mathbb{R}^n$ como explicamos a continuación.

Para cada $\bar{v}\in \mathbb{R}^n$, podemos expresarlo como combinación lineal de elementos de la base $\beta$ digamos que $\bar{v}=\sum_{i=1}^{n} v_{i}\bar{e}_{i}$. Mediante estos coeficientes, podemos entonces asociar a $\bar{v}$ al siguiente vector columna de $\mathbb{R}^n$ \[ [\bar{v}]_{\beta}=\begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}, \]

al que llamamos el vector de coordenadas de $\bar{v}$ con respecto a la base $\beta$.

Realicemos por un lado el siguiente cálculo:

\[ \text{Mat}_{\gamma,\beta}(T)[\bar{v}]_{\beta}=\begin{pmatrix} t_{11} & \dots & t_{1n}\\ \vdots & \ddots & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}=\begin{pmatrix} \displaystyle\sum_{k=1}^{n}t_{1k}v_{k} \\ \vdots \\ \displaystyle\sum_{k=1}^{n}t_{mk}v_{k}.\end{pmatrix} \]

Por otro lado tenemos lo siguiente:

\begin{align*}
T(\bar{v})&=T \left( \sum_{k=1}^{n}v_{k}\bar{e}_{k} \right)\\&=\sum_{k=1}^{n}v_{k}T(\bar{e}_{k})\\&=\sum_{k=1}^{n}v_{k}T\left( \sum_{i=1}^{m}t_{ik}\bar{w}_{i} \right)\\&=\sum_{i=1}^{m}\left( \sum_{k=1}^{n}v_{k}t_{ik} \right)\bar{w}_{i}.
\end{align*}

Juntando ambos cálculos: \[ [T(\bar{v})]_{\gamma}=\begin{pmatrix} \sum_{k=1}^{n}v_{k}t_{1k} \\ \vdots \\ \sum_{k=1}^{n}v_{k}t_{mk} \end{pmatrix} = \text{Mat}_{\gamma,\beta}(T)[\bar{v}]_{\beta}.\]

En otras palabras, aplicar $T$ a un vector $\bar{v}$ equivale a multiplicar $\text{Mat}_{\gamma,\beta}$ por el vector columna asociado a $\bar{v}$ en la base $\beta$, en el sentido de que tras hacer este producto recuperamos el vector de coordenadas para $T(\bar{v})$ en la base $\gamma$.

Isomorfismo entre transformaciones lineales y matrices

Con las operaciones de suma y multiplicación por escalar que vimos en la entrada de Matrices, se tiene que $M_{m,n}\left( \mathbb{R} \right)$ es un espacio vectorial sobre $\mathbb{R}$. De igual manera $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ es un espacio vectorial sobre $\mathbb{R}$ con las siguientes operaciones:

  • Si $T$ y $U$ son dos transformaciones, la transformación $T+U$ es aquella que envía a todo vector $\bar{v}\in \mathbb{R}^n$ al vector $T(\bar{v})+U(\bar{v})$.
  • Si $r\in \mathbb{R}$ la transformación $rT$ es la que a todo $\bar{v}\in \mathbb{R}^n$ lo envía al vector $rT(\bar{v})$.

Queda como ejercicio que verifiques que esto dota efectivamente a $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ de la estructura de espacio vectorial.

A continuación veremos que estos dos espacios vectoriales son, prácticamente, el mismo. Lo que haremos es construir una función $$\Phi :M_{m,n}\left( \mathbb{R} \right) \to\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$$ que sea biyectiva y que preserve las operaciones de suma y de producto escalar.

Para ello, tomemos una base $\beta=\{\bar{e}_1,\ldots,\bar{e}_n\}$ de $\mathbb{R}^{n}$ y una base $\gamma=\{\bar{u}_1,\ldots,\bar{u}_m\}$ de $\mathbb{R}^m$. Tomemos una matriz $A\in M_{m,n}(\mathbb{R})$. Explicaremos a continuación cómo construir la transformación $\Phi(A)$, para lo cual diremos qué hace con cada elemento de la base $\beta$. Tomaremos aquella transformación lineal $T_A\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ tal que

$$T_A(\bar{e}_j)=\sum_{i=1}^n a_{ij} \bar{u}_i.$$

Tomamos entonces $\Phi(A)=T_A$. Veamos que $\Phi$ tiene todas las propiedades que queremos.

  • $\Phi$ es suprayectiva. Si tenemos una transformación $T:\mathbb{R}^n\to \mathbb{R}^m$, entonces por la construcción anterior se tiene que su forma matricial $A:=\text{Mat}_{\gamma,\beta}(T)$ justo cumple $T_A=T$, de modo que $\Phi(A)=T$.
  • $\Phi$ es inyectiva. Si $A$ y $B$ son matrices distintas, entonces difieren en alguna entrada, digamos $(i,j)$. Pero entonces $T_A$ y $T_B$ difieren ya que $T_A(\bar{e}_j)\neq T_B(\bar{e}_j)$ ya que en las combinaciones lineales creadas hay un coeficiente distinto. Así, $\Phi(A)\neq \Phi(B)$.
  • $\Phi $ es lineal. Para $r\in \mathbb{R}$, $A$ y $B$ matrices con entradas $a_{ij}$ y $b_{ij}$, respectivamente, se cumple que $\Phi \left( rA+B \right)=T_{(rA+B)}$ y entonces se satisface para cada $j=1,\dots ,n$ lo siguiente:
    \begin{align*}
    (rA+B)[\bar{e}_{j}]_{\beta}&=rA[\bar{e}_{j}]_{\beta}+B[\bar{e}_{j}]_{\beta}\\&=r[T_A(\bar{e}_{i})]_{\gamma}+[T_{B}(\bar{e}_{i})]_{\gamma}.
    \end{align*}
    Por tanto para cada $\bar{e}_{i}$ tenemos que $$T_{(rA+B)}(\bar{e}_{i})=rT_{A}(\bar{e}_{i})+T_{B}(\bar{e}_{i})$$ y en consecuencia $$T_{(rA+B)}=rT_{A}+T_{B}.$$ Así $$\Phi (rA+B)=r\Phi (A)+\Phi(B).$$

Todo lo anterior implica que $M_{m,n}\left( \mathbb{R} \right)\simeq \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, es decir, que ambos espacios vectoriales son isomorfos.

En búsqueda de una matriz sencilla

Por lo que hemos platicado hasta ahora, a cada transformación lineal le corresponde una matriz, y viceversa. De hecho, esta asociación respeta operaciones como la suma y el producto por escalar. Esta equivalencia está dada a partir de la función $\Phi$ encontrada en la sección anterior.

Si $\Phi $ es biyectiva, ¿por qué hablamos entonces de encontrar una representación matricial simple para una transformación lineal $T$? Esto parecería no tener sentido, pues a cada transformación le corresponde una y sólo una matriz. Sin embargo, esto es cierto únicamente tras haber fijado las bases $\beta$ y $\gamma$ para $\mathbb{R}^n$ y $\mathbb{R}^m$, respectivamente. Así, dependiendo de la elección de las bases las representaciones matriciales cambian y si tenemos una transformación lineal $T$, es posible que querramos encontrar bases $\beta$ y $\gamma$ en donde la representación matricial sea sencilla.

Nos enfocaremos únicamente en transformaciones lineales que van de un espacio vectorial a sí mismo. Tomemos entonces $T:\mathbb{R}^n\to \mathbb{R}^n$ y una base $\beta$ de $\mathbb{R}^n$. Por simplicidad, escribiremos $\text{Mat}_{\beta, \beta}(T)$ simplemente como $\text{Mat}_{\beta}(T)$. Hay propiedades de $T$ que podemos leer en su matriz $\text{Mat}_{\beta}(T)$ y que no dependen de la base $\beta$ que hayamos elegido. Si con una base $\beta$ especial resulta que $\text{Mat}_{\beta}(T)$ es muy sencilla, entonces podremos leer estas propiedades de $T$ muy fácilmente. Un ejemplo es la siguiente proposición, la cual queda como tarea moral.

Proposición. La transformación lineal $T:\mathbb{R}^n\to\mathbb{R}^n$ es invertible si y sólo si $\text{Mat}_{\beta}(T)$ es invertible.

Si $A=\text{Mat}_{\beta}(T)$ fuera muy muy sencilla, por ejemplo, si fuera una matriz diagonal, entonces podríamos saber la invertibilidad de $T$ sabiendo la invertibilidad de $A$, y la de $A$ sería muy fácil de ver pues por ser matriz diagonal bastaría hacer el producto de las entradas de su diagonal para obtener su determinante y estudiar si es distinto de cero.

Motivados por el ejemplo anterior, estudiemos la siguiente pregunta: ¿toda transformación lineal se puede representar con una matriz diagonal? Si una transformación lineal se puede representar de esta manera, diremos que es diagonalizable.

Eigenvalores, eigenvectores y eigenespacios

En lo que sigue repasaremos el aparato conceptual que nos permitirá dar una respuesta parcial de cuándo una matriz es diagonalizable. Un tratamiento mucho más detallado se puede encontrar aquí en el blog, en el curso de Álgebra Lineal II, comenzando con la entrada Eigenvectores y eigenvalores.

Para nuestro repaso, debemos introducir algunos conceptos y estudiarlos.

Definición. Sea $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ una transformación lineal. Diremos que un escalar $r \in \mathbb{R}$ es un eigenvalor de $T$ si existe $\bar{v}\in \mathbb{R}^n\setminus\{ \bar{0} \}$ tal que $T(\bar{v})=r\bar{v}$. A dicho vector $\bar{v}$ le llamaremos un eigenvector de $T$ con eigenvalor asociado $r$.

Dado un eigenvector $\bar{v}\in \mathbb{R}^n$, sólo hay un eigenvalor correspondiente a éste. Si $T(\bar{v})=r\bar{v}$ y $T(\bar{v})=t\bar{v}$, entonces $r\bar{v}=t\bar{v}$ de donde $(r-t)\bar{v}=\bar{0}$. Como $\bar{v}\neq \bar{0}$, se sigue que $r=t$.

Por otro lado, para un eigenvalor $r$ puede haber más de un eigenvector con eigenvalor asociado $r$. Consideremos para un eigenvalor $r$ el conjunto $E(r)=\{ \bar{v}\in V |T(\bar{v})=r\bar{v}\}$. Notemos que $\bar{0}\in E(r)$ y también todos los eigenvectores de $r$ están en $E(r)$. Además, $E(r)$ es un subespacio de $\mathbb{R}^n$, pues si $\bar{u},\bar{v} \in E(r)$, y $a\in \mathbb{R}$, tenemos

\begin{align*}
T(a\bar{u}+\bar{v})&=aT(\bar{u})+T(\bar{v})\\
&=a(r\bar{u})+(r\bar{v})\\
&=r(a\bar{u}+\bar{v}),
\end{align*}

lo cual implica que $a\bar{u}+\bar{v} \in E(r)$.

Definición. Para una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$ y un eigenvalor $r$ de $T$ llamaremos a

$$E(r)=\{ \bar{v}\in V |T(\bar{v})=r\bar{v}\}$$

el eigenespacio de $T$ correspondiente a $r$.

Cuando tenemos eigenvectores correspondientes a eigenvalores distintos, cumplen algo especial.

Proposición. Si $\bar{v}_{1}, \dots ,\bar{v}_{l}$ son eigenvectores de una transformación lineal $T:\mathbb{R}^n \rightarrow \mathbb{R}^n$ con eigenvalores correspondientes $r_{1}, \dots ,r_{l}$ distintos entonces $\bar{v}_{1}, \dots ,\bar{v}_{l}$ son linealmente independientes.

Demostración. La ruta para establecer la demostración de este teorema será por inducción sobre $l$. Para un conjunto con sólo un eigenvector el resultado es evidente (¿por qué?). Supongamos cierto para cualquier subconjunto de $l-1$ eigenvectores que pertenecen a eigenespacios distintos. Sean $\bar{v}_{1}, \dots ,\bar{v}_{l}$ eigenvectores en distintos eigenespacios y consideremos $\alpha _{1}, \dots ,\alpha_{l}$ escalares tales que:

\begin{equation}
\label{eq:comb-cero}
\sum_{k=1}^{l}\alpha _{k}\bar{v}_{k}=\bar{0}.
\end{equation}

Aplicamos $T$ a la igualdad anterior. Usando que cada $\bar{v}_{k}$ es eigenvector correspondiente al eigenvalor $r_{k}$ obtenemos:

\begin{align*}
\bar{0}=T(\bar{0})&=T\left(\sum_{k=1}^{l}\alpha _{k}\bar{v}_{k} \right)\\&=\sum_{k=1}^{l}\alpha _{k}T(\bar{v}_{k})\\&=\sum_{k=1}^{l}\alpha _{k}r_{k}\bar{v}_{k}.
\end{align*}

Es decir,

\begin{equation}
\label{eq:aplicarT}
\textbf{0}=\sum_{k=1}^{l}\alpha _{k}r_{k}\bar{v}_{k}
\end{equation}

Multipliquemos \eqref{eq:comb-cero} por $r_{l}$ y restemos el resultado de \eqref{eq:aplicarT} para obtener que

\begin{align*}
\bar{0}=\bar{0}-\bar{0}&=\sum_{k=1}^{l}\alpha _{k}r_{k}\bar{v}_{k}-r_{l}\sum_{k=1}^{l}\alpha _{k}\bar{v}_{k}\\&=\sum_{k=1}^{l-1}\alpha _{k}(r_{k}-r_{l})\bar{v}_{k}.
\end{align*}

Tenemos entonces:

\[ \sum_{k=1}^{l-1}\alpha _{k}(r_{k}-r_{l})\bar{v}_{k}=\bar{0}.\]

Ya que por hipótesis de inducción $\bar{v}_{1}, \dots ,\bar{v}_{l-1}$ son linealmente independientes entonces $\alpha _{k}(r_{k}-r_{l})=0$ para todo $k$, pero los eigenvalores son todos distintos entre sí por lo tanto para todo $k$ de $1$ a $l-1$ se tiene $r_{k}-r_{l}\neq 0$ y así $\alpha _{k}=0$. Finalmente, usando \eqref{eq:comb-cero} obtenemos $\alpha_l=0$. Por lo tanto $\bar{v}_{1}, \dots ,\bar{v}_{l}$ son linealmente independientes.

$\square$

Eigenvectores y transformaciones diagonalizables

Recuerda que dijimos que una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$ es diagonalizable si existe una base $\beta$ de $\mathbb{R}^n$ tal que $\text{Mat}_{\beta}(T)$ es una matriz diagonal. El siguiente resultado conecta las dos ideas que hemos estado explorando: los eigenvectores y la representabilidad sencilla de $T$.

Teorema. Sea $T:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ transformación lineal. Una matriz $T$ es diagonalizable si y sólo si existe una base de $\mathbb{R}^n$ conformada por eigenvectores de $T$.

En realidad la demostración consiste únicamente en entender correctamente cómo se construyen las matrices para una base dada.

Demostración. $\Rightarrow )$ Supongamos que $T$ tiene una representación matricial que es una matriz diagonal $A:=\text{Mat}_{\beta}(T)=\text{diag}(r_{1}, \dots ,r_{n})$ con respecto a la base $\beta=\{\bar{v}_{1}, \dots ,\bar{v}_{n}\}$. Afirmamos que para cada $j=1,\ldots,n$ se tiene $\bar{v}_j$ es eigevector de eigenvalor $r_j$. En efecto, la forma en la que se construyó la matriz $A$ nos dice que

\begin{align*}
T(\bar{e}_j)&=\sum_{i=1}^n a_{ij} \bar{e}_i \\&= a_{jj} \bar{e}_j \\&= r_j \bar{e}_j,
\end{align*}

en donde estamos usando que las entradas $a_{ij}$ de la matriz son cero si $i\neq j$ (por ser diagonal), y son $r_j$ si $i=j$. Por supuesto, como $\bar{e}_j$ forma parte de una base, tampoco es el vector cero. Así, $\bar{e}_j$ es eigenvector de eigenvalor $\bar{e}_j$.

$\Leftarrow )$ Supongamos ahora que $\bar{v}_{1},\dots ,\bar{v}_{n}$ son una base $\beta$ de $\mathbb{R}^n$ conformada por eigenvectores de $T$ con eigenvalores asociados, digamos, $r_{1},\dots ,r_{n}$. Aquí se puede mostrar que $\text{Mat}_\beta(T)$ es diagonal. Queda como tarea moral hacer las cuentas.

$\square$

Hay una situación particular en la que podemos aprovechar el teorema anterior de manera inmediata: cuando la transformación tiene $n$ eigenvalores distintos. Esta consecuencia queda establecida en el siguiente resultado.

Corolario. Toda transformación lineal $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ tiene a lo más $n$ eigenvalores distintos. Si $T$ tiene exactamente $n$ eigenvalores distintos, entonces los eigenvectores correspondientes forman una base para $\mathbb{R}^n$ y la matriz de $T$ relativa a esa base es una matriz diagonal con los eigenvalores como elementos diagonales.

Demostración. Queda como tarea moral. Como sugerencia, recuerda que mostramos arriba que los eigenvectores de eigenvalores distintos son linealmente independientes.

$\square$

Al parecer los eigenvalores, eigenvectores y eigenespacios de una transformación lineal son cruciales para poder expresarla de manera sencilla. ¿Cómo los encontramos? Esto lo veremos en la siguiente entrada.

Antes de concluir, mencionamos que hay otro teorema crucial sobre diagonalización de matrices. Diremos que una matriz $P\in M_n(\mathbb{R})$ es ortogonal si $P^tP=I$.

Teorema (el teorema espectral). Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces, existe una matriz ortogonal $P$ tal que $PAP^t$ es una matriz diagonal.

El teorema anterior nos dice no únicamente que la matriz $A$ es diagonalizable, sino que además es diagonalizable mediante un tipo muy especial de matrices. Un estudio y demostración de este teorema queda fuera de los alcances de nuestro curso, pero puedes revisar, por ejemplo la entrada teorema espectral del curso de Álgebra Lineal I que tenemos en el blog.

Más adelante

Lo que haremos en la siguiente entrada es desarrollar un método para conocer los eigenvalores de una matriz. A partir de ellos podremos encontrar sus eigenvectores. Y en ciertos casos especiales, esto nos permitirá mostrar que la transformación es diagonalizable y, de hecho, nos dará la base para la cual la matriz asociada es diagonal.

Tarea moral

  1. Considera la transformación lineal de $\mathbb{R}^{3}$ en $\mathbb{R}^{2}$, dada como $T(x,y,z)=(x+y,z+y)$. Encuentra su representación matricial con las bases canónicas de $\mathbb{R}^3$ y $\mathbb{R}^2$. Luego, encuentra su representación matricial con las bases $\{(1,2,3),(1,0,1),(0,-1,0)\}$ de $\mathbb{R}^3$ y $\{(1,1),(1,-1)\}$ de $\mathbb{R}^2$.
  2. Considera la siguiente matriz: \[ \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & -1 & 0 & 2 \\ \end{pmatrix}\] Da una transformación lineal $T:\mathbb{R}^4\to \mathbb{R}^2$ y ciertas bases $\beta$ de $\mathbb{R}^4$ y $\gamma$ de $\mathbb{R}^2$ para las cuales esta matriz sea la representación matricial de $T$ en las bases $\beta$ y $\gamma$.
  3. Fija bases $\beta$, $\gamma$ y $\delta$ para $\mathbb{R}^n$, $\mathbb{R}^m$ y $\mathbb{R}^l$. Considera dos transformaciones lineales $T:\mathbb{R}^n\to \mathbb{R}^m$ y $S:\mathbb{R}^m\to \mathbb{R}^l$. Demuestra que:
    $$\text{Mat}_{\delta, \beta} (S \circ T) = \text{Mat}_{\delta,\gamma}(S) \text{Mat}_{\gamma, \beta} (T).$$
    En otras palabras que la «composición de transformaciones corresponde al producto de sus matrices».
  4. Sea $T:\mathbb{R}^n\to\mathbb{R}^n$ una transformación lineal y $\beta$ una base de $\mathbb{R}^n$. Demuestra que $T$ es biyectiva si y sólo si $\text{Mat}_{\beta}(T)$ es invertible.
  5. Verifica que los vectores $\bar{v}_1,\ldots,\bar{v}_n$ dados en el último teorema en efecto ayudan a dar una representación matricial diagonal para $T$.
  6. La demostración del último corolario es un conjunto de sencillas consecuencias de las definiciones y teoremas desarrollados en esta entrada con respecto a los eigenvalores y eigenvectores. Realiza esta demostración.

Entradas relacionadas

Geometría Analítica I: Diagonalización ortogonal de matrices simétricas

Por Paola Lizeth Rojas Salazar

Introducción

Anteriormente, estudiamos los vectores y valores propios de las matrices simétricas, en esta entrada vamos a usar que ya sabemos muchas cosas sobre el comportamiento respecto al producto interior, para hablar sobre la diagonalización ortogonal de matrices simétricas, cuyo procedimiento inicia resolviendo su polinomio característico.

Teoremas importantes

Antes de ver el proceso para la diagonalización ortogonal de matrices simétricas, vamos a enunciar un lema y un teorema que van a justificar la «receta» a seguir para esta diagonalización.

Lema 4.12: Considera una matriz simétrica $A$. Si $\lambda_1, u$ y $\lambda_2, v$, son pares propios de $A$ con $\lambda_1\neq \lambda_2$, entonces $u$ y $v$ son ortogonales.

Demostración

Sabemos que:

\begin{equation} \lambda_1(u\cdot v)=(\lambda_1u)\cdot v= Au\cdot v=u\cdot Av=u\cdot(\lambda_2 v)=\lambda_2(u\cdot v)\end{equation}

Esto implica que $(\lambda_1 – \lambda_2)(u\cdot v)=0$

Y $\lambda_1\neq \lambda_2$, entonces $u\cdot v$=0.

Con lo que hemos terminado la demostración.

Teorema 4.13: Considera una matriz simétrica de $2×2$, $A$. Entonces existe una rotación $B\in O(2)$ tal que $B^TAB$ es diagonal de la siguiente forma:

\begin{equation}\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2\end{pmatrix}\end{equation}

Con $\lambda_1$ y $\lambda_2$, los valores propios de $A$.

Demostración

Por las entradas anteriores, las siguientes implicaciones son ciertas, puedes comprobarlo tú mismo con facilidad.

Como $A$ es simétrica de $2×2$, entonces $A$ tiene valores propios $\lambda_1, \lambda_2 \in \mathbb R$.

Caso 1 $\lambda_1=\lambda_2$

Entonces $A$ es diagonal y puede tomarse a $B$ como la matriz identidad que es rotación en $O(2)$.

Caso 2 $\lambda_1\neq \lambda_2$

Consideramos a $u, v$, los vectores propios correspondientes a $\lambda_1$ y $\lambda_2$. Observa que $u$ es diferente al vector cero.

Sabemos que $u$ y $v$ son ortogonales, entonces $v$ es paralelo a $u^T$ que también es vector propio correspondiente a $\lambda_2$.

Considera $B=\frac{1}{|u|} (u, u^T)$, donde se puede comprobar fácilmente que $B$ es la matriz de una rotación y que cumple que $B^TAB$ es diagonal.

«Receta»

Ingredientes

  1. Una matriz simétrica $A=A^T$ de $2×2$

Procedimiento

  1. Resolver su polinomio característico con $det(A-\lambda I)$.
  2. Encontrar $u\neq 0$ tal que $(A-\lambda_1 I)u=0$.
  3. Declarar $B=\frac{1}{|u|} (u, u^T)$.
  4. La matriz diagonal, con entradas $\lambda_1$ y $\lambda_2$, estará dada por $B^TAB$.

Tarea moral

  1. Termina de escribir la demostración del Teorema 4.13.
  2. Demuestra que, si una matriz $A$ cualquiera, tiene dos valores propios distintos, entonces existe una matriz $B\in Gl(2)$ tal que $B^{-1}AB$ es diagonal.
  3. Encuentra la matriz $B$ de una rotación que diagonalice las siguientes matrices simétricas: Además, calcula $B^TAB$:
    • \begin{equation}A=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\end{equation}
    • \begin{equation}A=\begin{pmatrix} -6 & 12 \\ 12 & 1 \end{pmatrix}\end{equation}
    • \begin{equation}A=\begin{pmatrix} -7 & -6 \\ -6 & 2 \end{pmatrix}\end{equation}

Más adelante…

Avanza a las siguientes entradas, en las que usaremos estos conocimientos para dar dos nuevas formas de clasificación de las curvas.

Álgebra Lineal II: El teorema espectral real

Por Ayax Calderón

Introducción

Por lo que estudiamos en la primera parte de este curso, ya sabemos cuándo una matriz arbitraria es diagonalizable. Lo que haremos ahora es enunciar y demostrar el teorema espectral en el caso real. Una de las cosas que nos dice es que las matrices simétricas reales son diagonalizables. Pero nos dice todavía más. También nos garantiza que la manera en la que se diagonalizan es a través de una matriz ortogonal. Esto combina mucho de la teoría que hemos cubierto. Además, gracias al teorema espectral podremos, posteriormente, demostrar el famoso teorema de descomposición polar que nos dice cómo son todas las matrices.

El lema de eigenvalores de matrices simétricas

Comencemos enunciando algunas propiedades que tienen las matrices y transformaciones simétricas. El primero habla de cómo son los eigenvalores de las matrices simétricas.

Lema. Sea $A\in M_n({\mathbb{R}})$ una matriz simétrica. Entonces todas las raíces del polinomio característico de $A$ son números reales.

Demostración. Tomemos $A\in M_n(\mathbb{R})$ y sea $\lambda$. Su polinomio característico está en $\mathbb{R}[x]$, así que por el teorema fundamental del álgebra todas sus raíces están en $\mathbb{C}$. Sea $t$ una raíz del polinomio característico de $A$.

Pensemos a $A$ como un elemento de $M_n(\mathbb{C})$. Como $\det (tI_n-A)=0$, entonces $t$ es eigenvalor y por lo tanto hay un eigenvector $X\in\mathbb{C}^n$ no nulo tal que $AX=tX$. Como el vector tiene entradas complejas, lo podemos escribir como $X=Y+iZ$ para dos vectores $Y,Z\in \mathbb{R}^n$. Así mismo, podemos escribir a $t$ como $t=a+ib$ con $a$ y $b$ números reales.

Con esta notación, de la igualdad $AX=tX$ se sigue que

\begin{align*}
AY+iAZ&=AX\\
&=(a+ib)(Y+iZ)\\
&=aY-bZ+i(aZ+bY).
\end{align*}

Igualando las partes imaginarias y las partes reales obtenemos que

\begin{equation}\label{1}
AY=aY-bZ, \hspace{4mm} AZ=aZ+bY.
\end{equation}

Usemos ahora que $A$ es simétrica. Tenemos que
\begin{equation}\label{2}
\langle AY,Z \rangle=\langle Y, AZ \rangle.
\end{equation}

Sustituyendo la primera igualdad de \eqref{1} en el lado izquierdo de \eqref{2}, y la segunda igualdad de \eqref{1} en el lado derecho de \eqref{2}, obtenemos que:

\begin{equation*}
\langle aY-bZ,Z \rangle=\langle Y, aZ+bY \rangle,
\end{equation*}

y usando la linealidad del producto interior, se obtiene que

\begin{equation*}
a\langle Y,Z \rangle – b\langle Z,Z\rangle =a\langle Y, Z \rangle + b \langle Y , Y \rangle.
\end{equation*}

Se sigue que
$$b(||Y||^2+||Z||^2)=0$$ y como $Y$ o $Z$ es distinto de cero (de lo contrario tendríamos que $X=0$), entonces concluimos que $b=0$ y con ello que $t$ es un número real.

$\square$

El lema de estabilidad de transformaciones simétricas

El segundo lema que veremos nos dice qué sucede cuando una transformación lineal es simétrica y tomamos un subespacio estable bajo ella. Recuerda que un subespacio $W$ de un espacio vectorial $V$ es estable bajo una transformación lineal $T:V\to V$ si $T(W)\subseteq W$.

Lema. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal simétrica sobre $V$. Sea $W$ un subespacio de $V$ estable bajo $T$. Entonces

  1. $W^\bot$ también es estable bajo $T$.
  2. Las restricciones de $T$ a $W$ y $W^\bot$ son transformaciones lineales simétricas sobre estos espacios.

Demostración.

1. Tomemos $x\in W^\bot$. Nos gustaría ver que $T(x)\in W^\bot$. Para ello, tomemos $y\in W$. Como $W$ es estable bajo $T$, tenemos $T(y)\in W$. Como $x\in W^\bot$, tenemos que $\langle x,T(y) \rangle =0$. Usando esto y la simetría de $T$, obtenemos entonces
$$\langle T(x),y \rangle = \langle x,T(y) \rangle=0,$$
que es lo que queríamos probar.

2. Sea $T|_W$ la restricción de $T$ a$W$. Para $x,y\in W$ tenemos que
$$\langle T|_W(x),y \rangle=\langle T(x),y \rangle=\langle x,T(y) \rangle =\langle x,T|_W(y) \rangle ,$$ por lo tanto $T|_W$ es simétrica sobre $W$. Análogamente se ve que el resultado se cumple para $W^\bot$.

$\square$

El teorema espectral real

Con los dos lemas anteriores podemos ahora sí enfocarnos en demostrar el teorema principal de esta entrada.

Teorema (el teorema espectral real). Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal simétrica. Entonces existe una base ortonormal de $V$ conformada por eigenvectores de $T$.

Demostración. Procederemos por inducción fuerte sobre $n=\dim V$. Si $n=1$, entonces el polinomio característico de $T$ es de grado $1$ y tiene coeficientes reales, por lo que tiene una raíz real $t$. Si $v$ es un eigenvector de $T$ con eigenvalor $t$, entonces $\frac{v}{||v||}$ también es eigenvector de $T$ y forma una base ortonormal de $V$. Esto termina el caso $n=1$.

Ahora supongamos que el resultado se satisface hasta dimensión $n-1$ y tomemos $V$ de dimensión $n$. Sea $B=\{e_1,e_2,\dots e_n\}$ una base ortonormal de $V$. Sea $A$ la matriz asociada a $T$ con respecto a $B$. Como $T$ es simétrica, entonces $A$ también lo es. Su polinomio característico no es constante, de modo que por el teorema fundamental del álgebra tiene por lo menos una raíz $t$, y por el primer lema de la sección anterior, se tiene que $t$ es real y por lo tanto es un eigenvalor.

Sea $W=\ker (t\text{id} -T)$ el $t$-eigenespacio de $T$. Si $W=V$, entonces $T=t\text{id}$ y así $B$ es una base ortonormal de $V$ compuesta por eigenvectores de $T$. De otro modo, $W\neq V$ y por lo tanto $k:=\dim W<n$. Tenemos que $V=W\oplus W^\bot$ y sabemos que los eigenespacios son estables bajo la transformación correspondiente. Así, por el segundo lema de la sección anterior $W^\bot$ también es estable bajo $T$ y la restricción de $T$ a $W^\bot$ es simétrica.

Podemos entonces aplicar la hipótesis inductiva a $T_{|W^\bot}$ para encontrar una base ortonormal $C=\{f_1^\bot,f_2^\bot\dots,f_{n-k}^\bot\}$ de $W^\bot$ compuesta por eigenvectores de $T$. Escogiendo una base ortonormal $D=\{f_1,f_2,\dots,f_k\}$ de $W$ (que automaticamente está formada por eigenvectores de $T$). La base $C\cup D$ de $V$ es entonces la base de eigenvectores que buscábamos.

$\square$

El teorema espectral también puede enunciarse en términos de matrices. Hacemos esto a continuación.

Observación. Si $A\in M_n(\mathbb{R})$ es una matriz simétrica, entonces la transformación lineal $T:X\mapsto AX$ sobre $\mathbb{R}^n$ es simétrica. Aplicando el teorema anterior, podemos encontrar una base ortonormal de $V$ con respecto a la cual la matriz asociada a $T$ es diagonal. Como la base canónica de $V$ es ortonormal, y como la matriz de cambio de pase entre dos bases ortonormlaes es ortogonal, obtenemos el siguiente resultado fundamental.

Teorema (el teorema espectral para matrices reales). Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces $A$ es diagonalizable y, más específicamente, existen una matriz ortogonal $P\in M_n(\mathbb{R})$ y una matriz diagonal $D\in M_n(\mathbb{R})$ tales que $$A=P^{-1}DP.$$

Así, $A$ es simultáneamente, mediante una misma matriz $P$, tanto similar como congruente a una matriz diagonal.

Aplicación a caracterizar las matrices simétricas positivas

Ya hemos dado algunas caracterizaciones para las matrices simétricas positivas. Veamos algunas caracterizaciones adicionales.

Teorema. Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B\in M_n(\mathbb{R})$.
  4. $A=\hspace{.5mm}^tCC$ para alguna matriz $C\in M_n(\mathbb{R})$.

Demostración. 1) implica 2). Supongamos que $A$ es positiva y que $t$ es un eigenvalor de $A$ con eigenvector $v$. Como $Av=tv$, obtenemos que

\begin{align*}
t||v||^2&= t\langle v,v \rangle\\
&= \langle v, tv \rangle\\
&= \langle v, Av \rangle\\
&= \hspace{.5mm}^tvAv\\
&\geq 0,
\end{align*}
por lo tanto $t\geq 0$.

2) implica 3). Sean $t_1,\dots, t_n$ todas las raíces del polinomio característico de $A$, escritos con su multiplicidad correspondiente. Por el primer lema de la sección anterior, todos ellos son reales, y estamos suponiendo que son no negativos. Por el teorema espectral podemos encontrar una matriz $P$ y una diagonal $D$ tal que $A=P^{-1}DP$, y por lo que vimos de teoría de diagonalización, $D$ precisamente tiene como entradas en su diagonal a $t_1,t_2,\dots,t_n$. Sea $D’$ la matriz diagonal con entradas $c_i=\sqrt{t_i}$ y sea $B=P^{-1}D’P$. Como $P$ es ortogonal, $B$ es simétrica

Y además, por construcción, $B^2=P^{-1}{D’}^2P=P^{-1}DP=A$, como queríamos.

3) implica 4). Basta con tomar la matriz $B$ de (3) y tomar $C=B$. Como $B$ es simétrica, $A=B^2=\hspace{.5mm}^tBB$.

4) implica 1). Esto ya lo habíamos demostrado en un resultado anterior de caracterización de matrices simétricas.

$\square$

Más adelante…

Hemos enunciado y demostrado el teorema espectral. Lo que nos dice es muy interesante: una matriz simétrica básicamente consiste en cambiar de base a una base muy sencilla $e_1,\ldots,e_n$ (ortonormal) a traves de la matriz $P$. Luego, en esa base pasa algo muy simple: en la dirección de $e_i$, simplemente alargamos de acuerdo al eigenvalor $\lambda_i$.

Como consecuencia, veremos en la siguiente entrada que esto nos permite entender no sólo a las matrices simétricas, sino a todas, todas las matrices. Al teorema que veremos a continuación se le conoce como el teorema de descomposición polar.

Tarea moral

  1. La matriz $\begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin\theta \end{pmatrix}$ es real y simétrica, de modo que es diagonalizable. ¿Cuál es su diagonalización?
  2. Da un ejemplo de una matriz simétrica con coeficientes complejos que no sea diagonalizable.
  3. Sea $T$ una transformación lineal sobre un espacio euclidiano $V$, y supón que $V$ tiene una base ortonormal conformada por eigenvectores de $T$. Demuestra que $T$ es simétrica (por lo que el recíproco del teorema espectral se satisface).
  4. Considera la matriz $$A=\begin{pmatrix}
    1 & -2 & -2\\
    -2 & 1 & -2\\
    -2 & -2 &1\end{pmatrix}.$$
    Explica por qué $A$ es diagonalizable en $M_n(\mathbb{R})$ y encuentra una matriz $P$ tal que $P^{-1}AP$ es diagonal.
  5. Adapta el teorema de caracterización de matrices positivas visto en esta entrada a una versión para matrices positivas definidas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Propiedades del polinomio característico

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuamos con el estudio de eigenvalores y eigenvectores de matrices y trasformaciones lineales. Para ello, estudiaremos más a profundidad el polinomio característico.

Como recordatorio, en una entrada pasada demostramos que si $A$ es una matriz en $M_n(F)$, entonces la expresión $\det (\lambda I_n – A)$ es un polinomio en $\lambda$ de grado $n$ con coeficientes en $F$. A partir de ello, definimos el polinomio característico de $A$ como $$\chi_A(\lambda)=\det(\lambda I_n – A).$$

En esta entrada probaremos algunas propiedades importantes del polinomio característico de matrices. Además, hablaremos de la multiplicidad algebraica de los eigenvalores. Finalmente enunciaremos sin demostración dos teoremas fundamentales en álgebra lineal: el teorema de caracterización de matrices diagonalizables y el teorema de Cayley-Hamilton.

Las raíces del polinomio característico son los eigenvalores

Ya vimos que las raíces del polinomio característico son los eigenvalores. Pero hay que tener cuidado. Deben ser las raíces que estén en el campo en el cual la matriz esté definida. Veamos un ejemplo más.

Problema. Encuentra el polinomio característico y los eigenvalores de la matriz \begin{align*}
\begin{pmatrix}
0&1&0&0\\
2&0&-1&0\\
0& 7 & 0 & 6\\
0 & 0 & 3 & 0
\end{pmatrix}.
\end{align*}

Solución. Debemos encontrar las raíces del polinomio dado por el siguiente determinante:
\begin{align*}
\begin{vmatrix}
\lambda&-1&0&0\\
-2&\lambda&1&0\\
0& -7 & \lambda & -6\\
0 & 0 & -3 & \lambda
\end{vmatrix}.
\end{align*}

Haciendo expansión de Laplace en la primer columna, tenemos que este determinante es igual a

\begin{align*}
\lambda\begin{vmatrix}
\lambda&1&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}
+2\begin{vmatrix}
-1&0&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}.
\end{align*}

Para calcular los determinantes de cada una de las matrices de $3\times 3$ podemos aplicar la fórmula por diagonales para obtener:
\begin{align*}
\lambda\begin{vmatrix}
\lambda&1&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}&=
\lambda(\lambda^3-18\lambda+7\lambda)\\
&=\lambda(\lambda^3-11\lambda)\\
&=\lambda^4-11\lambda^2
\end{align*}

y
\begin{align*}
2\begin{vmatrix}
-1&0&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}&=
2(-\lambda^2+18)\\
&=-2\lambda^2+36.
\end{align*}

Concluimos que el polinomio característico es
\begin{align*}
\lambda^4-13\lambda^2+36&=(\lambda^2-4)(\lambda^2-9)\\
&=(\lambda+2)(\lambda-2)(\lambda+3)(\lambda-3).
\end{align*}

De esta factorización, las raíces del polinomio (y por lo tanto los eigenvalores que buscamos) son $-2,2,-3,3$.

Si quisiéramos encontrar un eigenvector para, por ejemplo, el eigenvalor $-2$, tenemos que encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo $$(-2I_n-A)X=0.$$

$\triangle$

Propiedades del polinomio característico

Veamos ahora algunas propiedades importantes del polinomio característico. El primer resultado habla del polinomio característico de matrices triangulares superiores. Un resultado análogo se cumple para matrices inferiores, y su enunciado y demostración quedan como tarea moral.

Proposición. Si $A=[a_{ij}]$ es una matriz triangular superior en $M_n(F)$, entonces su polinomio característico es $$\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).$$

Demostración. Como $A$ es triangular superior, entonces $\lambda I_n -A$ también, y sus entradas diagonales son precisamente $\lambda-a_{ii}$ para $i=1,\ldots,n$. Como el determinante de una matriz triangular es el producto de sus entradas en la diagonal, tenemos que $$\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).$$

$\square$

Como el polinomio característico es un determinante, podemos aprovechar otras propiedades de determinantes para obtener otros resultados.

Proposición. Una matriz y su transpuesta tienen el mismo polinomio característico.

Demostración. Sea $A$ una matriz en $M_n(F)$. Una matriz y su transpuesta tienen el mismo determinante. Además, transponer es una transformación lineal. De este modo:
\begin{align*}
\chi_A(\lambda)&=\det(\lambda I_n – A)\\
&=\det({^t(\lambda I_n-A)})\\
&=\det(\lambda({^tI_n})-{^tA})\\
&=\det(\lambda I_n – {^tA})\\
&=\chi_{^tA}(\lambda).
\end{align*}

$\square$

Ya antes habíamos mostrado que matrices similares tienen los mismos eigenvalores, pero que dos polinomios tengan las mismas raíces no necesariamente implica que sean iguales. Por ejemplo, los polinomios $$(x-1)^2(x+1) \quad \text{y} \quad (x+1)^2(x-1)$$ tienen las mismas raíces, pero no son iguales.

De esta forma, el siguiente resultado es más fuerte de lo que ya habíamos demostrado antes.

Proposición. Sean $A$ y $P$ matrices en $M_n(F)$ con $P$ invertible. Entonces $A$ y $P^{-1}AP$ tienen el mismo polinomio característico.

Demostración. El resultado se sigue de la siguiente cadena de igualdades, en donde usamos que $\det(P)\det(P^{-1})=1$ y que el determinante es multiplicativo:

\begin{align*}
\chi_{P^{-1}AP}(\lambda) &= \det(P) \chi_{P^{-1}AP}(\lambda) \det(P)^{-1}\\
&=\det(P) \det(\lambda I_n – P^{-1}AP) \det(P^{-1})\\
&=\det(P(\lambda I_n – P^{-1}AP)P^{-1})\\
&=\det(\lambda PP^{-1}-PP^{-1}APP^{-1})\\
&=\det(\lambda I_n – A)\\
&=\chi_{A}(\lambda)
\end{align*}

$\square$

Ten cuidado. El determinante es multiplicativo, pero el polinomio característico no es multiplicativo. Esto es evidente por el siguiente argumento. Si $A$ y $B$ son matrices en $M_n(F)$, entonces $\chi_A(\lambda)$ y $\chi_B(\lambda)$ son cada uno polinomios de grado $n$, así que su producto es un polinomio de grado $2n$, que por lo tanto no puede ser igual al polinomio característico $\chi_{AB}(\lambda)$ pues este es de grado $n$. Así mismo, $\chi_{A^2}(\lambda)$ no es $\chi_{A}(\lambda)^2$.

Una última propiedad que nos interesa es mostrar que el determinante de una matriz y su traza aparecen en los coeficientes del polinomio característico.

Teorema. Sea $A$ una matriz en $M_n(F)$ y $\chi_A(\lambda)$ su polinomio característico. Entonces $\chi_{A}(\lambda)$ es de la forma $$\lambda^n-(\text{tr} A) \lambda^{n-1}+\ldots+(-1)^n \det A.$$

Demostración. Tenemos que mostrar tres cosas:

  • El polinomio $\chi_{A}$ es mónico, es decir, tiene coeficiente principal $1$,
  • que el coeficiente del término de grado $n-1$ es $-\text{tr} A$ y
  • el coeficiente libre es $(-1)^n \det A$.

El coeficiente libre de un polinomio es su evaluación en cero. Usando la homogeneidad del determinante, dicho coeficiente es:
\begin{align*}
\chi_A(0)&=\det(0\cdot I_n-A)\\
&=\det(-A)\\
&=(-1)^n\det(A).
\end{align*}

Esto muestra el tercer punto.

Para el coeficiente del término de grado $n-1$ y el coeficiente principal analicemos con más detalle la fórmula del determinante
\begin{align*}
\begin{vmatrix}
\lambda – a_{11} & -a_{12} & \ldots & -a_{1n}\\
-a_{21} & \lambda – a_{22} & \ldots & -a_{1n}\\
\vdots & & \ddots & \\
-a_{n1} & -a_{n2} & \ldots & \lambda – a_{nn}
\end{vmatrix}
\end{align*}
en términos de permutaciones.

Como discutimos anteriormente, la única forma de obtener un término de grado $n$ es cuando elegimos a la permutación identidad. Pero esto también es cierto para términos de grado $n-1$, pues si no elegimos a la identidad, entonces la permutación elige por lo menos dos entradas fuera de la diagonal, y entonces el grado del producto de entradas correspondiente es a lo más $n-2$.

De este modo, los únicos términos de grado $n$ y $n-1$ vienen del producto $$(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).$$

El único término de grado $n$ viene de elegir $\lambda$ en todos los factores, y se obtiene el sumando $\lambda^n$, lo cual muestra que el polinomio es mónico.

Los únicos términos de grado $n-1$ se obtienen de elegir $\lambda$ en $n-1$ factores y un término del estilo $-a_{ii}$. Al considerar todas las opciones, el término de grado $n-1$ es $$-(a_{11}+a_{22}+\ldots+a_{nn})\lambda^{n-1}=-(\text{tr} A) \lambda^{n-1},$$ que era lo último que debíamos mostrar.

$\square$

Ejemplo. El teorema anterior muestra que si $A$ es una matriz en $M_2(F)$, es decir, de $2\times 2$, entonces $$\chi_A(\lambda)=\lambda^2 – (\text{tr}A) \lambda +\det A.$$ De manera explícita en términos de las entradas tendríamos entonces que si $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, entonces su polinomio característico es $$\lambda^2-(a+d)\lambda+(ad-bc).$$

Como ejemplo, si $A=\begin{pmatrix} 5 & 2 \\ -8 & -3 \end{pmatrix}$, entonces su polinomio característico es $$\lambda^2 -2\lambda +1=(\lambda-1)^2.$$ Su único eigenvalor sería entonces $1$.

$\triangle$

Suma y producto de eigenvalores de matrices complejas

A veces queremos referirnos al conjunto de todos los eigenvalores de una matriz.

Definición. Para $A$ una matriz en $M_n(F)$, el espectro de $A$ es el conjunto de eigenvalores de $A$. Lo denotamos por $\text{spec} (A)$

Tenemos una definición análoga para el espectro de una transformación lineal. Esa definición da un poco de intuición de por qué los teoremas de diagonalización de matrices se llaman teoremas espectrales. La siguiente definición habla de un sentido en el cual un eigenvalor «se repite».

Definición. Sea $A$ una matriz en $M_n(F)$ y $\lambda$ un eigenvalor de $A$. La multiplicidad algebraica de $\lambda$ es el mayor entero $m_{\lambda}$ tal que $(x-\lambda)^{m_\lambda}$ divide a $\chi_A(x)$.

Cuando estamos en $\mathbb{C}$, por el teorema fundamental del álgebra todo polinomio de grado $n$ se puede factorizar en exactamente $n$ términos lineales. Además, los polinomios característicos son mónicos. De este modo, si tenemos una matriz $A$ en $M_n(\mathbb{C})$, su polinomio característico se puede factorizar como sigue:

$$\chi_A(\lambda) = \prod_{j=1}^n (\lambda-\lambda_j),$$

en donde $\lambda_1,\ldots,\lambda_n$ son eigenvalores de $A$, no necesariamente distintos, pero en donde cada eigenvalor aparece en tantos términos como su multiplicidad algebraica.

Desarrollando parcialmente el producto del lado derecho, tenemos que el coeficiente de $\lambda^{n-1}$ es $$-(\lambda_1+\ldots+\lambda_n)$$ y que el coeficiente libre es $$(-1)^n\lambda_1\cdot\ldots\cdot\lambda_n.$$ Combinando este resultado con el de la sección anterior y agrupando eigenvalores por multiplicidad, se demuestra el siguiente resultado importante. Los detalles de la demostración quedan como tarea moral.

Teorema. Sea $A$ una matriz en $M_n(\mathbb{C})$

  • La traza $A$ es igual a la suma de los eigenvalores, contando multiplicidades algebraicas, es decir: $$\text{tr} A = \sum_{\lambda \in \text{spec}(A)} m_{\lambda} \lambda.$$
  • El determinante de $A$ es igual al producto de los eigenvalores, contando multiplicidades algebraicas, es decir: $$\det A = \prod_{\lambda \in \text{spec} (A)} \lambda^{m_{\lambda}}.$$

Veamos un problema en donde se usa este teorema.

Problema. Sea $A$ una matriz en $M_n(\mathbb{C})$ tal que $A^2-4A+3I_n=0$. Muestra que el determinante de $A$ es una potencia de $3$.

Solución. Sea $\lambda$ un eigenvalor de $A$ y $v$ un eigenvector para $\lambda$. Tenemos que $$A^2v=A(\lambda v) = \lambda(Av)=\lambda^2 v.$$ De esta forma, tendríamos que
\begin{align*}
0&=(A^2-4A+3I_n)v\\
&=(\lambda^2 v – 4\lambda v + 3 v)\\
&=(\lambda^2-4\lambda+3) v.
\end{align*}

Como $v$ no es el vector $0$, debe suceder que $\lambda^2-4\lambda+3=0$. Como $\lambda^2-4\lambda+3 = (\lambda-3)(\lambda-1)$, entonces $\lambda=1$ ó $\lambda=3$. Con esto concluimos que los únicos posibles eigenvectores de $A$ son $1$ y $3$.

Como $A$ es una matriz en $\mathbb{C}$, tenemos entonces que su polinomio característico es de la forma $(x-1)^a(x-3)^b$ con $a$ y $b$ enteros no negativos tales que $a+b=n$. Pero entonces por el teorema de producto de eigenvalores, tenemos que el determinante es $1^a\cdot 3^b=3^b$, con lo que queda demostrado que es una potencia de $3$.

$\square$

Dos teoremas fundamentales de álgebra lineal (opcional)

Tenemos todo lo necesario para enunciar dos resultados de álgebra lineal. Sin embargo, las demostraciones de estos resultados requieren de más teoría, y se ven en un siguiente curso. No los demostraremos ni los usaremos en el resto de este curso, pero te pueden servir para anticipar el tipo de resultados que verás al continuar tu formación en álgebra lineal.

El primer resultado fundamental es una caracterización de las matrices que pueden diagonalizarse. Para ello necesitamos una definición adicional. Hay otro sentido en el cual un eigenvalor $\lambda$ de una matriz $A$ puede repetirse.

Definición. Sea $A$ una matriz en $M_n(F)$ y $\lambda$ un eigenvalor de $A$. La multiplicidad geométrica de $\lambda$ es la dimensión del kernel de la matriz $\lambda I_n -A$ pensada como transformación lineal.

En estos términos, el primer teorema al que nos referimos queda enunciado como sigue.

Teorema. Una matriz $A$ en $M_n(F)$ es diagonalizable si y sólo si su polinomio característico $\chi_A(\lambda)$ se puede factorizar en términos lineales en $F[\lambda]$ y además, para cada eigenvalor, su multiplicidad algebraica es igual a su multiplicidad geométrica.

Ejemplo. La matriz $$A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$ tiene como polinomio característico a $\chi_A(\lambda)=\lambda^2+1$. Este polinomio no se puede factorizar en $\mathbb{R}[x]$, así que $A$ no es diagonalizable con matrices de entradas reales.

Sin embargo, en $\mathbb{C}$ tenemos la factorización en términos lineales $\lambda^2+1=(\lambda+i)(\lambda-i),$ que dice que $i$ y $-i$ son eigenvalores de multiplicidad algebraica $1$. Se puede mostrar que la multiplicidad geométrica también es $1$. Así, $A$ sí es diagonalizable con matrices de entradas complejas.

$\square$

El segundo resultado fundamental dice que «cualquier matriz se anula en su polinomio característico». Para definir correctamente esto, tenemos que decir qué quiere decir evaluar un polinomio en una matriz. La definición es más o menos natural.

Definición. Si $A$ es una matriz en $M_n(F)$ y $p$ es un polinomio en $F[\lambda]$ de la forma $$p(\lambda)=a_0+a_1\lambda+a_2\lambda^2+\ldots+a_n\lambda^n,$$ definimos a la matriz $p(A)$ como la matriz $$a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.$$

En estos términos, el resultado queda enunciado como sigue.

Teorema (Cayley-Hamilton). Si $A$ es una matriz en $M_n(F)$ y $\chi_A(x)$ es su polinomio característico, entonces $$\chi_A(A)=O_n.$$

Ejemplo. Tomemos de nuevo a la matriz $$A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$ del ejemplo anterior. Su polinomio característico es $x^2+1$. En efecto, verificamos que se cumple el teorema de Cayley-Hamilton pues:
\begin{align*}
A^2+I_2 &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}+\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\end{align*}

$\square$

Más adelante…

En esta entrada estudiamos algunas propiedades de los eigenvalores y eigenvectores de transformaciones lineales y matrices; vimos cómo obtener eigenvalores de una matriz a partir del polinomio característico y enunciamos dos teoremas muy importantes como parte opcional del curso.

En la siguiente entrada haremos varios ejercicios para desarrollar un poco de práctica al obtener los eigenvalores y eigenvectores de una transformación lineal y de una matriz.

Entradas relacionadas

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Enuncia y demuestra cómo es el polinomio característico de una matriz triangular inferior.
  • Completa los detalles de la demostración del teorema de suma y producto de eigenvalores. Úsalo para encontrar la suma y producto (con multiplicidades) de los eigenvalores de la matriz $$\begin{pmatrix}5 & 0 & -1 & 2 \\ 3 & -2 & 1 & -2 \\ 0 & 0 & 0 & 5\\ 0 & 2 & 4 & 0 \end{pmatrix}.$$
  • Sea $A$ una matriz en $M_n(F)$. ¿Cómo es el polinomio característico de $-A$ en términos del polinomio característico de $A$?
  • Tomemos $A$ una matriz en $M_n(F)$ y $k$ un entero positivo. Muestra que si $\lambda$ es un eigenvalor de la matriz $A$, entonces $\lambda^k$ es un eigenvalor de la matriz $A^k$.

De la sección opcional:

  • Demuestra, haciendo todas las cuentas, el caso particular del teorema de Cayley-Hamilton para matrices de $2\times 2$.
  • Ya sabemos calcular el polinomio característico de matrices diagonales. Muestra el teorema de Cayley-Hamilton en este caso particular.
  • Las matrices diagonales trivialmente son diagonalizables. Muestra que la multiplicidad algebraica de sus eigenvalores en efecto coincide con la multiplicidad geométrica.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»