Archivo de la etiqueta: continuidad

Cálculo Diferencial e Integral I: Continuidad de la función inversa

Introducción

Esta entrada será la última referente a la funciones continuas y se hará el estudio de las condiciones necesarias para que, dada una función continua, su inversa también sea continua. Para lograr nuestro objetivo, haremos uso de los conceptos revisados en la entrada anterior e iniciaremos retomando la definición de intervalo y probaremos un teorema que nos permite caracterizarlos.

Intervalos

Anteriormente, se había dado la siguiente definición de intervalos.

Definición: Sean $a,b \in \r$. Definimos los siguientes intervalos en $\RR$ como sigue:

  • Intervalo cerrado:
    \[
    [a,b]=\left\{x : a \leq x \leq b\right\}
    \]
  • Intervalo abierto
    \[
    (a,b)=\left\{x : a < x < b\right\}
    \]
  • Semiabierto por la izquierda/ Semicerrado por la derecha
    \[
    (a,b]=\left\{x : a < x \leq b\right\}
    \]
  • Semiabierto por la derecha/ Semicerrado por la izquierda
    \[
    [a,b)=\left\{x : a \leq x < b\right\}
    \]

Ahora revisaremos un teorema que nos permite caracterizar a los intervalos y éste nos dice que si se toman cualesquiera dos puntos de un intervalo $A$, entonces el intervalo generado por tales puntos está contenido dentro de $A$.

Teorema. Si $A$ es un subconjunto de $\mathbb{R}$ que contiene al menos dos puntos y tiene la propiedad

$$\text{si } x, y \in A \quad \Rightarrow \quad [x,y] \subseteq A \tag{1}$$

Entonces $A$ es un intervalo.

Demostración.

La demostración se divide en cuatro casos de acuerdo a si está o no acotado.

  • Caso 1. $A$ está acotado
    Dado que $A$ está acotado y $A \neq \varnothing$, podemos definir el supremo y el ínfimo. Sean $a = infA$ y $b = supA$. Entonces $A \subseteq [a,b]$. Nos enfocaremos en demostrar que $(a,b) \subseteq A$.

    Si $z \in (a,b)$, es decir, $a<z<b$, entonces $z$ no es cota inferior de $A$, por lo que existe $x \in A$ tal que $x<z$. De la misma forma, $z$ no es una cota superior de $A$, por lo que existe $y \in A$ tal que $z<y.$ Por lo tanto, $z \in [x,y]$ y por $(1)$ se tiene que $z \in A$. Puesto que $z$ es un elemento arbitrario de $(a,b)$ podemos concluir que $(a,b) \subseteq A$.

    Notemos que si $a \in A$ y $b \in A$, se tiene que $A= [a,b]$ pues $a$ y $b$ son el ínfimo y supremo respectivamente. Si $a \notin A$ y $b \notin A$, entonces $A = (a,b)$. Si $a \notin A$ y $b \in A$, entonces $A = (a,b]$. Finalmente, si $a \in A$ y $b \notin A$, entonces $A = [a,b)$.

  • Caso 2. $A$ está acotado superiormente pero no inferiormente.
    Definimos $b = supA$. Entonces $A \subseteq (- \infty, b]$. Veremos que $(- \infty, b) \subseteq A$.

    Si $z \in (- \infty, b)$, es decir $z<b$, entonces no es cota superior, por lo que existe $y \in A$ tal que $z < y$, además dado que $A$ no está acotado inferiormente, existe $x \in A$ tal que $x < z$. De esta forma, gracias a $(1)$ se tiene que $z \in [x,y] \subseteq A$. Dado que $z$ es un elemento arbitrario de $(- \infty, b)$, entonces $(-\infty, b) \subseteq A$.

    Notemos que si $b \in A$, entonces $A = (- \infty, b]$ y si $b \notin A$, entonces $A = (- \infty, b)$.

  • Caso 3. $A$ está acotado inferiormente pero no superiormente
    La prueba es análoga al caso 2.

  • Caso 4. $A$ no está acotado inferiormente ni superiormente.
    La prueba es muy similar a la de los casos anteriores por lo cual se dejará como tarea moral.

$\square$

Notemos que el regreso también es cierto, es decir, si $A$ es un intervalo, entonces cumple $(1)$ y la demostración también quedará como tarea moral.

Continuidad de la función inversa

El siguiente teorema nos indica que una función continua mapea intervalos en intervalos, es decir, los preserva.

Teorema (Preservación de intervalos). Sea $I$ un intervalo y sea $f: I \to \mathbb{R}$ continua en $I$. Entonces el conjunto $f(I)$ es un intervalo.

Demostración.

Sean $y_1$, $y_2 \in f(I)$ tal que $y_1 < y_2$, entonces existen los puntos $x_1$, $x_2$ tal que $y_1 = f(x_1)$ y $y_2 = f(x_2)$. Por el teorema del valor intermedio, se tiene que si $y \in [y_1,y_2]$, entonces existe $x \in I$ tal que $y = f(x) \in f(I)$. Por lo tanto, se tiene que $[y_1,y_2] \subseteq f(I)$ y por el teorema de caracterización de intervalos, se concluye que $f(I)$ es un intervalo.

$\square$

Ahora veremos que la monotonía también se preserva bajo la función inversa.

Proposición. Si $f: A \to \mathbb{R}$ es una función estrictamente creciente, entonces $f^{-1}: f(A) \to \mathbb{R}$ también es estrictamente creciente. Si $f$ es estrictamente decreciente, $f^{-1}$ también lo es.

Demostración.

Sea $f$ un función estrictamente creciente y sean $y_1$, $y_2 \in f(A)$ tal que $y_1<y_2$ y sean $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$.

Supongamos que $x_2 < x_1$, pero $f$ es creciente lo que implica que $y_2 = f(x_2) < f(x_1) = y_1$ lo cual es una contradicción pues $y_1<y_2$. Por lo tanto, $f^{-1}(y_1)=x_1 < x_2 = f^{-1}(y_2)$. Por lo tanto $f^{-1}$ es estrictamente creciente.

La prueba es análoga para el caso donde $f$ es estrictamente decreciente.

$\square$

Los últimos dos teoremas de la entrada hacen referencia a las condiciones que deben estar presentes para que la inversa de una función continua también sea continua.

Teorema. Si $I$ es un intervalo y $f: I \to \mathbb{R}$ es estrictamente monótona, entonces $f^{-1}$ es continua.

Demostración.

Por la proposición anterior tenemos que $f^{-1}: f(I) \to \mathbb{R}$ también es estrictamente monótona y sabemos que $f(I)$ es un intervalo. Por el teorema revisado en la entrada anterior, concluimos que $f^{-1}$ también es continua.

$\square$

Teorema. Si $I$ es un intervalo y $f: I \to \mathbb{R}$ es continua e inyectiva, entonces $f^{-1}$ es continua.

Demostración.

Por lo revisado en la entrada anterior, sabemos que si $f$ es continua e inyectiva, entonces es estrictamente monótona y se sigue por el teorema anterior que $f^{-1}$ es continua.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  • Prueba el caso 4 para el teorema de preservación de intervalos.
  • Prueba que si $A$ es un intervalo con al menos dos puntos, entonces se cumple que
    $$\text{si } x, y \in A \quad \Rightarrow \quad [x,y] \subseteq A, \tag{1}$$
  • Sea $I$ un intervalo y sea $f: I \to \mathbb{R}$ una función inyectiva. Menciona qué relación existe entre las siguiente condiciones:
    • $f$ es continua
    • $f(I)$ es un intervalo
    • $f$ es estrictamente monótona
    • $f^{-1}$ es continua

Más adelante…

En la siguiente entrada daremos inicio a una nueva unidad y entraremos a uno de los temas más famosos del cálculo: la derivada. Dentro de esta nueva unidad, veremos a profundidad la definición de derivada así como su interpretación geométrica y sus propiedades. Una vez se conozcan los fundamentos teóricos, se verán aplicaciones que existen en diversos campos tales como la economía, la física, etc.

Entradas relacionadas

Probabilidad I-Videos: Continuidad de la probabilidad

Introducción

En el video de axiomas de la probabilidad y sus propiedades se dio la definición de medida de probabilidad, así como algunas propiedades básicas que podíamos deducir de dicha definición. En esta ocasión abordaremos otra propiedad que nos será muy útil en los temas siguientes, esta, es conocida como la propiedad de continuidad de la probabilidad.

Continuidad de la probabilidad

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

  • Demuestra que los incisos $a$ y $b$ de la proposición vista en el video son equivalentes, para esto solo te hace falta probar que el inciso $b$ también implica el inciso $a$.
  • Sea $A_r,\ r\geq 1$, eventos tales que, para toda $r$, $P\left(A_r\right)=1$. Demuestra que $P\left(\displaystyle\bigcap_{r=1}^{\infty}A_r\right)=1$.
  • Una moneda justa se lanza repetidamente. Demuestra que, con probabilidad uno, una cara se muestra tarde o temprano. Demuestra de manera similar que cualquier sucesión finita dada de caras y cruces ocurre eventualmente con probabilidad uno.
  • Teorema de probabilidad total. Demuestra que si $B_1,B_2,\ldots$ es una partición de $\Omega$, entonces para cualquier evento $A$ se cumple que

$P\left(A\right)=\displaystyle\sum_{i=1}^{\infty}{P\left(A\middle|\ B_i\right)P(B_i)}$.

  • Teorema de Bayes. Demuestra que si $B_1,B_2,\ldots$ es una partición de $\Omega$ y sea $A$ un evento tal que $P\left(A\right)\neq 0$ entonces para cada $j=1,2,\ldots$

$P\left(B_j\middle|A\right)=\frac{P\left(A\middle|B_j\right)P\left(B_j\right)}{\displaystyle\sum_{i=1}^{\infty}{P\left(A\middle|B_i\right)P\left(B_i\right)}}$.

Más adelante…

Este resultado proporciona una herramienta para tratar las propiedades correspondientes a la descripción de las probabilidades asociadas a cantidades que se rigen por la aleatoriedad, cuyas funciones están definidas en el espacio de probabilidad y que llamaremos variables aleatorias.

Te invito a ver el siguiente video para saber más sobre este tema.

Entradas relacionadas

Cálculo Diferencial e Integral I: Definición de continuidad y sus propiedades

Introducción

En esta entrada definiremos la continuidad de una función, es probable que hayas estudiado antes tal concepto y la manera en que se suele definir de forma intuitiva es mediante la siguiente sentencia: «Si puedes dibujar la función sin levantar el lápiz, entonces es una función continua». Nosotros revisaremos una definición con mayor formalidad, pero notarás que tal enunciado será de ayuda para interpretar la definición.

Definición de continuidad

En palabras sencillas, una función es continua en un punto $x_0$ si el límite en tal punto es igual a evaluar la función en $x_0$.

Definición. La función $f$ es continua en $x_0$ si $$\lim_{x \to x_0} f(x) = f(x_0).$$ Es decir, $f$ es continua en $x_0$ si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que para todo $x$ que satisface $0<|x-x_0|< \delta$, entonces se cumple que $|f(x)-f(x_0)|< \varepsilon$.

En la entrada de definición formal de límite se vieron algunos ejemplos de funciones continuas; específicamente se dejaron dos ejercicios como tarea moral que procederemos a probar en esta entrada.

Ejemplo. La función $f(x) = c$, es continua en $x_0$ para todo $x_0 \in \mathbb{R}$.

Demostración.

Sea $\varepsilon > 0$. Dado que la función es constante, cualquier valor de delta nos funciona, así consideremos $\delta = 1$.

Si $0<|x-x_0|< \delta$, entonces

\begin{align*}
|f(x)-f(x_0)| & = |c-c|\\
& = 0 \\
& < \epsilon
\end{align*}

$$\therefore \lim_{x \to x_0} f(x) = f(x_0)$$

$\square$

Ejemplo. La función $f(x) = x$ es continua en $x_0$ para todo $x_0 \in \mathbb{R}$.

Demostración.

Sea $\varepsilon > 0$. Consideremos $\delta = \varepsilon$.

Si $0<|x-x_0|<\delta$, entonces
\begin{align*}
|f(x)-f(x_0)| & = |x-x_0|\\
& < \delta \\
& = \varepsilon
\end{align*}

$$\therefore \lim_{x \to x_0} f(x) = f(x_0)$$

Ejemplo. La función $f(x) = sen(x)$ es continua en $x_0$ para todo $x_0 \in \mathbb{R}$

Demostración.

Sea $\varepsilon > 0$.

Usando la identidad trigonométrica
$$sen(a)-sen(b) = 2 \cdot sen\left( \frac{a-b}{2} \right) \cdot cos\left( \frac{a+b}{2} \right)$$

Tenemos que
\begin{align*}
|f(x) – f(x_0)| & = |sen(x) – sen(x_0)| \\ \\
& = \left\lvert 2 \cdot sen\left( \frac{x-x_0}{2} \right) \cdot cos\left( \frac{x+x_0}{2} \right) \right\rvert \\ \\
& \leq \left\lvert 2 \cdot sen\left( \frac{x-x_0}{2} \right) \right\rvert |1| \text{, pues }|cos(x)| \leq 1 \\ \\
& \leq \left\lvert 2 \cdot \frac{x-x_0}{2} \right\rvert \text{, pues }|sen(x)| < |x| \\ \\
& = |x-x_0| \tag{1}
\end{align*}

Consideremos $\delta = \varepsilon$.
Si $0<|x-x_0|<\delta$, entonces
\begin{align*}
|f(x) – f(x_0)| & \leq |x-x_0| \text{, por }(1) \\
& <\delta \\
& = \varepsilon
\end{align*}

$$\therefore \lim_{x \to x_0} sen(x) = sen(x_0)$$

$\square$

Propiedades básicas de la continuidad

A continuación revisaremos tres propiedades de las funciones continuas: la suma de funciones continuas es continua, el producto de funciones continuas es continua y si una función es distinta de cero en un punto, entonces su recíproco también es continua en tal punto.

Teorema. Si $f$ y $g$ son funciones continuas en $x_0$, entonces

  1. $f+g$ es continua en $x_0$
  2. $f \cdot g$ es continua en $x_0$
  3. Si además $g(x_0) \neq 0$, entonces $\frac{1}{g}$ es continua en $x_0$

Demostración.

Como $f$ y $g$ son continuas, entonces
$$\lim_{x \to x_0} f(x) = f(x_0) \quad \text{ y } \quad \lim_{x \to x_0} g(x) = g(x_0)$$
Por las propiedades del límite, tenemos lo siguiente
\begin{align*}
\lim_{x \to x_0} (f + g)(x) & = \lim_{x \to x_0} [f(x) + g(x)] \\
& = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) \\
& = f(x_0) + g(x_0) \\
& = (f+g)(x_0)
\end{align*}

$$\therefore \lim_{x \to x_0} (f + g)(x) = (f+g)(x_0)$$

Por lo tanto, $f+g$ es continua.

Podemos notar que los incisos siguientes tienen demostraciones análogas ocupando las propiedades demostradas para el límite de una función, por lo cual su prueba se omitirá.

$\square$

Gracias al teorema anterior y los ejemplos vistos, tenemos una gama de funciones continuas, las funciones polinomiales: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$.

La siguiente propiedad que veremos hace referencia a la composición de funciones continuas.

Teorema. Si $g$ es continua en $x_0$ y $f$ es continua en $g(x_0)$, entonces la composición de funciones $f \circ g$ es continua en $x_0$

Demostración.

Queremos probar que $$\lim_{x \to x_0} (f \circ g)(x) = (f \circ g)(x_0)$$
y para demostrarlo procederemos mediante la definición $\varepsilon$-$\delta$.

Sea $\varepsilon > 0$.

Como $f$ es continua en $g(x_0)$, existe $\delta’ > 0$ tal que para todo $y$ que cumpla $|y-g(x_0)|< \delta’$, entonces $|f(y)-f(g(x_0))|< \varepsilon$.

Dado que estamos viendo la composición, podemos considerar particularmente que $y = g(x)$, de esta manera se tiene que si $|g(x)-g(x_0)|< \delta’$, entonces
\begin{align*}|f(g(x))-f(g(x_0))| <\varepsilon \tag{1} \end{align*}

Como $g$ es continua, para cualquier valor positivo arbitrario, en este caso consideraremos $\delta’>0$, existe $\delta > 0$ tal que si $0<|x-x_0|<\delta$, entonces
\begin{align*} |g(x)-g(x_0)| < \delta’ \tag{2} \end{align*}

De (1) y (2), se sigue que $$\text{si } 0<|x-x_0|<\delta \Rightarrow |g(x)-g(x_0)| < \delta’ \Rightarrow |f(g(x))-f(g(x_0))| <\varepsilon.$$

Es decir, si $0<|x-x_0|<\delta$, entonces $|f(g(x))-f(g(x_0))| <\varepsilon$.

$\square$

El teorema anterior nos permite extender aún más el almacén de funciones continuas. Por ejemplo, sabemos que $g(x) = x^2+x-10$ es continua en $x_0$ para todo $x_0 \in \mathbb{R}$ y la función $f(x) = sen(x)$ es continua en cualquier punto, particularmente en $f(x_0)$, entonces la composición $(f \circ g) (x) = sen(x^2+x-10)$ también es continua en $x_0$.

Podemos también mencionar cierto tipo de funciones que no están definidas en algún punto en particular, por ejemplo $f(x) = xsen(\frac{1}{x})$. De inicio la función no está definida en el punto $x_0=0$ y, por tanto, no puede ser continua en tal punto, pero a partir de ella podemos construir una nueva función que sí sea continua en $x_0=0$. En una entrada anterior, vimos que $$\lim_{x \to 0} xsen \left( \frac{1}{x} \right) = 0.$$

De esta forma, podemos definir una nueva función:

$$f’ = \begin{cases} xsen(\frac{1}{x}) & \text{ si } x \neq 0 \\
0 & \text{si } x = 0 \end{cases}$$

Con esto, se tiene que $f’$ es continua en $x_0 = 0$. A este tipo de funciones que podemos convertirlas en continuas definiéndolas en un punto que inicialmente estaba fuera de su dominio, pero cuyo límite sí existe, se dice que tienen una discontinuidad removible o evitable.


Por otro lado, también existen funciones cuya discontinuidad es no removible. Consideremos la función $f(x) = sen\left( \frac{1}{x} \right)$, revisamos anteriormente que el límite de tal función no existe, por lo cual aunque la definieramos en $x_0=0$ seguiría siendo discontinua en dicho punto.

Hasta ahora estuvimos empleando la definición de continuidad en un punto, sin embargo para la mayoría de los ejemplos revisados probamos la continuidad para todo $\mathbb{R}$, por lo cual resulta natural tener una definición para la continuidad en un intervalo. Y, como podrás imaginarlo, la continuidad en un intervalo pide que la función sea continua en cada $x$ dentro de un intervalo definido (con una pequeña particularidad para intervalos cerrados).

Definición (Continuidad en un intervalo abierto). Si $f$ es continua en todo $x$ con $x \in (a,b)$, se dice que $f$ es continua en el intervalo $(a,b)$.

Definición (Continuidad en un intervalo cerrado). Si $f$ es continua en todo $x$ con $x \in (a,b)$ y se cumple que

$$\lim_{x \to a^+} f(x) = f(a) \quad \text{ y } \quad \lim_{x \to b^-} f(x) = f(b)$$

Entonces se dice que $f$ es continua en el intervalo $[a,b]$.

Terminaremos esta entrada probando un teorema que nos dice que si $f$ es continua en $x_0$ y es positiva (o negativa) en tal punto $f(x_0)$, entonces existe todo un intervalo en el que es positivo (negativo).

Teorema. Supongamos que $f$ es continua en $x_0$ y $f(x_0)>0$. Entonces $f(x) >0$ para todo x en un intervalo que contiene a $x_0$, es decir, existe $\delta > 0$ tal que $f(x) >0$ para todo $x$ tal que $|x-x_0|< \delta$.

De forma análoga, si $f(x_0) <0$, entonces existe $\delta > 0$ tal que $f(x) < 0$ para todo $x$ tal que $|x-x_0|< \delta$.

Demostración.

Como $f$ es continua en $x_0$, entonces para $\varepsilon = \frac{1}{2}f(x_0) > 0$, existe $\delta>0$ tal que si $|x-x_0|< \delta$, entonces
\begin{gather*}
& |f(x)-f(x_0)|< \frac{1}{2}f(x_0) \\
\Rightarrow & -\frac{1}{2}f(x_0) < f(x)-f(x_0) < \frac{1}{2}f(x_0) \\
\Rightarrow & -\frac{1}{2}f(x_0) + f(x_0) < f(x) < \frac{1}{2}f(x_0) + f(x_0) \\
\Rightarrow & f(x) > \frac{1}{2}f(x_0) > 0
\end{gather*}

La demostración para cuando $f(x_0)< 0$ es análoga usando $\varepsilon = – \frac{1}{2}f(x_0) > 0$

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Da un ejemplo de una función que no sea continua en ningún punto.
  2. Si $f$ y $g$ son funciones polinomiales en $\mathbb{R}$, se dice que la función $h(x)= \frac{f}{g}(x)$ es una función racional. ¿En qué puntos las funciones racionales sí son continuas?
  3. Usando la identidad $$cos(a)-cos(b) = -2 \cdot sen\left( \frac{a+b}{2} \right) \cdot sen\left( \frac{a-b}{2} \right)$$ prueba que la función $f(x) = cos(x)$ es continua en cualquier punto $x_0 \in \mathbb{R}$.
  4. Sea $f: A \to \mathbb{R}$. Prueba que si $f$ es continua en un punto $x_0 \in A$, entonces la función $|f|(x):= |f(x)|$ también es continua en $x_0$. ¿Se cumple el regreso? Es decir, ¿si $|f|$ es continua en $x_0$ entonces $f$ también es continua en tal punto?
  5. Se dice que una función $f$ es aditiva si $f(x+y) = f(x)+f(y)$ para toda $x$, $y$ en $\mathbb{R}$. Prueba que para una función aditiva $f$ tal que es continua en algún punto $x_0$, entonces es continua en todo su dominio.
  6. Demuestra que si $f: A \to \mathbb{R}$ es continua en $A \subset \mathbb{R}$ y si $n \in \mathbb{N}$, entonces la función $f^n$ definida como $f^n(x) = (f(x))^n$ también es continua en $A$.
  7. Da un ejemplo de dos funciones $f$ y $g$ discontinuas en $x_0$ tal que la suma $f+g$ sea continua en $x_0$.
  8. Da un ejemplo de dos funciones $f$ y $g$ discontinuas en $x_0$ tal que el producto $f \cdot g$ sea continuo en $x_0$.

Más adelante…

Tras revisar las propiedades básicas de las funciones continuas, estamos listos para revisar resultados muy interesantes derivados de la continuidad. En la siguiente entrada revisaremos el popular teorema del valor intermedio, que nos indica que si una función continua en un intervalo $[a,b]$ inicia en un punto negativo, $f(a) < 0$, y termina en un punto positivo, $f(b) > 0$, entonces dicha función necesariamente pasó por el cero, es decir, existe un $x_0$ en el intervalo $[a,b]$ tal que $f(x_0) = 0$, y para probarlo se hará uso del último teorema revisado en esta entrada.

Entradas relacionadas

Álgebra Superior II: Continuidad y diferenciabilidad de polinomios reales

Introducción

Al inicio de esta unidad, hablamos de las propiedades algebraicas de $\mathbb{R}[x]$, definimos sus operaciones y argumentamos por qué se puede usar la notación de potencias. Luego hablamos de las propiedades aritméticas de los polinomios cuando hablamos de divisibilidad, máximo común divisor y factorización en irreducibles. Vimos una aplicación de esto a la solución de desigualdades. Lo que queremos hacer ahora es pensar a los polinomios como funciones de $\mathbb{R}$ en $\mathbb{R}$ y entender las propiedades analíticas que tienen, es decir en términos de cálculo. Nos interesa saber qué les sucede cuando su entrada es grande, la continuidad y la diferenciabilidad de polinomios.

Estas propiedades tienen consecuencias algebraicas importantes. La continuidad de polinomios nos permite encontrar raíces reales en ciertos intervalos. La diferenciabilidad de polinomios nos ayuda a encontrar la multiplicidad de las raíces. Supondremos que manejas conocimientos básicos de cálculo y de manipulación de límites, pero de cualquier forma recordaremos algunas definiciones y daremos esbozos de la demostración de algunos resultados.

Límites a reales y límites a infinito

Recordemos dos definiciones de cálculo, que se aplican para funciones arbitrarias definidas en todos los reales.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función y $a, b$ reales. Decimos que $$\lim_{x\to a} f(x) = b$$ si para todo $\epsilon >0$ existe un $\delta > 0 $ tal que cuando $0<|x-a|<\delta$, entonces $|f(x)-b|<\epsilon$. En palabras, decimos que el límite de $f$ cuando $x$ tiende a $a$ es $b$.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función. Decimos que $$\lim_{x\to \infty} f(x) = \infty$$ si para todo $M>0$ existe un $r > 0 $ tal que cuando $x>r$, entonces $f(x)>M$. En palabras, decimos que el límite de $f$ cuando $x$ tiende a infinito es infinito.

De manera análoga se pueden definir límites cuando $x$ tiende a menos infinito, y definir qué quiere decir que el límite sea menos infinito. La siguiente proposición se prueba en textos de cálculo.

Proposición (propiedades de límites). Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones y $a$, $b$, $c$ reales. Si $$\lim_{x\to a} f(x) = b \quad \text { y } \quad \lim_{x\to a} g(x)= c,$$ entonces:

  • «El límite de la suma es la suma de los límites», en símbolos, $$\lim_{x\to a} (f+g)(x) = b+c.$$
  • «El límite del producto es el producto de los límites», en símbolos, $$\lim_{x\to a} (fg)(x)=bc.$$

La proposición anterior es sólo para cuando los límites son reales. Hay resultados para cuando algunos de los límites son infinitos, pero en general hay que tener cuidado.

La primer propiedad analítica de los polinomios es saber cómo es su comportamiento cuando $x$ se hace infinito o menos infinito. Si el polinomio es constante, entonces este límite es simplemente su valor en cualquier punto. Para polinomios de grado mayor o igual a $1$, su comportamiento queda resumido en la siguiente proposición.

Proposición (límites a infinito). Tomemos al polinomio $p(x)$ en $\mathbb{R}[x]$ dado por $$p(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n,$$ en donde $n\geq 1$ y $a_n\neq 0$.

  • Si $a_n>0$ y $p(x)$ es de grado par entonces $$\lim_{x\to \infty} p(x) = \lim_{x\to-\infty} p(x)= \infty,$$
  • Cuando $a_n>0$ y $p(x)$ es de grado impar entonces $$\lim_{x\to \infty} p(x) = \infty \quad \text { y } \quad \lim_{x\to -\infty} p(x)=-\infty$$
  • Si $a_n<0$ y $p(x)$ es de grado par entonces $$\lim_{x\to \infty} p(x) = \lim_{x\to-\infty} p(x)= -\infty,$$
  • Cuando $a_n<0$ y $p(x)$ es de grado impar entonces $$\lim_{x\to \infty} p(x) = -\infty \quad \text { y } \quad \lim_{x\to -\infty} p(x)=\infty.$$

Demostración. Vamos a hacer una de las demostraciones. Mostraremos que para cuando $a_n>0$ y el grado es par, entonces $$\lim_{x\to \infty} p(x) = \infty.$$ Las demás se siguen haciendo cambios de signo cuidadosos y usando que una potencia impar de un real negativo es un real negativo, y una potencia par es siempre un real positivo. Pensar en estas demostraciones queda como tarea moral.

Tomemos entonces $p(x)$ un polinomio de grado par y con coeficiente principal $a_n>0$. Intuitivamente, tenemos que mostrar que si $x$ es muy grande, entonces $p(x)$ es tan grande como queramos. Tomemos un real $M>0$. Como haremos $x$ grande, podemos suponer que $x>1$.

Como el término $a_nx^n$ es positivo, basta mostrar como resultado auxiliar que si $x$ es suficentemente grande, entonces $$a_nx^n >M+|a_0+a_1x+\ldots+a_{n-1}x^{n-1}|,$$ ya que si esto sucede, tendríamos que:
\begin{align*}
a_nx^n&>M+|a_0+a_1x+\ldots+a_{n-1}x^{n-1}|\\
&=M+|-a_0-a_1x-\ldots-a_{n-1}x^{n-1}|\\
&>M-a_0-a_1x-\ldots-a_{n-1}x^{n-1},
\end{align*}

y de aquí, pasando todo excepto a $M$ a la izquierda, tendríamos $p(x)>M$

Para probar el resultado auxiliar, tomemos $A$ como el máximo de los valores absolutos $|a_0|,\ldots,|a_{n-1}|$. Por la desigualdad del triángulo y usando $x>1$ tenemos que

\begin{align*}
M+|a_0&+a_1x+\ldots+a_{n-1}x^{n-1}|\\
&\leq M+|a_0|+|a_1 x| + \ldots + |a_{n-1}x^{n-1}|\\
&\leq M+A(1+x+\ldots+x^{n-1})\\
&< M+nA\\
&<(M+nA)x^{n-1}
\end{align*}

De esta forma, para mostrar nuestra desigualdad auxiliar basta mostrar que para $x$ suficientemente grande, tenemos que $(M+nA)x^{n-1}<a_nx^n$. Pero como $x>0$, esta desigualdad es equivalente a $x>\frac{M+nA}{a_n}$.

Recapitulando, para cualquier $M>0$, si $x>\frac{M+nA}{a_n}$, entonces $p(x)>M$. Esto termina la demostración.

$\square$

Podemos usar la proposición anterior para comparar polinomios cuando su variable tiende a infinito.

Ejemplo. Mostraremos que existe una $M$ suficientemente grande tal que si $x>M$, entonces $$\frac{1}{2}x^7-x^6-x-1>x^6+1000x^5+1000000.$$ Pasando todo del lado izquierdo, nos queda la desigualdad equivalente $$\frac{1}{2}x^7-2x^6-1000x^5-x-999999>0.$$ Aquí tenemos un polinomio $p(x)$ de grado impar y coeficiente principal positivo. Por la proposición anterior, $\lim_{x\to \infty} p(x) = \infty$, de modo que la $M$ que estamos buscando existe.

$\square$

Continuidad de polinomios

Antes de llegar a diferenciabilidad de polinomios, haremos un paso intermedio. Recordemos otra definición de cálculo.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función y $a$ un real. Decimos que $f$ es continua en $a$ si $$\lim_{x\to a} f(x) = f(a).$$ Decimos que $f$ es continua si es continua en todo real.

Por la proposición de propiedades de límites, la suma o producto de funciones continuas es continua. Las funciones constantes son continuas. La función identidad $I:\mathbb{R}\to \mathbb{R}$ dada por $I(x)=x$ es continua. Estos tres hechos nos ayudan a demostrar que todos los polinomios son funciones continuas sin tener que recurrir a la definición de límite.

Teorema. Cualquier polinomio $p(x)$ en $\mathbb{R}[x]$ pensado como una función $p:\mathbb{R}\to \mathbb{R}$ es una función continua.

Demostración. Supongamos que $p(x)$ está dado por $$p(x)=a_0+a_1x+\ldots+a_nx^n.$$

Para toda $i$ de $0$ a $n$ tenemos que la función $x\mapsto a_i$ es constante y por lo tanto es continua. Si $i>0$, la función $x\mapsto x^i$ es producto de $i$ veces la identidad consigo misma. Como la identidad es continua y producto de continuas es continua, entonces $x\mapsto x^i$ es continua.

De nuevo, usando que producto de funciones continuas es continua, tenemos que $x\mapsto a_ix^i$ es una función continua. De esta forma, $p(x)$ es la suma de $n+1$ funciones continuas, y por lo tanto es una función continua.

$\square$

El resultado anterior nos ayuda a usar teoremas versátiles de cálculo en nuestro estudio de polinomios. Recordemos el teorema del valor intermedio.

Teorema (del valor intermedio). Sea $f:\mathbb{R}\to \mathbb{R}$ una función continua. Sean $a<b$ dos reales. Entonces entre $a$ y $b$, la función $f$ toma todos los valores entre $f(a)$ y $f(b)$.

Veamos cómo el teorema del valor intermedio nos permite encontrar raíces de polinomios.

Problema. Muestra que el polinomio $p(x)=x^7-5x^5+x^2+3$ tiene por lo menos una raíz en el intervalo $[0,2]$.

Solución. Al evaluar al polinomio en cero, obtenemos $p(0)=3$. Al evaluarlo en $2$, obtenemos
\begin{align*}
p(2)&=2^7-5\cdot 2^5+x^2 + 3\\
&=128-160+4+3\\
&=-25.
\end{align*}

Como los polinomios son funciones continuas, podemos aplicar el teorema del valor intermedio. Concluimos que $p(x)$ toma todos los valores de $-25$ a $2$ en el intervalo $[0,2]$. En particular, existe un real $r$ en $[0,2]$ tal que $p(r)=0$.

$\square$

El teorema del valor intermedio nos ayuda a demostrar que un polinomio tiene una raíz en cierto intervalo. Sin embargo, no es de tanta utilidad para decir exactamente cuál es esa raíz. Es un resultado existencial en vez de ser constructivo. Veamos un ejemplo más, que muestra una proposición que quedó pendiente en una entrada anterior.

Problema. Sea $p(x)$ un polinomio cuadrático, mónico e irreducible en $\mathbb{R}[x]$. Muestra que $p(r)>0$ para todo real $r$.

Solución. Procedamos por contradicción. Supongamos que $p(r)\leq 0$ para algún real $r$.

Como $p(x)$ es mónico, su coeficiente principal es $1$, que es positivo. Como $p(x)$ es cuadrático, es de grado par. Por la proposición de límites a infinito, existe un real $t>r$ tal que $p(t)>0$. Por el teorema del valor intermedio, existiría un real $s$ en el intervalo $[r,t]$ tal que $p(s)=0$. Pero esto es imposible, pues entonces por el teorema del factor $x-s$ divide a $p(x)$ y esto contradice que $p(x)$ es irreducible.

$\square$

Como muestra el problema anterior, se pueden combinar los límites de polinomios a infinito y menos infinito, y sus propiedades de continuidad. Otra aplicación es mostrar que todo polinomio de grado impar tiene por lo menos una raíz real. Esto se verá en otra entrada.

Por supuesto, otros resultados de continuidad también se pueden usar en todos los polinomios, como el teorema del valor extremo. Aplicándolo directamente, concluimos lo siguiente.

Proposición. Sean $a<b$ reales y $p(x)$ un polinomio en $\mathbb{R}$. Entonces $p(x)$ está acotado en el intervalo $[a,b]$ y existen reales $r$ y $s$ en dicho intervalo tales que $p(r)$ y $p(s)$ son el mínimo y máximo de $p(x)$ en $[a,b]$, respectivamente.

Diferenciabilidad de polinomios

Es momento de hablar de diferenciabilidad de polinomios. Recordemos una última definición de cálculo.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función. Decimos que $f$ es diferenciable en $a$ si el límite $$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$ existe. En este caso, a ese límite lo denotamos por $f'(a)$. Una función es diferenciable si es diferenciable en todo real. A la función $f’:\mathbb{R}\to \mathbb{R}$ le llamamos la derivada de $f$.

Al igual que en el caso de continuidad, la suma y producto de funciones diferenciales es diferenciable. Si $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ son diferenciables, entonces la derivada de $f+g$ está dada por $$(f+g)'(x)=f'(x)+g'(x)$$ y la derivada de $fg$ está dada por la regla de la cadena $$(fg)'(x)=f'(x)g(x)+f(x)g'(x).$$

Las funciones constantes son diferenciables, y su derivada es la función constante $0$. La función identidad es diferenciable, y su derivada es la función constante $1$. Esto es sencillo de mostrar y queda como tarea moral.

Proposición. Sea $n\geq 1$ un entero. El polinomio $p(x)=x^n$ es diferenciable, y su derivada es la función $p'(x)=nx^{n-1}$.

Demostración. Haremos la prueba por inducción. Si $n=1$, el polinomio es $p(x)=x$, y su derivada es $p'(x)=1=1\cdot x^0$, como queremos. Supongamos que el resultado es cierto para el entero $n\geq 1$ y tomemos $p(x)=x^{n+1}=x^n\cdot x$. Por hipótesis inductiva, $x\mapsto x^n$ es diferenciable. Como $p(x)$ es producto de dos funciones diferenciables, entonces es diferenciable.

Usando la regla de la cadena, la hipótesis inductiva de la fórmula y la derivada de $x\mapsto x$, tenemos que $$p'(x)=(nx^{n-1})(x)+(x^n)(1)=(n+1)x^n.$$ Esto termina la demostración.

$\square$

Con todos estos ingredientes podemos mostrar la diferenciabilidad de todos los polinomios. Los detalles quedan como tarea moral.

Teorema (diferenciabilidad de polinomios). Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ dado por $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ Entonces $p(x)$ pensado como función es diferenciable y su derivada es un polinomio. Si $p(x)$ es constante, su derivada es el polinomio $0$. En otro caso, su derivada es el polinomio $$a_1+2a_2x+3a_3x^2+\ldots+na_nx^{n-1}.$$

Ejemplo. El polinomio $x^7+3x^2-1$ es diferenciable. Su derivada es el polinomio $7x^6+6x$.

$\square$

Ya que sabemos que los polinomios son diferenciables, podemos usar todas las herramientas de cálculo diferencial, como:

No profundizaremos en esto, pues es el contenido de un buen curso de cálculo, o bien de material de algún texto en el área, como el libro de Cálculo de Spivak.

A nosotros nos interesa una consecuencia algebraica de que los polinomios tengan derivada. Como la derivada de un polinomio es otro polinomio, entonces la derivada es diferenciable. Por ello, un polinomio $p(x)$ se puede derivar iteradamente tantas veces como se quiera. Al polinomio obtenido de derivar $n$ veces le llamamos la $n$-ésima derivada y lo denotamos por $p^{(n)}(x)$. En la siguiente entrada veremos cómo la repetida diferenciabilidad de polinomios nos ayuda a detectar la multiplicidad de sus raíces.

Tarea moral

  • Estudia el resto de los casos de la proposición de límites de polinomios cuando la entrada va a menos infinito y a infinito.
  • Muestra usando la definición de límite que las funciones constantes y la función identidad son continuas.
  • Demuestra por definición que las funciones constantes son diferenciables y que su derivada es la función constante $0$. Demuestra por definición que la función identidad es diferenciable y que su derivada es la función constante $1$.
  • Muestra que existe un real $x$ en el cual los polinomios $p(x)=x^5+x^3+x$ y $q(x)=100x^4+10x^2$ son iguales. Sugerencia. Reescribe esta igualdad en términos de encontrar una raíz de un sólo polinomio.
  • Completa los detalles del teorema de diferenciabilidad de polinomios.

Más adelante

En la siguiente sección nos encargaremos de realizar varios problemas para repasar las definiciones y propiedades que acabamos de enunciar, y posteriormente ocuparemos todo lo aprendido para explotar el conocimiento que tenemos de los polinomios.

En particular, nos será útil el concepto de diferenciabilidad pues con este podemos dar una definición precisa de lo que significa que la raíz de un polinomio sea múltiple.

Entradas Relacionadas

Álgebra Lineal I: Formas bilineales, propiedades, ejemplos y aclaraciones

Introducción

En entradas anteriores hemos platicado de dualidad, ortogonalidad y transformaciones transpuestas. Es importante que repases esas entradas y nos escribas si tienes dudas, pues ahora pasaremos a un tema un poco diferente: formas bilineales y cuadráticas. Estas nociones nos permitirán seguir hablando acerca de la geometría de espacios vectoriales en general.

Para esta parte del curso, nos vamos a enfocar únicamente en espacios vectoriales sobre $\mathbb{R}$. Se pueden definir los conceptos que veremos para espacios vectoriales en otros campos. Sobre todo, es posible definir conceptos análogos en $\mathbb{C}$ y obtener una teoría muy rica. Pero por ahora consideraremos sólo el caso de espacios vectoriales reales.

Aunque hablaremos de formas bilineales en general, una subfamilia muy importante de ellas son los productos interiores, que nos permiten hablar de espacios euclideanos. El producto interior es el paso inicial en una cadena muy profunda de ideas matemáticas:

  • Un producto interior nos permite definir la norma de un vector.
  • Con la noción de norma, podemos definir la distancia entre dos vectores.
  • A partir de un producto interior y su norma podemos mostrar la desigualdad de Cauchy-Schwarz, con la cual podemos definir ángulos entre vectores (por ejemplo, ¡podremos definir el ángulo entre dos polinomios!).
  • De la desigualdad de Cauchy-Schwarz, podemos probar que la noción de norma satisface la desigualdad del triángulo, y que por lo tanto la noción de distancia define una métrica.
  • Aunque no lo veremos en este curso, más adelante verás que una métrica induce una topología, y que con una topología se puede hablar de continuidad.

En resumen, a partir de un producto interior podemos hacer cálculo en espacios vectoriales en general.

Una forma bilineal con la cual probablemente estés familiarizado es el producto punto en $\mathbb{R}^n$, que a dos vectores $(x_1,x_2,\ldots,x_n)$ y $(y_1,y_2,\ldots,y_n)$ los manda al real $$x_1y_1+x_2y_2+\ldots+x_ny_n.$$ Este es un ejemplo de una forma bilineal que es un producto interior. También puede que estés familiarizado con la norma en $\mathbb{R}^n$, que a un vector $(x_1,\ldots,x_n)$ lo manda al real $$\sqrt{x_1^2+x_2^2+\ldots+x_n^2}.$$ Lo que está dentro de la raíz es un ejemplo de una forma cuadrática positiva definida. Incluyendo la raíz, este es un ejemplo de norma en espacios vectoriales.

Hay muchas otras formas bilineales y formas cuadráticas, pero los ejemplos mencionados arriba te pueden ayudar a entender la intuición detrás de algunos de los conceptos que mencionaremos. Para marcar algunas cosas en las que la intuición puede fallar, pondremos algunas «Aclaraciones» a lo largo de esta entrada.

En el futuro, tener una buena noción de la geometría de espacios vectoriales te ayudará a entender mucho mejor los argumentos de cursos de análisis matemático, de variable compleja y de optativas como geometría diferencial. Dentro de este curso, entender bien el concepto de forma bilineal te será de gran utilidad para cuando más adelante hablemos de formas multilineales y determinantes.

Formas bilineales

La definición fundamental para los temas que veremos en estas entradas es la siguiente, así que enunciaremos la definición, veremos varios ejemplos y haremos algunas aclaraciones.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Una forma bilineal es una función $b:V\times V \to \mathbb{R}$ tal que:

  • Para todo $x$ en $V$, la función $b(x,\cdot):V\to \mathbb{R}$ que manda $v\in V$ a $b(x,v)$ es una forma lineal.
  • Para todo $y$ en $V$, la función $b(\cdot, y):V\to \mathbb{R}$ que manda $v\in V$ a $b(v,y)$ es una forma lineal.

Ejemplo 1. Considera el espacio vectorial de polinomios $\mathbb{R}_3[x]$ y considera la función $$b(p,q)=p(0)q(10)+p(1)q(11).$$ Afirmamos que $b$ es una forma bilineal. En efecto, fijemos un polinomio $p$ y tomemos dos polinomios $q_1$, $q_2$ y un real $r$. Tenemos que
\begin{align*}
b(p,q_1+rq_2)&=p(0)(q_1+rq_2)(10)+p(1)(q_1+rq_2)(11)\\
&= p(0)q_1(10)+p(1)q_1(11) + r ( p(0)q_2(10)+p(1)q_2(11))\\
&= b(p,q_1)+rb(p,q_2),
\end{align*}

De manera similar se puede probar que para $q$ fijo y $p_1$, $p_2$ polinomios y $r$ real tenemos que $$b(p_1+rp_2,q)=b(p_1,q)+rb(p_2,q).$$ Esto muestra que $b$ es una forma bilineal.

$\square$

Si $v=0$, entonces por el primer inciso de la definición, $b(x,v)=0$ para toda $x$ y por el segundo $b(v,y)=0$ para toda $y$, en otras palabras:

Proposición. Si $b$ es una forma bilineal en $b$, y alguno de $x$ o $y$ es $0$, entonces $b(x,y)=0$.

De la linealidad de ambas entradas de $b$, se tiene la siguiente proposición.

Proposición. Tomemos $b:V\times V\to \mathbb{R}$ una forma bilineal, vectores $x_1,\ldots,x_n$, $y_1,\ldots,y_m$ y escalares $a_1,\ldots,a_n,c_1,\ldots,c_m$. Tenemos que $$b\left(\sum_{i=1}^n a_ix_i, \sum_{j=1}^m c_j y_j\right)=\sum_{i=1}^n\sum_{j=1}^m a_ic_jb(x_i,y_j).$$

La proposición anterior muestra, en particular, que para definir una forma bilineal en un espacio vectorial $V$ de dimensión finita $n$, basta tomar una base $\{e_1,\ldots,e_n\}$ de $V$ y definir $b(e_i,e_j)$ para toda $1\leq i,j \leq n$.

Hagamos algunas aclaraciones acerca de las formas bilineales.

Aclaración 1. No es lo mismo una forma bilineal en $V$, que una transformación lineal de $V\times V$ a $\mathbb{R}$.

Ejemplo. La transformación $b((w,x),(y,z))=w+x+y+z$ sí es una transformación lineal de $\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$, lo cual se puede verificar fácilmente a partir de la definición. Sin embargo, no es una forma bilineal. Una forma de verlo es notando que $$b((0,0),(1,1))=0+0+1+1=2.$$ Aquí una de las entradas es el vector cero, pero el resultado no fue igual a cero.

$\square$

Aclaración 2. Puede pasar que ninguna de las entradas de la forma bilineal sea $0$, pero que evaluando en ella sí de $0$.

Ejemplo. Consideremos la transformación $b:\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$ tal que $$b((w,x),(y,z))=wy-xz.$$ Verificar que esta es una forma bilineal es sencillo y se deja como tarea moral. Además, se tiene que $b((1,0),(0,1))=0$.

$\square$

Más adelante, cuando definamos producto interior, nos van a importar mucho las parejas de vectores $v$, $w$ para las cuales $b(v,w)=0$.

Aclaración 3. Si $b$ es una forma bilineal, no necesariamente es cierto que $b(x,y)=b(y,x)$.

Ejemplo. Consideremos la transformación $b:\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$ tal que $$b((w,x),(y,z))=wz-xy.$$ Verificar que esta es una forma bilineal es sencillo y se deja como tarea moral. Notemos que $b((2,1),(2,3))=6-2=4$, mientras que $b((2,3),(2,1))=2-6=-4$.

$\square$

Aquellas formas para las que sí sucede que $b(x,y)=b(y,x)$ son importantes y merecen un nombre especial.

Definición. Una forma bilineal $b:V\times V\to \mathbb{R}$ es simétrica si $b(x,y)=b(y,x)$ para todo par de vectores $x,y$ en $V$.

Para definir una forma bilineal $b$ simétrica en un espacio $V$ de dimensión finita $n$, basta tomar una base $\{e_1,\ldots,e_n\}$ y definir $b$ en aquellas parejas $b(e_i,e_j)$ con $1\leq i \leq j \leq n$.

Más ejemplos de formas bilineales

A continuación enunciamos más ejemplos de formas bilineales, sin demostración. Es un buen ejercicio verificar la definición para todas ellas.

Ejemplo. Si $a_1, a_2,\ldots, a_n$ son números reales y $V=\mathbb{R}^n$, entonces podemos definir $b:V\times V \to \mathbb{R}$ que manda a $x=(x_1,\ldots,x_n)$ y $y=(y_1,\ldots,y_n)$ a $$b(x,y)=a_1x_1y_1+\ldots+a_nx_ny_n.$$

Este es un ejemplo de una forma bilineal simétrica. Si todos los $a_i$ son iguales a $1$, obtenemos el producto punto o producto interior canónico de $\mathbb{R}^n$.

Ejemplo. Tomemos $V$ como el espacio vectorial de matrices $M_n(\mathbb{R})$. La transformación $b:V\times V\to \mathbb{R}$ tal que $b(A,B)=\text{tr}(AB)$ es una forma bilineal. Además, es simétrica, pues la traza cumple la importante propiedad $\text{tr}(AB)=\text{tr}(BA)$, cuya verificación queda como tarea moral.

Ejemplo. Tomemos $V$ el conjunto de funciones continuas y de periodo $2\pi$ que van de $\mathbb{R}$ a sí mismo. Es decir, $f:\mathbb{R}\to \mathbb{R}$ está en $V$ si es continua y $f(x)=f(x+2 \pi)$ para todo real $x$. Se puede mostrar que $V$ es un subespacio del espacio de funciones continuas, lo cual es sencillo y se queda como tarea moral. La transformación $b:V\times V \to \mathbb{R}$ tal que $$b(f,g)=\int_{-\pi}^\pi f(x) g(x)\, dx$$ es una forma bilineal.

Ejemplo. Consideremos $V=\mathbb{R}[x]$, el espacio vectorial de polinomios con coeficientes reales. Para $P$ y $Q$ polinomios definimos $$b(P,Q)=\sum_{n=1}^\infty \frac{P(n)Q(2n)}{2^n}.$$

La serie de la derecha converge absolutamente, de modo que esta expresión está bien definida. Se tiene que $b$ es una forma bilineal, pero no es simétrica.

Formas cuadráticas

Otra definición fundamental es la siguiente

Definición. Una forma cuadrática es una transformación $q:V\to \mathbb{R}$ que se obtiene tomando una forma bilineal $b:V\times V \to \mathbb{R}$ y definiendo $$q(x)=b(x,x).$$

Aclaración 4. Es posible que la forma bilineal $b$ que define a una forma cuadrática no sea única.

Ejemplo. Consideremos a la forma bilineal de $\mathbb{R}^2$ tal que $$b((x,y),(w,z))=xz-yw.$$ La forma cuadrática dada por $b$ es $$q(x,y)=b((x,y),(x,y))=xy-yx=0.$$ Esta es la misma forma cuadrática que la dada por la forma bilineal $$b'((x,y),(w,z))=yw-xz.$$ Pero $b$ y $b’$ son formas bilineales distintas, pues $b((1,0),(0,1))=1$, mientras que $b'((1,0),(0,1))=-1$.

$\square$

La aclaración anterior dice que puede que haya más de una forma bilineal que de una misma forma cuadrática. Sin embargo, resulta que la asignación es única si además pedimos a la forma bilineal ser simétrica. Este es el contenido del siguiente resultado importante.

Teorema (identidad de polarización). Sea $q:V\to \mathbb{R}$ una forma cuadrática. Existe una única forma bilineal simétrica $b:V\times V \to \mathbb{R}$ tal que $q(x)=b(x,x)$ para todo vector $x$. Esta forma bilineal está determinada mediante la identidad de polarización $$b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.$$

En la siguiente entrada mostraremos el teorema de la identidad de polarización. Por el momento, para tomar más intuición, observa como la identidad se parece mucho a la igualdad $$xy=\frac{(x+y)^2-x^2-y^2}{2}$$ en números reales.

Tarea moral

  • Completa los detalles de la segunda parte del primer ejemplo.
  • Verifica que en efecto las transformaciones de los ejemplos de las aclaración 2 y 3 son formas bilineales.
  • Muestra que el subconjunto de funciones continuas $\mathbb{R}$ a $\mathbb{R}$ y de cualquier periodo $p$ es un subespacio del espacio vectorial $\mathcal{C}(\mathbb{R})$ de funciones continuas reales.
  • Demuestra que para $A$ y $B$ matrices en $M_{n}(F)$ se tiene que $\text{tr}(AB)=\text{tr}(BA)$.
  • Encuentra una forma cuadrática en el espacio vectorial $\mathbb{R}_3[x]$ que venga de más de una forma bilineal.
  • Muestra que el conjunto de formas bilineales de $V$ es un subespacio del espacio de funciones $V\times V \to \mathbb{R}$. Muestra que el conjunto de formas bilineales simétricas de $V$ es un subespacio del espacio de formas bilineales de $V$.
  • Piensa en cómo la igualdad $$xy=\frac{(x+y)^2-x^2-y^2}{2}$$ de números reales está relacionada con la identidad de polarización para el producto punto en $\mathbb{R}^n$.

Más adelante…

En esta entrada estudiamos una extensión de la noción de transformaciones lineales que ya habíamos discutido en la unidad anterior. Enunciamos algunos teoremas muy importantes sobre las transformaciones bilineales e hicimos algunos ejemplos de cómo podemos verificar si una transformación es bilineal. La noción de transformación bilineal, nos permitirá abordar un concepto muy importante: el producto interior.

En las siguientes entradas hablaremos del producto interior y cómo éste nos ayuda a definir ángulos y distancias entre vectores de un espacio vectorial.

Entradas relacionadas