Archivo de la etiqueta: derivadas

Cálculo Diferencial e Integral III: Ejemplos e intuición del teorema de la función implícita

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior revisamos el teorema de la función implícita formalmente enunciado y demostrado. En ésta lo que haremos será reflexionar sobre él y observar con más detalle su propósito y usos.

Dicho de forma simplista pero resaltando su objetivo principal el teorema de la función implícita busca establecer las condiciones bajo las cuales podemos despejar unas variables en término de otras. Da una condición en términos de cierta diferenciabilidad. Como esbozamos en la entrada anterior, lo que el teorema nos dice es cuándo es posible despejar las variables de un sistema de ecuaciones (o funciones coordenadas de un campo vectorial) en función de ciertas las variables libres, y alrededor de una vecindad. Para hacer esto, básicamente hay que resolver un sistema de ecuaciones en donde ciertos coeficientes vienen de ciertas derivadas parciales. El teorema de la función implícita también habla de cómo derivar una función definida implícitamente respecto de cualquiera de sus derivables.

¿Por qué teorema de la función implícita?

¿Por qué este nombre? En numerosos problemas matemáticos derivados de aplicaciones diversas se utilizan modelos geométricos. Estos modelos geométricos usualmente se construyen a partir de restringir ciertas variables con ciertas ecuaciones. Pensemos en objetos geométricos en tres dimensiones. Tenemos variables $x,y,z$. Definamos $G(x,y,z):=x^{2}+y^{2}+z^{2}-1$. Podemos preguntarnos por el objeto geométrico descrito por la ecuación $G(x,y,z)=0.$ Sabemos que las ternas $(x,y,z)$ que satisfacen esto justo conforman una esfera de radio 1 centrada en el origen. Decimos que esta ecuación proporciona una representación implícita de la superficie.

Pero quizás nuestra aplicación nos lleva a preguntarnos si alguna coordenada está en términos de las otras para los puntos que están en dicha esfera. En afortunadas ocasiones es posible despejar en la ecuación $G(x,y,z)$ algunas de las variables en términos de las otras. Esto nos lleva a una o varias ecuaciones de la forma $z=g(x,y)$, en nuestro caso particular tenemos:

\begin{align*}z=\sqrt{1-x^{2}-y^{2}} && \textup{y} && z=-\sqrt{1-x^{2}-y^{2}}.\end{align*}

El teorema de la función inversa nos dice que si ciertas derivadas existen y son invertibles como transformaciones lineales, entonces podemos hacer estos despejes. De hecho, nos dice algo mejor: que podemos hacerlos alrededor de toda una vecindad donde no se anule dicha derivada. De aquí sale la idea de «función implícita». Algunas ecuaciones, aunque no permitan despejar variables, sí lo permiten «localmente» y entonces ahí hay una «función oculta».

En la gran mayoría de los casos es difícil lograr estos despejes mediante expresiones algebraicas sencillas por ejemplo en una superficie representada por la ecuación $y^{3}+z^{2}-xz+e^{zx}-4=0$ suena muy difícil que podamos despejar $z$. Sin embargo el teorema de la función implícita nos garantiza que, aunque no sepamos cómo, la variable $z$ sí se puede poner en función de las variables $x$ y $y$.

La derivada de la función implícita

Otra buena notica es que aunque no conozcamos explícitamente el despeje que nos interesa, con el teorema de la función implícita sí podemos encontrar las derivadas parciales de la función implícita que aparece. Si pensaste los problemas de la tarea moral de la entrada anterior, quizás ya hayas llegado al siguiente resultado.

Corolario. Sea $F:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}$ un campo escalar diferenciable con $S$ abierto. Supongamos que la ecuación $F(x_{1},\dots ,x_{n})=0$ define implícitamente a $x_{n}$ como función diferenciable de $x_{1},\dots ,x_{n-1}$ como $x_{n}=f(x_{1},\dots ,x_{n-1})$, para todos los puntos $(x_{1},\dots ,x_{n-1})\in S’\subseteq \mathbb{R}^{n-1}$, entonces para cada $k=1,2,\dots ,n-1$ la derivada parcial $\frac{\partial f}{\partial x_{k}}$ está dada por la fórmula:

\[ \begin{equation}\frac{\partial f}{\partial x_{k}}=-\frac{\frac{\partial F}{\partial x_{k}}}{\frac{\partial F}{\partial x_{n}}}\end{equation} \]

en los puntos en los que $\frac{\partial F}{\partial x_{n}}\neq 0$. Las derivadas parciales de $F$ están calculadas en el punto $(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n}))$.

Demostración. Pensemos $F:\mathbb{R}^{n-1}\times \mathbb{R} \to \mathbb{R}$. Si $(x_{1},\dots x_{n})$ es tal que $F(x_{1},\dots ,x_{n})=0$, por el teorema de la función implícita tenemos a una única función $f:\mathbb{R}^{n-1}\rightarrow \mathbb{R}$ tal que $F(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n-1}))=0$.

(Nota. En la entrada anterior teníamos entradas de la forma $(y,x)$ y $y$ quedaba en función de $x$. De manera totalmente análoga podemos intercambiar los papeles de $x$ y $y$, pidiendo las hipótesis correctas. De hecho, usualmente se piensa en parejas $(x,y)$ y las variables de $y$ son las que quedan en términos de las variables $x$)

Ahora, pensemos en el campo vectorial $G:S’\subseteq \mathbb{R}^{n-1}\rightarrow \mathbb{R}^{n}$ dado por $G(x_{1},\dots ,x_{n-1})=(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n-1}))$. Así $(F\circ G)(x_{1},\dots ,x_{n-1})=0$. Por regla de la cadena, $DFDG=0$. Tenemos así $0=\triangledown F\cdot DG$, lo cual explícitamente es:

\[ 0=\begin{bmatrix} \frac{\partial F}{\partial x_{1}} & \dots & \frac{\partial F}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \\ \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial f}{\partial x_{n-1}} \end{bmatrix}= \]

\[ \begin{bmatrix} \frac{\partial F}{\partial x_{1}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{1}} & \frac{\partial F}{\partial x_{2}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial F}{\partial x_{n-1}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{n-1}} \end{bmatrix}.\]

Por ello, para cada $i$ tenemos:

\[ \frac{\partial F}{\partial x_{i}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{i}}=0.\]

De esta ecuación se deduce la $(1)$.

$\square$

Un primer ejemplo del teorema de la función inversa

Pasemos ahora a hacer algunas cuentas concretas para entender mejor lo que uno tiene que hacer para aplicar el teorema de la función implícita en funciones particulares.

Ejemplo. Consideremos la ecuación $y^{2}+xz+z^{2}-e^{z}-c=0$. Expresaremos a $z$ en función de $x$ e $y$, es decir, $z=f(x,y)$. Nos gustaría encontrar un valor de la constante $c$ tal que $f(0,e)=2$. Para dicha $c$, queremos calcular las derivadas parciales con respecto a $x$ y $y$ en el punto $(x,y)=(0,e)$.

Para la primera parte sustituimos $x=0$, $y=e$ y $z=2$. Tenemos $$e^{2}+0\cdot 2+2^{2}-e^{2}-c=0,$$ que es lo mismo que $4-c=0$, y esto implica $c=4$. De esta manera, estudiaremos la función $$F(x,y,z)=y^{2}+xz+z^{2}-e^{z}-4.$$

Notemos que

\begin{align*}\frac{\partial F}{\partial z}=x+2z-e^{z},&&\frac{\partial F}{\partial x}=z,&&\frac{\partial F}{\partial y}=2y,\end{align*}

por lo cual

\begin{align*} \frac{\partial f}{\partial x}=-\frac{z}{x+2z-e^{z}},&&\frac{\partial f}{\partial y}=-\frac{2y}{x+2z-e^{z}}.\end{align*}

Así para $x=0$, $y=e$ y $z=2$ al sustituir resulta

\begin{align*} \frac{\partial f}{\partial x}(0,e)=\frac{2}{e^{2}-4}&&\textup{y}&&\frac{\partial f}{\partial y}(0,e)=\frac{2e}{e^{2}-4}. \end{align*}

$\triangle$

En este ejemplo vemos cómo hemos podido calcular las derivadas parciales de $z=f(x,y)$ usando el valor de $f$ en el punto $(0,e)$, sin conocer quién es la función $f(x,y)$.

Un repaso chiquito de la demostación del teorema de la función implícita

Ahora repasaremos la demostración del teorema de la función implícita pero para un caso muy particular: Dos superficies $S_{1}$ y $S_{2}$ en el espacio con las siguientes representaciones implícitas:

$$ \textup{para}\hspace{0.3cm}S_{1}:\Psi (x,y,z)=0\hspace{1cm}\textup{y}\hspace{1cm}\textup{para}\hspace{0.3cm}S_{2}:\Gamma (x,y,z)=0.$$

Supongamos que las superficies se cortan en la curva $\mathfrak{C}$. En otras palabras, $\mathfrak{C}$ es el conjunto solución para el siguiente sistema de ecuaciones:

\[ \left \{\begin{matrix} \Psi (x,y,z)=0 \\ \Gamma (x,y,z)=0. \end{matrix} \right.\]

Supongamos que podemos despejar $x$ y $y$ en estas ecuaciones en términos de $z$ de la siguiente manera:

\[ \begin{equation}x=X(z),\hspace{1cm}y=Y(z)\hspace{0.3cm}\textup{para todo}\hspace{0.1cm}z\in (a,b).\end{equation} \]

Aquí, al reemplazar $x$ y $y$ por $X(z)$ y $Y(z)$ (respectivamente), el sistema $(2)$ se satisface. Por tanto tenemos $\Psi (X(z),Y(z),z)=0$ y $\Gamma (X(z),Y(z),z)=0$ para todo $z\in (a,b)$. Podemos calcular las derivadas $X^{\prime}(z)$, $Y^{\prime}(z)$, sin un conocimiento explícito de $X(z)$ y $Y(z)$.

¿Cómo hacemos esto? Consideramos las siguientes funciones auxiliares:

\begin{align*}
\psi (z)&=\Psi (X(z),Y(z),z),\\
\gamma (z)&=\Gamma (X(z),Y(z),z).
\end{align*}

Tenemos $\psi (z)=\gamma (z)=0$ y en consecuencia $\psi^{\prime}(z)=\gamma^{\prime}(z)=0$.

Derivando con la regla de la cadena tenemos:

\begin{align*}
\psi^{\prime}(z)&=\frac{\partial \Psi}{\partial x}X'(z)+\frac{\partial \Psi}{\partial y}Y'(z)+\frac{\partial \Psi}{\partial z},\\
\gamma^{\prime}(z)&=\frac{\partial \Gamma}{\partial x}X'(z)+\frac{\partial \Gamma}{\partial y}Y'(z)+\frac{\partial \Gamma}{\partial z}
\end{align*}

Dado que $\psi^{\prime} (z)=\gamma^{\prime}(z)=0$ tenemos el siguiente sistema de dos ecuaciones con dos incógnitas $X^{\prime}(z)$, $Y^{\prime}(z)$:

\[ \left \{\begin{matrix}\frac{\partial \Psi}{\partial x}X^{\prime}(z)+\frac{\partial \Psi}{\partial y}Y^{\prime}(z)=-\frac{\partial \Psi}{\partial z}\\ \frac{\partial \Gamma}{\partial x}X^{\prime}(z)+\frac{\partial \Gamma}{\partial y}Y^{\prime}(z)=-\frac{\partial \Gamma}{\partial z} \end{matrix} \right.\]

En los puntos en los cuales el determinante del sistema no es cero, usamos la regla de Cramer para obtener las soluciones como sigue:

\[ X^{\prime}(z)={\Large -\frac{\begin{vmatrix}\frac{\partial \Psi}{\partial z} & \frac{\partial \Psi}{\partial y}\\ \frac{\partial \Gamma}{\partial z} & \frac{\partial \Gamma }{\partial y}\end{vmatrix}}{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y} \\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma}{\partial z} \end{vmatrix}} },\hspace{0.5cm}Y^{\prime}(z)={\Large -\frac{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial z}\\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma }{\partial z}\end{vmatrix}}{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y} \\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma}{\partial z} \end{vmatrix}} }.\]

Otro ejemplo para encontrar derivadas de funciones implícitas

Veamos un último ejemplo en donde pondemos usar las ideas anteriores.

Ejemplo. Consideremos las ecuaciones $y=uv^{2}$, y $x=u+v$. Queremos ver que podemos determinar una función $h$ tal que $v=h(x,y)$ y para la cual:

\[ \frac{\partial h}{\partial x}(x,y)= \frac{h(x,y)}{3h(x,y)-2x}.\]

Además, queremos encontrar una fórmula análoga para $\frac{\partial h}{\partial y}$.

Primero, en la ecuación $x=u+v$ despejamos $u$ y sustituimos en $y=uv^{2}$, tenemos $y=(x-v)v^{2}$. De aquí $$xv^{2}-v^{3}-y=0.$$ Esto nos sugiere pensar en la función $$F(x,y,v):=xv^{2}-v^{3}-y,$$ pues nos permite representar nuestra ecuación como $F(x,y,v)=0$. Por el teorema de la función implícita (¡verifica las hipótesis!), esta ecuación define implícitamente a $v$ como función de $x$ e $y$, digamos, como $v=h(x,y)$. Aplicando las fórmulas que conocemos para las derivadas de la función implicita, tenemos lo siguiente:

\[ \frac{\partial h}{\partial x}= -\frac{\partial F /\partial x}{\partial F /\partial v}\hspace{0.5cm}\textup{y}\hspace{0.5cm}\frac{\partial h}{\partial y}=-\frac{\partial F /\partial y}{\partial F /\partial v} \]

Donde $\frac{\partial F}{\partial x}=v^{2}$, $\frac{\partial F}{\partial v}=2xv-3v^{2}$ y $\frac{\partial F}{\partial y}=-1$. Luego tenemos:

\begin{align*} \frac{\partial h}{\partial x}(x,y)&=-\frac{v^{2}}{2xv-3v^{2}}\\ &=-\frac{v}{2x-3v}\\ &=\frac{h(x,y)}{3h(x,y)-2x}.\end{align*}

Esto muestra la primera parte. Para encontra la fórmula análoga, volvemos a usar las fórmulas para derivadas de la función implícita:

\begin{align*}\frac{\partial h}{\partial y}(x,y)&=-\frac{-1}{2xv-3v^{2}}\\ &=\frac{1}{2xh(x,y)-3h^{2}(x,y)}.\end{align*}

$\triangle$

Más adelante…

Hemos cubierto el teorema de la función inversa y el teorema de la función implícita. Estos son temas teóricos profundos e importantes que tienen muchas consecuencias. Tienen también otras versiones en contextos más amplios como variedades, geometría diferencial, etc. Por el momento, dejaremos hasta aquí nuestro estudio de estos temas, pero te recomendamos de vez en cuando repasarlos, pues cada vez entenderás más de sus demostraciones y lo que significan.

Nuestra atención se enfocará ahora en otros conceptos que se pueden definir en términos de funciones de varias variables: la divergencia, el laplaciano y el rotacional. Después, hablaremos un poco de cómo la teoría que hemos desarrollado nos ayudará a encontrar puntos críticos para funciones de varias variables.

Tarea moral

  1. Las ecuaciones $x+y=uv$ y $xy=u-v$ definen $x$ y $y$ como funciones implícitas de $u$ y $v$, sean éstas $x=X(u,v)$ y $y=Y(u,v)$. Demuestra que $\partial X/\partial u=(xv-1)/(x-y)$ si $x\neq y$, y halla las fórmulas para $\partial X/\partial v$, $\partial Y/\partial v$, $\partial Y/\partial u$.
  2. Las tres ecuaciones \[ \left\{\begin{matrix} x^{2}-y\hspace{0.1cm}cos\hspace{0.1cm}(uv)+z^{2}=0, \\ x^{2}+y^{2}-\hspace{0.1cm}sen\hspace{0.1cm}(uv)+2z^{2}=2, \\ xy-\hspace{0.1cm}sen\hspace{0.1cm}u\hspace{0.1cm}cos\hspace{0.1cm}v+z=0 \end{matrix}\right.\] definen $x$, $y$, y $z$ como funciones de $u$ y $v$. Calcula las derivadas parciales $\partial x/\partial u$ y $\partial x/\partial v$ en el punto $x=y=1$, $u=\pi /2$, $v=0$, $z=0$.
  3. Las ecuaciones $x+y=uv$ y $xy=u-v$ definen $x$ y $v$ como funciones de $u$ y $y$, sean éstas $x=X(u,v)$ y $v=V(u,y)$. Demuestra que $\partial X/\partial u=(u+v)/(1+yu)$ si $1+yu\neq 0$ y halla las fórmulas de $\partial X/\partial y$, $\partial V /\partial u$, $\partial V /\partial y$.
  4. Sigue las ideas de los resultados de la entrada anterior para escribir una calca de ella pero ahora para $f:S\subseteq \mathbb{R}^{m} \times \mathbb{R}^{l}$, en donde la función que se busca tiene ahora dominio en $\mathbb{R}^{m}$ que pone a las variables del dominio $\mathbb{R}^l$ en términos de las de $\mathbb{R}^m$.
  5. Haz un esfuerzo extra, y medita nuevamente en el teorema de la función implícita tratando de escribir una demostración de como sería el asunto para $f$ con dominio en $\mathbb{R}^{m}\times \mathbb{R}^{l}\times \mathbb{R}^{k}$. ¿Se podrá hallar la función $h$, pero ahora con dominio en $\mathbb{R}^{l}$?

Entradas relacionadas

Ecuaciones Diferenciales I: Introducción a las Ecuaciones Diferenciales

Por Omar González Franco

La vida es buena por sólo dos cosas, descubrir y enseñar las matemáticas.
– Simeon Poisson

Introducción

Bienvenidos a la primera clase del curso, en esta entrada conoceremos qué son las ecuaciones diferenciales, cómo clasificarlas y presentaremos una parte de la terminología elemental que usaremos a lo largo del curso.

Las leyes del universo están escritas en el lenguaje de las matemáticas. Muchos de los fenómenos naturales que ocurren en el universo involucran cambios y si logramos crear modelos matemáticos que los describan, sin duda, la derivada será una herramienta fundamental que estará presente. Sabemos que la derivada $\dfrac{dy}{dx} = f'(x)$ de la función $f$ es la razón a la cual la cantidad $y = f(x)$ está cambiando respecto de la variable independiente $x$, es natural, entonces, que las ecuaciones que involucran derivadas se usen frecuentemente para describir el universo cambiante. Una ecuación que relacione una función desconocida con una o más de sus derivadas se llama ecuación diferencial.

Ecuaciones diferenciales

Al tratarse de un curso introductorio, sólo trabajaremos con ecuaciones diferenciales que contienen sólo una variable independiente, estas ecuaciones tienen un nombre particular.

El reto al que nos enfrentamos con las ecuaciones diferenciales es hallar la función involucrada que depende de la variable independiente. Supongamos que tenemos la función

$$y = f(x) = 2e^{x^{2}}$$

Esta función es derivable en todo $\mathbb{R}$, si la derivamos obtenemos otra función dada de la siguiente forma.

$$\dfrac{dy}{dx} = f'(x) = 4xe^{x^{2}}$$

Este resultado se puede reescribir como

$$\dfrac{dy}{dx} = 2x(2e^{x^{2}})$$

Podemos observar que lo que está entre paréntesis es de nuevo la función $y = 2e^{x^{2}}$ , si la sustituimos obtenemos como resultado la siguiente ecuación.

$$\dfrac{dy}{dx} = 2xy$$

Este resultado corresponde a una ecuación diferencial ordinaria, pues contiene la derivada de la variable dependiente $y$ con respecto a la variable independiente $x$, esto es $\dfrac{dy}{dx}$.

Ahora imagina que lo primero que vemos es la ecuación diferencial $\dfrac{dy}{dx} = 2xy$ y lo que debemos de hacer es obtener la función $f(x) = y$. ¿Cómo la obtendrías?. ¡Este es el reto!.

Básicamente el objetivo del curso será desarrollar distintos métodos para resolver los diferentes tipos de ecuaciones diferenciales ordinarias que se puedan presentar, analizaremos las circunstancias en las que aparecen y la forma en que surgen con el fin de describir o modelar fenómenos físicos en términos matemáticos.

Notación

En la mayor parte del curso utilizaremos la notación de Leibniz.

$$\dfrac{dy}{dx}, \hspace{0.4cm} \dfrac{d^{2}y}{dx^{2}}, \hspace{0.4cm} \dfrac{d^{3}y}{dx^{3}}, \hspace{0.4cm} \cdots,$$

En este caso la expresión $\dfrac{d}{dx}$ sirve como un operador que indica una derivación de la variable dependiente $y$ con respecto a la variable independiente $x$.

En ocasiones para ser más compactos utilizaremos la notación prima o también conocida como notación de Lagrange.

$$y^{\prime}, \hspace{0.4cm} y^{\prime \prime}, \hspace{0.4cm} y^{\prime \prime\prime}, \hspace{0.4cm} \cdots$$

En el caso de esta notación, a partir de la cuarta derivada ya no se colocan primas, sino números entre paréntesis, dicho número indica el grado de la derivada.

$$y^{(4)}, \hspace{0.4cm} y^{(5)}, \hspace{0.4cm} \cdots, \hspace{0.4cm} y^{(n)}$$

En este curso haremos mayor uso de la notación de Leibniz debido a que indica con claridad las variables independientes y dependientes. Por ejemplo, en la ecuación

$$\dfrac{dx}{dt} + 8x = 0$$

se observa de forma inmediata que el símbolo $x$ representa a la variable dependiente, mientras que $t$ a la variable independiente.

Cuando se trata de resolver problemas en contextos del mundo real relacionados con Física o ingeniería por ejemplo, es común utilizar la notación de Newton.

$$\dot{y}, \hspace{0.4cm} \ddot{y}, \hspace{0.4cm} \dddot{y}, \hspace{0.4cm} \cdots$$

Es común utilizar esta notación cuando la variable independiente corresponde al tiempo $t$.

$$\dfrac{dy}{dt} = \dot{y}(t)$$

Clasificación de las ecuaciones diferenciales

Para comenzar será importante clasificar a las ecuaciones diferenciales por tipo, orden y linealidad.

  • Clasificación por tipo

Un primer tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Ordinarias (EDO) que, como se definieron anteriormente, son aquellas que relacionan una función desconocida de una variable independiente con sus derivadas. Algunos ejemplos de ecuaciones diferenciales ordinarias son:

$$\dfrac{dy}{dx} + 5y = e^{x}, \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} + 6y = 0 \hspace{1cm} y \hspace{1cm} \dfrac{dx}{dt} + \dfrac{dy}{dt} = 2x + y$$

Otro tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Parciales (EDP), estas ecuaciones presentan las derivadas parciales de una o más variables dependientes de dos o más variables independientes. Algunos ejemplos de ecuaciones diferenciales parciales son:

$$\dfrac{\partial^{2}z}{\partial x^{2}} + \dfrac{\partial^{2}z}{\partial y^{2}} = 0, \hspace{1cm} \dfrac{\partial^{2}z}{\partial x^{2}} = \dfrac{\partial^{2}z}{\partial t^{2}} -2\dfrac{\partial z}{\partial t} \hspace{1cm} y \hspace{1cm} \dfrac{\partial u}{\partial y} = – \dfrac{\partial v}{\partial x}$$

En este curso no estudiaremos a las ecuaciones diferenciales parciales.

  • Clasificación por orden

El orden de una ecuación diferencial representa el orden de la derivada más alta presente en la ecuación. Así, la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es una ecuación diferencial ordinaria de segundo orden. Importante, no confundir orden de la derivada con el grado o potencia de las derivadas.

Una EDO de $n$-ésimo orden se puede expresar como una variable dependiente empleando la forma general

$$F(x, y, y^{\prime}, \cdots , y^{(n)}) = 0 \tag{1} \label{1}$$

Donde $F$ es una función con valores reales de $n + 2$ variables. Por motivos teóricos debemos suponer que es posible resolver la EDO anterior únicamente para la derivada de mayor grado $y^{(n)}$ en términos de las $n + 1$ variables restantes, es decir, suponemos que se puede resolver la siguiente ecuación.

$$\dfrac{d^{n}y}{dx^{n}} = f(x, y, y^{\prime}, \cdots , y^{(n – 1)}) \tag{2} \label{2}$$

Donde $f$ es una función continua con valores reales. A la ecuación (\ref{2}) se le denomina forma normal de (\ref{1}). En ocasiones será útil utilizar las formas normales

$$\dfrac{dy}{dx} = f(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = f(x, y, y^{\prime})$$

para representar ecuaciones diferenciales ordinarias de primer y segundo orden, respectivamente.

Por ejemplo, la forma normal de la ecuación diferencial de primer orden

$$4x \dfrac{dy}{dx} + y = x$$

es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Para $x \neq 0$. En este caso la función $f$ sería

$$f(x, y) = \dfrac{x -y}{4x}$$

Mientras que la forma general de la misma ecuación es

$$F \left( x, y , \dfrac{dy}{dx} \right) = 4x \dfrac{dy}{dx} + y -x = 0$$

Las ecuaciones diferenciales ordinarias de primer orden ocasionalmente se escriben en lo que se conoce como la forma diferencial.

$$M(x, y) dx + N(x, y) dy = 0 \tag{3} \label{3}$$

Anteriormente vimos que la forma normal de la ecuación diferencial dada es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Haciendo de un abuso de notación podemos escribir a esta ecuación como

$$4x dy = (x -y) dx$$

O bien,

$$(y -x) dx + 4x dy = 0$$

Esta es la correspondiente forma diferencial, en este caso

$$M(x, y) = y -x \hspace{1cm} y \hspace{1cm} N(x, y) = 4x$$

Con este ejemplo encontramos tres formas distintas de representar a la misma ecuación diferencial. Veremos más adelante que cada forma de representación nos será de utilidad cuando intentemos encontrar a la función dependiente.

  • Clasificación por linealidad

Una ecuación diferencial ordinaria de $n$-ésimo orden (\ref{1}) es lineal si $F$ es lineal en $y, y^{\prime}, \cdots, y^{(n)}$, es decir, una EDO es lineal si se puede escribir como

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = g(x) \tag{4} \label{4}$$

Cumpliendo las siguientes propiedades:

  • La variable dependiente $y$, así como todas sus derivadas $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$ son de primer grado, es decir, la potencia de cada uno de los términos que involucran a $y$ es $1$.
  • Los coeficientes $a_{0}, a_{1}, \cdots, a_{n}$ de $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$, respectivamente, así como la función $g(x)$ dependen a lo sumo de la variable independiente $x$.

Una ecuación diferencial ordinaria no lineal simplemente es una ecuación que no es lineal, es decir, que no cumple con las propiedades anteriores.

La ecuación

$$4x \dfrac{dy}{dx} + y = x$$

claramente es lineal, mientras que la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es no lineal debido a que la primera derivada de la variable dependiente $y$ no es de primer grado, sino de grado $3$.

Ejemplo: Clasificar las siguientes ecuaciones diferenciales.

  • $\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$
  • $\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$
  • $(1-y) y^{\prime} + 2y = e^{x}$

Solución:

En la ecuación

$$\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$$

observamos que se trata de una ecuación diferencial ordinaria, pues la variable dependiente $y$ sólo depende de una variable independiente, en este caso de $x$. Por otro lado, observamos que la derivada más alta es $\dfrac{d^{3}y}{dx^{3}}$ , por lo tanto el orden de la ecuación es $3$, es decir, es una ecuación diferencial de tercer orden. Finalmente vemos que se trata de una ecuación lineal, pues la potencia de los términos que involucran a $y$ es $1$ y además la función $g(x) = e^{x}$ sólo depende de la variable independiente.

En la ecuación

$$\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$$

notamos que corresponde a una ecuación diferencial ordinaria de segundo orden ya que la derivada más alta es $\dfrac{d^{2}y}{dx^{2}}$. En este caso la ecuación es no lineal ya que la función $\sin(y)$ no es lineal e involucra a la variable dependiente.

Finalmente, en la ecuación

$$(1-y) y^{\prime} + 2y = e^{x}$$

se observa que es una ecuación diferencial ordinaria de primer orden y que es no lineal ya que el coeficiente de $y^{\prime}$, la función $(1 -y)$, depende de la variable dependiente.

$\square$

Como podemos notar, para deducir si una ecuación diferencial es lineal o no es conveniente escribirla en la forma (\ref{4}) y verificar las dos propiedades de linealidad.

De acuerdo a (\ref{4}), las ecuaciones diferenciales de primer orden ($n = 1$) y segundo orden ($n = 2$) se pueden escribir de forma general como

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{5} \label{5}$$

y

$$a_{2}(x) \frac{d^{2}y}{dx^{2}} + a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{6} \label{6}$$

Respectivamente.

Hemos concluido con esta entrada.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Definir el orden de las siguientes ecuaciones diferenciales ordinarias y establecer si son lineales o no lineales.
  • $(1 -x) y^{\prime \prime} -4xy^{\prime} + 5y = \cos(x)$
  • $\dfrac{d^{2}y}{dx^{2}} = \sqrt {1 + \left(\dfrac{dy}{dx}\right)^{2}}$
  • $x \dfrac{d^{3}y}{dx^{3}} -\left( \dfrac{dy}{dx} \right) ^{4} + y = 0$
  1. Determinar si las siguientes ecuaciones diferenciales de primer orden son lineales en la variable dependiente indicada comparándola con la ecuación (\ref{4}). (es decir, considera primero a una variable como dependiente de la otra y reescribe la ecuación en la forma general (\ref{4}) para deducir si es lineal o no, posteriormente intercambia al papel de las variables y vuelve a ver si la ecuación es lineal o no).
  • $(y^{2} -1) dx + x dy = 0$, $\hspace{0.5cm}$ en $y$, $\hspace{0.2cm}$ en $x$
  • $u dv + (v + uv -ue^{u}) du = 0$, $\hspace{0.5cm}$ en $v$, $\hspace{0.2cm}$ en $u$

Más adelante …

Como se mencionó, uno de los objetivos es hallar a la función involucrada que depende de la variable independiente, a esta función formalmente se le conoce como función solución de la ecuación diferencial. Antes de estudiar cómo obtener estas funciones solución será conveniente primero estudiar sus propiedades generales.

En la siguiente entrada comenzaremos a estudiar lo relacionado a la solución (o soluciones) de una ecuación diferencial.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: El teorema de derivadas y multiplicidad

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores definimos qué quiere decir que un real sea una raíz de un polinomio. Luego, vimos que mediante el teorema del factor se puede definir una relación entre las raíces de un polinomio y los polinomios lineales que lo dividen. Sin embargo, es posible que un real sea una raíz de un polinomio «más de una vez», que fue un concepto que formalizamos en la entrada de desigualdades de polinomios. En esta entrada veremos que a través de las derivadas de polinomios, podemos determinar la multiplicidad de sus raíces.

Como recordatorio, la multiplicidad de una raíz $r$ de un polinomio $p(x)$ en $\mathbb{R}[x]$ es el mayor entero $m$ tal que $(x-r)^m$ divide a $p(x)$ en $\mathbb{R}[x]$. También, en esta entrada haremos uso de la regla del producto para derivadas.

El teorema de derivadas y multiplicidad

El siguiente resultado es fundamental para la detección de raíces múltiples. Su demostración es sencilla pues usamos varios de los resultados que hemos obtenido anteriormente.

Teorema (derivadas y multiplicidad). Sea $r$ una raíz del polinomio $p(x)$ en $\mathbb{R}[x]$ de multiplicidad $m$. Si $m>1$, entonces $r$ es una raíz de la derivada $p'(x)$, y es de multiplicidad $m-1$. Si $m=1$, entonces $r$ no es raíz de $p'(x)$.

Demostración. Como $r$ es una raíz de $p(x)$ de multiplicidad $m$, entonces se puede escribir $p(x)=(x-r)^m q(x)$, en donde $q(x)$ es un polinomio que ya no es divisible entre $x-r$. Derivando, por regla del producto tenemos que
\begin{align*}
p'(x)&=m(x-r)^{m-1}q(x) + (x-r)^m q'(x)\\
&=(x-r)^{m-1}(mq(x)+(x-r)q'(x)).
\end{align*}

Afirmamos que $x-r$ no divide a $mq(x)+(x-r)q'(x)$. Si lo dividiera, como divide a $(x-r)q'(x)$ entonces también tendría que dividir a $mq(x)$ y por lo tanto a $q(x)$. Pero esto sería una contradicción con la elección de $q(x)$.

De esta forma, si $m=1$ entonces $x-r$ no divide a $p'(x)$ y por el teorema del factor entonces $r$ no es raíz de $p'(x)$. Y si $m>1$, entonces $(x-r)^{m-1}$ divide a $p'(x)$ por la expresión que encontramos de la derivada, pero $(x-r)^m$ no, pues $x-r$ no divide al segundo factor. Esto termina la prueba.

$\square$

Ejemplo. Consideremos al polinomio $p(x)=(x-3)^3(x+1)$. Tanto $3$ como $-1$ son raíces de $p(x)$. La multiplicidad de la raíz $3$ es tres y la multiplicidad de la raíz $-1$ es uno. Si derivamos a $p(x)$ usando la regla del producto, tenemos que
\begin{align*}
p'(x)&=3(x-3)^2(x+1)+(x-3)^3\\
&=3(x-3)^2(x+1+x-3)\\
&=3(x-3)^2(2x-2)\\
&=6(x-3)^2(x-1)
\end{align*}

Observa que $p'(x)$ en efecto tiene a $3$ como raíz de multiplicidad dos y ya no tiene a $1$ como raíz.

$\triangle$

Es muy importante respetar la hipótesis de que $r$ sea raíz de $p(x)$. Por ejemplo, en el ejemplo anterior $1$ es raíz de $p'(x)$ de multiplicidad $1$, pero $1$ no es raíz de $p(x)$ (y mucho menos de multiplicidad $2$).

El teorema de derivadas y multiplicidad es interesante, pero todavía no es útil en aplicaciones prácticas. Sin embargo, tiene dos consecuencias que sí se pueden usar para estudiar polinomios concretos.

Encontrar la multiplicidad de una raíz

El teorema de derivadas y multiplicidad nos dice que la multiplicidad de una raíz «baja en uno» al pasar de un polinomio a su derivada, pero aún no nos dice cuál es esa multiplicidad. Sin embargo, lo podemos aplicar repetidamente para obtener esta información. Recuerda que para $k$ un entero no negativo y $p(x)$ en $\mathbb{R}[x]$, usamos $p^{(k)}(x)$ para denotar $k$-ésima derivada de un polinomio. Aquí $p^{(0)}(x)$ es simplemente $p(x)$.

Proposición. Sea $r$ una raíz del polinomio $p(x)$ en $\mathbb{R}[x]$ de multiplicidad $m$. Si $k$ el mayor entero positivo tal que $r$ es raíz de $$p^{(0)}(x), p^{(1)}(x),\ldots,p^{(k)}(x),$$ entonces $m=k+1$.

Demostración. Usando el teorema anterior de manera inductiva, tenemos que para cada entero $0\leq \ell<m$, se tiene que $r$ es raíz de multiplicidad $m-\ell$ de $p^{(\ell)}(x)$ En particular, es raíz de todas estas derivadas. Además, por el mismo teorema, se tiene que $r$ ya no es raíz de $p^{(m)}(x)$. De esta forma, tenemos que $k=m-1$, de donde se obtiene el resultado deseado.

$\square$

La proposición anterior ahora sí nos da una manera de encontrar la multiplicidad de una raíz de un polinomio.

Ejemplo. Sabiendo que $3$ es una raíz del polinomio $$p(x)=x^5-9x^4+28x^3-36x^2+27x-27,$$ vamos a encontrar su multiplicidad.

Para esto, vamos a calcular sus derivadas:
\begin{align*}
p'(x)&=5x^4-36x^3+84x^2-72x+27\\
p^{(2)}(x)&=20x^3-108x^2+168x-72\\
p^{(3)}(x)&=60x^2-216x+168\\
p^{(4)}(x)&=120x-216\\
p^{(5)}(x)&=120\\
p^{(6)}(x)&=0
\end{align*}

Tenemos que
\begin{align*}
p'(3)&=5\cdot 81 – 36 \cdot 27 +84 \cdot 9 -72\cdot 3 + 27\\
&=405-972+756-216+27\\
&=0.
\end{align*}

Hasta aquí, sabemos que $3$ es raíz de multiplicidad al menos dos. Tenemos también que
\begin{align*}
p^{(2)}(3)&=20\cdot 27-108\cdot 9 +168 \cdot 3 – 72\\
&=540-972+504-72\\
&=0.
\end{align*}

Hasta aquí, sabemos que $3$ es raíz de multiplicidad al menos tres. Siguiendo,
\begin{align*}
p^{(3)}&=60\cdot 9-216\cdot 3 +168\\
&=720-648+168\\
&=240.
\end{align*}

Como la tercera derivada ya no se anuló en $3$, la multiplicidad de $3$ como raíz es exactamente tres.

$\triangle$

Es importante que revisemos todas las derivadas, y que sea una por una. En el ejemplo anterior, $p^{(6)}(3)=0$, pero eso no quiere decir que $3$ sea raíz de multiplicidad $7$, pues la evaluación falla desde la tercera derivada.

Simplificar un polinomio para encontrarle sus raíces

Hay otra consecuencia práctica del teorema de multiplicidades y derivadas, que puede ser de utilidad en algunos problemas. Recuerda que para polinomios $p(x)$ y $q(x)$ en $\mathbb{R}[x]$ usamos $\MCD{p(x),q(x)}$ para denotar al máximo común divisor de dos polinomios. En particular, divide a $p(x)$ en $\mathbb{R}[x]$, de modo que $$\frac{p(x)}{\MCD{p(x),q(x)}}$$ es un polinomio en $\mathbb{R}[x]$.

Proposición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ y $p'(x)$ su derivada. El polinomio $$q(x):=\frac{p(x)}{\MCD{p(x),p'(x)}}$$ es un polinomio en $\mathbb{R}[x]$, con las mismas raíces reales que $p(x)$, pero todas ellas tienen multiplicidad $1$.

Demostración. Factoricemos a todas las raíces reales de $p(x)$ con sus multiplicidades correspondientes para escribir $$p(x)=(x-r_1)^{m_1}\cdot \ldots \cdot (x-r_n)^{m_n} r(x),$$ en donde $r(x)$ ya no tiene raíces reales. De acuerdo al teorema de derivadas y multiplicidad, podemos escribir $$p'(x)=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n)^{m_n-1} s(x),$$ en donde ningún $x-r_i$ divide a $s(x)$. Es sencillo entonces mostrar, y queda como tarea moral, que $\MCD{p(x),p'(x)}$ es $$(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \cdot \MCD{r(x),s(x)}.$$

A partir de esto, concluimos que
\begin{align*}
q(x)&=\frac{p(x)}{\MCD{p(x),p'(x)}}\\
&= (x-r_1)\cdot \ldots \cdot (x-r_n) \cdot \frac{r(x)}{\MCD{r(x),s(x)}}.
\end{align*}

De aquí se ve que $r_1,\ldots,r_n$ son raíces de multiplicidad $1$ de $q(x)$. No hay más raíces reales en $\frac{r(x)}{\MCD{r(x),s(x)}}$, pues si hubiera una raíz $\alpha$, entonces por el teorema del factor $x-\alpha$ dividiría a este polinomio, y por lo tanto a $r(x)$, de donde $\alpha$ sería raíz de $r(x)$, una contradicción.

$\square$

La proposición anterior se puede usar de manera práctica como sigue:

  • Para empezar, tomamos un polinomio arbitrario $p(x)$.
  • Luego, lo derivamos para obtener $p'(x)$.
  • Después, usando el algoritmo de Euclides, encontramos al polinomio $\MCD{p(x),q(x)}$.
  • Ya con el máximo común divisor, hacemos división polinomial para encontrar $q(x)=\frac{p(x)}{\MCD{p(x),q(x)}}$.
  • Si $p(x)$ tenía raíces repetidas, entonces ahora $q(x)$ será de grado menor, y quizás más fácil de estudiar. Encontramos las raíces de $q(x)$. Estas son las raíces de $f(x)$.
  • Finalmente, usamos el teorema de la sección anterior para encontrar la multiplicidad de cada raíz.

Veamos un problema interesante en el que se conjuntan varias ideas de esta entrada.

Problema. Factoriza en $\mathbb{R}[x]$ al polinomio $$-x^5+5x^4+5x^3-45x^2+108.$$

Solución. Este es un polinomio de grado cinco, para el cual hasta antes de ahora no teníamos muchas herramientas para estudiarlo. Vamos a aplicar el método explicado arriba. Lo primero que haremos es factorizar un $-1$ para volver este polinomio mónico. Recordaremos poner este signo al final. Tomemos entonces $$p(x)=x^5-5x^4-5x^3+45x^2-108.$$ Su derivada es $$p'(x)=5x^4-20x^3+15x^2+90x,$$

Se puede verificar, y queda como tarea moral, que el máximo común divisor de $p(x)$ y $p'(x)$ es el polinomio $$M(x)=x^3-4x^2-3x+18.$$ Haciendo la división polinomial, tenemos que $$\frac{p(x)}{M(x)}=x^2-x-6=(x+2)(x-3).$$ Como este polinomio tiene las mismas raíces que $p(x)$, concluimos que $-2$ y $3$ son las raíces de $p(x)$.

Usando la proposición para multiplicidades de raíces (que también queda como tarea moral), se puede verificar que $-2$ es raíz de multiplicidad dos y que $3$ es raíz de multiplicidad $3$. Como $p(x)$ es un polinomio de grado $5$ y es mónico, entonces se debe de dar la igualdad $$p(x)=(x+2)^2(x-3)^3.$$

Al regresar al polinomio original, debemos agregar un signo menos. Concluimos que la factorización del polinomio del problema es $$-(x+2)^2(x-3)^3.$$

$\triangle$

Esta proposición nos da una manera de encontrar raíces. En las siguientes dos entradas veremos otras dos formas de encontrarlas. Para cuando los polinomios son de grado $3$ y $4$, podemos encontrar las raíces de manera explícita. Para cuando los polinomios tienen coeficientes enteros, podemos encontrar una cantidad finita de candidatos a ser raíces racionales.

Más adelante…

En esta entrada dimos varias herramientas para encontrar las raíces de un polinomio y por lo tanto, para poder factorizar los polinomios, nota que estas entradas dependieron fuertemente del uso del cálculo, y del concepto de la derivada. Sin embargo, regresaremos una última vez al terreno algebraico para poder dar más formas de poder encontrar raíces de un polinomio.

Sin embargo, en las entradas siguientes, pondremos a prueba todo lo aprendido en el curso, desde las propiedades de la teoría de los números enteros, hasta la de los números complejos, y obviamente seguiremos ocupando los teoremas que hemos desarrollado en esta sección de polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Verifica que $1$ es raíz del polinomio $$x^8-x^7-9x^6+19x^5+5x^4-51x^3+61x^2-31x+6$$ y encuentra su multiplicidad.
  2. En la demostración de la última proposición, muestra la igualdad $$\MCD{p(x),p'(x)}=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \MCD{r(x),s(x)}.$$
  3. En el último ejemplo, aplica el algoritmo de Euclides a $p(x)$ y $p'(x)$ para mostrar que el máximo común divisor es el que se afirma.
  4. Aplica la proposición de multiplicidad de raíces en el último ejemplo para verificar que en efecto las multiplicidades de $2$ y $3$ son las que se afirman.
  5. Aplica el mismo método que en la última sección para factorizar el polinomio $$x^6+8x^5+18x^4-4x^3-47x^2-12x+36.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Teorema de la función inversa: motivación y ejemplo

Por Leonardo Ignacio Martínez Sandoval

Introducción

Imagina, por un momento, que en un futuro trabajas en la Agencia Espacial Mexicana (AEM). De repente, llega la directora y trae una función en las manos. «Para una misión crítica necesito que me conviertas esta función en una función invertible, cuanto antes posible». Te da la función. Le respondes «Ok, directora y, ¿cómo la quiere o qué?». Pero es demasiado tarde. Ya salió y hay que ponerse a trabajar. Entonces tomas la función, la pones en el gis y comienzas a estudiarla en el pizarrón.

Resulta que es una función de varias variables. Específicamente, es la función que pasa de coordenadas polares a coordenadas cartesianas. Es decir, es la función $F:\mathbb{R}^2 \to \mathbb{R}^2$ dada por:

$$F(r,\theta)=(r\cos\theta, r \sin\theta).$$

La función sí es suprayectiva, así que ya va parte del trabajo hecho. Pero el problema es que no es inyectiva. Por ejemplo,

$$F\left(1,\frac{\pi}{2}\right)=\left(\cos\frac{\pi}{2},\sin\frac{\pi}{2}\right)=(0,1)=F\left(1,\frac{5\pi}{2}\right).$$

Peor aún, para todo $\theta \in \mathbb{R}$ se tiene que $F(0,\theta)=(0,0)$.

Pero la situación no es tan terrible. Una forma de solucionarla es restringir el dominio de la función. Si en vez de pensarla en una función $F:\mathbb{R}^2\to \mathbb{R}^2$ la pensamos como una restricción $F:U\to V$ para algunos conjuntos $U$ y $V$, entonces muy posiblemente la podamos «convertir» en una función biyectiva.

No podemos ser demasiado arbitrarios. Por ejemplo, si tomamos $U=\{(0,0)\}$ y $V=\{(0,0)\}$, entonces claramente la restricción es una biyección, pero está muy chafa: sólo nos quedamos con un punto. Por esta razón, vamos a poner una meta un poco más ambiciosa y a la vez más concreta: lograr que $U$ y $V$ sean conjuntos abiertos alrededor de los puntos $x$ y $y:=F(x)$ para algún $x\in \mathbb{R}^2$. Si lo logramos, habremos encontrado una biyección «cerquita de $x$» en conjuntos «más gorditos». Para algunos puntos $x$ lo podemos hacer, y para algunos otros puntos $x$ es imposible. Veamos ejemplos de ambas situaciones.

Si $x=\left(\sqrt{2},\frac{\pi}{4}\right)$, entonces $y=\left(\sqrt{2}\cos \frac{\pi}{4}, \sqrt{2}\sin\frac{\pi}{4}\right)=(1,1)$. En este caso, podemos elegir una vecindad pequeña $U$ alrededor de $x$ y tomar $V:=F(U)$, pues los otros puntos $w$ con $F(x)=F(w)$ están lejos (están a brincos verticales de tamaño $2\pi$ de $x$). Para resolver el problema de la AEM, basta restringir $F$ a $U$.

Sin embargo, si $x=\left(0, \frac{\pi}{4}\right)$, entonces $y=(0,0)$. Sin importar qué tan pequeña tomemos la vecindad abierta $U$ alrededor de $x$, vamos a seguir tomando puntos $w$ sobre la recta $r=0$, para los cuales sucede $F(x)=0=F(w)$. Si la directora de la AEM insiste en que haya un punto con $r=0$, entonces no hay invertibilidad en todo un abierto alrededor de este punto. Esperemos que la misión no dependa de eso.

Aplicando el teorema de la función inversa

El teorema de la función inversa es una herramienta que da condiciones suficientes para que una función $F:\mathbb{R}^n\to \mathbb{R}^n$ pueda invertirse localmente «cerca» de un punto de su dominio. Podemos utilizar este resultado cuando la función que estudiamos es «bien portada», donde esto quiere decir que sea continuamente diferenciable. Si bien hay ligeras variantes en la literatura, el enunciado que presento aquí es el siguiente:

Teorema de la función inversa

Sea $F:\mathbb{R}^n\to \mathbb{R}^n$ una función de clase $\mathcal{C}^1$ con matriz Jacobiana $DF$. Supongamos que $F(a)=b$ y que $DF(a)$ es invertible. Entonces existen vecindades abiertas $U$ y $V$ de $a$ y $b$ respectivamente para las cuales:

a) $F:U\to V$ es una biyección,
b) su inversa $F^{-1}:V\to U$ es de clase $\mathcal{C}^1$ y
c) $DF^{-1}(b)=DF(a)^{-1}$.

En otra entrada hablo de la intuición de este teorema, así como de su demostración. Por el momento sólo me enfocaré en dar un ejemplo de cómo podemos usarlo.

Regresemos al ejemplo de la Agencia Espacial Mexicana. La función que tenemos es $F:\mathbb{R}^2\to \mathbb{R}^2$ que está dada por

$$F(r,\theta)=(F_1(r,\theta),F_2(r,\theta))=(r\cos\theta, r \sin\theta).$$

Para usar el teorema de la función inversa, tenemos que estudiar la invertibilidad de $DF$, su matriz Jacobiana. Esta está construida a partir de las derivadas parciales de las funciones coordenadas como sigue:

$$DF(r,\theta)= \begin{pmatrix}
\frac{\partial F_1}{\partial r}(r,\theta) & \frac{\partial F_1}{\partial \theta}(r,\theta)\\
\frac{\partial F_2}{\partial r}(r,\theta) & \frac{\partial F_2}{\partial \theta}(r,\theta)
\end{pmatrix}= \begin{pmatrix}
\cos \theta & -r\sin \theta\\
\sin \theta & r \cos \theta.
\end{pmatrix} $$

Para estudiar su invertibilidad, notamos que su determinante es

\begin{align*}
\det(DF(r,\theta))&=\cos \theta \cdot r\cos \theta – \sin \theta \cdot (-r\sin \theta) \\
&= r\cos^2\theta+r\sin^2\theta \\
&= r,
\end{align*}

y que es distinto de $0$ si y sólo si $r\neq 0$. Esto coincide con las observaciones que hicimos «a mano»: la función es invertible localmente en $(r,\theta)$ si $r\neq 0$. Cuando $r=0$, la invertibilidad no está garantizada.

El teorema de la función inversa tiene más implicaciones. Nos dice además que la inversa $F^{-1}$ también es continuamente diferenciable y que su derivada es la inversa de $F$. Como ejemplo, consideremos el punto $\left(\sqrt{2},\frac{\pi}{4}\right)$. Tenemos que

$$F\left(\sqrt{2},\frac{\pi}{4}\right) = (1,1),$$

que

$$DF\left(\sqrt{2},\frac{\pi}{4}\right) = \begin{pmatrix}
\frac{1}{\sqrt{2}}& -1\\
\frac{1}{\sqrt{2}} & 1
\end{pmatrix},$$

y que $\det\left(DF\left(\sqrt{2},\frac{\pi}{4}\right)\right)=\sqrt{2}$.

Así, $F$ es invertible localmente alrededor de $
\left(\sqrt{2},\frac{\pi}{4}\right)$, su inversa es continuamente diferenciable y además

$$D(F^{-1})(1,1)=DF\left(\sqrt{2},\frac{\pi}{4}\right)^{-1} =\frac{1}{\sqrt{2}}
\begin{pmatrix}
1 & 1\\
-\frac{1}{\sqrt{2}}& \frac{1}{\sqrt{2}}
\end{pmatrix}.$$

Esto termina la motivación y el ejemplo del teorema de la función inversa. Si quieres entender un poco mejor la intuición detrás del teorema, así como su demostración, puedes darte una vuelta por esta otra entrada.

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

Generalizar el problema

Por Leonardo Ignacio Martínez Sandoval

HeuristicasA veces tener un problema concreto es más difícil que tener un problema más general. En los problemas concretos puede haber números grandes, o un brinco muy difícil, o bien simplemente no existen herramientas para atacarlo por separado. Cuando generalizamos podemos aprovechar más teoría, por ejemplo el principio de inducción.

En estos videos veremos algunos ejemplos en los cuales es más fácil resolver un problema que aparentemente debería de ser más difícil.

Ir a los videos…