Archivo de la etiqueta: geometría

Geometría Analítica II: Cilindros sobre cónicas

Por Brian Manzano

Introducción

Con esta entrada comenzamos nuestra exploración de los objetos en el espacio de tres dimensiones. Lo primero que haremos es estudiar los cilindros que se construyen sobre cónicas. La mayoría de nosotros tiene una noción bastante buena sobre ellos, o por lo menos los «cilindros usuales», en donde las secciones horizontales son círculos. Sin embargo, si bien entendemos muy bien su forma de manera intuitiva, ¿cómo los podemos representar en el lenguaje matemático?

A continuación definiremos qué entenderemos por un cilindro sobre una cónica. Veremos algunos ejemplos y luego haremos cilindros con objetos que hemos estudiado en el curso de Geometría Analítica I: con cónicas.

Definición de cilindros sobre curvas

Los cilindros que conocemos de manera intuitiva comienzan con una circunferencia y luego esta se extiende sin cambios a lo largo de un eje. Los cilindros con los que nos encontramos cotidianamente se extienden sólo de manera acotada. Pero podemos pensar en qué sucedería si los extendemos indefinidamente. Si hacemos esto, llegamos a la siguiente definición.

Definición. Un cilindro es una superficie en $\mathbb{R}^3$ que se pueda obtener tomando un plano $\Pi$, tomando en él una curva $\mathcal{C}$ y tomando para cada punto $p$ de $\mathcal{C}$ una recta ortogonal a $\Pi$ que pase por $p$. La unión de estas rectas son el cilindro. A cada una de las rectas le llamamos una directriz del cilindro y a la curva $\mathcal{C}$ le llamamos la generatriz del cilindro.

Con esta definición podemos ver un poco de lo que por intuición conocemos viendo a un cilindro como un conjunto de lineas paralelas que se encuentran delimitadas por una curva plana, imaginemos esto como dibujar sobre papel una curva sobre la cual después pegaremos palos perpendiculares a la hoja

Cilindros a partir de cónicas

Para dar algunos ejemplos, podemos tomar una familia de curvas muy conocida: las cónicas. Ya que podemos elegir con libertad la curva plana, pensemos en usar alguna de las cónicas que conocemos. Para simplificar la situación, supondremos que dibujamos la cónica en el plano XY y entonces que las directrices son perpendiculares al plano XY, es decir, paralelas al eje Z.

Ya fijando estas ideas, podemos construir los siguientes cilindros basados en cónicas.

Cilindros elípticos

Se obtienen a partir de una curva dada por ecuaciones del siguiente tipo: $$ \frac{(x-x_{0})^2}{a^2}+\frac{(y-y_{0})^2}{b^2} =1.$$

De tener $a=b$, tendremos un cilindro circular desplazado debido a $x_{0} y y_{0}$ pero paralelo al eje z, tendremos algo muy similar si remplazamos $x,y$ por$ x,z$ o$ y,z4 siendo solo la orientación la que cambia, pues tendremos nuestra curva en un diferente plano.

Cilindros parabólicos

Para estos, necesitamos una curva dada por una ecuación del siguiente tipo: $$ (y-y_{0})^2 = 2p(x-x_{0}).$$

tendremos de igual manera que el eje esta desplazado pero es paralelo al eje $z$, análogamente tendremos para los distintos planos.

Cilindros hiperbólicos

La curva base de un cilindro hiperbólico es una hipérbola. Entonces, tiene una ecuación del estilo $$\frac{(x-x_{0})^2}{a^2}-\frac{(y-y_{0})^2}{b^2} =1.$$

tendremos también desplazado pero paralelo al eje $z$, y podemos ver lo mismo para los otros casos donde la curva este en otro plano.

Problemas ejemplo de cilindros

Veamos algunos ejemplos de cilindros a partir de cónicas.

Ejemplo. Tomemos el lugar geométrico de los puntos $(x,y,z) \in $ $\mathbb{R} ^3$ que cumplen con la siguiente ecuación: $$\frac{x^2}{4}+\frac{y^2}{25} = 1.$$

Podemos comenzar detectando la ausencia de la variable $z$, con lo que las generatrices serán rectas paralelas al eje $z$, o de otra forma podemos ver que el eje del cilindro será el eje $z$, (esto no siempre ocurre ya que no necesariamente su centro se encontrara en el origen, pero debido a que no tenemos constantes que acompañen los valores $x$ o $y $ su centro no se encontrará desplazado), extendiendo un poco mas el análisis podemos ver que su ecuación se asemeja a la de un cilindro elíptico.

¿Qué nos dicen los valores $4,25$ que acompañan a sus variables correspondientes ?Con todo en mente veamos su gráfica

Veamos desde otra perspectiva, no solo sobre el plano, sino con una vista incluyendo el otro eje coordenado obtenemos la siguiente gráfica.

Ejemplo. Tomemos el lugar geométrico en $\mathbb{R}^3$ de los puntos $(x,y,z)$ que cumplen la siguiente ecuación: $$y^2=6x.$$

De manera muy similar notamos que la ausencia de la variable $z$ llevara a que su directriz se encuentre en el plano $XY$ de forma que vista desde este plano:

¿Puedes decir a que cónica pertenece esta gráfica?

Agregando la perspectiva con el eje faltante obtenemos:

Nota importante. Como habrás notado al graficar obtenemos estas representaciones que parecen estar cortadas o seccionadas por planos paralelos al $XY$ , en realidad estos cilindros se extienden sin límite.

Ejemplo. Para la siguiente ecuación: $$\frac{z^2}{4}-\frac{y^2}{9} = 1,$$ ¿cuál es el lugar geométrico de los puntos $(x,y,z)$ en $\mathbb{R}^3$ que la cumplen?

Notemos ahora que además de representar otro tipo de cónica tenemos ahora un cambio importante, ya no contamos de manera explicita con la $y$ en la ecuación, ¿Qué cambios conllevara esto? ¿En que plano podremos observar la cónica correspondiente?

Veamos si tu intuición fue correcta

Gráfica de la ecuación en el plano YZ

Desde otra perspectiva donde podremos ver su profundidad, tenemos ahora que las generatrices se extienden desde $- \infty$ hasta $\infty$.

Más adelante…

En esta primer entrada del curso hablamos de los primeros objetos geométricos de tres dimensiones que nos interesan: los cilindros con cierta curva generatriz. En la siguiente entrada veremos otra manera con la cual podemos crear un objeto de tres dimensiones a partir de rectas: las superficies de revolución. Un poco más adelante estudiaremos una versión más general de objetos que podemos obtener de esta manera: los conjuntos cero de ecuaciones de segundo grado en tres variables.

Tarea moral

Estos ejercicios te ayudaran a comprender de mejor forma los conceptos vistos.

  1. Reescribe las ecuaciones de los ejemplos que dimos para que sus directrices se encuentren en diferentes planos.
    Sugerencia: Nota qué pasa con el tercer ejemplo.
  2. Ahora que hemos cambiado los planos donde se encuentran las directrices, grafica estas ecuaciones, ¿Cómo cambian los cilindros? Realiza un cambio de variable para el segundo ejemplo haciendo el reemplazo $x\to x-3$. ¿Qué cambia? ¿pasa lo mismo para el primer ejemplo?
  3. Determina la ecuación para un cilindro parabólico cuya parábola directriz esté contenida en el plano XY y cuyo foco sea el punto $(2, 0)$ de este plano. Hay varias de estas parábolas. Puedes usar la que gustes.
  4. Gráfica los cilindros asociados a cada una de las siguientes ecuaciones:
    1. $x^2-z^2=0$.
    2. $(y-9)^2+(z-4)^2=0$.
    3. $x^2=y$.

Entradas relacionadas

Geometría Analítica I: Teoremas de clasificación de polinomios cuadráticos y curvas cuadráticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Nos hemos estado preparando para enunciar formalmente los resultados de clasificación que nos dirán «cómo son todas las cónicas algebraicamente», o bien que nos dirán «cómo se ven conjuntos de ceros de cualquier polinomio cuadrático en dos variables». En una entrada anterior hablamos de qué es un resultado de clasificación en matemáticas. Después, definimos con toda precisión cuáles son los objetos que clasificaremos: los polinomios cuadráticos en dos variables y las curvas cuadráticas. Finalmente, establecimos las nociones de equivalencia afín y equivalencia isométrica que usaremos para dar nuestra clasificación.

En esta entrada finalmente enunciaremos con toda precisión los teoremas de clasificación que nos interesan. La demostración de estos teoremas no es directa, así que nos tomará algunas entradas más preparar la teoría necesaria para poder hacerlo.

Teoremas de clasificación isométrica

Los primeros teoremas que demostraremos serán bajo la equivalencia dada por las isometrías. Daremos teoremas para clasificar tanto polinomios cuadráticos en dos variables, como curvas cuadráticas.

El resultado para PCDVs es un poco más abstracto. La clasificación es un poco aparatosa, pues habrá muchos posibles parámetros involucrados. Pero tiene la ventaja de que es el que podremos demostrar a partir de las técnicas de matrices que ya conocemos y de algunas más que desarrollaremos sobre la marcha.

El resultado para curvas cuadráticas es muy intuitivo, pues lo podemos pensar en términos puramente geométricos: nos dirá que cualquier curva cuadrática se puede llevar, sin alterar su métrica, a una curva cuadrática mucho más fácil de describir, que viene de una «lista corta» de posibilidades. Como las transformaciones permitidas son las isometrías, esto es lo que más se parece a nuestro entendimiento de «ser la misma figura».

Veamos qué dice cada resultado. El primer teorema clasifica PCDVs a través de isometrías.

Teorema. Cualquier polinomio cuadrático en dos variables es isométricamente equivalente a exactamente alguno de los siguientes polinomios:

  1. A algún polinomio de la forma $\frac{x^2}{a^2}+\frac{y^2}{b^2}-1$ para $a\geq b$ reales distintos de cero
  2. A algún polinomio de la forma $\frac{x^2}{a^2}-\frac{y^2}{b^2}-1$ para $a\geq b$ reales distintos de cero
  3. A algún polinomio de la forma $y^2-cx$ para $c$ real distinto de cero
  4. A algún polinomio de la forma $c^2x^2-y^2$ para $c$ real distinto de cero
  5. A algún polinomio de la forma $c^2x^2-1$ para $c$ real disinto de cero
  6. Al polinomio $x^2$
  7. A algún polinomio de la forma $c^2x^2+y^2$ para $c$ real distinto de cero
  8. A algún polinomio de la forma $\frac{x^2}{a^2}+\frac{x^2}{b^2}+1$ para $a,b$ reales distintos de cero
  9. A algún polinomio de la forma $c^2x^2+1$ para $c$ real distinto de cero

El segundo teorema clasifica curvas cuadráticas bajo isometrías, y será un corolario del teorema anterior.

Teorema. Cualquier curva cuadrática del plano es isométricamente equivalente a exactamente una de las siguientes:

  1. A alguna elipse canónica con centro en $(0,0)$ y focos en el eje $x$
  2. A alguna hipérbola canónica con centro en $(0,0)$ y focos en el eje $x$
  3. A alguna parábola canónica de vértice $(c,0)$ y directriz $y=-c$
  4. A dos rectas que se intersectan en el origen
  5. A dos rectas paralelas de la forma $x=c$ y $x=-c$
  6. A la recta $x=0$
  7. Al origen $(0,0)$
  8. Al conjunto vacío

Teoremas de clasificación afín

Después de realizar la clasificación isométrica, agrandaremos un poco el conjunto de transformaciones que usaremos: permitiremos utilizar cualquier transformación afín. Al hacer esto, tenemos más transformaciones y por lo tanto deberíamos esperar que nuestra clasificación tenga menos posibilidades. En efecto este es el caso.

De hecho, la razón por la cual hacemos esto es que al permitir a todas las transformaciones afines nuestros polinomios cuadráticos en dos variables (o curvas cuadráticas) quedan clasificadas en muy muy pocos tipos: una cantidad finita. A continuación enunciamos los resultados concretos.

El primer teorema es para polinomios cuadráticos en dos variables.

Teorema. Cualquier polinomio cuadrático en dos variables es afínmente equivalente a exactamente uno de los siguientes polinomios:

  1. $x^2+y^2-1$
  2. $x^2-y^2-1$
  3. $y^2-x$
  4. $x^2-y^2$
  5. $x^2+1$
  6. $x^2$
  7. $x^2+y^2$
  8. $x^2+y^2+1$
  9. $x^2+1$

¡Este resultado es fantástico! Existen muchísimas expresiones de la forma $Ax^2+Bxy+Cy^2+Dx+Ey+F$ y el teorema anterior nos dice que, en realidad, podemos «resumirlas» únicamente en nueve posibilidades muy fáciles de enunciar.

Como corolario, obtendremos el segundo resultado para clasificación mediante transformaciones afines: el correspondiente a las curvas cuadráticas.

Teorema. Cualquier curva cuadrática del plano es afínmente equivalente a exactamente una de las siguientes posibilidades:

  1. La circunferencia unitaria
  2. La hipérbola unitaria
  3. La parábola unitaria
  4. Las rectas $y=x$ y $y=-x$
  5. Las rectas $x=1$ y $x=-1$
  6. La recta $x=0$
  7. El origen
  8. El conjunto vacío

Una vez más, es increible que existiendo tantísimas curvas cuadráticas en el plano, sea posible resumirlas a tan solo ocho posibilidades.

Y, ¿por qué sirve esta clasificación?

En el transcurso de las siguientes entradas nos encontraremos con muchas situaciones concretas en las que clasificar una cónica será de utilidad. Mientras tanto discutimos esto de manera un poco informal. Imagina que comenzamos con el siguiente polinomio cuadrático en dos variables: $$P((x,y))=x^2-5xy-y^2+2x-y+5.$$

Tras hacer una figura en el plano usando alguna herramienta computacional, obtenemos que la curva cuadrática definida por $P$ se ve como en la siguiente figura.

Parece ser que esta es una hipérbola. Una de las ventajas del teorema de clasificación isométrica de curvas cuadráticas es que nos dirá que, en efecto, esto es una hipérbola. De hecho, tendremos una manera práctica de encontrar de manera explícita la transformación $T$ que manda el polinomio $P$ que define esta hipérbola $\mathcal{H}$ a un polinomio isométricamente equivalente $P’$ de una hipérbola canónica $\mathcal{H}’$.

¿Cuáles son los focos de $\mathcal{H}$? ¿Cuál es el centro de $\mathcal{H}$? ¿Cuál es la longitud de sus ejes? Esto no se aprecia claramente a partir del polinomio $P$. Sin embargo, la hipérbola $\mathcal{H}’$ tiene ecuación canónica, así que en $P’$ podemos leer fácilmente los focos, ejes y centro de $\mathcal{H’}$. Y luego usando precisamente la transformación $T$ podemos transferir esta información que sabemos de $\mathcal{H}’$ a $\mathcal{H}$. Por ejemplo, usando que $T$ es isometría obtenemos que $\mathcal{H}$ y $\mathcal{H}’$ tienen la misma longitud de ejes.

Más adelante…

En las siguientes entradas nos enfocaremos en demostrar los teoremas de clasificación aquí enunciados. Antes de hacer esto, debemos desarrollar un poco más de teoría. Por un lado, necesitamos comprender cómo las traslaciones nos pueden ayudar a «eliminar los términos lineales» de algunos polinomios cuadráticos. Luego, necesitamos comprender cómo las rotaciones nos pueden ayudar a «eliminar el término cruzado $xy$».

Las traslaciones las podremos entender fácilmente. Sin embargo, las rotaciones que «eliminan el término cruzado» requierirán que entendamos un nuevo procedimiento para matrices simétricas: el de diagonalizarlas. Esto nos llevará a discutir los eigenvalores, eigenvectores y el polinomio característico de la matriz.

Tarea moral

  1. Demuestra que cualesquiera dos segmentos del plano son afínmente equivalentes.
  2. Demuestra que cualesquiera dos rectángulos del plano son afínmente equivalentes.
  3. Resuelve los siguientes incisos:
    1. Prueba que dos cuadrados del plano son isométricamente equivalentes si y sólo si tienen la misma longitud de lado.
    2. Demuestra que cualquier cuadrado es isométricamente equivalente a algún cuadrado de vértices $(0,0)$, $(c,0)$, $(0,c)$ y $(c,c)$ para $c>0$.
    3. Demuestra que el cuadrado de vértices $(0,0)$, $(c,0)$, $(0,c)$ y $(c,c)$ tiene diagonal de longitud $\sqrt{2}c$.
    4. Usa todo lo anterior para demostrar que en cualquier cuadrado de lado $c$ se tiene que la diagonal mide $\sqrt{2}c$.
  4. En el teorema de clasificación afín de PCDV tenemos que cualquier PCDV es afínmente equivalente a exactamente una de las posibilidades enunciadas. En particular, esto implica que de esos nueve polinomios, no hay dos de ellos que sean afínmente equivalentes entre sí. Demuestra esto.
  5. Enuncia y demuestra un teorema de clasificación isométrico y un teorema de clasificación afín para triángulos en el plano.

Entradas relacionadas

Geometría Analítica I: Introducción a resultados de clasificación

Por Leonardo Ignacio Martínez Sandoval

Introducción

En tu formación matemática muchas veces te encontrarás con resultados de clasificación. Pero, ¿qué es clasificar en este contexto? A grandes rasgos, consiste en poder decir de manera sencilla cómo son todos los objetos matemáticos que se estén estudiando en un contexto dado.

En esta entrada hablaremos un poco más del problema de clasificar ciertos objetos matemáticos. Iniciaremos con un ejemplo «de juguete» muy básico. Luego, hablaremos de cómo en las clasificaciones geométricas podemos usar transformaciones. Finalmente, daremos un ejemplo sencillo de cómo usar estas ideas en la clasificación de los segmentos del plano.

Ejemplo básico de clasificación

Cuando queremos hacer una clasificación, en el sentido matemático, lo que queremos hacer es tomar algunos objetos matemáticos y decir, bajo algún criterio cómo son todos los «tipos posibles» que existen para esos objetos. Esto puede ser respondido de muchas formas, así que es fundamental acordar dos cosas con precisión:

  1. ¿Cuáles son los objetos que queremos clasificar?
  2. ¿Bajo qué criterio diremos que dos de esos objetos son «del mismo tipo»?

Al final del proceso, nos gustaría tener una lista relativamente fácil de escribir de todas las posibilidades. Esto puede ayudar posteriormente a resolver otros problemas matemáticos o bien a desarrollar más teoría.

Comencemos con un ejemplo «de juguete». Será muy sencillo, pero nos permitirá hablar de algunas de las sutilezas que nos encontraremos en contextos más abstractos. Considera la siguiente figura en la que hay varias figuras geométricas.

Imagina que nos piden «clasificar todas las figuras que están aquí». Lo que nos gustaría obtener al final es una lista con la clasificación, es decir con «todas las posibilidades» de figuras que hay. Si sólo nos dan esta instrucción, entonces estaríamos en problemas: hay muchas forms de clasificar estos objetos.

Una posible clasificación es por forma. Si consideramos equivalentes a dos de estas figuras cuando tienen la misma forma, entonces nuestra lista de posibilidades se reduce a tres: triángulos, cuadrados y círculos. Nuestro teorema de clasificación se vería así:

Teorema. Cualquier figura de la imagen tiene alguna de las siguientes formas:

  1. Triángulo
  2. Cuadrado
  3. Círculo

Este teorema de clasificación está padre. Pero puede ser inútil en algunos contextos. Por ejemplo, imagina que las figuras son muestras que está regalando una tienda de pinturas para que puedas llevarlas a tu casa y usarlas para ver si te gustaría pintar una pared con el color dado. Para estos fines es (prácticamente) lo mismo que te den un cuadrado azul o un triángulo azul. Lo único que importa es el color.

Pensar de esta manera nos da otra manera de clasificar a las figuras: por color. Si usamos esta noción de equivalencia, entonces nuestro resultado de clasificación sería muy distinto.

Teorema. Cualquier figura de la imagen es de alguno de los siguientes colores:

  1. Rojo
  2. Naranja
  3. Amarillo
  4. Verde
  5. Azul

Pero podríamos querer ser mucho más estrictos y querer clasificar considerando ambos criterios: tanto la forma como el color. Quizás uno podría pensar que como hay tres figuras y cinco colores, entonces hay $3\cdot 5=15$ posibilidades en esta clasificación. Obtendríamos el siguiente resultado.

Teorema. Cualquier figura de la imagen es de alguno de los siguientes 15 tipos: triángulo rojo, triángulo naranja, triángulo amarillo, triángulo verde, triángulo azul, cuadrado rojo, cuadrado naranja, cuadrado amarillo, cuadrado verde, cuadrado azul, círculo rojo, círculo naranja, círculo amarillo, círculo verde, círculo azul.

Estrictamente hablando, este resultado es correcto: cualquier figura es de alguno de esos tipos. Pero el teorema tiene algo incómodo: nos está dando posibilidades que no suceden. Por ejemplo, no hay cuadrados amarillos, ni círculos azules.

Una clasificación con forma y color que nos dejaría más satisfecho sería la siguiente:

Teorema. Cualquier figura de la imagen es de alguno de los siguientes 11 tipos:

  1. Triángulo rojo
  2. Triángulo naranja
  3. Triángulo amarillo
  4. Triángulo azul
  5. Cuadrado rojo
  6. Cuadrado naranja
  7. Cuadrado azul
  8. Círculo rojo
  9. Círculo naranja
  10. Círculo amarillo
  11. Círculo verde

Más aún, cualquiera de estas posibilidades sucede.

Este resultado se siente mucho más satisfactorio. Por un lado, no está agregando a la lista «opciones de más». Por otro lado, a partir de él podemos demostrar proposiciones sin tener que volver a ver la figura. Algunos ejemplos son los siguientes:

  • Ningún círculo de nuestra figuras es azul.
  • Todas las figuras verdes son círculos.
  • Ninguna figura amarilla es un cuadrado.

Para mostrar cualquiera de estas, basta ver nuestra clasificación.

¿Podemos dar una clasificación mucho más estricta? Sí, por supuesto. Por ejemplo, podemos considerar dos figuras iguales sólo cuando tienen exactamente la misma figura, color y posición. En este caso nuestro teorema de clasificación tendría un tipo por cada una de las 19 figuras. Esta clasificación también se siente un poco insatisfactoria pues en realidad no estamos «agrupando» figuras, sino simplemente «poniendo a cada una en su propio grupo». Pero bueno, es una clasificación válida también.

Uso de relaciones de equivalencia y particiones

Una manera de formalizar una clasificación es a partir de relaciones de equivalencia y particiones. Recordemos las siguientes dos definiciones:

Definición. Una relación de equivalencia en un conjunto $X$ es una colección de parejas $(x,y)$ en $X\times X$ tales que:

  • (Reflexividad) Para cualquier $x$ en $X$ la pareja $(x,x)$ está en la colección.
  • (Simetría) Si para algunos $x,y$ en $X$ se cumple que la pareja $(x,y)$ está en la colección, entonces la pareja $(y,x)$ también está en la colección.
  • (Transitividad) Si para algunos $x,y,z$ en $X$ se cumple que tanto las parejas $(x,y)$ como $(y,z)$ están en la colección, entonces la pareja $(x,z)$ también está.

Las relaciones de equivalencia nos ayudan a decir cuándo dos objetos de $X$ «son iguales» o «son el mismo» bajo algún criterio usualmente más relajado que la igualdad.

Definición. Una partición de un conjunto $X$ es una colección de conjuntos $(A_i)_{i \in I}$ para algún conjunto de índices $I$ tal que ninguno de los $A_i$ es vacío, cualesquiera dos de ellos tienen intersección vacía y $X=\cup_{i\in I}A_i$.

Un resultado clásico de teoría de conjuntos dice que «una relación de equivalencia da una partición, y viceversa». Formalmente, dada una relación de equivalencia $R$ en un conjunto $X$, podemos crear la clase de equivalencia de un elemento $x$ en $X$ como sigue: $$\overline(x):=\{y \in X: (x,y)\in R\}.$$ El conjunto $\{\overline{x}:x\in X\}$ da una colección de conjuntos que es una partición de $X$. Y viceversa, si tenemos una partición $(A_i)_{i \in I}$, entonces podemos considerar las parejas $(x,y)$ de elementos tales que $x$ y $y$ están en un mismo $A_i$, de donde obtenemos una relación de equivalencia.

Regresando a la idea de clasificar, podemos realizar una clasificación a través de una relación de equivalencia o de una partición. Las clases de equivalencia son los «tipos» de objetos que tenemos. Podemos dar un representante «sencillo» dentro de cada clase de equivalencia para hacer nuestra lista de los posibles «tipos» que existen.

Ejemplo. En los números enteros podemos decir que dos enteros $x$ y $y$ están relacionados cuando $x-y$ es un número par. Es fácil mostrar que esto da una relación de equivalencia y que las clases de equivalencia en este caso son los conjuntos:

\begin{align*}
P&=\{\ldots,-4,-2,0,2,4,\ldots\},
Q&=\{\ldots,-3,-1,1,3,\ldots\}.
\end{align*}

Tenemos que $P$ y $Q$ forman una partición del conjunto $\mathbb{Z}$ de números enteros. Así, esta relación clasifica a los enteros en dos tipos: los pares y los impares. Otra forma de dar esta clasificación es diciendo que «Cualquier entero es equivalente al $0$ o al $1$», o más explícitamente, «Para cualquier entero $z$ se tiene que o bien $z$ es par, o bien $z-1$ es par».

$\square$

Clasificación de segmentos del plano con transformaciones

Hacia donde queremos ir es hacia una clasificación relacionada con la geometría. Por esta razón, las relaciones de equivalencia, particiones o «tipos» de objetos que obtendremos estarán relacionados con nociones geométricas. Una manera de hacer esto es mediante las transformaciones que estuvimos estudiando en la unidad anterior: transformaciones afines, traslaciones, isometrías, transformaciones ortogonales, etc.

Por ejemplo, pensemos en que estamos hablando de los segmentos cerrados y acotados en el plano cartesiano. Es decir, de acuerdo a lo que estudiamos en la primera unidad, para cualesquiera dos puntos distintos $P$ y $Q$ en el plano estamos considerando el conjunto $$\overline{PQ}=\{pP+qQ:0\leq p \leq 1, 0 \leq q \leq 1, p+q=1\}.$$ En la siguiente figura puedes ver algunos de los (muchos) segmentos que hay en el plano:

Familia de segmentos

¿Cómo podemos clasificar a todos los segmentos que hay en el plano? Antes de cualquier cosa, tenemos que ponernos de acuerdo en la clasificación. Una manera de hacer esto es mediante transformaciones del plano. Veamos un par de ejemplos.

Ejemplo. Una primer opción es que digamos que dos segmentos son del mismo tipo cuando podamos trasladar uno de ellos al otro. Si hacemos esto, casi todos los segmentos de la siguiente figura serían del mismo tipo.

Familia de segmentos

El único que no es del mismo tipo que los demás sería el segmento punteado que, aunque lo dibujamos intencionalmente de la misma longitud que los demás, no resulta ser equivalente pues es imposible trasladarlo a alguno de los otros segmentos. Con esta noción de segmentos equivalentes, ¿qué posibilidades tendríamos? Es más o menos fácil convencerse de que para que dos segmentos sean del mismo tipo con esta clasificación necesitamos que a) sean paralelos y b) tengan la misma longitud. Por ello mismo, no es tampoco difícil convencerse del siguiente teorema de clasificación.

Teorema. Cualquier segmento del plano es equivalente bajo traslaciones a un segmento tal que uno de sus extremos es el origen.

$\square$

Veamos otra manera de clasificar los segmentos del plano.

Ejemplo. Diremos que dos segmentos son del mismo tipo si podemos llevar uno al otro a través de una isometría. Si hacemos esto entonces ahora sí todos los segmentos de la siguiente figura son equivalentes (pensando en que el segmento punteado tiene la misma longitud que los otros).

De hecho, por lo que sabemos de las isometrías podemos afirmar que bajo este criterio dos segmentos son del mismo tipo si y sólo si tienen la misma longitud. Esto nos llevaría a un teorema de clasificación un poco distinto.

Teorema. Cualquier segmento se puede mediante isometrías a un segmento que sale del origen y termina en un punto del la forma $(x,0)$ con $x>0$. Más aún, todos estos segmentos son de distinto tipo.

$\square$

En los dos ejemplos anteriores hemos sido un poco informales, pues dejamos varias cosas sin demostrar. Seguramente podrás detectarlas e intentar completar los argumentos que faltan. Algunas de estas cosas faltantes están en los ejercicios.

Más adelante…

En esta entrada hablamos de la noción de «clasificar» de manera muy general, con el fin de entenderla y ver algunas de las sutilezas que nos encontraremos más adelante. A partir de ahora nos enfocaremos en probar resultados de clasificación muy específicos, relacionados con las cónicas.

Sin embargo, queremos ser muy precisos con respecto a la clasificación que daremos. Por esta razón, en las siguientes dos entradas hablaremos de los objetos específicos que queremos clasificar y de las nociones de equivalencia que permitiremos.

Tarea moral

  1. Verifica que en nuestro ejemplo de juguete la relación «tener el mismo color» es una relación de equivalencia.
  2. Para cada una de las clasificaciones que dimos en nuestro ejemplo de juguete encuentra cuántas de las figuras originales hay en cada una de las clases.
  3. Demuestra que la relación en $\mathbb{Z}$ en la cual tenemos a $(x,y)$ si y sólo si $x-y$ es un número par es una relación de equivalencia. Muestra que en este caso la partición consiste en el conjunto de los números pares, y el conjunto de los números impares.
  4. Sea $S$ el conjunto de segmentos en el plano. Diremos un elemento $s_1$ de $S$ es traslacionalmente equivalente a otro elemento $s_2$ de $S$ si existe una traslación $T$ de $\mathbb{R}^2$ tal que $T(s_1)=s_2$. Demuestra que «ser traslacionalmente eqivalente a» es una relación de equivalencia en $S$.
  5. Da teoremas de clasificación de las rectas en $\mathbb{R}$ usando transformaciones para cada una de las siguientes posibilidades:
    1. Dos rectas son del mismo tipo si se puede llevar una a otra mediante una traslación.
    2. Dos rectas son del mismo tipo si se puede llevar una a la otra mediante una rotación.
    3. Dos rectas son del mismo tipo si se puede llevar una a la otra mediante una isometría.

Entradas relacionadas

Geometría Moderna I: Teorema de Ptolomeo

Por Rubén Alexander Ocampo Arellano

Introducción

El teorema de Ptolomeo nos da una caracterización del cuando un cuadrilátero convexo es cíclico en términos de los productos entre sus lados y sus diagonales. Necesitaremos antes una caracterización diferente de cuadrilátero cíclico.

Cuadriláteros cíclicos

Definición. Si los vértices de un polígono están en una misma circunferencia decimos que está inscrito en ella o que es cíclico.

Teorema 1. Un cuadrilátero convexo es cíclico si y solo si los ángulos opuestos son suplementarios.

Demostración. Sea $\square ABCD$ un cuadrilátero cíclico inscrito en $(O, r)$, la circunferencia con centro en $O$.

Los ángulos opuestos $\angle ADC$ y $\angle CBA$ son subtendidos por los arcos $AC$ y $CA$ respectivamente y por el teorema de la medida del ángulo inscrito tenemos que
$\angle ADC + \angle CBA = \dfrac{\angle AOC}{2} + \dfrac{\angle COA}{2} = \dfrac{2\pi}{2} = \pi$.

Figura 1

De manera análoga se ve que $\angle BAD$ y $\angle DCB$ son suplementarios.

Por lo tanto, los ángulos opuestos de un cuadrilátero cíclico son suplementarios.

$\blacksquare$

Ahora supongamos que los ángulos opuestos $\angle ADC$ y $\angle CBA$ de $\square ABCD$ son suplementarios.

Consideremos el circuncírculo de $\triangle ABC$, entonces todos los puntos en el arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$ subtienden un ángulo $\angle ADC$ suplementario a $\angle CBA$, pero este lugar geométrico es único.

Por lo tanto $D \in \overset{\LARGE{\frown}}{CA}$ y en consecuencia $\square ABCD$ es cíclico.

$\blacksquare$

Teorema de Ptolomeo

Teorema 2, desigualdad de Ptolomeo. En todo cuadrilátero convexo la suma de los productos entre lados opuestos es mayor o igual al producto de las diagonales, y la igualdad se da si y solo si es el cuadrilátero es cíclico.

Demostración. Sea $\square ABCD$ un cuadrilátero convexo, construyamos sobre el segmento $AB$ (figura 2), un triángulo $\triangle ABE$ semejante a $\triangle ADC$ tal que $\angle ABE = \angle ADC$ y $\angle BAE = \angle CAD$ entonces

$\begin{equation} \dfrac{EA}{CA} = \dfrac{BA}{DA} \Leftrightarrow \dfrac{EA}{BA} = \dfrac{CA}{DA}. \end{equation}$

Figura 2

Dado que $\angle CAE = \angle BAD$ y por $(1)$, por criterio lado, ángulo, lado, los triángulos $\triangle EAC$ y $\triangle BAD$ son semejantes, entonces de la primera y segunda relaciones de semejanza tenemos que
$\dfrac{EB}{CD} = \dfrac{AB}{AD}$ y $\dfrac{EC}{BD} = \dfrac{AC}{AD}$
$\Leftrightarrow$ $EB = \dfrac{AB \times CD}{AD}$ y $EC = \dfrac{AC \times BD}{AD}$.

Ahora notemos que tenemos dos casos:

Caso 1. (izquierda figura 2)
$B \in EC$ $\Leftrightarrow$ $\angle CBA + \angle ADC = \angle CBA + \angle ABE = \pi$ $\Leftrightarrow$ $\square ABCD$ es cíclico,
y en tal caso $EC = EB + BC$ $\Leftrightarrow$ $\dfrac{AC \times BD}{AD} = \dfrac{AB \times CD}{AD} + BC$
$\Leftrightarrow$ $AC \times BD = AB \times CD + AD \times BC$.

Caso 2. (derecha figura 2)
$E$, $B$ y $C$ son tres puntos no colineales $\Leftrightarrow$ $\angle CBA + \angle ADC = \angle CBA + \angle ABE \ne \pi$ $\Leftrightarrow$ $\square ABCD$ no es cíclico, entonces aplicando la desigualdad del triángulo a $\triangle EBC$ tenemos que
$EC < EB + BC$ $\Leftrightarrow$ $AC \times BD < AB \times CD + AD \times BC$.

De lo anterior se sigue que $AB \times CD + AD \times BC \geq AC \times BD$, con la igualdad si y solo si $\square ABCD$ es cíclico.

$\blacksquare$

Construcción del cuadrilátero cíclico

Problema 1. Construir un cuadrilátero convexo y cíclico dados sus cuatro lados $a$, $b$, $c$ y $d$.

Solución. Notemos primero que es necesario que la suma de cualesquiera tres de los lados dados sea mayor que el lado restante.

Si un lado es mayor que la suma de los otros tres no es posible construir ningún cuadrilátero y si es igual entonces solo es posible construir un cuadrilátero degenerado donde todos los vértices están alineados.

Supongamos que $AB = a$, $BC = b$, $CD = c$ y $DA = d$, la prueba del teorema de Ptolomeo nos sugiere una manera de resolver este problema.

Trazamos el segmento $BC$ y lo extendemos del lado de $B$ hasta un punto $E$ tal que $EB = \dfrac{ac}{d}$, el cual es posible construir pues podemos construir el producto de dos magnitudes y el inverso de una magnitud dadas.

Aquí usaremos que $B \in EC$ $\Leftrightarrow$ $\square ABCD$ es cíclico y que los triángulos $\triangle ABE$ y $\triangle ADC$ son semejantes, como en la prueba anterior.

La razón de semejanza está dada por $\dfrac{AE}{AC} = \dfrac{BE}{CD} = \dfrac{ac}{dc} = \dfrac{a}{d}$.

Esto último nos dice que la razón entre las distancias de $A$ a los puntos $E$ y $C$ es una razón fija por lo tanto $A$ esta en la circunferencia de Apolonio determinada por $E$, $C$ y la razón $\dfrac{a}{d}$.

Por otro lado, el vértice $A$ se encuentra en la circunferencia con centro en $B$ y radio $a$, por lo tanto, $A$ esta determinado por la intersección de $(B, a)$ y la circunferencia de Apolonio mencionada.

Ahora que conocemos la diagonal $AC$ podemos completar el triángulo $\triangle ACD$ trazando circunferencias $(A, d)$ y $(C, c)$, una de las intersecciones será el cuarto vértice del cuadrilátero buscado.

Figura 3

Por construcción $\triangle ABE$ y $\triangle ADC$ son semejantes por lo que $\angle CBA$ y $\angle ADC$ son suplementarios.

Por lo tanto $\square ABCD$ es cíclico.

$\blacksquare$

Distancia de los vértices de un polígono cíclico a un punto del circuncírculo

Problema 2. Sean $\triangle ABC$ isósceles con $AB = AC$ y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$, muestra que $\dfrac{PA}{PB + PC} = \dfrac{AC}{BC}$.

Figura 4

Solución. Aplicando el teorema de Ptolomeo a $\square ABPC$ tenemos que
$PA \times BC = AB \times PC + AC \times PB $
$= AC \times PC + AC \times PB = AC(PC + PB)$.

Por lo tanto, $\dfrac{PA}{PB + PC} = \dfrac{AC}{BC}$.

$\blacksquare$

Problema 3. Sean $ABCDE$ un pentágono regular inscrito en una circunferencia y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$, muestra que $PA + PD = PB + PC + PE$.

Solución. Como el pentágono es regular, entonces sus diagonales tienen la misma longitud.

Figura 5

Aplicando el teorema de Ptolomeo a $\square ABPC$  y $\square BPCD$ obtenemos
$BC \times PA = AB \times PC + AC \times PB = BC \times PC + AC \times PB$
$BC \times PD = PB \times CD + PC \times BD = PB \times BC + PC \times AC$.

Sumando estas dos últimas igualdades tenemos
$\begin{equation} BC(PA + PD) = BC(PB + PC) + AC(PB + PC). \end{equation}$

Por otra parte dado que $\triangle BEC$ es isósceles podemos aplicar el resultado del problema anterior y obtenemos $\dfrac{PE}{PB + PC} = \dfrac{EC}{BC}$

$\Leftrightarrow$ $\begin{equation} \dfrac{PE \times BC}{PB + PC} = EC = AC. \end{equation}$

Sustituyendo $(3)$ en $(2)$ resulta
$BC(PA + PD) = BC(PB + PC) + \dfrac{PE \times BC}{PB + PC} (PB + PC)$.

Por lo tanto, $PA + PD = PB  + PC + PE$.

$\blacksquare$

Hexágono cíclico

Problema 4. Sea $ABCDEF$ un hexágono convexo inscrito en una circunferencia. Consideremos las diagonales que dividen al hexágono en dos cuadriláteros cíclicos, $AD = d$, $CF = e$ y $BE = f$ y los lados del hexágono que no comparten vértices con dichas diagonales $BC = a$, $EF = a’$, $DE = b$, $AB = b’$, $AF = c$, $CD = c’$ respectivamente, entonces $def = aa’d + bb’e + cc’f + abc +a’b’c’$.

Figura 6

Demostración. Aplicando el teorema de Ptolomeo a $\square ABCD$ y $\square BCDE$ obtenemos
$ad + b’c’ = AC \times BD$ y $ab + c’f = BD \times CE$.

Multiplicamos por $a’$ y $c$ respectivamente y después sumamos el resultado y obtenemos:
$aa’d + a’b’c’ + abc + cc’f $
$= a’(AC \times BD) + c(BD \times CE) = BD(a’AC + cCE)$.

Aplicando Ptolomeo a $\square ACEF$ obtenemos $a’AC + cCE = eAE$.

Por lo tanto $aa’d + a’b’c’ + abc + cc’f = BD(eAE) = e (BD \times AE)$.

Ahora consideramos $\square ABDE$ y por el teorema de Ptolomeo obtenemos
$BD \times AE = df -bb’$.

En consecuencia tenemos $aa’d + a’b’c’ + abc + cc’f = e(df – bb’)$.

Por lo tanto, $def = aa’d + bb’e + cc’f + abc +a’b’c’$.

$\blacksquare$

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Muestra que un cuadrilátero convexo es cíclico si y solo si:
    $i)$ un ángulo interno formado con una diagonal y un lado es igual al ángulo interno formado con la otra diagonal y el lado opuesto,
    $ii)$ las mediatrices de los lados del cuadrilátero son concurrentes.
  2. Sean $l_{1}$, $l_{2}$ y $l_{3}$, $l_{4}$ dos pares de rectas tales que la bisectriz del primer par es transversal al segundo par y forma ángulos internos iguales entonces decimos que $l_{3}$ y $l_{4}$ son antiparalelas respecto a $l_{1}$ y $l_{2}$. Muestra que un cuadrilátero convexo es cíclico si y solo si un par de lados opuestos es antiparalelo respecto al otro par de lados opuestos.
Figura 7
  1. Como podrás haber notado nuestra construcción del cuadrilátero cíclico no es única pues partimos de una suposición arbitraria, que $AB = a$, $BC = b$, $CD = c$ y $DA = d$ para $a$, $b$, $c$ y $d$ dados. Muestra que es posible construir tres cuadriláteros cíclicos diferentes con los mismos lados y que de estos se obtienen tres diagonales diferentes.
  2. Expresa la razón de las diagonales de un cuadrilátero cíclico en términos de sus lados.
  3. Considera $\triangle ABC$ equilátero y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$, prueba que $PA = PB + PC$.
  4. Sean $\square ABCD$ un cuadrado y $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\square ABCD$, muestra que $\dfrac{PA +PC}{PD + PB} = \dfrac{PD}{PA}$.
  5. Si $ABCDEF$ es un hexágono regular y $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $ABCDEF$, muestra que $PE + PF = PA + PB + PC + PD$.
  6. Sean $\triangle ABC$ equilátero, $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$ y $D$ la intersección de $BC$ con $AP$, demuestra que $\dfrac{1}{PD} = \dfrac{1}{PB} + \dfrac{1}{PC}$.

Más adelante…

En la próxima entrada estudiaremos trigonometría y mostraremos algunas identidades trigonométricas aplicando el teorema de Ptolomeo.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 127-131.
  • Santos, J., Tesis Geometría del Cuadrilátero. 2010, pp 15-19, 31-34.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 33-35.
  • Johnson, R., Advanced Euclidean Geometry. New York: Dover, 2007, pp 62-66.

Geometría Analítica I: Introducción al curso

Por Leonardo Ignacio Martínez Sandoval

Introducción

Bienvenido al curso de Geometría Analítica I. A través de esta serie de entradas cubriremos el temario oficial del programa de la materia tal y como se requiere en la Facultad de Ciencias de la UNAM. Esto incluye desarrollar no sólo habilidades para ejecutar procedimientos («hacer cuentitas»), sino también aquellas que nos permitan deducir los resultados que obtendremos a través de razonamientos lógicos («demostrar»).

Pre-requisitos del curso

En la mayoría de las entradas seguiremos un flujo matemático, en el cual escribiremos definiciones, proposiciones, ejemplos, teoremas y otro tipo de enunciados matemáticos. Siempre que digamos que algo sucede, es importante argumentar o justificar por qué es esto, es decir, que demos una demostración. Las demostraciones nos ayudarán a justificar que ciertos procedimientos (para encontrar distancias, ángulos, etc.) son válidos.

Para entender un poco más al respecto, te recomendamos leer las siguientes dos entradas, o incluso llevar a la par un curso de Álgebra Superior I:

Además de estos pre-requisitos de pensamiento lógico, también es importante que recuerdes algunos de los conceptos fundamentales de geometría (punto, línea, segmento, triángulo, distancia, etc.). Si bien todo lo construiremos «desde cero», el recordar estos conceptos te ayudará mucho en la intuición de por qué ciertas cosas las definimos como lo haremos, y por qué ciertos enunciados que planteamos «deben ser ciertos».

Finalmente, también supondremos que sabes manejar a buen nivel las operaciones y propiedades en $\mathbb{R}$, los números reales. Por ejemplo, que la suma es conmutativa ($a+b=b+a$), que se distribuye con el producto ($a(b+c)=ab+ac$), etc. Si bien en otros cursos se definen a los reales con toda formalidad, para este curso sólo será importante que sepas hacer estas operaciones.

La idea fundamental

La geometría se trata de figuras, de ver, de medir. El álgebra se trata de sumar, de operar, de comparar. La idea clave que subyace a la geometría analítica, como la veremos en este curso, es la siguiente:

La geometría y el álgebra son complementarias e inseparables, ninguna con más importancia sobre la otra. Podemos entender al álgebra a partir de la geometría, y viceversa.

Un ejemplo muy sencillo que se ve desde la educación básica es que la suma de reales se corresponde con «pegar segmentos». Si en la recta real tenemos un segmento de longitud $a$ y le pegamos un segmento de longitud $b$, entonces el segmento que se obtiene tiene longitud $a+b$. Si bien es obvio, cuando estemos estableciendo los fundamentos tendremos que preguntarnos, ¿por qué pasa? ¿qué es pegar segmentos?

Nuestro objetivo será entender a profundidad muchas de estas equivalencias.

Interactivos

En este curso procuraremos incluir interactivos para que explores las ideas que vayamos introduciendo. Si bien un interactivo no reemplaza a una demostración, lo cierto es que sí ayuda muchísimo a ver más casos en los cuales una proposición o teorema se cumple. Nuestros interactivos están hechos en GeoGebra y necesitarás tener activado JavaScript en tu navegador.

En el siguiente interactivo puedes mover los puntos $A$, $B$ y $C$. Observa como la suma de dos segmentos siempre es igual al tercero. ¿Qué pasa si $B$ «se pasa de $C$»? ¿Cuál segmento es la suma de los otros dos?

Te recomendamos fuertemente que dediques por lo menos un rato a jugar con los interactivos: intenta ver qué se puede mover, qué no, qué cosas piensas que suceden siempre y para cuales crees que haya ejemplos que fallen.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Escribe en una hoja de papel o en un documento digital qué significan para ti los siguientes términos: punto, línea, círculo, plano, semiplano, elipse, intersección, alineado, longitud, ángulo, dirección, vector. ¿En cuáles de estas palabras tuviste que usar las otras? ¿En cuáles no? Más adelante formalizaremos cada una de estas.
  2. Explora el inicio del siguiente libro digital: Euclides de Byrne
  3. Si aprendes a manejar GeoGebra por tu cuenta, podrás hacer interactivos tú mismo. Si te interesa esto, revisa el siguiente curso de GeoGebra.
  4. ¿Cómo le harías para a cada punto del plano asociarle una pareja de números reales? ¿Cómo le harías para a cada pareja de números reales asociarle un punto en el plano?
  5. Si la suma de números corresponde a pegar segmentos, ¿a qué corresponde la multiplicación de números?

Más adelante…

En esta entrada platicamos de cómo son las notas del curso en general. Platicamos de pre-requisitos y de la idea fundamental que subyace al curso. A partir de la siguiente entrada comenzaremos con el tratamiento teórico de la materia. Hablaremos de dos visiones de geometría: la sintética y la analítica. Veremos un primer resultado que nos dice que, en realidad, ambas están muy relacionadas entre sí.

Entradas relacionadas