Archivo de la etiqueta: geometría

Geometría Moderna I: Teorema de Ptolomeo

Introducción

El teorema de Ptolomeo nos da una caracterización del cuando un cuadrilátero convexo es cíclico en términos de los productos entre sus lados y sus diagonales. Necesitaremos antes una caracterización diferente de cuadrilátero cíclico.

Cuadriláteros cíclicos

Definición. Si los vértices de un polígono están en una misma circunferencia decimos que está inscrito en ella o que es cíclico.

Teorema 1. Un cuadrilátero convexo es cíclico si y solo si los ángulos opuestos son suplementarios.

Demostración. Sea $\square ABCD$ un cuadrilátero cíclico inscrito en $(O, r)$, la circunferencia con centro en $O$.

Los ángulos opuestos $\angle ADC$ y $\angle CBA$ son subtendidos por los arcos $AC$ y $CA$ respectivamente y por el teorema de la medida del ángulo inscrito tenemos que
$\angle ADC + \angle CBA = \dfrac{\angle AOC}{2} + \dfrac{\angle COA}{2} = \dfrac{2\pi}{2} = \pi$.

Figura 1

De manera análoga se ve que $\angle BAD$ y $\angle DCB$ son suplementarios.

Por lo tanto, los ángulos opuestos de un cuadrilátero cíclico son suplementarios.

$\blacksquare$

Ahora supongamos que los ángulos opuestos $\angle ADC$ y $\angle CBA$ de $\square ABCD$ son suplementarios.

Consideremos el circuncírculo de $\triangle ABC$, entonces todos los puntos en el arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$ subtienden un ángulo $\angle ADC$ suplementario a $\angle CBA$, pero este lugar geométrico es único.

Por lo tanto $D \in \overset{\LARGE{\frown}}{CA}$ y en consecuencia $\square ABCD$ es cíclico.

$\blacksquare$

Teorema de Ptolomeo

Teorema 2, desigualdad de Ptolomeo. En todo cuadrilátero convexo la suma de los productos entre lados opuestos es mayor o igual al producto de las diagonales, y la igualdad se da si y solo si es el cuadrilátero es cíclico.

Demostración. Sea $\square ABCD$ un cuadrilátero convexo, construyamos sobre el segmento $AB$ (figura 2), un triángulo $\triangle ABE$ semejante a $\triangle ADC$ tal que $\angle ABE = \angle ADC$ y $\angle BAE = \angle CAD$ entonces

$\begin{equation} \dfrac{EA}{CA} = \dfrac{BA}{DA} \Leftrightarrow \dfrac{EA}{BA} = \dfrac{CA}{DA}. \end{equation}$

Figura 2

Dado que $\angle CAE = \angle BAD$ y por $(1)$, por criterio lado, ángulo, lado, los triángulos $\triangle EAC$ y $\triangle BAD$ son semejantes, entonces de la primera y segunda relaciones de semejanza tenemos que
$\dfrac{EB}{CD} = \dfrac{AB}{AD}$ y $\dfrac{EC}{BD} = \dfrac{AC}{AD}$
$\Leftrightarrow$ $EB = \dfrac{AB \times CD}{AD}$ y $EC = \dfrac{AC \times BD}{AD}$.

Ahora notemos que tenemos dos casos:

Caso 1. (izquierda figura 2)
$B \in EC$ $\Leftrightarrow$ $\angle CBA + \angle ADC = \angle CBA + \angle ABE = \pi$ $\Leftrightarrow$ $\square ABCD$ es cíclico,
y en tal caso $EC = EB + BC$ $\Leftrightarrow$ $\dfrac{AC \times BD}{AD} = \dfrac{AB \times CD}{AD} + BC$
$\Leftrightarrow$ $AC \times BD = AB \times CD + AD \times BC$.

Caso 2. (derecha figura 2)
$E$, $B$ y $C$ son tres puntos no colineales $\Leftrightarrow$ $\angle CBA + \angle ADC = \angle CBA + \angle ABE \ne \pi$ $\Leftrightarrow$ $\square ABCD$ no es cíclico, entonces aplicando la desigualdad del triángulo a $\triangle EBC$ tenemos que
$EC < EB + BC$ $\Leftrightarrow$ $AC \times BD < AB \times CD + AD \times BC$.

De lo anterior se sigue que $AB \times CD + AD \times BC \geq AC \times BD$, con la igualdad si y solo si $\square ABCD$ es cíclico.

$\blacksquare$

Construcción del cuadrilátero cíclico

Problema 1. Construir un cuadrilátero convexo y cíclico dados sus cuatro lados $a$, $b$, $c$ y $d$.

Solución. Notemos primero que es necesario que la suma de cualesquiera tres de los lados dados sea mayor que el lado restante.

Si un lado es mayor que la suma de los otros tres no es posible construir ningún cuadrilátero y si es igual entonces solo es posible construir un cuadrilátero degenerado donde todos los vértices están alineados.

Supongamos que $AB = a$, $BC = b$, $CD = c$ y $DA = d$, la prueba del teorema de Ptolomeo nos sugiere una manera de resolver este problema.

Trazamos el segmento $BC$ y lo extendemos del lado de $B$ hasta un punto $E$ tal que $EB = \dfrac{ac}{d}$, el cual es posible construir pues podemos construir el producto de dos magnitudes y el inverso de una magnitud dadas.

Aquí usaremos que $B \in EC$ $\Leftrightarrow$ $\square ABCD$ es cíclico y que los triángulos $\triangle ABE$ y $\triangle ADC$ son semejantes, como en la prueba anterior.

La razón de semejanza está dada por $\dfrac{AE}{AC} = \dfrac{BE}{CD} = \dfrac{ac}{dc} = \dfrac{a}{d}$.

Esto último nos dice que la razón entre las distancias de $A$ a los puntos $E$ y $C$ es una razón fija por lo tanto $A$ esta en la circunferencia de Apolonio determinada por $E$, $C$ y la razón $\dfrac{a}{d}$.

Por otro lado, el vértice $A$ se encuentra en la circunferencia con centro en $B$ y radio $a$, por lo tanto, $A$ esta determinado por la intersección de $(B, a)$ y la circunferencia de Apolonio mencionada.

Ahora que conocemos la diagonal $AC$ podemos completar el triángulo $\triangle ACD$ trazando circunferencias $(A, d)$ y $(C, c)$, una de las intersecciones será el cuarto vértice del cuadrilátero buscado.

Figura 3

Por construcción $\triangle ABE$ y $\triangle ADC$ son semejantes por lo que $\angle CBA$ y $\angle ADC$ son suplementarios.

Por lo tanto $\square ABCD$ es cíclico.

$\blacksquare$

Distancia de los vértices de un polígono cíclico a un punto del circuncírculo

Problema 2. Sean $\triangle ABC$ isósceles con $AB = AC$ y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$, muestra que $\dfrac{PA}{PB + PC} = \dfrac{AC}{BC}$.

Figura 4

Solución. Aplicando el teorema de Ptolomeo a $\square ABPC$ tenemos que
$PA \times BC = AB \times PC + AC \times PB $
$= AC \times PC + AC \times PB = AC(PC + PB)$.

Por lo tanto, $\dfrac{PA}{PB + PC} = \dfrac{AC}{BC}$.

$\blacksquare$

Problema 3. Sean $ABCDE$ un pentágono regular inscrito en una circunferencia y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$, muestra que $PA + PD = PB + PC + PE$.

Solución. Como el pentágono es regular, entonces sus diagonales tienen la misma longitud.

Figura 5

Aplicando el teorema de Ptolomeo a $\square ABPC$  y $\square BPCD$ obtenemos
$BC \times PA = AB \times PC + AC \times PB = BC \times PC + AC \times PB$
$BC \times PD = PB \times CD + PC \times BD = PB \times BC + PC \times AC$.

Sumando estas dos últimas igualdades tenemos
$\begin{equation} BC(PA + PD) = BC(PB + PC) + AC(PB + PC). \end{equation}$

Por otra parte dado que $\triangle BEC$ es isósceles podemos aplicar el resultado del problema anterior y obtenemos $\dfrac{PE}{PB + PC} = \dfrac{EC}{BC}$

$\Leftrightarrow$ $\begin{equation} \dfrac{PE \times BC}{PB + PC} = EC = AC. \end{equation}$

Sustituyendo $(3)$ en $(2)$ resulta
$BC(PA + PD) = BC(PB + PC) + \dfrac{PE \times BC}{PB + PC} (PB + PC)$.

Por lo tanto, $PA + PD = PB  + PC + PE$.

$\blacksquare$

Hexágono cíclico

Problema 4. Sea $ABCDEF$ un hexágono convexo inscrito en una circunferencia. Consideremos las diagonales que dividen al hexágono en dos cuadriláteros cíclicos, $AD = d$, $CF = e$ y $BE = f$ y los lados del hexágono que no comparten vértices con dichas diagonales $BC = a$, $EF = a’$, $DE = b$, $AB = b’$, $AF = c$, $CD = c’$ respectivamente, entonces $def = aa’d + bb’e + cc’f + abc +a’b’c’$.

Figura 6

Demostración. Aplicando el teorema de Ptolomeo a $\square ABCD$ y $\square BCDE$ obtenemos
$ad + b’c’ = AC \times BD$ y $ab + c’f = BD \times CE$.

Multiplicamos por $a’$ y $c$ respectivamente y después sumamos el resultado y obtenemos:
$aa’d + a’b’c’ + abc + cc’f $
$= a’(AC \times BD) + c(BD \times CE) = BD(a’AC + cCE)$.

Aplicando Ptolomeo a $\square ACEF$ obtenemos $a’AC + cCE = eAE$.

Por lo tanto $aa’d + a’b’c’ + abc + cc’f = BD(eAE) = e (BD \times AE)$.

Ahora consideramos $\square ABDE$ y por el teorema de Ptolomeo obtenemos
$BD \times AE = df -bb’$.

En consecuencia tenemos $aa’d + a’b’c’ + abc + cc’f = e(df – bb’)$.

Por lo tanto, $def = aa’d + bb’e + cc’f + abc +a’b’c’$.

$\blacksquare$

Tarea moral

  1. Muestra que un cuadrilátero convexo es cíclico si y solo si:
    $i)$ un ángulo interno formado con una diagonal y un lado es igual al ángulo interno formado con la otra diagonal y el lado opuesto,
    $ii)$ las mediatrices de los lados del cuadrilátero son concurrentes.
  2. Sean $l_{1}$, $l_{2}$ y $l_{3}$, $l_{4}$ dos pares de rectas tales que la bisectriz del primer par es transversal al segundo par y forma ángulos internos iguales entonces decimos que $l_{3}$ y $l_{4}$ son antiparalelas respecto a $l_{1}$ y $l_{2}$. Muestra que un cuadrilátero convexo es cíclico si y solo si un par de lados opuestos es antiparalelo respecto al otro par de lados opuestos.
Figura 7
  1. Como podrás haber notado nuestra construcción del cuadrilátero cíclico no es única pues partimos de una suposición arbitraria, que $AB = a$, $BC = b$, $CD = c$ y $DA = d$ para $a$, $b$, $c$ y $d$ dados. Muestra que es posible construir tres cuadriláteros cíclicos diferentes con los mismos lados y que de estos se obtienen tres diagonales diferentes.
  2. Expresa la razón de las diagonales de un cuadrilátero cíclico en términos de sus lados.
  3. Considera $\triangle ABC$ equilátero y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$, prueba que $PA = PB + PC$.
  4. Sean $\square ABCD$ un cuadrado y $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\square ABCD$, muestra que $\dfrac{PA +PC}{PD + PB} = \dfrac{PD}{PA}$.
  5. Si $ABCDEF$ es un hexágono regular y $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $ABCDEF$, muestra que $PE + PF = PA + PB + PC + PD$.
  6. Sean $\triangle ABC$ equilátero, $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$ y $D$ la intersección de $BC$ con $AP$, demuestra que $\dfrac{1}{PD} = \dfrac{1}{PB} + \dfrac{1}{PC}$.

Más adelante…

En la próxima entrada estudiaremos trigonometría y mostraremos algunas identidades trigonométricas aplicando el teorema de Ptolomeo.

Entradas relacionadas

Geometría Analítica I: Introducción al curso

Introducción

Bienvenido al curso de Geometría Analítica I. A través de esta serie de entradas cubriremos el temario oficial del programa de la materia tal y como se requiere en la Facultad de Ciencias de la UNAM. Esto incluye desarrollar no sólo habilidades para ejecutar procedimientos («hacer cuentitas»), sino también aquellas que nos permitan deducir los resultados que obtendremos a través de razonamientos lógicos («demostrar»).

Pre-requisitos del curso

En la mayoría de las entradas seguiremos un flujo matemático, en el cual escribiremos definiciones, proposiciones, ejemplos, teoremas y otro tipo de enunciados matemáticos. Siempre que digamos que algo sucede, es importante argumentar o justificar por qué es esto, es decir, que demos una demostración. Las demostraciones nos ayudarán a justificar que ciertos procedimientos (para encontrar distancias, ángulos, etc.) son válidos.

Para entender un poco más al respecto, te recomendamos leer las siguientes dos entradas, o incluso llevar a la par un curso de Álgebra Superior I:

Además de estos pre-requisitos de pensamiento lógico, también es importante que recuerdes algunos de los conceptos fundamentales de geometría (punto, línea, segmento, triángulo, distancia, etc.). Si bien todo lo construiremos «desde cero», el recordar estos conceptos te ayudará mucho en la intuición de por qué ciertas cosas las definimos como lo haremos, y por qué ciertos enunciados que planteamos «deben ser ciertos».

Finalmente, también supondremos que sabes manejar a buen nivel las operaciones y propiedades en $\mathbb{R}$, los números reales. Por ejemplo, que la suma es conmutativa ($a+b=b+a$), que se distribuye con el producto ($a(b+c)=ab+ac$), etc. Si bien en otros cursos se definen a los reales con toda formalidad, para este curso sólo será importante que sepas hacer estas operaciones.

La idea fundamental

La geometría se trata de figuras, de ver, de medir. El álgebra se trata de sumar, de operar, de comparar. La idea clave que subyace a la geometría analítica, como la veremos en este curso, es la siguiente:

La geometría y el álgebra son complementarias e inseparables, ninguna con más importancia sobre la otra. Podemos entender al álgebra a partir de la geometría, y viceversa.

Un ejemplo muy sencillo que se ve desde la educación básica es que la suma de reales se corresponde con «pegar segmentos». Si en la recta real tenemos un segmento de longitud $a$ y le pegamos un segmento de longitud $b$, entonces el segmento que se obtiene tiene longitud $a+b$. Si bien es obvio, cuando estemos estableciendo los fundamentos tendremos que preguntarnos, ¿por qué pasa? ¿qué es pegar segmentos?

Nuestro objetivo será entender a profundidad muchas de estas equivalencias.

Interactivos

En este curso procuraremos incluir interactivos para que explores las ideas que vayamos introduciendo. Si bien un interactivo no reemplaza a una demostración, lo cierto es que sí ayuda muchísimo a ver más casos en los cuales una proposición o teorema se cumple. Nuestros interactivos están hechos en GeoGebra y necesitarás tener activado JavaScript en tu navegador.

En el siguiente interactivo puedes mover los puntos $A$, $B$ y $C$. Observa como la suma de dos segmentos siempre es igual al tercero. ¿Qué pasa si $B$ «se pasa de $C$»? ¿Cuál segmento es la suma de los otros dos?

Te recomendamos fuertemente que dediques por lo menos un rato a jugar con los interactivos: intenta ver qué se puede mover, qué no, qué cosas piensas que suceden siempre y para cuales crees que haya ejemplos que fallen.

Tarea moral

  1. Escribe en una hoja de papel o en un documento digital qué significan para ti los siguientes términos: punto, línea, círculo, plano, semiplano, elipse, intersección, alineado, longitud, ángulo, dirección, vector. ¿En cuáles de estas palabras tuviste que usar las otras? ¿En cuáles no? Más adelante formalizaremos cada una de estas.
  2. Explora el inicio del siguiente libro digital: Euclides de Byrne
  3. Si aprendes a manejar GeoGebra por tu cuenta, podrás hacer interactivos tú mismo. Si te interesa esto, revisa el siguiente curso de GeoGebra.
  4. ¿Cómo le harías para a cada punto del plano asociarle una pareja de números reales? ¿Cómo le harías para a cada pareja de números reales asociarle un punto en el plano?
  5. Si la suma de números corresponde a pegar segmentos, ¿a qué corresponde la multiplicación de números?

Más adelante…

En esta entrada platicamos de cómo son las notas del curso en general. Platicamos de pre-requisitos y de la idea fundamental que subyace al curso. A partir de la siguiente entrada comenzaremos con el tratamiento teórico de la materia. Hablaremos de dos visiones de geometría: la sintética y la analítica. Veremos un primer resultado que nos dice que, en realidad, ambas están muy relacionadas entre sí.

Entradas relacionadas

Seminario de Resolución de Problemas: Vectores en geometría

Introducción

Anteriormente, comenzamos esta serie de entradas de geometría platicando de algunas técnicas euclideanas o sintéticas que se pueden usar para resolver problemas en el plano. Después, tomamos herramientas de la geometría analítica, las cuales nos permiten poner problemas en términos de coordenadas y ecuaciones. Lo que haremos ahora es ver varios ejemplos del uso de vectores en geometría.

A diferencia de la geometría analítica, cuando hablamos de soluciones por vectores estamos hablando de aquellas que aprovechan la estructura de espacio vectorial en $\mathbb{R}^2$. En otras palabras, usamos argumentos en los cuales pensamos a los puntos del plano como vectores, los cuales tienen una dirección y una magnitud. Los vectores tienen operaciones de suma y de producto por un escalar. Además, tienen producto punto, norma y transformaciones dadas por matrices. Apenas tocaremos la superficie del tipo de teoría que se puede usar. Un buen curso de álgebra lineal te puede dar más herramientas para resolver problemas geométricos.

Interpretar puntos como vectores

Pongamos un origen $O$ en el plano. A cada punto $P$ le corresponden ciertas coordenadas dadas por parejas de reales $(x,y)$, que identificaremos con $P$. Al origen le corresponden las coordenadas $(0,0)$. Si tenemos otro punto $Q=(w,z)$, entonces su suma es el vector $P+Q=(x+w,y+z)$. Si tomamos un real $r$, el vector $rP$ es el vector de coordenadas $(rx,ry)$.

Suma de vectores
Suma de vectores

La suma $P+Q$ se puede encontrar mediante la ley del paralelogramo: los puntos $O,P,P+Q,Q$ hacen un paralelogramo en ese orden cíclico. La resta $Q-P$ está definida por $Q+(-1)P$, y la llamamos el vector $PQ$. Geométricamente coincide con el vector que va «de $P$ a $Q$». Observa que el orden es importante y que $OP=P$.

Resta de vectores
Resta de vectores

Proposición (de la razón). Si tenemos dos puntos $P$ y $Q$ distintos y $m,n$ son reales, entonces podemos encontrar al único punto $R$ en la recta por $P$ y $Q$ tal que $$\frac{PR}{RQ}=\frac{m}{n}$$ así: $$R=\frac{n}{m+n}P + \frac{m}{m+n} Q.$$

Punto en una recta con cierta razón
Punto en una recta con cierta razón

Veamos dos problemas en los que se usan estas ideas de vectores en geometría, en particular, la proposición de la razón.

Problema. En el triángulo $ABC$ se toman puntos $D,E,F$ sobre los segmentos $BC,CA,AB$ tales que $\frac{BD}{DC}=\frac{CE}{EA}=\frac{AF}{FB}=\frac{1}{4}$. Muestra que $ABC$ y $DEF$ tienen el mismo gravicentro.

Sugerencia pre-solución. Encuentra una fórmula en términos vectoriales para el gravicentro de un triángulo $ABC$.

Solución. Tomemos un triángulo $PQR$ y pensemos a sus vértices como vectores. Afirmamos que su gravicentro $X$ es el punto correspondiente a $\frac{P+Q+R}{3}$ Demostraremos esto.

El gravicentro está a un tercio del punto medio hacia el vértice correspondiente
Razón del gravicentro en la mediana

Primero haremos un argumento de geometría sintética. El gravicentro es por definición el punto de intersección de las medianas de un triángulo. Si $L$ es el punto medio de $QR$ y $M$ es el punto medio de $RP$, entonces $X$ es el punto de intersección de $PL$ y $QM$. Tenemos que $$\frac{RL}{LQ}=1=\frac{RM}{MP},$$ así que por el teorema de Tales se tiene que la recta por $L$ y $M$ es paralela al lado $PQ$, y $\frac{LM}{PQ}=\frac{1}{2}$. Esto muestra que los triángulos $XLM$ y $XPQ$ son semejantes en razón $1$ a $2$. Por lo tanto, $\frac{LX}{XP}=\frac{1}{2}$.

Ahora hagamos el argumento vectorial, pensando a los puntos como vectores. El punto $L$ está a la mitad de $QR$, así que por la proposición de la razón, $$L=\frac{Q+R}{2}.$$ El punto $X$ cumple $\frac{LX}{XP}=\frac{1}{2}$, así que de nuevo por la proposición de la razón.
\begin{align*}
X&=\frac{2L+P}{2+1}\\
&=\frac{Q+R+P}{3}\\
&=\frac{P+Q+R}{3}.
\end{align*}

Esto es el resultado auxiliar que queríamos mostrar. Regresemos al problema.

De acuerdo al resultado auxiliar, el gravicentro de $ABC$ es $$G:=\frac{A+B+C}{3}.$$ Usando una vez más la proposición de la razón, los puntos $D$, $E$ y $F$ los podemos calcular como sigue:
\begin{align*}
D&=\frac{4B+C}{4+1}=\frac{4B+C}{5}\\
E&=\frac{4C+A}{4+1}=\frac{4C+A}{5}\\
F&=\frac{4A+B}{4+1}=\frac{4A+B}{5}.
\end{align*}

De esta forma, el gravicentro $G’$ de $DEF$ lo podemos encontrar como sigue:
\begin{align*}
G’&=\frac{D+E+F}{3}\\
&=\frac{\frac{4B+C}{5}+\frac{4C+A}{5}+\frac{4A+B}{5}}{3}\\
&=\frac{A+B+C}{3}\\
&=G.
\end{align*}

Esto termina la solución del problema.

$\square$

Problema. En el paralelogramo $ABCD$ el punto $F$ es el punto medio de $CD$. Muestra que el segmento $AF$ corta a la diagonal $BD$ en un punto $E$ tal que $\frac{DE}{DB}=\frac{1}{3}$.

Sugerencia pre-solución. Hay varias formas de hacer las cuentas en este problema, pero el uso de una notación adecuada te hará simplificar muchas operaciones.

Solución. Pensemos a los puntos de la figura como vectores. Coloquemos al punto $A$ en el origen. El punto $C$ está dado por $B+D$, de modo que $$F:=\frac{C+D}{2}=\frac{B+2D}{2}.$$

Vectores en geometría: problema de paralelogramo
Figura auxiliar para problema de paralelogramo

Para encontrar al punto $E$, notemos que está en las rectas $AF$ y $BD$. De esta forma, deben existir reales $r$ y $s$ tales que $$E=rF$$ y $$E=sB+(1-s)D.$$ Expresando $F$ en términos de $B$ y $D$ en la primer ecuación, tenemos que $$E=\frac{rB+2rD}{2}=\frac{rB}{2}+rD.$$ De ambas expresiones para $E$, concluimos que
\begin{align*}
s=\frac{r}{2}\\
1-s=r.
\end{align*}

Este sistema de ecuaciones tiene solución $r=\frac{2}{3}$, $s=\frac{1}{3}$, y por lo tanto $E=\frac{B+2D}{3}$. De aquí se obtiene $\frac{DE}{EB}=\frac{1}{2}$, o bien $\frac{DE}{DB}=\frac{DE}{DE+EB}=\frac{1}{3}$, como queríamos mostrar.

$\square$

Producto punto, norma y ángulos

Para dos vectores $P=(x,y)$ y $Q=(w,z)$ definimos su producto punto como la cantidad $P\cdot Q = xw+yz$. El productos puntos es:

  • Conmutativo: $P\cdot Q = Q\cdot P$
  • Abre sumas: $P\cdot (Q+R)=P\cdot Q + P\cdot R$
  • Saca escalares: $(rP)\cdot Q = r(P\cdot Q)$.

La norma de $P$ se define como $\norm{P}=\sqrt{P\cdot P}$, y coincide con la distancia de $P$ al origen. La norma de $PQ$ es entonces $\norm{PQ}=\sqrt{(Q-P)\cdot (Q-P)}$ y coincide con la distancia de $P$ a $Q$.

El ángulo entre dos vectores $PQ$ y $RS$ se define como el ángulo cuyo coseno es $$\frac{PQ \cdot RS}{\norm{PQ}\norm{RS}},$$ y coincide precisamente con el ángulo (orientado) geométrico entre las rectas $PQ$ y $RS$. De esta forma, las rectas $PQ$ y $RS$ son perpendiculares si y sólo si el producto punto $PQ\cdot RS$ es cero.

Problema. Sea $ABC$ un triángulo con sus vértices pensados como vectores. Sean $H$ y $O$ su ortocentro y circuncentro respectivamente. Supongamos que el circuncentro $O$ está en el origen. Muestra que $H=A+B+C$.

Sugerencia pre-solución. Trabaja hacia atrás. Define al punto $A+B+C$ y ve que las rectas que unen a los vértices con este punto en efecto son alturas. Para calcular los ángulos, usa el producto punto y sus propiedades.

Solución. Como el circuncentro equidista de $A$. $B$ y $C$, tenemos que $$\norm{A}=\norm{B}=\norm{C}.$$ Tomemos el punto $H’=A+B+C$.

Vectores en geometría para encontrar el ortocentro
Ortocentro con vectores

Calculemos el ángulo entre las rectas $BC$ y $AH’$, haciendo su producto punto:
\begin{align*}
BC\cdot AH’ &= (C-B)\cdot (H’-A)\\
&=(C-B)\cdot(C+B)\\
&=C\cdot C + C\cdot B – B\cdot C – B\cdot B\\
&=\norm{C}^2 – \norm{B}^2\\
&=0.
\end{align*}

Observa que estamos usando la linealidad y conmutatividad del producto punto. Al final usamos que $A$ y $C$ tienen la misma norma.

Esto muestra que la recta $AH’$ es la altura al lado $BC$. De manera análoga, $BH’$ y $CH’$ son las alturas a los lados $CA$ y $AB$ respectivamente. Por lo tanto, $H’$ es el ortocentro, así que $H=A+B+C$.

$\square$

Cualquier triángulo $ABC$ en el plano se puede trasladar para que su circuncentro $O$ quede en el origen. El ortocentro estará en $H=A+B+C$ y el gravicentro, como vimos antes, en $G=\frac{A+B+C}{3}$, que es un múltiplo escalar de $H$. Por lo tanto, $O$, $H$ y $G$ están alineados. Acabamos de demostrar con vectores en geometría un clásico resultado euclideano.

Teorema (recta de Euler). En cualquier triángulo $ABC$, el circuncentro $O$, el gravicentro $G$ y el ortocentro $H$ están alineados. Además, $$\frac{OG}{GH}=\frac{1}{2}.$$

Teorema de la recta de Euler
Teorema de la recta de Euler

Si el circuncentro no está en el origen, ahora podemos usar el teorema de la recta de Euler y la proposición de la razón para concluir que $G=\frac{2O+H}{3}$. Usando que $G=\frac{A+B+C}{3}$, obtenemos el siguiente corolario

Corolario. Sea $ABC$ un triángulo en el plano, $H$ su ortocentro y $O$ su circuncentro. Entonces al pensar a los puntos como vectores tenemos que $$A+B+C=2O+H.$$

Más problemas

Puedes encontrar más problemas del uso de vectores en geometría en la sección 8.3 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: Introducción a problemas de geometría y geometría euclideana

Introducción

En esta semana veremos algunas herramientas para resolver problemas de geometría. Como con otros temas que hemos visto, sería imposible tratar a profundidad el área. En vez de eso, lo que haremos es ver un poco de varias de las herramientas que se pueden usar en la solución de problemas geométricos, comenzando con geometría euclideana. Veremos ideas de lo siguiente:

  • Geometría triángulos y circunferencias
  • Geometría analítica
  • Vectores en geometría
  • Números complejos en geometría
  • Geometría discreta

En esta entrada comenzaremos con la parte de geometría euclideana. Más adelante hablaremos de las demás ideas.

Geometría euclideana

Cuando en geometría nos referimos a una solución por geometría euclideana o geometría sintética nos referimos a un argumento que no use parametrizaciones de los objetos del plano en términos de coordenadas, vectores o complejos. Simplemente usamos conceptos geométricos como ángulos, distancias, semejanza, congruencia, etc. Todas estas se pueden pensar como propiedades que se mantienen invariantes bajo movimientos rígidos del plano. Dentro de los resultados más versátiles del área tenemos los siguientes.

Teorema (de Tales). Tomemos puntos $P$ y $Q$ sobre los lados $AB$ y $AC$ de $\triangle ABC$. Se tiene que $AP/AQ = AB/AC$ si y sólo si la recta $PQ$ es paralela a la recta $BC$.

El teorema de Tales
Teorema de Tales

Teorema (criterios de congruencia). Sean $\triangle ABC$ y $\triangle DEF$ triángulos. Cualquiera de las siguientes condiciones (o sus simétricos) implican que $\triangle ABC$ y $\triangle DEF$ son congruentes:

  • (LLL) $AB=DE$, $BC=EF$ y $CA=FD$
  • (LAL) $AB=DE$, $\angle BAC = \angle EDF$ y $CA=FD$
  • (ALA) $\angle BAC = \angle EDF$, $CA=FD$ y $\angle BCA – \angle EFD$.

Teorema (criterios de semejanza). Sean $\triangle ABC$ y $\triangle DEF$ triángulos. Cualquiera de las siguientes condiciones (o sus simétricos) implican que $\triangle ABC$ y $\triangle DEF$ son semejantes.

  • (LLL) $\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}$.
  • (LAL) $\frac{AB}{DE}=\frac{CA}{FD}$ y $\angle BAC = \angle EDF$.
  • (AA) $\angle BAC = \angle EDF$ y $\angle BCA – \angle EFD$.

Veamos un ejemplo en el que se usan estos hechos básicos.

Problema. Sobre los lados $AB$ y $AC$ de un triángulo $ABC$ se construyen cuadrados $ABPQ$ y $ACRS$ como en la figura. Muestra que $CQ=BS$.

Sugerencia pre-solución. En geometría es típico modificar un problema. En vez de intentar medir los segmentos requeridos, es útil preguntarse si forman parte de triángulos que sean congruentes, o que sea pueda ver que son congruentes por algún criterio. Por supuesto, en todo problema de geometría es útil hacer muchas figuras.

Problema de geometría euclidiana con cuadrados
Figura auxiliar para problema de cuadrados en un triángulo.

Solución. Consideremos los triángulos $ABS$ y $AQC$. Tenemos que $AB=AQ$ pues ambos son lados del cuadrado $ABPQ$. De manera similar, $AC=AS$. Finalmente, tenemos que $\angle BAS = \angle QAC$, pues ambos ángulos son iguales a $$90^\circ + \angle BAC.$$

Por esta razón, podemos usar el criterio de congruencia $LAL$ en estos triángulos para concluir que son congruentes. De aquí se concluye que $CQ=BS$, como queríamos.

$\square$

Recordatorio de puntos notables en triángulos

Otro tema relevante para la geometría euclideana es la geometría de triángulos. Tomemos un triángulo $\triangle ABC$. Hay algunos puntos y rectas notables en el triángulo, que se usan en varios problemas. A continuación enunciamos las más importantes.

  • Si $L$, $M$ y $N$ son los puntos medios de $BC$, $CA$ y $AB$, respectivamente, entonces a cada una de las rectas $AL$, $BM$ y $CN$ se le conoce como una mediana. Las medianas de un triángulo concurren en un punto llamado el gravicentro o baricentro, que usualmente se denota por $G$.
Medianas de un triángulo y su gravicentro
Medianas de un triángulo y su gravicentro
  • Si $D$, $E$ y $F$ son las proyecciones desde $A$, $B$, $C$ a los lados $BC$, $CA$ y $AB$ respectivamente, entonces a cada una de las rectas $AD$, $BE$ y $CF$ se le conoce como una altura. Las alturas de un triángulo concurren en un punto llamado el ortocentro, que usualmente se denota por $H$.
Alturas de un triángulo y su ortocentro
Alturas de un triángulo y su ortocentro
  • Las rectas que cortan a la mitad a cada uno de los ángulos internos de $\triangle ABC$ se les conoce como las bisectrices internas del triángulo. Concurren en un punto llamado el incentro, usualmente denotado por $I$. El incentro sirve como centro para la única circunferencia que es tangente a los segmentos $AB$, $BC$ y $CA$.
Bisectrices de un triángulo y su incentro
Bisectrices de un triángulo y su incentro
  • Las rectas perpendiculares a los lados del triángulo y que pasan por sus puntos medios se les llama mediatrices y concurren en un punto llamado el circuncentro, que se suele denotar $O$. Este punto sirve como centro de la única circunferencia que pasa por los tres vértices $A$, $B$ y $C$.
Mediatrices de un triángulo y su circuncentro
Mediatrices de un triángulo y su circuncentro

Veamos las demostraciones de algunas de estas afirmaciones, para repasar algunos argumentos geométricos.

Una idea útil es caracterizar a una recta como el conjunto de puntos que satisfacen cierta propiedad. Por ejemplo, probemos primero la siguiente caracterización de las mediatrices.

Proposición. La recta perpendicular $\ell$ a un segmento $BC$ que pasa por su punto medio $L$ consiste exactamente de los puntos $P$ tales que $PB=PC$.

Demostración. Para ver que cualquier punto en $\ell$ satisface esto, se puede usar el criterio LAL de congruencia en los triángulos $PBL$ y $PCL$, usando el ángulo recto que comparten. Para ver que cualquier punto tal que $PB=PC$ está en $\ell$, se usa que $\angle PBC = \angle PCB$ (por el triángulo isósceles $PBC$), y entonces al bajar la perpendicular desde $P$ a $BC$ a un punto $L’$, los triángulos $PBL’$ y $PCL’$ comparten dos ángulos (y por lo tanto los tres), de donde se puede usar de nuevo el criterio LAL para concluir que $L=L’$.

$\square$

Demostrar que las mediatrices concurren es entonces muy sencillo. Si $P$ es la intersección de la mediatriz en $BC$ y en $CA$, entonces por el resultado anterior tenemos $PB=PC=PA$, y entonces también por el resultado anterior se tiene que $P$ está en la mediatriz de $AB$. De manera análoga se puede mostrar que una bisectriz consiste de los puntos que equidistan de los lados que la definen, y con ello mostrar que las bisectrices internas de un triángulo concurren.

Veamos ahora un problema de geometría euclideana que involucra a las alturas y a las medianas. Es el Problema 1 del Concurso Nacional de la Olimpiada Mexicana de Matemáticas de 2009.

Problema. Sea $ABC$ un triángulo y $D$ el pie de la altura desde $A$. Con centro en $D$ se traza una circunferencia de radio $DA$. Esta circunferencia corta a los lados $AB$ y $AC$ del triángulo en puntos $P$ y $Q$ respectivamente. Muestra que los triángulos $AQP$ y $ABC$ son semejantes.

Sugerencia pre-solución. Para mostrar que estos triángulos son semejantes, basta con mostrar que tienen ángulos iguales.

Solución. Tracemos además los pies de altura $E$ y $F$ desde $B$ y $C$ respectivamente.

Ángulos creados por alturas de un triángulo.
Ángulos creados por alturas de un triángulo.

Observemos que $\triangle ABD$ y $\triangle CBF$ comparten los ángulos rectos y el ángulo en $B$, de modo que son semejantes y por lo tanto su tercer ángulo es igual. Este y argumentos análogos muestran que
\begin{align*}
\alpha&:=\angle ABE = \angle ACF\\
\beta&:=\angle BAD = \angle BCF\\
\gamma&:= \angle CBE = \angle CAD.
\end{align*}

De esta forma, los ángulos internos de $\triangle ABC$ miden $\angle A= \beta+\gamma$, $\angle B = \gamma+\alpha$ y $\angle C = \alpha+\beta$. Ya que la suma interna de los ángulos de un triángulo es $180^\circ$, concluimos que $\alpha+\beta+\gamma = 90^\circ$.

Ahora, usando los triángulos isósceles $\triangle ADP$ y $\triangle ADQ$ del problema, tenemos que
\begin{align*}
\angle DPA &= \angle DAP = \beta\\
\angle DQA &= \angle DAQ = \gamma.
\end{align*}

Figura auxiliar para el problema
Figura auxiliar para el problema

Como $\triangle PDQ$ también es isósceles con $PD=DQ$, tenemos que $$\alpha’=:\angle DPQ = \angle DQP.$$ Por la suma de ángulos en el triángulo $APQ$, tenemos que $\alpha’+\beta + \gamma = 90^\circ$. Así, $\alpha = \alpha’$. Concluimos entonces que en el $\triangle PAQ$ los ángulos internos son $\angle A = \beta+ \gamma$, $\angle P = \alpha+\beta$ y $\angle Q = \gamma + \alpha$.

De esta forma, los triángulos $ABC$ y $AQP$ son semejantes por el criterio AA.

$\square$

Otra técnica útil para resolver problemas de geometría consiste en mostrar que un punto está en dos rectas notables (por ejemplo, en las medianas $AL$ y $BM$), deducir que entonces es el punto notable correspondiente (en este caso el gravicentro $G$), y usar la información de que entonces la recta por el tercer vértice y el punto es la tercer recta notable (que en el ejemplo diría que $CG$ es la mediana).

Recordatorio de geometría del círculo

Un tercer ingrediente básico para la geometría euclideana es entender qué pasa con las circunferencias. Tomemos una circunferencia $\Gamma$ y dos puntos fijos $A$ y $B$ sobre ella. Tomemos $C$ y $D$ otros dos puntos sobre $\Gamma$ distintos de $A$ y $B$ sobre el mismo arco definido por $A$ y $B$ y sea $E$ otro punto sobre $\Gamma$, en el arco opuesto. Entonces

  • Los ángulos $\angle ACB$ y $\angle ADB$ son iguales.
  • Los ángulos $\angle ACB$ y $\angle AEB$ son suplementarios, es decir, suman $180^\circ$.
Ángulos en cuadriláteros cíclicos
Ángulos en cuadriláteros cíclicos

De hecho, este resultado es un si y sólo si. Para $A$, $B$, $C$, $D$ puntos distintos en el plano:

  • Si $\angle ACB$ y $\angle ADB$ son iguales, entonces $A$, $B$, $C$, $D$ son puntos sobre una circunferencia y $C$ y $D$ están en el mismo arco definido por $A$ y $B$ y
  • Si los ángulos $\angle ACB$ y $\angle ADB$ son suplementarios, entonces $A$, $B$, $C$, $D$ son puntos sobre una circunferencia y $C$ y $D$ están en arcos opuestos definidos por $A$ y $B$.

Cuando $A$, $B$, $C$ y $D$ son puntos distintos que yacen sobre una misma circunferencia, en ese orden, decimos que $ABCD$ es un cuadrilátero cíclico.

Teorema (potencia de un punto). Sea $P$ un punto y $\Gamma$ una circunferencia. Tomemos dos rectas por $P$ que corten a la circunferencia en puntos $A$, $B$, $C$ y $D$ como en alguna de las figuras. Entonces $PA\cdot PB = PC \cdot PD$.

Diagrama para teorema de potencia de un punto
Diagrama para teorema de potencia de un punto

Veamos un problema de la Olimpiada Matemática de la Cuenca del Pacífico en donde confluyen algunas de estas ideas. Es el problema 1 de la edición de 2016.

Problema. Un triángulo $ABC$ es grandioso si para cualquier punto $D$ en el lado $BC$, cuando se toman los pies de las perpendiculares $P$ y $Q$ de $D$ a las rectas $AB$ y $AC$, respectivamente, sucede que la reflexión de $D$ en la recta $PQ$ cae sobre el circuncírculo del triángulo $ABC$.

Muestra que un triángulo $ABC$ es grandioso si y sólo si $\angle A = 90^\circ$ y $AB=AC$.

Sugerencia pre-solución. El problema dice que cierta condición se debe cumplir para todo punto $D$ en el lado $BC$. Considera algunos casos extremos de lo que puede ser $D$, de los que puedas obtener información de cómo debe ser el triángulo.

Solución. Para cualquier punto $D$ en el lado $BC$, vamos a llamar $D’$ a la reflexión de $D$ en la recta $PQ$. Primero veremos que si $ABC$ es grandioso, entonces es isósceles y con ángulo recto en $A$.

Como la hipótesis se cumple para cualquier punto $D$, en particular se cumple para cuando elegimos $D$ como el punto donde la bisectriz desde $A$ intersecta a $BC$. Nota que $P$ y $Q$ están en los rayos $AB$ y $AC$. Además, $P$ y $Q$ son reflexiones entre sí con respecto a la recta $AD$, de modo que $PQ$ es perpendicular a $AD$. Por esto, se tiene que $D’$ está en la recta $AD$, así que o es $A$, o es el segundo punto de intersección de la bisectriz en $A$ con el circuncírculo del triángulo. Como además $APDQ$ es un cuadrilátero cíclico, se tiene que $AD$ intersecta a $PQ$ y por lo tanto $D’=A$.

Imagen auxiliar para problema APMO
Imagen auxiliar para problema APMO

Tenemos entonces las igualdades de ángulos
\begin{align*}
\angle BAC &= \angle PD’Q \\
&= \angle PDQ \\
&= 180^\circ – \angle BAC.
\end{align*}

Concluimos entonces que $\angle BAC = 90^\circ$, que muestra que el triángulo es rectángulo en $A$.

Ahora tomamos a $D$ como el punto medio de $BC$, lo cual hace que $P$ y $Q$ sean los puntos medios de $AB$ y $AC$ respectivamente. Pero entonces $PQ$ es paralelo a $BC$ y por lo tanto $DD’$ es perpendicular a $BC$. La distancia de $D’$ a $BC$ es igual al circunradio del triángulo (pues $D’$ debe caer en el circuncírculo), y es igual a la distancia de $A$ a $BC$. Esto sólo puede suceder cuando $ABC$ es isósceles y con ángulo recto en $A$, como queríamos.

Veamos ahora que si $ABC$ es isósceles y de ángulo recto en $A$, entonces se cumple la propiedad para todo punto $D$ en $BC$. Como $D$ es la reflexión en $PQ$, tendríamos $D’P=DP=BP$. De manera similar, $D’Q=DQ=CQ$.

El cuadrilátero $APDQD’$ es cíclico de diámetro $PQ$, pues todos los ángulos $\angle PAQ$, $\angle PD’Q$ y $\angle PDQ$ son de $90^\circ$. De aquí, $\angle APD’= \angle AQD’$, de donde obtenemos que $\angle BPD’= \angle CQD’$. Con esto concluimos que $\triangle D’PB$ y $\triangle D’QC$ son semejantes. De aquí se sigue que

\begin{align*}
\angle PD’Q &= \angle PD’C+ \angle CD’Q\\
&=\angle PD’C + \angle BD’P\\
&= \angle BD’C.
\end{align*}

Como además tenemos $\frac{D’P}{D’Q}= \frac{D’B}{D’C}$, concluimos que también $\triangle D’PQ$ y $\triangle D’BC$ son semejantes. Pero como $\triangle DPQ$ y $\triangle D’PQ$ son congruentes, se obtiene que $$\angle BD’C=\angle PD’Q = \angle PDQ = 90^\circ.$$ Con esto concluimos que $D’$ yace en la circunferencia de diámetro $BC$, que es precisamente el circuncírculo de $\triangle ABC$.

$\square$

Más problemas

Puedes encontrar más problemas de geometría euclideana en la sección 8.1 del libro Problem Solving through Problems de Loren Larson. Para tener buenos fundamentos en geometría euclideana, se pueden revisar algunos textos en el área, como los cuadernos de la Olimpiada Mexicana de Matemáticas de Geometría y de Geometría: Ejercicios y problemas.

Álgebra Superior II: Desigualdades de polinomios reales

Introducción

En la entrada anterior mostramos el teorema de factorización para polinomios con coeficientes reales. Lo que haremos ahora es ver que podemos aplicarlo en la resolución de desigualdades de polinomios en $\mathbb{R}[x]$. El objetivo es que, al final de la entrada, entendamos cómo se pueden resolver problemas como los siguientes:

Problema. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$x^6-12x^4-49x^2-30 > 3x^5-48x^3-51x+6.$$

Problema. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$\frac{1}{x}>x^3-x^2+1.$$

Antes de hablar de resolución de desigualdades de polinomios, veremos una forma alternativa de factorizar en $\mathbb{R}[x]$ usando potencias.

Teorema de factorización de polinomios reales con potencias

De acuerdo al teorema de factorización en $\mathbb{R}[x]$, un polinomio $p(x)$ se puede factorizar de manera única en factores lineales y factores cuadráticos con discriminante negativo. De ser necesario, podemos agrupar los factores lineales iguales y reordenarlos para llegar a una factorización de la forma $$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ en donde:

  • $a$ es un real distinto de cero,
  • $\alpha_1,\ldots,\alpha_m$ y $n$ son enteros positivos tales que $2n+\sum_{i=1}^m \alpha_i$ es igual al grado de $p(x)$,
  • para cada $i$ en $\{1,\ldots,m\}$ se tiene que $r_i$ es raíz real de $p(x)$ y $r_1<r_2<\ldots<r_m$
  • para cada $j$ en $ \{1,\ldots,n\}$ se tiene que $b_j,c_j$ son reales tales que $b_j^2-4c_j<0$.

Observa que los $r_i$ son ahora distintos y que están ordenados como $r_1<\ldots<r_m$. De aquí, obtenemos que $(x-r_i)^{\alpha_i}$ es la mayor potencia del factor lineal $x-r_i$ que divide a $p(x)$. Este número $\alpha_i$ se usa frecuentemente, y merece una definición por separado.

Definición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ y $r$ una raíz de $p(x)$. La multiplicidad de $r$ como raíz de $p(x)$ es el mayor entero $\alpha$ tal que $$(x-r)^\alpha \mid p(x).$$ Decimos también que $r$ es una raíz de multiplicidad $\alpha$.

Ejemplo. El polinomio $k(x)=x^4-x^3-3x^2+5x-2$ se factoriza como $(x-1)^3(x+2)$. Así, la multiplicidad de $1$ como raíz de $k(x)$ es $3$. Además, $-2$ es una raíz de $k(x)$ de multiplicidad $1$.

$\square$

Después hablaremos de una forma práctica en la que podemos encontrar la multiplicidad de una raíz, cuando hablemos de continuidad de polinomios y sus derivadas.

Desigualdades de polinomios reales factorizados

Supongamos que tenemos un polinomio $p(x)$ no constante en $\mathbb{R}[x]$ para el cual conocemos su factorización en la forma $$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ y que queremos determinar para qué valores reales $r$ se cumple que $$p(r)>0.$$

Daremos por cierto el siguiente resultado, que demostraremos cuando hablemos de continuidad de polinomios.

Proposición. Las evaluaciones en reales de un polinomio cuadrático y mónico en $\mathbb{R}[x]$ de discriminante negativo, siempre son positivas.

Lo que nos dice este resultado es que, para fines de la desigualdad que queremos resolver, podemos ignorar los factores cuadráticos en la factorización de $p(x)$ pues

$$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n})$$ y $$a(x-r_1)^{\alpha_1}\cdots(x-r_m)^{\alpha_m}$$ tienen el mismo signo.

Por la miasma razón, podemos ignorar aquellos factores lineales con exponente par, y de los de exponente impar, digamos $(x-r)^{2\beta +1}$ obtenemos una desigualdad equivalente si los remplazamos por exponente $1$, pues $(x-r)^{2\beta}$ es positivo y por lo tanto no cambia el signo de la desigualdad si lo ignoramos.

En resumen, cuando estamos resolviendo una desigualdad del estilo $p(x)>0$ podemos, sin cambiar el conjunto solución, reducirla a una de la forma $$q(x):=a(x-r_1)(x-r_2)\ldots(x-r_m)>0.$$ La observación clave para resolver desigualdades de este estilo está resumida en el siguiente resultado.

Proposición. Tomemos un polinomio $q(x)$ en $\mathbb{R}[x]$ de la forma $$q(x)=a(x-r_1)(x-r_2)\ldots(x-r_m)$$ con $r_1<\ldots<r_m$ reales.

Si $m$ es par:

  • Para reales $r$ en la unión de intervalos $$(-\infty,r_1)\cup(r_2,r_3)\cup\ldots \cup (r_{m-2},r_{m-1})\cup (r_m,\infty),$$ la evaluación $q(r)$ tiene el mismo signo que $a$
  • Para reales $r$ en la unión de intervalos $$(r_1,r_2)\cup(r_3,r_4)\cup\ldots \cup (r_{m-3},r_{m-2})\cup (r_{m-1},r_m),$$ la evaluación $q(r)$ tiene signo distinto al de $a$.

Si $m$ es impar:

  • Para reales $r$ en la unión de intervalos $$(r_1,r_2)\cup(r_3,r_4)\cup\ldots \cup (r_{m-2},r_{m-1})\cup (r_m,\infty),$$ la evaluación $q(r)$ tiene el mismo signo que $a$
  • Para reales $r$ en la unión de intervalos $$(-\infty,r_1)\cup(r_2,r_3)\cup\ldots \cup (r_{m-3},r_{m-2})\cup (r_{m-1},r_m),$$ la evaluación $q(r)$ tiene signo distinto al de $a$.

Demostración. El producto $(r-r_1)(r-r_2)\ldots(r-r_m)$ es positivo si y sólo si tiene una cantidad par de factores negativos. Si $r>r_m$, todos los factores son positivos, y por lo tanto $q(r)$ tiene el mismo signo que $a$ cuando $r$ está en el intervalo $(r_m,\infty)$.

Cada que movemos $r$ de derecha a izquierda y cruzamos un valor $r_i$, cambia el signo de exactamente uno de los factores, y por lo tanto la paridad de la cantidad de factores negativos. El resultado se sigue de hacer el análisis de casos correspondiente.

$\square$

Veamos cómo podemos utilizar esta técnica para resolver desigualdades polinomiales que involucran a un polinomio que ya está factorizado en irreducibles.

Problema. Determina para qué valores reales $x$ se tiene que $$-2(x-5)^7(x+8)^4(x+2)^3(x+10)(x^2-x+2)^3$$ es positivo.

Solución. Por la discusión anterior, podemos ignorar el polinomio cuadrático del final, pues es irreducible. También podemos ignorar los factores lineales con potencia par, y podemos remplazar las potencias impares por unos. Así, basta con encontrar los valores reales de $x$ para los cuales $$q(x)=-2(x-5)(x+2)(x+10)$$ es positivo. Tenemos $3$ factores, así que estamos en el caso de $m$ impar en la proposición.

Las tres raíces, en orden, son $-10, -2, 5$. Por la proposición, para $x$ en la unión de intervalos $$(-\infty,-10)\cup (-2,5)$$ se tiene que $q(x)$ tiene signo distinto al de $a=-2$ y por lo tanto es positivo. Para $x$ en el conjunto $$(-10,-2)\cup (5,\infty)$$ se tiene que $q(x)$ tiene signo igual al de $a=-2$, y por lo tanto es negativo. De esta forma, la respuesta es el conjunto $$(-\infty,-10)\cup (-2,5).$$

Puedes dar clic aquí para ver en GeoGebra las gráfica de $q(x)$ y del polinomio original, y verificar que tienen el mismo signo en los mismos intervalos.

$\square$

Si estamos resolviendo una desigualdad y el valor de $a$ en la factorización es positivo, es un poco más práctico ignorarlo desde el principio, pues no afecta a la desigualdad.

Problema. Determina para qué valores reales $x$ se tiene que $$7(x+7)^{13}(x+2)^{31}(x-5)^{18}(x^2+1)$$ es positivo.

Solución. Tras las cancelaciones correspondientes, obtenemos la desigualdad equivalente $$(x+7)(x+2)>0.$$

Las raíces del polinomio que aparece son $-7$ y $-2$. De acuerdo a la proposición, estamos en el caso con $m$ par. De esta forma, la expresión es negativa en el intervalo $(-7,-2)$ y es positiva en la unión de intervalos $$(-\infty,-7)\cup (-2,\infty).$$

$\square$

Otras desigualdades de polinomios y manipulaciones algebraicas

Si tenemos otras expresiones polinomiales, también podemos resolverlas con ideas similares, solo que a veces se tienen que hacer algunas manipulaciones previas para llevar la desigualdad a una de la forma $p(x)>0$.

Problema. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$x^6-12x^4-49x^2-30 > 3x^5-48x^3-51x+6.$$

Solución. El problema es equivalente a encontrar los reales $x$ para los cuales $$x^6-3x^5+12x^4+48x^3-29x^2+51x-36>0.$$ El polinomio del lado izquierdo se puede factorizar como $(x-3)^2(x-1)(x+4)(x^2+1)$, así que obtenemos el problema equivalente $$(x-3)^2(x-1)(x+4)(x^2+1)>0,$$ que ya sabemos resolver. El resto de la solución queda como tarea moral.

Puedes ver la gráfica del polinomio $$(x-3)^2(x-1)(x+4)(x^2+1)$$ en GeoGebra si das clic aquí.

$\square$

Tener cuidado al multiplicar por denominadores

Hay que tener cuidado al realizar algunas manipulaciones algebraicas, pues pueden cambiar el signo de la desigualdad que estamos estudiando. Veamos un ejemplo donde sucede esto.

Problema. Determina todos los números $x$ en $\mathbb{R}$ para los cuales $$\frac{1}{x}>x^3-x^2+1.$$

Solución. La expresión no está definida en $x=0$, pues se anula un denominador. Supongamos entonces que $x\neq 0$, y recordémoslo al expresar la solución final. Vamos a multiplicar la desigualdad por $x$, pero tenemos que hacer casos.

Si $x>0$, entonces el signo de desigualdad no se altera y obtenemos la desigualdad equivalente $$0>x^4-x^3+x-1=(x-1)(x+1)(x^2-x+1).$$ El factor cuadrático es irreducible y lo podemos ignorar. Si estuviéramos trabajando en todo $\mathbb{R}$, el conjunto solución sería el intervalo $(-1,1)$. Sin embargo, tenemos que restringir este conjunto solución sólo al caso en el que estamos, es decir, $x>0$. Así, para este caso sólo los reales en $(0,1)$ son solución.

Si $x<0$, entonces el signo de la desigualdad sí se altera, y entonces obtenemos la desigualdad equivalente $$0<x^4-x^3+x-1=(x-1)(x+1)(x^2-x+1).$$ De nuevo podemos ignorar el factor cuadrático. La desigualdad tiene solución en todo $\mathbb{R}$ al conjunto $(-\infty,-1)\cup (1,\infty)$, pero en este caso debemos limitarlo adicionalmente con la restricción $x<0$. De este modo, las soluciones para este caso están en el intervalo $(-\infty,-1)$.

Ahora sí, juntando ambos casos, tenemos que el conjunto solución final es $$(-\infty,-1)\cup(0,1).$$

Puedes ver la gráfica en GeoGebra de $\frac{1}{x}-x^3+x^2-1$ dando clic aquí. Ahí puedes verificar que esta expresión es positiva exactamente en el conjunto que encontramos.

$\square$

Tarea moral

  • Completa la solución del problema enunciado en la sección de manipulaciones algebraicas.
  • Encuentra el conjunto solución de números reales $x$ tales que $$(x+1)(x+2)^2(x+3)^3(x+4)^4>0.$$
  • Determina las soluciones reales a la desigualdad $$\frac{x-1}{x+2}>\frac{x+2}{x-1}.$$ Ten cuidado con los signos. Verifica tu respuesta en este enlace de GeoGebra, que muestra la gráfica de $f(x)=\frac{x-1}{x+2}-\frac{x+2}{x-1}$.
  • Realiza las gráficas de otros polinomios de la entrada en GeoGebra para verificar las soluciones dadas a las desigualdades de polinomios.
  • Revisa esta entrada, en donde se hablan de aplicaciones de desigualdades polinomiales para un problema de un concurso de matemáticas.

Más adelante

Como queda claro, resulta ser útil tener un polinomio en su forma factorizada para resolver desigualdades de polinomios reales. En los ejemplos que dimos en esta entrada, se dieron las factorizaciones de los polinomios involucrados. En el resto del curso veremos herramientas que nos permitirán encontrar la factorización de un polinomio o, lo que es parecido, encontrar sus raíces:

  • Veremos propiedades de continuidad de polinomios para mostrar la existencia de raíces para polinomios reales en ciertos intervalos.
  • El teorema del factor nos dice que si $r$ es raíz de $p(x)$, entonces $x-r$ divide a $p(x)$. Sin embargo, no nos dice cuál es la multiplicidad de $r$. Veremos que la derivada de un polinomio nos puede ayudar a determinar eso.
  • También veremos el criterio de la raíz racional, que nos permite enlistar todos los cantidatos a ser raíces racionales de un polinomio $p(x)$ con coeficientes racionales.
  • Finalmente, veremos que para los polinomios de grado $3$ y $4$ hay formas de obtener sus raíces de forma explícita, mediante las fórmulas de Cardano y de Ferrari.

Entradas Relacionadas