Archivo de la etiqueta: polinomios

Álgebra Lineal I: Espacios vectoriales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la primer unidad de este curso de álgebra lineal estudiamos a profundidad al conjunto $F^n$ con sus operaciones de suma y multiplicación por escalar. Luego, hablamos de las matrices en $M_{m,n}(F)$ y vimos cómo pensarlas como transformaciones lineales. Les dimos una operación de producto que en términos de transformaciones lineales se puede pensar como la composición. Luego, hablamos de la forma escalonada reducida de una matriz y cómo llevar cualquier matriz a esta forma usando reducción gaussiana. Esto nos permitió resolver sistemas de ecuaciones lineales homogéneos y no homogeneos, así como encontrar inversas de matrices. Las habilidades desarrolladas en la primer parte del curso serán de mucha utilidad para la segunda, en donde hablaremos de espacios vectoriales.

En esta entrada definiremos el concepto de espacio vectorial y vectores. Para hacer esto, tomaremos como motivación el espacio $F^n$, que ya conocemos bien. Sin embargo, hay muchos otros ejemplos de objetos matemáticos que satisfacen la definición que daremos. Hablaremos de algunos de ellos.

En el transcurso de la unidad también hablaremos de otros conceptós básicos, como la de subespacio. Hablaremos de conjuntos linealmente independientes, de generadores y de bases. Esto nos llevará a establecer una teoría de la dimensión de un espacio vectorial. Las bases son de fundamental importancia pues en el caso de dimensión finita, nos permitirán pensar a cualquier espacio vectorial «como si fuera $F^n$ «. Más adelante precisaremos en qué sentido es esto.

Después, veremos cómo pasar de un espacio vectorial a otro mediante transformaciones lineales. Veremos que las transformaciones entre espacios vectoriales de dimensión finita las podemos pensar prácticamente como matrices, siempre y cuando hayamos elegido una base para cada espacio involucrado. Para ver que estamos haciendo todo bien, debemos verificar que hay una forma sencilla de cambiar esta matriz si usamos una base distinta, y por ello estudiaremos a las matrices de cambio de base.

Esta fuerte relación que existe entre transformaciones lineales y y matrices nos permitirá llevar información de un contexto a otro. Además, nos permitirá definir el concepto de rango para una matriz (y transformación vectorial). Hasta ahora, sólo hemos distinguido entre matrices invertibles y no invertibles. Las matrices invertibles corresponden a transformaciones lineales que «guardan toda la información». El concepto de rango nos permitirá entender de manera más precisa cuánta información guardan las transformaciones lineales no invertibles.

Recordando a $F^n$

Antes de definir el concepto de espacio vectorial en toda su generalidad, recordemos algunas de las cosas que suceden con $F^n$. De hecho, puedes pensar en algo mucho más concreto como $\mathbb{R}^4$.

Como recordatorio, comenzamos tomando un campo $F$ y dijimos que, para fines prácticos, podemos pensar que se trata de $\mathbb{R}$ y $\mathbb{C}$. A los elementos de $F$ les llamamos escalares.

Luego, consideramos todas las $n$-adas de elementos de $F$ y a cada una de ellas le llamamos un vector. A $F^n$ le pusimos una operación de suma, que tomaba dos vectores en $F^n$ y nos daba otro. Además, le pusimos una operación de producto por escalar, la cual tomaba un escalar en $F$ y un vector en $F^n$ y nos daba como resultado un vector. Para hacer estas operaciones procedíamos entrada a entrada.

Sin embargo, hay varias propiedades que demostramos para la suma y producto por escalar, para las cuales ya no es necesario hablar de las entradas de los vectores. Mostramos que todo lo siguiente pasa:

  1. (Asociatividad de la suma) Para cualesquiera vectores $u,v,w$ en $F^n$ se cumple que $(u+v)+w=u+(v+w)$.
  2. (Conmutatividad de la suma) Para cualesquiera vectores $u,v$ en $F^n$ se cumple que $u+v=v+u$.
  3. (Identidad para la suma) Existe un vector $0$ en $F^n$ tal que $u+0=u=0+u$.
  4. (Inversos para la suma) Para cualquier vector $u$ en $F^n$ existe un vector $v$ en $F^n$ tal que $u+v=0=v+u$.
  5. (Distributividad para la suma escalar) Para cualesquiera escalares $a,b$ en $F$ y cualquier vector $v$ en $F^n$ se cumple que $(a+b)v=av+bv$.
  6. (Distributividad para la suma vectorial) Para cualquier escalar $a$ en $F$ y cualesquiera vectores $v,w$ en $F^n$ se cumple que $a(v+w)=av+aw$.
  7. (Identidad de producto escalar) Para la identidad multiplicativa $1$ del campo $F$ y cualquier vector $v$ en $F^n$ se cumple que $1v=v$.
  8. (Compatibilidad de producto escalar) Para cualesquiera dos escalares $a,b$ en $F$ y cualquier vector $v$ en $F^n$ se cumple que $(ab)v=a(bv)$.

Los primeros cuatro puntos son equivalentes a decir que la operación suma en $F^n$ es un grupo conmutativo. Resulta que hay varios objetos matemáticos que satisfacen todas estas ocho propiedades o axiomas de espacio vectorial, y cuando esto pasa hay muchas consecuencias útiles que podemos deducir. La esencia del álgebra lineal precisamente consiste en deducir todo lo posible en estructuras que tienen las ocho propiedades anteriores. Estas estructuras son tan especiales, que tienen su propio nombre: espacio vectorial.

Definición de espacio vectorial

Estamos listos para la definición crucial del curso.

Definición. Sea $F$ un campo. Un espacio vectorial sobre el campo $F$ es un conjunto $V$ con operaciones de suma y producto por escalar, que denotaremos por \begin{align*}
+:& V\times V \to V \quad \text{y}\\
\cdot:& F\times V \to V,
\end{align*}

para las cuales se cumplen las ocho propiedades de la sección anterior. En otras palabras:

  • El conjunto $V$ es un grupo conmutativo con la suma
  • Se tiene asociatividad para la suma escalar y la suma vectorial
  • Se tiene identidad y compatibilidad de la mulltiplicación escalar.

A los elementos de $F$ les llamamos escalares. A los elementos de $F^n$ les llamamos vectores. Para hacer restas, las definimos como $u-v=u+(-v)$, donde $-v$ es el inverso aditivo de $v$ con la suma vectorial. Usualmente omitiremos el signo de producto escalar, así que escribiremos $av$ en vez de $a\cdot v$ para $a$ escalar y $v$ vector.

La definición da la impresión de que hay que verificar muchas cosas. De manera estricta, esto es cierto. Sin embargo, de manera intuitiva hay que pensar que a grandes rasgos los espacios vectoriales son estructuras en donde podemos sumar elementos entre sí y multiplicar vectores por escalares (externos) sin que sea muy complicado.

Como ya mencionamos, el conjunto $F^n$ con las operaciones de suma y multiplicación por escalar que se hacen entrada por entrada es un espacio vectorial sobre $F$. En lo que resta de la entrada, hablaremos de otros ejemplos de espacios vectoriales que nos encontraremos frecuentemente.

Espacios vectoriales de matrices

Otros ejemplos de espacios vectoriales con los que ya nos encontramos son los espacios de matrices. Dado un campo $F$ y enteros positivos $m$ y $n$, el conjunto de matrices en $M_{m,n}(F)$ es un espacio vectorial en donde la suma se hace entrada a entrada y la multiplicación escalar también.

¿Qué es lo que tenemos que hacer para mostrar que en efecto esto es un espacio vectorial? Se tendrían que verificar las 8 condiciones en la definición de espacio vectorial. Esto lo hicimos desde la primer entrada del curso, en el primer teorema de la sección «Operaciones de vectores y matrices». Vuelve a leer ese teorema y verifica que en efecto se enuncian todas las propiedades necesarias.

Aquí hay que tener cuidado entonces con los términos que se usan. Si estamos hablando del espacio vectorial $F^n$, las matrices no forman parte de él, y las matrices no son vectores. Sin embargo, si estamos hablando del espacio vectorial $M_{m,n}(F)$, entonces las matrices son sus elementos, y en este contexto las matrices sí serían vectores.

Ejemplo. Sea $\mathbb{F}_2$ el campo con $2$ elementos. Consideremos $M_{2}(\mathbb{F}_2)$. Este es un espacio vectorial. Tiene $16$ vectores de la forma $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, en donde cada entrada es $0$ o $1$. La suma y la multiplicación por escalar se hacen entrada a entrada y con las reglas de $\mathbb{F}_2$. Por ejemplo, tenemos $$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$\square$

Espacios vectoriales de funciones

Ahora veremos algunos ejemplos de espacios vectoriales cuyos elementos son funciones. Esto puede parecer algo abstracto, pero en unos momentos veremos algunos ejemplos concretos que nos pueden ayudar a entender mejor.

Sea $F$ un campo y consideremos cualquier conjunto $X$. Consideremos el conjunto $V$ de todas las posibles funciones de $X$ a $F$. A este conjunto queremos ponerle operaciones de suma y de multiplicación por escalar.

Para definir la suma, tomemos dos funciones que van de $X$ a $F$, digamos $f:X\to F$ y $g:X\to F$. Definiremos a la función $f+g$ como la función que a cada $x$ en $X$ lo manda a $f(x)+g(x)$. Aquí estamos usando la suma del campo $F$. En símbolos, $(f+g):X\to F$ tiene regla de asignación $$(f+g)(x)=f(x)+g(x).$$

Para definir el producto por escalar, tomamos una función $f:X\to F$ y un escalar $c$ en el campo $F$. La función $cf$ será la función $cf:X\to F$ con regla de asignación $$(cf)(x)=cf(x)$$ para todo $x$ en $X$.

Resulta que el conjunto $V$ de funciones de $X$ a $F$ con estas operaciones de suma y producto, es un espacio vectorial. Podemos probar, por ejemplo, la asociatividad de la suma. Para ello, la primer cosa que necesitamos mostrar es la asociatividad de la suma. Es decir, que si tenemos $f:X\to F$, $g:X\to F$ y $h:X\to F$, entonces $$(f+g)+h = f+ (g+h).$$

Esta es una igualdad de funciones. Para que sea cierta, tenemos que verificarla en todo el dominio, así que debemos mostrar que para todo $x$ en $X$ tenemos que $$((f+g)+h)(x)=(f+(g+h))(x).$$

Para demostrar esto, usemos la definición de suma de funciones y la asociatividad de la suma del campo $F$. Con ello, podemos realizar la siguiente cadena de igualdades:

\begin{align*}
((f+g)+h)(x)&=(f+g)(x)+h(x)\\
&=(f(x)+g(x)) + h(x) \\
&=f(x) + (g(x)+h(x)) \\
&=f(x) + (g+h)(x)\\
&=(f+(g+h))(x).
\end{align*}

Así, la suma en $V$ es asociativa. El resto de las propiedades se pueden demostrar con la misma receta:

  • Se enuncia la igualdad de funciones que se quiere mostrar.
  • Para que dicha igualdad sea cierta, se tiene que dar en cada elemento del dominio, así que se evalúa en cierta $x$.
  • Se prueba la igualdad usando las definiciones de suma y producto por escalar, y las propiedades de campo de $F$.

Ejemplo. El ejemplo anterior es muy abstracto, pues $X$ puede ser cualquier cosa. Sin embargo, hay muchos espacios de funciones con los cuales se trabaja constantemente. Por ejemplo, si el campo es el conjunto $\mathbb{R}$ de reales y $X$ es el intervalo $[0,1]$, entonces simplemente estamos hablando de las funciones que van de $[0,1]$ a los reales.

Si tomamos $f:[0,1]\to \mathbb{R}$ y $g:[0,1]\to \mathbb{R}$ dadas por \begin{align*}f(x)&= \sin x – \cos x\\ g(x) &= \cos x + x^2,\end{align*} entonces su suma simplemente es la función $f+g:[0,1]\to \mathbb{R}$ definida por $(f+g)(x)=\sin x + x^2$. Si tomamos, por ejemplo, el escalar $2$, entonces la función $2f:[0,1]\to \mathbb{R}$ no es nada más que aquella dada por
$$(2f)(x)= 2\sin x – 2\cos x.$$

Así como usamos el intervalo $[0,1]$, pudimos también haber usado al intervalo $[-2,2)$, al $(-5,\infty]$, o a cualquier otro.

$\square$

Espacios vectoriales de polinomios

Otro ejemplo de espacios vectoriales que nos encontraremos frecuentemente son los espacios de polinomios. Si no recuerdas con precisión cómo se construyen los polinomios y sus operaciones, te recomendamos repasar este tema con material disponible aquí en el blog.

Dado un campo $F$ y un entero positivo $n$ usaremos $F[x]$ para referirnos a todos los polinomios con coeficientes en $F$ y usaremos $F_n[x]$ para referirnos a aquellos polinomios con coeficientes en $F$ y grado a lo más $n$. Aunque el polinomio cero no tiene grado, también lo incluiremos en $F_n[x]$.

Ejemplo. Si $F$ es $\mathbb{C}$, el campo de los números complejos, entonces todos los siguientes son polinomios en $\mathbb{C}[x]$: \begin{align*}p(x)&=(2+i)x^6 + (1+i),\\ q(x)&=3x^2+2x+1,\\ r(x)&=5x^7+(1-3i)x^5-1.\end{align*}

Tanto $p(x)$ como $q(x)$ están en $\mathbb{C}_6[x]$, pues su grado es a lo más $6$. Sin embargo, $r(x)$ no está en $\mathbb{C}_6[x]$ pues su grado es $7$.

El polinomio $q(x)$ también es un elemento de $\mathbb{R}[x]$, pues tiene coeficientes reales. Pero no es un elemento de $\mathbb{R}_1[x]$ pues su grado es demasiado grande.

$\square$

Recuerda que para sumar polinomios se tienen que sumar los coeficientes de grados correspondientes. Al hacer multiplicación por escalar se tienen que multiplicar cada uno de los coeficientes. De esta forma, si $f(x)=x^2+1$ y $g(x)=x^3+\frac{x^2}{2}-3x-1$, entonces $$(f+g)(x)=x^3+\frac{3x^2}{2}-3x,$$ y $$(6g)(x)=6x^3+3x^2-18x-6.$$

Resulta que $F[x]$ con la suma de polinomios y con el producto escalar es un espacio vectorial. Puedes verificar cada uno de los axiomas por tu cuenta.

Observa que la suma de dos polinomios de grado a lo más $n$ tiene grado a lo más $n$, pues no se introducen términos con grado mayor que $n$. Del mismo modo, si tenemos un polinomio con grado a lo más $n$ y lo multiplicamos por un escalar, entonces su grado no aumenta. De esta forma, podemos pensar a estas operaciones como sigue:
\begin{align*}
+:& F_n[x] \times F_n[x] \to F_n[x]\\
\cdot: & F\times F_n[x] \to F_n[x].
\end{align*}

De esta forma, $F_n[x]$ con la suma de polinomios y producto escalar de polinomios también es un espacio vectorial.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • A partir de los axiomas de espacio vectorial, muestra lo siguiente para un espacio vectorial $V$:
    • La identidad de la suma vectorial es única, es decir, que si existe otro elemento $e$ en $V$ tal que $u+e=u=e+u$ para todo $u$ en $V$, entonces $e=0$.
    • Que si $0$ es la identidad aditiva del campo $F$ y $v$ es cualquier vector en $V$, entonces $0v$ es la identidad de la suma vectorial. En símbolos, $0v=0$, donde el primer $0$ es el de $F$ y el segundo el de $V$.
    • Se vale la regla de cancelación para la suma vectorial, es decir, que si $u,v,w$ son vectores en $V$ y $u+v=u+w$, entonces $v=w$.
    • Se vale la regla de cancelación para el producto escalar, es decir, que si $a$ es un escalar no cero del campo $F$ y $u,v$ son vectores de $V$ para los cuales $au=av$, entonces $u=v$.
    • Que el inverso aditivo de un vector $v$ para la suma vectorial en $V$ es precisamente $(-1)v$, es decir, el resultado de hacer la multiplicación escalar de $v$ con el inverso aditivo del $1$ del campo $F$.
  • Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Sean $u$, $v$ y $w$ vectores en $V$. Justifica la siguiente igualdad enunciando de manera explícita todos los axiomas de espacio vectorial que uses $$u+5v-3w+2u-8v= -3(w+v-u).$$
  • Termina de demostrar que en efecto los espacios de funciones con la suma y producto escalar que dimos son espacios de funciones.
  • Enlista todos los polinomios de $(\mathbb{F}_2)_3[x]$. A continuación hay algunos: $$0, x+1, x^2+x, x^3+1.$$ Para cada uno de ellos, encuentra quien es su inverso aditivo para la suma vectorial de $(\mathbb{F}_2)_3[x]$.

Más adelante…

Ya dimos la definición de espacio vectorial y vimos varios ejemplos. Dentro de algunas entradas veremos como conseguir muchos más espacios vectoriales.

En el último ejemplo pasa algo curioso: el espacio $F_n[x]$ es un subconjunto del espacio $F[x]$ y además es un espacio vectorial con las mismas operaciones que $F[x]$. Este es un fenómeno muy importante en álgebra lineal. Decimos que $F_n[x]$ es un subespacio de $F[x]$. En la siguiente entrada definiremos en general qué es un subespacio de un espacio vectorial y veremos algunas propiedades que tienen los subespacios.

Entradas relacionadas

Seminario de Resolución de Problemas: Polinomios asociados a matrices y el teorema de Cayley-Hamilton

Por Leonardo Ignacio Martínez Sandoval

Introducción

Para terminar esta serie de entradas de álgebra lineal, y con ello el curso de resolución de problemas, hablaremos de polinomios especiales asociados a una matriz: el polinomio mínimo y el polinomio característico. Después, hablaremos del teorema de Cayley-Hamilton, que a grandes rasgos dice que una matriz se anula en su polinomio característico.

Estos resultados forman parte fundamental de la teoría que se aprende en un curso de álgebra lineal. En resolución de problemas, ayudan mucho para entender a los eigenvalores de una matriz, y expresiones polinomiales de matrices.

Polinomio mínimo de una matriz

Podemos evaluar un polinomio en una matriz cuadrada de acuerdo a la siguiente definición.

Definición. Si $A$ es una matriz de $n\times n$ con entradas reales y $p(x)$ es un polinomio en $\mathbb{R}[x]$ de la forma $$p(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n,$$ definimos a la matriz $p(A)$ como la matriz $$a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.$$

De manera análoga se puede dar una definición cuando las entradas de la matriz, o los coeficientes del polinomio, son números complejos.

Cuando una matriz está diagonalizada, digamos $A=P^{-1}DP$ con $P$ invertible y $D$ diagonal, entonces evaluar polinomios en $A$ es sencillo. Se tiene que $p(A)=P^{-1} p(D) P$, y si las entradas en la diagonal principal de $D$ son $d_1,\ldots,d_n$, entonces $p(D)$ es diagonal con entradas en la diagonal principal iguales a $p(d_1),\ldots,p(d_n)$.

Dada una matriz $A$, habrá algunos polinomios $p(x)$ en $\mathbb{R}[x]$ para los cuales $p(A)=0$. Si $p(x)$ es uno de estos, entonces cualquier eigenvalor de $A$ debe ser raíz de $p(x)$. Veamos un problema de la International Mathematics Competition de 2011 que usa esto. Es el Problema 2 del día 1.

Problema. Determina si existe una matriz $A$ de $3\times 3$ con entradas reales tal que su traza es cero y $A^2+ {^tA} = I_3$.

Sugerencia pre-solución. Busca un polinomio $p(x)$ tal que $p(A)=0$.

Solución. La respuesta es que no existe dicha matriz. Procedamos por contradicción. Si existiera, podríamos transponer la identidad dada para obtener que
\begin{align*}
A&=I _3- {^t(A^2)}\\
&=I_3-({^tA})^2\\
&=I_3-(I_3 – A^2)^2\\
&=2A^2 – A^4.
\end{align*}

De aquí, tendríamos que $A^4-2A^2+A = 0$, de modo que cualquier eigenvalor de $A$ debe ser una raíz del polinomio $$p(x)=x^4-2x^2+x=x(x-1)(x^2+x-1),$$

es decir, debe ser alguno de los números $$0,1,\frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}.$$

Los eigenvalores de $A^2$ son los cuadrados de los eigenvalores de $A$, así que son algunos de los números $$0,1,\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}.$$

Como la traza de $A$ es $0$, la suma de sus tres eigenvalores (con multiplicidades), debe ser $0$. Como la traza de $A^2$ es la de $I_3-{ ^tA}$, que es $3$, entonces la suma de los eigenvalores de $A$ al cuadrado (con multiplicidades), debe ser $0$. Un sencillo análisis de casos muestra que esto no es posible.

$\square$

De entre los polinomios que se anulan en $A$, hay uno especial. El polinomio mínimo de una matriz $A$ con entradas reales es el polinomio mónico $\mu_A(x)$ de menor grado tal que $\mu_A(A)=O_n$, donde $O_n$ es la matriz de $n\times n$ con puros ceros. Este polinomio siempre es de grado menor o igual a $n$.

Una propiedad fundamental del polinomio mínimo de una matriz es que es mínimo no sólo en un sentido de grado, sino también de divisibilidad.

Teorema. Sea $A$ una matriz de $n\times n$ con entradas reales. Entonces para cualquier polinomio $p(x)$ en $\mathbb{R}[x]$ tal que $p(A)=O_n$, se tiene que $\mu_A(x)$ divide a $p(x)$ en $\mathbb{R}[x]$.

Veamos cómo se puede usar este resultado.

Problema. La matriz $A$ de $2\times 2$ con entradas reales cumple que $$A^3-A^2+A=O_2.$$ Determina los posibles valores que puede tener $A^2-A$.

Sugerencia pre-solución. Encuentra las posibles opciones que puede tener el polinomio mínimo de $A$ y haz un análisis de casos con respecto a esto.

Solución. La matriz $A$ se anula en el polinomio $$p(x)=x^3-x^2+x=x(x^2-x+1),$$ en donde $x^2-x+1$ tiene discriminante negativo y por lo tanto es irreducible.

El polinomio mínimo $\mu_A(x)$ debe ser un divisor de $p(x)$. Además, es de grado a lo más $2$. Esto nos deja con las siguientes opciones:

  • $\mu_A(x)=x$, de donde $A=O_2$, y por lo tanto $A^2=O_2$. De aquí, $A^2-A=O_2$.
  • $\mu_A(x)=x^2-x+1$. En este caso, tenemos que $A^2-A+I_2=0$. Así, $A^2-A=-I_2$.

Para mostrar que ambas opciones son posibles, en el primer caso usamos $A=O_2$ y en el segundo caso usamos $$A=\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

$\square$

Polinomio característico de una matriz

El polinomio característico de una matriz $A$ de $n\times n$ se define como $$\chi_A(x)=\det(xI_n – A).$$

Teorema. El polinomio característico de una matriz $A$ cumple que:

  • Es un polinomio mónico en $x$ de grado $n$.
  • El coeficiente del término de grado $n-1$ es la traza de $A$.
  • El coeficiente libre es $\chi_A(0)=(-1)^n\det(A)$.
  • Es igual al polinomio característico de cualquier matriz similar a $A$.

Para ver ejemplos de cómo obtener el polinomio característico y cómo usar sus propiedades, hacemos referencia a la siguiente entrada:

Propiedades del polinomio característico

En particular, para fines de este curso, es importante leer los ejemplos y problemas resueltos de esa entrada.

El teorema de Cayley-Hamilton y una demostración con densidad

Finalmente, hablaremos de uno de los resultados fundamentales en álgebra lineal.

Teorema (Cayley-Hamilton). Si $A$ es una matriz de $n\times n$ con entradas en $\mathbb{C}$ y $\chi_A(x)$ es su polinomio característico, entonces $$\chi_A(A)=O_n.$$

En realidad el teorema de Cayley-Hamilton es válido para matrices más generales. Daremos un esbozo de demostración sólo para matrices con entradas complejas pues eso nos permite introducir una técnica de perturbaciones.

Esbozo de demostración. Vamos a hacer la técnica de la bola de nieve, construyendo familias poco a poco más grandes de matrices que satisfacen el teorema.

Si $A$ es una matriz diagonal, las entradas en su diagonal son sus eigenvalores $\lambda_1,\ldots, \lambda_n$. Por la discusión al inicio de esta entrada, $\chi_A(A)$ es diagonal con entradas $\chi_A(\lambda_1),\ldots,\chi_A(\lambda_n)$, y como los eigenvalores son raíces del polinomio característico, entonces todos estos valores son $0$, y por lo tanto $\chi_A(A)=0$.

Si $A$ es diagonalizable, digamos, de la forma $A=P^{-1} D P$, entonces $A$ y $D$ tienen el mismo polinomio característico. Por la discusión al inicio de la entrada, y por el caso anterior:
\begin{align*}
\chi_A(A) &= \chi_D(A)\\
&= \chi_D(P^{-1} D P)\\
&=P^{-1}\chi_D(D) P\\
&=P^{-1}O_n P \\
&=O_n.
\end{align*}

Si $A$ tiene todos sus eigenvalores distintos, se puede mostrar que $A$ es diagonalizable. Ahora viene la idea clave del argumento de continuidad.

Pensemos al espacio métrico de matrices de $n\times n$. Afirmamos que las matrices con eigenvalores todos distintos son densas en este espacio métrico. Para ello, tomemos una matriz $A$. En efecto, como estamos trabajando en $\mathbb{C}$, existe una matriz invertible $P$ tal que $P^{-1}A P$ es triangular. Como $P$ es invertible, define una transformación continua. Los eigenvalores de $P^{-1} A P$ son sus entradas en la diagonal, y podemos perturbarlos tan poquito como queramos para hacer que todos sean distintos.

De esta forma, existe una sucesión de matrices $A_k$, todas ellas diagonalizables, tales que $A_k \to A$ conforme $k\to \infty$. El resultado se sigue entonces de las siguientes observaciones:

  • Los coeficientes del polinomio característico de una matriz dependen continuamente de sus entradas.
  • Las entradas de potencias de una matriz dependen continuamente de sus entradas.
  • Así, la función $\chi_{M}(M)$ es continua en la matriz variable $M$.

Concluimos como sigue $\chi_{A_k}(A_k)=0$, por ser cada una de las matrices $A_k$ diagonalizables. Por la continuidad de $\chi_{M}(M)$, tenemos que
\begin{align*}
\chi_A(A)&=\lim_{k\to \infty} \chi_{A_k}(A_k)\\
&= \lim_{k\to \infty} O_n \\
&= O_n.
\end{align*}

$\square$

Terminamos esta entrada con un problema que usa el teorema de Cayley-Hamilton.

Problema. Muestra que para cualesquiera matrices $X,Y,Z$ de $2\times 2$ con entradas reales se cumple que
\begin{align*}
&ZXYXY + ZYXYX + XYYXZ + YXXYZ\\
= &XYXYZ + YXYXZ + ZXYYX + ZYXXY.
\end{align*}

Sugerencia pre-solución. Muestra que las matrices reales de $2\times 2$ de traza cero conmutan con cualquier matriz de $2\times 2$.

Solución. Si $A$ es una matriz de $2\times 2$ de traza cero, su polinomio característico es
\begin{align*}
\chi_A(x)&=x^2 – \text{tr}(A) x + \det(A)\\
&=x^2 + \det(A).
\end{align*}

Por el teorema de Cayley-Hamilton, se satisface entonces que $A^2=-\det(A) I_2$, así que $A^2$ es un múltiplo de la identidad, y por lo tanto conmuta con cualquier matriz de $2\times 2$.

La identidad que queremos mostrar se puede reescribir como $$Z(XY-YX)^2 = (XY-YX)^2Z.$$

La traza de $XY$ es igual a la traza de $YX$, y como la traza es una transformación lineal, tenemos que $$\text{tr}(XY-YX)= \text{tr}(XY)-\text{tr}(YX)=0.$$ El problema se termina aplicando la discusión de arriba a la matriz $$A=XY-YX.$$

$\square$

Más problemas

Puedes encontrar más problemas relacionados con el polinomio mínimo, el polinomio característico y el teorema de Cayley-Hamilton en la Sección 8.2, 8.4 y 8.5 del libro Essential Linear Algebra de Titu Andreescu. También hay más problemas relacionados con el teorema de Cayley-Hamilton en el Capítulo 4 del libro Mathematical Bridges de Andreescu, Mortici y Tetiva.

Álgebra Superior II: Raíces de polinomios de grados 3 y 4

Por Leonardo Ignacio Martínez Sandoval

Introducción

Esta es la entrada final de la unidad de polinomios y del curso. En ella hablaremos acerca de las fórmulas para encontrar las raíces de polinomios de grado $3$ y $4$. Además, en la parte final, hablaremos de polinomios de grados más altos y cómo ellos te pueden llevar a cursos muy interesantes que puedes tomar para continuar tu formación matemática.

Existen métodos generales para encontrar las raíces de polinomios de grado $3$ y $4$, ya sea en $\mathbb{R}[x]$ o en $\mathbb{C}[x]$. Para los polinomios de grado $3$, se usa el método de Cardano. Para los polinomios de grado $4$ se usa el método de Ferrari. Encontrar estas fórmulas tomó mucho tiempo. Ambas requieren de manipulaciones algebraicas muy creativas.

Raíces de polinomios de grado 3 y el método de Cardano

Tomemos un polinomio $f(x)$ en $\mathbb{R}[x]$ de grado $3$. Si $f(x)$ no es mónico, podemos multiplicarlo por el inverso de su coeficiente principal para obtener un polinomio con las mismas raíces. De esta forma, podemos suponer sin pérdida de generalidad que $f(x)$ es de la forma $$f(x)=x^3+ax^2+bx+c.$$

Consideremos al polinomio $$g(x)=f\left(x-\frac{a}{3}\right).$$ Observa que $r$ es una raíz de $g(x)$ si y sólo si $g(r)=0$, si y sólo si $f\left(r-\frac{a}{3}\right)=0$, si y sólo si $r-\frac{a}{3}$ es una raíz de $f$. De esta forma, si conocemos las raíces de $g(x)$, podemos encontrar las de $f(x)$, y viceversa.

Al hacer las cuentas (que quedan como tarea moral), se tiene que $g(x)$ se simplifica a
\begin{align*}
g(x)&=f\left(x-\frac{a}{3}\right)\\
&=x^3+\left(b-\frac{a^2}{3}\right)x+\left(-\frac{ba}{3}+c+\frac{2a^3}{27}\right),
\end{align*}

que tiene la ventaja de ya no tener término cuadrático. En otras palabras, para encontrar las raíces de polinomio cúbico, basta con poder encontrar las de los polinomios de la forma $$g(x)=x^3+px+q.$$

Tomando $x=u+v$ y haciendo las operaciones, se tiene que $$g(u+v)=u^3+v^3+(3uv+p)(u+v)+q.$$

Observa que si logramos encontrar $u$ y $v$ que satisfagan el sistema de ecuaciones
\begin{align*}
u^3+v^3&=-q\\
uv&=-\frac{p}{3},
\end{align*}

entonces tendríamos una raíz $x=u+v$.

La segunda ecuación implica $u^3v^3=-\frac{p^3}{27}$. Pero entonces conocemos la suma y el producto de las variables $u^3$ y $v^3$, con lo cual obtenemos que son las raíces del siguiente polinomio de grado $2$ en la variable $t$:
\begin{align*}
(t-u^3)(t-v^3)&=t^2-(u^3+v^3)t+u^3v^3\\
&=t^2+qt-\frac{p^3}{27}.
\end{align*}

El discriminante de esta ecuación cuadrática es $$\Delta = q^2 + \frac{4p^3}{27}.$$

Si $\Delta >0$, esta ecuación cuadrática tiene las siguientes soluciones reales:
\begin{align*}
\sqrt[3]{-\frac q2 + \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}}\\
\sqrt[3]{-\frac q2 – \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}}.
\end{align*}

Sin pérdida de generalidad, $u$ es la primera y $v$ la segunda. De esta forma, una raíz real para $g(x)$ es $$x= \sqrt[3]{-\frac q2 + \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}} + \sqrt[3]{-\frac q2 – \sqrt {\frac {q^2}{4} +\frac {p^3}{27}}}.$$

Hasta aquí hay algunas cosas por notar:

  • Supusimos que el discriminante $\Delta$ es positivo.
  • Sólo hemos encontrado una de las $3$ raíces de $p(x)$ que garantiza el teorema fundamental del álgebra.

Cuando el discriminante es positivo, las otras dos soluciones son $\omega x$ y $\omega^2 x$, en donde $\omega$ es una raíz cúbica primitiva de la unidad.

Cuando la cuadrática tiene discriminante $\Delta<0$, tenemos que $u$ y $v$ son complejos, y entonces al sacar raíz cúbica podemos tener tres opciones para cada uno, algo que parecería dar un total de $9$ soluciones. Sin embargo, recordando que $uv=-\frac{p}{3}$, tenemos que $u$ queda totalmente determinado por $v$, así que de ahí se obtienen las tres soluciones.

Raíces de polinomios de grado 4 y el método de Ferrari

El método de Ferrari está explicado a detalle en el libro de Álgebra de Bravo, Rincón y Rincón. Ahí están las ideas principales para encontrar una fórmula general para encontrar las raíces de un polinomio de grado $4$, es decir, de la forma $$p(x)=ax^4+bx^3+cx^2+dx+e.$$ Recuerda que el libro está disponible para descarga gratuita.

Al igual que en el caso del método de Ferrari, los primeros pasos consisten en hacer simplificaciones algebraicas. Así como el método de Cardano usa la fórmula cuadrática, del mismo modo el método de Ferrari reduce el problema a encontrar soluciones a un polinomio de grado 3. Uno podría creer que este patrón se repite, y que se pueden encontrar métodos para polinomios de grado arbitrario. Esto no es así, y lo platicaremos en la siguiente sección.

Para otra derivación de la fórmula de Ferrari, compartimos el artículo «Identidades para la resolución de ecuaciones cúbicas y cuárticas» de José Leonardo Sáenz Cetina, que apareció en el número 24 de la revista Miscelánea Matemática de la Sociedad Matemática Mexicana:

Este documento también tiene otras dos formas de resolver ecuaciones cúbicas, así que es una lectura recomendada.

Finalmente, se recomienda también echarle un ojo a la página de Wikipedia acerca de la ecuación cuártica. La entrada en inglés es mucho mejor. Sobre todo la sección referente al método de Ferrari.

Raíces de polinomios de grado 5 y más

De acuerdo al teorema fundamental del álgebra, todo polinomio sobre los complejos tiene al menos una raíz. De hecho, se puede mostrar que si es de grado $n$, entonces tiene exactamente $n$ raíces, contando multiplicidades.

Cuando tenemos polinomios de grados $2$, $3$ y $4$ podemos usar la fórmula cuadrática, el método de Cardano y el método de Ferrari para encontrar una fórmula para las soluciones. ¿Hay algún método que tenga fórmulas similares para polinomios de grado más grande?

La respuesta es que no. Aunque el teorema fundamental del álgebra garantice la existencia de las raíces, hay un teorema de Abel y Ruffini que muestra que no es posible encontrar una fórmula general. Al menos no una que ayude a poner las raíces de cualquier polinomio de grado cinco (o más) usando únicamente sumas, restas, multiplicaciones, divisiones y raíces. Esto formalmente se enuncia como que hay ecuaciones de grado 5 y más que no son solubles por radicales.

Enunciar y demostrar este teorema formalmente requiere de herramientas que quedan fuera del alcance de este curso, sin embargo, se puede estudiar en un curso avanzado de álgebra, en donde se hable de extensiones de campo y teoría de Galois.

Por otro lado, podemos dejar de lado la exactitud y preguntarnos si, dado un polinomio, podemos acercarnos a sus raíces tanto como queramos. Hoy en día eso se hace mediante métodos computacionales. Aunque la computadora sea muy buena haciendo cuentas, hay que ser particularmente cuidadoso con los errores que comete al hacer aproximaciones.

Eso es otra de las cosas que quedan fuera del alcance de este curso, y que puedes estudiar en un buen curso de métodos numéricos. Si lo que buscas es saber cómo pedirle a la computados que haga los cálculos, eso lo puedes aprender en un buen curso de programación, en donde te enseñen a usar ambientes de computación científica.

Más adelante…

Antes de concluir el curso, en la siguiente entrada, repasamos lo aprendido en esta entrada y vemos como se puede realizar una ecuación de grado $3$ y de grado $4$ usando los métodos de Cardano y de Ferrari, sin embargo, es importante no olvidar que antes de estos métodos, tenemos otros teoremas importantes que en principio podrían ser más simples para obtener las soluciones a una cúbica o cualquier ecuación.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Completa las cuentas faltantes en la discusión del método de Cardano.
  2. Muestra que un polinomio de grado $3$ y coeficientes reales tiene exactamente cero o dos raíces complejas distintas.
  3. ¿Cuántas raíces complejas distintas puede tener un polinomio de grado $4$ con coeficientes reales? Encuentra un ejemplo para cada una de las respuestas.
  4. Encuentra las raíces del polinomio cuártico $$p(x)=x^4+2x^3-12x^2-10x+4.$$ Después, compara tu respuesta con el Ejemplo 216 del libro de Álgebra de Bravo, Rincón, Rincón.
  5. Lee las entradas en Wikipedia acerca de ecuaciones cúbicas y ecuaciones cuárticas.

Entradas relacionadas

Álgebra Superior II: El criterio de la raíz racional para polinomios de coeficientes enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada veremos el criterio de la raíz racional. Este es un método que nos permite determinar las únicas raíces racionales que puede tener un polinomio con coeficientes enteros. Es una más de las herramientas que podemos usar cuando estamos estudiando polinomios en $\mathbb{R}[x]$.

Si encontramos una raíz con este método, luego podemos encontrar su multiplicidad mediante el teorema de derivadas y multiplicidad. Esto puede ayudarnos a factorizar el polinomio. Otras herramientas que hemos visto que nos pueden ayudar son el algoritmo de Euclides, la fórmula cuadrática, el teorema del factor y propiedades de continuidad y diferenciabilidad de polinomios.

El criterio de la raíz racional

Si un polinomio $p(x)$ en $\mathbb{R}[x]$ cumple que todos sus coeficientes son números enteros, entonces decimos que es un polinomio sobre los enteros. Al conjunto de polinomios sobre los enteros se le denota $\mathbb{Z}[x]$.

Teorema (criterio de la raíz racional). Tomemos un polinomio $p(x)$ en $\mathbb{Z}[x]$ de la forma $$p(x)=a_0+a_1x+\ldots+a_nx^n.$$ Supongamos que el número $\frac{p}{q}$ es número racional simplificado, es decir con $p$ y $q\neq 0$ enteros primos relativos. Si $\frac{p}{q}$ es raíz de $p(x)$, entonces $p$ divide a $a_0$, y $q$ divide a $a_n$.

Demostración. Por definición, si $\frac{p}{q}$ es una raíz, tenemos que $$0=a_0+a_1\cdot \frac{p}{q} + \ldots + a_n \cdot \frac{p^n}{q^n}.$$

Multiplicando ambos lados de esta igualdad por $q^n$, tenemos que

$$0=a_0q^n+a_1pq^{n-1}+\ldots+a_{n-1}p^{n-1}q+a_np^n.$$

Despejando $a_0q^n$, tenemos que

\begin{align*}
a_0q^n&=-(a_1pq^{n-1}+\ldots+a_{n-1}p^{n-1}q+a_np^n)\\
&=-p(a_1q^{n-1}+\ldots+a_{n-1}p^{n-2}q+a_np^{n-1})
\end{align*}

Esto muestra que $a_0q^n$ es múltiplo de $p$. Pero como $\MCD{p,q}=1$, tenemos que $p$ debe dividir a $a_0$.

De manera similar, tenemos que

\begin{align*}
a_np^n&=-(a_0q^n+a_1pq^{n-1}+\ldots+a_{n-1}p^{n-1}q)\\
&=-q(a_0q^{n-1}+a_1pq^{n-2}+\ldots+a_{n-1}p^{n-1}).
\end{align*}

De aquí, $q$ divide a $a_np^n$, y como $\MCD{p,q}=1$, entonces $q$ divide a $a_n$.

$\square$

Como cualquier natural tiene una cantidad finita de divisores, el criterio de la raíz racional nos permite restringir la cantidad posible de raíces de un polinomio con coeficientes enteros a una cantidad finita de candidatos. Veamos un par de ejemplos.

Aplicación directa del criterio de la raíz racional

Ejercicio. Usa el criterio de la raíz racional para enlistar a todos los posibles números racionales que son candidatos a ser raíces del polinomio $$h(x)=2x^3-x^2+12x-6.$$ Después, encuentra las raíces racionales de $p(x)$.

Solución. El polinomio $h(x)$ tiene coeficientes enteros, así que podemos usar el criterio de la raíz racional. Las raíces racionales son de la forma $\frac{p}{q}$ con $p$ divisor de $-6$, con $q$ divisor de $2$ y además $\MCD{p,q}=1$. Los divisores enteros de $-6$ son $$-6,-3,-2,-1,1,2,3,6.$$ Los divisores enteros de $2$ son $$-2,-1,1,2.$$

Pareciera que hay muchas posibilidades por considerar. Sin embargo, nota que basta ponerle el signo menos a uno de $p$ o $q$ para considerar todos los casos. Así, sin pérdida de generalidad, $q>0$. Si $q=1$, obtenemos a los candidatos $$-6,-3,-2,-1,1,2,3,6.$$ Si $q=2$, por la condición de primos relativos basta usar los valores $-3,-1,1,3$ para $p$. De aquí, obtenemos al resto de los candidatos $$-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}.$$

En el peor de los casos, ya solo bastaría evaluar el polinomio en estos $12$ candidatos para determinar si son o no son raíz. Sin embargo, a veces podemos hacer algunos trucos para disminuir todavía más la lista.

Observa que si evaluamos $$h(x)=2x^3-x^2+12x-6$$ en un número negativo, entonces la expresión quedará estrictamente negativa, así que ninguno de los candidatos negativos puede ser raíz. De este modo, sólo nos quedan los candidatos $$1,2,3,6,\frac{1}{2},\frac{3}{2}.$$

Si evaluamos en $x=2$ o $x=6$, entonces la parte de la expresión $2x^3-x^2+12x$ es múltiplo de $4$, pero $-6$ no. De esta forma, $h(x)$ no sería un múltiplo de $4$, y por lo tanto no puede ser $0$. Si evaluamos en $x=1$ o $x=3$, tendríamos que la parte de la expresión $2x^3+12x-6$ sería par, pero $-x^2$ sería impar, de modo que $h(x)$ sería impar, y no podría ser cero. Así, ya sólo nos quedan los candidatos $$\frac{1}{2},\frac{3}{2}.$$

Para ellos ya no hagamos trucos, y evaluemos directamente. Tenemos que
\begin{align*}
h\left(\frac{1}{2}\right) &= 2\cdot \frac{1}{8} – \frac{1}{4} + 12 \cdot \frac{1}{2}-6\\
&=\frac{1}{4}-\frac{1}{4}+6-6\\
&=0.
\end{align*}

y que
\begin{align*}
h\left(\frac{3}{2}\right) &= 2\cdot \frac{27}{8} – \frac{9}{4} + 12 \cdot \frac{3}{2}-6\\
&=\frac{27}{4}-\frac{9}{4}+18-6\\
&=\frac{9}{2}+12\\
&=\frac{33}{2}.
\end{align*}

Habiendo considerado todos los casos, llegamos a que la única raíz racional de $h(x)$ es $\frac{1}{2}$.

$\square$

Aplicación indirecta del criterio de la raíz racional

El criterio de la raíz racional lo podemos usar en algunos problemas, aunque en ellos no esté escrito un polinomio de manera explícita.

Problema. Muestra que $\sqrt[7]{13}$ no es un número racional.

Solución. Por definición, el número $\sqrt[7]{13}$ es el único real positivo $r$ que cumple que $r^7=13$. Se puede mostrar su existencia usando que la función $f:\mathbb{R}\to\mathbb{R}$ dada por $f(x)=x^7$ es continua, que $f(0)=0$, que $f(2)=128$, y aplicando el teorema del valor intermedio. Se puede mostrar su unicidad mostrando que la función $f$ es estrictamente creciente en los reales positivos. Lo que tenemos que mostrar es que este número real no es racional.

Si consideramos el polinomio $p(x)=x^7-13$, tenemos que $p(r)=r^7-13=0$, de modo que $r$ es raíz de $p(x)$. Así, para terminar el problema, basta mostrar que $p(x)$ no tiene raíces racionales.

El polinomio $p(x)$ tiene coeficientes enteros, así que podemos aplicarle el criterio de la raíz racional. Una raíz racional tiene que ser de la forma $\frac{p}{q}$ con $p$ divisor de $-13$ y $q$ divisor de $1$.

Sin perder generalidad, $q>0$, así que $q=1$. De esta forma, los únicos candidatos a ser raíces racionales de $p(x)$ son $-13,-1,1,13$. Sin embargo, una verificación de cada una de estas posibilidades muestra que ninguna de ellas es raíz de $p(x)$. Por lo tanto, $p(x)$ no tiene raíces racionales, lo cual termina la solución del problema.

$\square$

Aplicación en polinomio con coeficientes racionales

A veces un polinomio tiene coeficientes racionales, por ejemplo, $$r(x)=\frac{x^3}{2}+\frac{x^2}{3}-4x-1.$$

A un polinomio con todos sus coeficientes en $\mathbb{Q}$ se les conoce como polinomio sobre los racionales y al conjunto de todos ellos se le denota $\mathbb{Q}[x]$. Para fines de encontrar raíces racionales, los polinomios en $\mathbb{Q}[x]$ y los polinomios en $\mathbb{Z}[x]$ son muy parecidos.

Si tenemos un polinomio $q(x)$ en $\mathbb{Q}[x]$, basta con multiplicar por el mínimo común múltiplo de los denominadores de los coeficientes para obtener un polinomio $p(x)$ con coeficientes enteros. Como $q(x)$ y $p(x)$ varían sólo por un factor no cero, entonces tienen las mismas raíces. Por ejemplo, el polinomio $r(x)$ de arriba tiene las mismas raíces que el polinomio $$s(x)=6r(x)=3x^3+2x^2-24x-6.$$ A este nuevo polinomio se le puede aplicar el criterio de la raíz racional para encontrar todas sus raíces racionales.

Ejemplo. Consideremos el polinomio $$q(x)=x^3+\frac{x^2}{3}+5x+\frac{5}{3}.$$ Vamos a encontrar todos los candidatos a raíces racionales. Para ello, notamos que $q(x)$ y $p(x):=3q(x)$ varían sólo por un factor multiplicativo no nulo y por lo tanto tienen las mismas raíces. El polinomio $$p(x)=3x^3+x^2+15x+5$$ tiene coeficientes enteros, así que los candidatos a raíces racionales son de la forma $\frac{a}{b}$ con $a$ y $b$ primos relativos, $a\mid 5$ y $b\mid 3$. Sin pérdida de generalidad $b>0$.

Los divisores de $5$ son $-5,-1,1,5$. Los divisores positivos de $3$ son $1$ y $3$. De esta forma, los candidatos a raíces racionales son $$-5,-1,1,5,-\frac{5}{3},-\frac{1}{3},\frac{1}{3},\frac{5}{3}.$$

Si ponemos un número positivo en $p(x)$, como sus coeficientes son todos positivos, tenemos que la evaluación sería positiva, así que podemos descartar estos casos. Sólo nos quedan los candidatos $$-5,-1,-\frac{5}{3},-\frac{1}{3}.$$

La evaluación en $-5$ da
\begin{align*}
-3\cdot 125 + 25 – 15\cdot 5 +5&=-375+25-75+5\\
&=-295,
\end{align*}

así que $-5$ no es raíz.

La evaluación en $-1$ da
\begin{align*}
-3+1-15+5=-12,
\end{align*}

así que $-1$ tampoco es raíz.

Como tarea moral, queda verificar que $-\frac{5}{3}$ tampoco es raíz, pero que $-\frac{1}{3}$ sí lo es.

$\square$

Más adelante

Hemos visto como podemos encontrar algunas raíces de los polinomios con coeficientes en $\mathbb{Q}$, esta herramienta es extremadamente fuerte, porque aún encontrando solo una raíz para el polinomios, usando el teorema del factor, podemos cambiar nuestro polinomio por uno de al menos un grado menor.

La importancia de disminuir el grado de un polinomio, es que si logramos reducirlo a un polinomio de grado cuatro, entonces podremos encontrar todas las raíces, aunque estas pueden ser un poco complicadas.

El justificar la aseveración anterior, requiere esfuerzo, y será nuestra siguiente tarea, dar todas las soluciones a cualquier polinomio de grado menor o igual $4$.

Por lo mientras, para practicar los temas vistos, en la siguiente sección repasaremos algunos ejercicios para familiarizarnos con las técnicas que hemos visto.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Realiza las evaluaciones que faltan en el último ejemplo.
  2. Determina las raíces racionales del polinomio $$x^7-6x^4+3x^3+18x-1.$$
  3. Muestra que $\sqrt[3]{12}$ no es un número racional.
  4. Encuentra todos los candidatos a ser raíces racionales de $$x^3+\frac{2x^2}{3}-7x-\frac{14}{3}.$$ Determina cuáles sí son raíces.
  5. Puede que un polinomio en $\mathbb{Z}[x]$ no tenga raíces racionales, pero que sí se pueda factorizar en $\mathbb{Z}[x]$. Investiga acerca del criterio de irreducibilidad de Eisenstein.

Entradas relacionadas

Álgebra Superior II: El teorema de derivadas y multiplicidad

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores definimos qué quiere decir que un real sea una raíz de un polinomio. Luego, vimos que mediante el teorema del factor se puede definir una relación entre las raíces de un polinomio y los polinomios lineales que lo dividen. Sin embargo, es posible que un real sea una raíz de un polinomio «más de una vez», que fue un concepto que formalizamos en la entrada de desigualdades de polinomios. En esta entrada veremos que a través de las derivadas de polinomios, podemos determinar la multiplicidad de sus raíces.

Como recordatorio, la multiplicidad de una raíz $r$ de un polinomio $p(x)$ en $\mathbb{R}[x]$ es el mayor entero $m$ tal que $(x-r)^m$ divide a $p(x)$ en $\mathbb{R}[x]$. También, en esta entrada haremos uso de la regla del producto para derivadas.

El teorema de derivadas y multiplicidad

El siguiente resultado es fundamental para la detección de raíces múltiples. Su demostración es sencilla pues usamos varios de los resultados que hemos obtenido anteriormente.

Teorema (derivadas y multiplicidad). Sea $r$ una raíz del polinomio $p(x)$ en $\mathbb{R}[x]$ de multiplicidad $m$. Si $m>1$, entonces $r$ es una raíz de la derivada $p'(x)$, y es de multiplicidad $m-1$. Si $m=1$, entonces $r$ no es raíz de $p'(x)$.

Demostración. Como $r$ es una raíz de $p(x)$ de multiplicidad $m$, entonces se puede escribir $p(x)=(x-r)^m q(x)$, en donde $q(x)$ es un polinomio que ya no es divisible entre $x-r$. Derivando, por regla del producto tenemos que
\begin{align*}
p'(x)&=m(x-r)^{m-1}q(x) + (x-r)^m q'(x)\\
&=(x-r)^{m-1}(mq(x)+(x-r)q'(x)).
\end{align*}

Afirmamos que $x-r$ no divide a $mq(x)+(x-r)q'(x)$. Si lo dividiera, como divide a $(x-r)q'(x)$ entonces también tendría que dividir a $mq(x)$ y por lo tanto a $q(x)$. Pero esto sería una contradicción con la elección de $q(x)$.

De esta forma, si $m=1$ entonces $x-r$ no divide a $p'(x)$ y por el teorema del factor entonces $r$ no es raíz de $p'(x)$. Y si $m>1$, entonces $(x-r)^{m-1}$ divide a $p'(x)$ por la expresión que encontramos de la derivada, pero $(x-r)^m$ no, pues $x-r$ no divide al segundo factor. Esto termina la prueba.

$\square$

Ejemplo. Consideremos al polinomio $p(x)=(x-3)^3(x+1)$. Tanto $3$ como $-1$ son raíces de $p(x)$. La multiplicidad de la raíz $3$ es tres y la multiplicidad de la raíz $-1$ es uno. Si derivamos a $p(x)$ usando la regla del producto, tenemos que
\begin{align*}
p'(x)&=3(x-3)^2(x+1)+(x-3)^3\\
&=3(x-3)^2(x+1+x-3)\\
&=3(x-3)^2(2x-2)\\
&=6(x-3)^2(x-1)
\end{align*}

Observa que $p'(x)$ en efecto tiene a $3$ como raíz de multiplicidad dos y ya no tiene a $1$ como raíz.

$\square$

Es muy importante respetar la hipótesis de que $r$ sea raíz de $p(x)$. Por ejemplo, en el ejemplo anterior $1$ es raíz de $p'(x)$ de multiplicidad $1$, pero $1$ no es raíz de $p(x)$ (y mucho menos de multiplicidad $2$).

El teorema de derivadas y multiplicidad es interesante, pero todavía no es útil en aplicaciones prácticas. Sin embargo, tiene dos consecuencias que sí se pueden usar para estudiar polinomios concretos.

Encontrar la multiplicidad de una raíz

El teorema de derivadas y multiplicidad nos dice que la multiplicidad de una raíz «baja en uno» al pasar de un polinomio a su derivada, pero aún no nos dice cuál es esa multiplicidad. Sin embargo, lo podemos aplicar repetidamente para obtener esta información. Recuerda que para $k$ un entero no negativo y $p(x)$ en $\mathbb{R}[x]$, usamos $p^{(k)}(x)$ para denotar $k$-ésima derivada de un polinomio. Aquí $p^{(0)}(x)$ es simplemente $p(x)$.

Proposición. Sea $r$ una raíz del polinomio $p(x)$ en $\mathbb{R}[x]$ de multiplicidad $m$. Si $k$ el mayor entero positivo tal que $r$ es raíz de $$p^{(0)}(x), p^{(1)}(x),\ldots,p^{(k)}(x),$$ entonces $m=k+1$.

Demostración. Usando el teorema anterior de manera inductiva, tenemos que para cada entero $0\leq \ell<m$, se tiene que $r$ es raíz de multiplicidad $m-\ell$ de $p^{(\ell)}(x)$ En particular, es raíz de todas estas derivadas. Además, por el mismo teorema, se tiene que $r$ ya no es raíz de $p^{(m)}(x)$. De esta forma, tenemos que $k=m-1$, de donde se obtiene el resultado deseado.

$\square$

La proposición anterior ahora sí nos da una manera de encontrar la multiplicidad de una raíz de un polinomio.

Ejemplo. Sabiendo que $3$ es una raíz del polinomio $$p(x)=x^5-9x^4+28x^3-36x^2+27x-27,$$ vamos a encontrar su multiplicidad.

Para esto, vamos a calcular sus derivadas:
\begin{align*}
p'(x)&=5x^4-36x^3+84x^2-72x+27\\
p^{(2)}(x)&=20x^3-108x^2+168x-72\\
p^{(3)}(x)&=60x^2-216x+168\\
p^{(4)}(x)&=120x-216\\
p^{(5)}(x)&=120\\
p^{(6)}(x)&=0
\end{align*}

Tenemos que
\begin{align*}
p'(3)&=5\cdot 81 – 36 \cdot 27 +84 \cdot 9 -72\cdot 3 + 27\\
&=405-972+756-216+27\\
&=0.
\end{align*}

Hasta aquí, sabemos que $3$ es raíz de multiplicidad al menos dos. Tenemos también que
\begin{align*}
p^{(2)}(3)&=20\cdot 27-108\cdot 9 +168 \cdot 3 – 72\\
&=540-972+504-72\\
&=0.
\end{align*}

Hasta aquí, sabemos que $3$ es raíz de multiplicidad al menos tres. Siguiendo,
\begin{align*}
p^{(3)}&=60\cdot 9-216\cdot 3 +168\\
&=720-648+168\\
&=240.
\end{align*}

Como la tercera derivada ya no se anuló en $3$, la multiplicidad de $3$ como raíz es exactamente tres.

$\square$

Es importante que revisemos todas las derivadas, y que sea una por una. En el ejemplo anterior, $p^{(6)}(3)=0$, pero eso no quiere decir que $3$ sea raíz de multiplicidad $7$, pues la evaluación falla desde la tercera derivada.

Simplificar un polinomio para encontrarle sus raíces

Hay otra consecuencia práctica del teorema de multiplicidades y derivadas, que puede ser de utilidad en algunos problemas. Recuerda que para polinomios $p(x)$ y $q(x)$ en $\mathbb{R}[x]$ usamos $\MCD{p(x),q(x)}$ para denotar al máximo común divisor de dos polinomios. En particular, divide a $p(x)$ en $\mathbb{R}[x]$, de modo que $$\frac{p(x)}{\MCD{p(x),q(x)}}$$ es un polinomio en $\mathbb{R}[x]$.

Proposición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ y $p'(x)$ su derivada. El polinomio $$q(x):=\frac{p(x)}{\MCD{p(x),p'(x)}}$$ es un polinomio en $\mathbb{R}[x]$, con las mismas raíces reales que $p(x)$, pero todas ellas tienen multiplicidad $1$.

Demostración. Factoricemos a todas las raíces reales de $p(x)$ con sus multiplicidades correspondientes para escribir $$p(x)=(x-r_1)^{m_1}\cdot \ldots \cdot (x-r_n)^{m_n} r(x),$$ en donde $r(x)$ ya no tiene raíces reales. De acuerdo al teorema de derivadas y multiplicidad, podemos escribir $$p'(x)=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n)^{m_n-1} s(x),$$ en donde ningún $x-r_i$ divide a $s(x)$. Es sencillo entonces mostrar, y queda como tarea moral, que $\MCD{p(x),p'(x)}$ es $$(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \cdot \MCD{r(x),s(x)}.$$

A partir de esto, concluimos que
\begin{align*}
q(x)&=\frac{p(x)}{\MCD{p(x),p'(x)}}\\
&= (x-r_1)\cdot \ldots \cdot (x-r_n) \cdot \frac{r(x)}{\MCD{r(x),s(x)}}.
\end{align*}

De aquí se ve que $r_1,\ldots,r_n$ son raíces de multiplicidad $1$ de $q(x)$. No hay más raíces reales en $\frac{r(x)}{\MCD{r(x),s(x)}}$, pues si hubiera una raíz $\alpha$, entonces por el teorema del factor $x-\alpha$ dividiría a este polinomio, y por lo tanto a $r(x)$, de donde $\alpha$ sería raíz de $r(x)$, una contradicción.

$\square$

La proposición anterior se puede usar de manera práctica como sigue:

  • Para empezar, tomamos un polinomio arbitrario $p(x)$.
  • Luego, lo derivamos para obtener $p'(x)$.
  • Después, usando el algoritmo de Euclides, encontramos al polinomio $\MCD{p(x),q(x)}$.
  • Ya con el máximo común divisor, hacemos división polinomial para encontrar $q(x)=\frac{p(x)}{\MCD{p(x),q(x)}}$.
  • Si $p(x)$ tenía raíces repetidas, entonces ahora $q(x)$ será de grado menor, y quizás más fácil de estudiar. Encontramos las raíces de $q(x)$. Estas son las raíces de $f(x)$.
  • Finalmente, usamos el teorema de la sección anterior para encontrar la multiplicidad de cada raíz.

Veamos un problema interesante en el que se conjuntan varias ideas de esta entrada.

Problema. Factoriza en $\mathbb{R}[x]$ al polinomio $$-x^5+5x^4+5x^3-45x^2+108.$$

Solución. Este es un polinomio de grado cinco, para el cual hasta antes de ahora no teníamos muchas herramientas para estudiarlo. Vamos a aplicar el método explicado arriba. Lo primero que haremos es factorizar un $-1$ para volver este polinomio mónico. Recordaremos poner este signo al final. Tomemos entonces $$p(x)=x^5-5x^4-5x^3+45x^2-108.$$ Su derivada es $$p'(x)=5x^4-20x^3+15x^2+90x,$$

Se puede verificar, y queda como tarea moral, que el máximo común divisor de $p(x)$ y $p'(x)$ es el polinomio $$M(x)=x^3-4x^2-3x+18.$$ Haciendo la división polinomial, tenemos que $$\frac{p(x)}{M(x)}=x^2-x-6=(x+2)(x-3).$$ Como este polinomio tiene las mismas raíces que $p(x)$, concluimos que $-2$ y $3$ son las raíces de $p(x)$.

Usando la proposición para multiplicidades de raíces (que también queda como tarea moral), se puede verificar que $-2$ es raíz de multiplicidad dos y que $3$ es raíz de multiplicidad $3$. Como $p(x)$ es un polinomio de grado $5$ y es mónico, entonces se debe de dar la igualdad $$p(x)=(x+2)^2(x-3)^3.$$

Al regresar al polinomio original, debemos agregar un signo menos. Concluimos que la factorización del polinomio del problema es $$-(x+2)^2(x-3)^3.$$

$\square$

Esta proposición nos da una manera de encontrar raíces. En las siguientes dos entradas veremos otras dos formas de encontrarlas. Para cuando los polinomios son de grado $3$ y $4$, podemos encontrar las raíces de manera explícita. Para cuando los polinomios tienen coeficientes enteros, podemos encontrar una cantidad finita de candidatos a ser raíces racionales.

Más adelante…

En esta entrada dimos varias herramientas para encontrar las raíces de un polinomio y por lo tanto, para poder factorizar los polinomios, nota que estas entradas dependieron fuertemente del uso del cálculo, y del concepto de la derivada. Sin embargo, regresaremos una última vez al terreno algebraico para poder dar más formas de poder encontrar raíces de un polinomio.

Sin embargo, en las entradas siguientes, pondremos a prueba todo lo aprendido en el curso, desde las propiedades de la teoría de los números enteros, hasta la de los números complejos, y obviamente seguiremos ocupando los teoremas que hemos desarrollado en esta sección de polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Verifica que $1$ es raíz del polinomio $$x^8-x^7-9x^6+19x^5+5x^4-51x^3+61x^2-31x+6$$ y encuentra su multiplicidad.
  2. En la demostración de la última proposición, muestra la igualdad $$\MCD{p(x),p'(x)}=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \MCD{r(x),s(x)}.$$
  3. En el último ejemplo, aplica el algoritmo de Euclides a $p(x)$ y $p'(x)$ para mostrar que el máximo común divisor es el que se afirma.
  4. Aplica la proposición de multiplicidad de raíces en el último ejemplo para verificar que en efecto las multiplicidades de $2$ y $3$ son las que se afirman.
  5. Aplica el mismo método que en la última sección para factorizar el polinomio $$x^6+8x^5+18x^4-4x^3-47x^2-12x+36.$$

Entradas relacionadas