Archivo del Autor: Leonardo Ignacio Martínez Sandoval

Leonardo Ignacio Martínez Sandoval

Acerca de Leonardo Ignacio Martínez Sandoval

Hola. Soy Leonardo Martínez. Soy Profesor de Tiempo Completo en la Facultad de Ciencias de la UNAM. Hice un doctorado en Matemáticas en la UNAM, un postdoc en Israel y uno en Francia. Además, me gusta colaborar con proyectos de difusión de las matemáticas como la Olimpiada Mexicana de Matemáticas.

Álgebra Lineal I: Matrices simétricas reales y sus eigenvalores

Por Leonardo Ignacio Martínez Sandoval

Introducción

Hemos llegado a la cima del curso. En estas últimas entradas probaremos uno de los teoremas más bellos en álgebra lineal: el teorema espectral para matrices simétricas reales. También hablaremos de varias de las consecuencias que tiene.

Hay dos formas equivalentes de enunciar el teorema.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Teorema. Sea $A$ una matriz simétrica en $\mathbb{R}^n$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $\mathbb{R}^n$, tales que $$A=P^{-1}DP.$$

Para hablar de la demostración y de las consecuencias del teorema espectral para matrices simétricas reales, necesitaremos usar teoría de todas las unidades del curso. En particular, usaremos las siguientes definiciones:

  • Una matriz $A$ en $M_n(F)$ es simétrica si es igual a su transpuesta.
  • Una matriz $A$ en $M_n(F)$ es ortogonal si es invertible y $A^{-1}= {^tA}$.
  • Si $T:V\to V$ es una transformación lineal de un espacio vectorial $V$ a sí mismo y $W$ es un subespacio de $V$, entonces decimos que $W$ es estable bajo $T$ si $T(W)\subseteq W$.
  • Un producto interior es una forma bilineal simétrica y positiva definida.
  • Un espacio Euclideano es un espacio vectorial de dimensión finita con un producto interior.
  • Si $W$ es un subespacio de un espacio Euclideano $V$, entonces $W^\bot$ es el conjunto de todos los vectores que de $V$ que son ortogonales a todos los vectores de $W$.
  • Una matriz $A$ en $M_n(F)$ es diagonalizable si existen matrices $P$ y $D$ en $M_n(F)$ con $P$ invertible, $D$ diagonal y tales que $A=P^{-1}DP$.

Y los siguientes resultados principales:

En esta entrada enunciaremos tres resultados auxiliares de interés propio. A partir de estos resultados, la demostración del teorema espectral para matrices simétricas reales y la equivalencia entre ambas versiones será mucho más limpia.

Los eigenvalores de matrices simétricas reales

El polinomio característico de una matriz $A$ en $M_n(\mathbb{R})$ tiene coeficientes reales. Por el teorema fundamental del álgebra, debe tener exactamente $n$ raíces en $\mathbb{C}$, contando multiplicidades. Si alguna de estas raíces $r$ no es real, entonces $A$ no puede ser diagonalizable en $M_n(\mathbb{R})$. La razón es que $A$ sería similar a una matriz diagonal $D$, y los eigenvalores de las matrices diagonales (incluso triangulares) son las entradas de la diagonal principal. Como $A$ y $D$ comparten eigenvalores (por ser similares), entonces $r$ tendría que ser una entrada de $D$, pero entonces $D$ ya no sería una matriz de entradas reales.

Lo primero que veremos es que las matrices simétricas reales «superan esta dificultad para poder diagonalizarse». Esta va a ser nuestra primer herramienta para demostrar el teorema espectral.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$ y $\lambda$ una raíz del polinomio característico de $A$. Entonces, $\lambda$ es un número real.

Demostración. El polinomio característico de $A$ es un polinomio con coeficientes reales, así que por el teorema fundamental del álgebra se tiene que $\lambda$ debe ser un número en $\mathbb{C}$. Así, podemos escribirlo de la forma $\lambda = a+ib$, con $a$ y $b$ números reales. Lo que mostraremos es que $b=0$.

Se tiene que $\lambda$ es un eigenvalor de $A$ vista como matriz en $M_n(\mathbb{C})$, y por lo tanto le corresponde un eigenvector $U$ en $\mathbb{C}^n$, es decir, un $U\neq 0$ tal que $$AU=\lambda U.$$ Este vector $U$ lo podemos separar en partes reales e imaginarias con vectores $V$ y $W$ en $\mathbb{R}^n$ tales que $$U=V+iW.$$

En estos términos,
\begin{align*}
AU&=A(V+iW)=AV+iAW \quad\text{y}\\
\lambda U &= (a+ib)(V+iW)\\
&=(aV-bW) + i (aW+bV),
\end{align*}

de modo que igualando partes reales e imaginarias en la expresión $AU=\lambda U$ tenemos que
\begin{align*}
AV&=aV-bW\quad\text{y}\\
AW&=aW+bV.
\end{align*}

Como $A$ es simétrica, tenemos que

\begin{equation}
\langle AV,W \rangle=\langle {^tA}V,W \rangle= \langle V, AW\rangle.
\end{equation}

Estudiemos las expresiones en los extremos, reemplazando los valores de $AV$ y $AW$ que encontramos arriba y usando la bilinealidad del producto interior. Se tiene que

\begin{align*}
\langle AV,W \rangle &= \langle aV-bW,W \rangle\\
&=a\langle V,W \rangle – b \langle W,W \rangle\\
&=a \langle V,W \rangle – b \norm{W}^2,
\end{align*}

y que

\begin{align*}
\langle V,AW \rangle &= \langle V,aW+bV \rangle\\
&=a\langle V,W \rangle + b \langle V,V \rangle\\
&=a \langle V,W \rangle + b \norm{V}^2.
\end{align*}

Substituyendo estos valores en la expresión (1), obtenemos la igualdad

$$a \langle V,W \rangle – b \norm{W}^2 = a \langle V,W \rangle + b \norm{V}^2,$$

que se simplifica a $$b(\norm{V}^2+\norm{W}^2)=0.$$

Estamos listos para dar el argumento final. Como $U=V+iW$ es un eigenvector, entonces no es nulo, de modo que no es posible que $V$ y $W$ sean ambos el vector $0$ de $\mathbb{R}^n$. Como el producto interior es positivo definido, entonces alguna de las normas $\norm{V}$ o $\norm{W}$ no es cero, de modo que $$\norm{V}^2+\norm{W}^2\neq 0.$$

Concluimos que $b=0$, y por lo tanto que $\lambda$ es un número real.

$\square$

La demostración anterior es ejemplo de un truco que se usa mucho en las matemáticas. Aunque un problema o un teorema no hablen de los números complejos en su enunciado, se puede introducir a $\mathbb{C}$ para usar sus propiedades y trabajar ahí. Luego, se regresa lo obtenido al contexto real. Aquí en el blog hay otra entrada en donde damos más ejemplos de «brincar a los complejos».

Un resultado auxiliar de transformaciones simétricas

A continuación damos la segunda herramienta que necesitaremos para probar el teorema espectral. Recuerda que si $V$ es un espacio Euclideano y $T:V\to V$ es una transformación lineal, entonces decimos que $T$ es simétrica si para todo par de vectores $u$ y $v$ en $V$ se tiene que $$\langle T(u),v\rangle = \langle u, T(v) \rangle.$$ Enunciamos el resultado en términos de transformaciones, pero también es válido para las matrices simétricas asociadas.

Teorema. Sea $V$ un espacio Eucideano y $T:V\to V$ una transformación lineal simétrica. Sea $W$ un subespacio de $V$ estable bajo $T$. Entonces:

  • $W^\bot$ también es estable bajo $T$ y
  • Las restricciones de $T$ a $W$ y a $W^\bot$ son transformaciones lineales simétricas en esos espacios.

Demostración. Para el primer punto, lo que tenemos que mostrar es que si $w$ pertenece a $W^\bot$, entonces $T(w)$ también, es decir, que $T(w)$ es ortogonal a todo vector $v$ en $W$.

Tomemos entonces un vector $v$ en $W$. Como $W$ es estable bajo $T$, tenemos que $T(v)$ está en $W$, de modo que $\langle w, T(v) \rangle =0$. Como $T$ es simétrica, tenemos entonces que $$\langle T(w),v \rangle = \langle w, T(v) \rangle = 0.$$ Esto es lo que queríamos probar.

Para la segunda parte, si $T_1$ es la restricción de $T_1$ a $W$ y tomamos vectores $u$ y $v$ en $W$, tenemos que
\begin{align*}
\langle T_1(u), v \rangle &= \langle T(u), v \rangle\\
&=\langle u, T(v) \rangle \\
&=\langle u, T_1(v) \rangle,
\end{align*}

lo cual muestra que $T_1$ es simétrica. La prueba para $W^\bot $ es análoga y queda como tarea moral.

$\square$

Matrices diagonalizables y bases ortonormales de eigenvectores

El tercer y último resultado enuncia una equivalencia entre que una matriz en $M_n(F)$ sea diagonalizable, y que exista una base especial para $F^n$. Es lo que usaremos para probar la equivalencia entre ambas formulaciones del teorema espectral para matrices simétricas reales.

Teorema. Sea $A$ una matriz en $M_n(F)$. Las siguientes dos afirmaciones son equivalentes:

  • $A$ es diagonalizable, es decir, existen matrices $P$ y $D$ en $M_n(F)$, con $P$ invertible y $D$ diagonal tales que $A=P^{-1}DP.$
  • Existe una base para $F^n$ que consiste de eigenvectores de $A$.

Demostración. Antes de comenzar la demostración, recordemos que si tenemos una matriz $B$ en $M_n(F)$ de vectores columna $$C_1,\ldots,C_n,$$ entonces los vectores columna del producto $AB$ son $$AC_1,\ldots AC_n.$$ Además, si $D$ es una matriz diagonal en $M_n(F)$ con entradas en la diagonal $d_1,\ldots,d_n$, entonces los vectores columna de $BD$ son $$d_1C_1,\ldots,d_nC_n.$$

Comencemos la prueba del teorema. Supongamos que $A$ es diagonalizable y tomemos matrices $P$ y $D$ en $M_n(F)$ con $P$ invertible y $D$ diagonal de entradas $d_1,\ldots,d_n$, tales que $A=P^{-1}DP$. Afirmamos que los vectores columna $C_1,\ldots,C_n$ de $P^{-1}$ forman una base de $F^n$ que consiste de eigenvectores de $A$.

Por un lado, como son los vectores columna de una matriz invertible, entonces son linealmente independientes. En total son $n$, como la dimensión de $F^n$. Esto prueba que son una base.

De $A=P^{-1}DP$ obtenemos la igualdad $AP^{-1}=P^{-1}D$. Por las observaciones al inicio de la prueba, tenemos al igualar columnas que para cada $j=1,\ldots,n$ se cumple $$AC_j = d_j C_j.$$ Como $C_j$ forma parte de un conjunto linealmente independiente, no es el vector $0$. Así, $C_j$ es un eigenvector de $A$ con eigenvalor $d_j$. Con esto terminamos una de las implicaciones.

Supongamos ahora que existe una base de $F^n$ que consiste de eigenvectores $C_1,\ldots,C_n$ de $A$. Para cada $j=1,\ldots,n$, llamemos $\lambda_j$ al eigenvalor correspondiente a $C_j$, y llamemos $D$ a la matriz diagonal con entradas $\lambda_1,\ldots,\lambda_n$.

Como $C_1,\ldots,C_n$ son vectores linealmente independientes, la matriz $B$ cuyas columnas son $C_1,\ldots, C_n$ es invertible. Además, por las observaciones al inicio de la prueba, se tiene que la columna $j$ de la matriz$AB$ es $AC_j$ y la columna $j$ de la matriz $BD$ es $\lambda_j C_j$. Entonces, por construcción, estas matrices son iguales columna a columna, y por lo tanto lo son iguales. De esta forma, tenemos que $AB=BD$, o bien, reescribiendo esta igualdad, que $$A=BDB^{-1}.$$ Así, la matriz invertible $P=B^{-1}$ y la matriz diagonal $D$ diagonalizan a $A$.

$\square$

Las matrices simétricas reales serán todavía más especiales que simplemente las matrices diagonalizables. Lo que asegura el teorema espectral es que podremos encontrar no sólo una base de eigenvectores, sino que además podemos garantizar que esta base sea ortonormal. En términos de diagonalización, la matriz $P$ no sólo será invertible, sino que además será ortogonal.

Más adelante…

En esta entrada enunciamos dos formas del teorema espectral y hablamos de algunas consecuencias que tiene. Además, repasamos un poco de la teoría que hemos visto a lo largo del curso y vimos cómo nos ayuda a entender mejor este teorema.

En la siguiente entrada, que es la última del curso, demostraremos las dos formas del teorema espectral que enunciamos en esta entrada y haremos un pequeño comentario sobre qué hay más allá del teorema espectral en el álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un ejemplo de una matriz simétrica en $M_n(\mathbb{C})$ cuyos eigenvalores no sean reales.
  • En el contexto del segundo teorema, muestra que la restricción de $T$ a $W^\bot$ es simétrica.
  • Realiza la demostración de que si $A$ y $B$ son matrices en $M_n(F)$ y los vectores columna de $B$ son $C_1,\ldots,C_n$, entonces los vectores columna de $AB$ son $AC_1,\ldots,AC_n$. También, prueba que si $D$ es diagonal de entradas $d_1,\ldots,d_n$, entonces las columnas de $BD$ son $d_1C_1,\ldots,d_nC_n$.
  • Encuentra una matriz $A$ con entradas reales similar a la matriz $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3 \end{pmatrix},$$ tal que ninguna de sus entradas sea igual a $0$. Encuentra una base ortogonal de eigenvectores de $A$ para $\mathbb{R}^3$.
  • Diagonaliza la matriz $$\begin{pmatrix}-2 & 0 & 0 & 0\\0 & 2 & 0 & 0\\ \frac{19}{7} & \frac{30}{7} & \frac{65}{7} & \frac{24}{7}\\ \frac{6}{7} & – \frac{20}{7} & – \frac{48}{7} & – \frac{23}{7}\end{pmatrix}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: Geometría discreta

Por Leonardo Ignacio Martínez Sandoval

Introducción

Como última entradaen esta parte de geometría, hablaremos de algunos temas de geometría discreta. Esta área de las matemáticas se dedica a estudiar propiedades combinatorias de familias de objetos geométricos. Estos objetos pueden ser puntos, rectas, rectángulos, convexos, politopos, etc. Las relaciones que nos interesan son que formen un tipo de acomodo especial, que se intersecten, que podamos contar ciertas configuraciones, etc.

Sólo hablaremos superficialmente de un área que es profunda y bastante interesante. Un libro genial que cubre varios temas de geometría discreta de manera sistemática es Lectures on Discrete Geometry de Jiří Matoušek.

Convexos y el teorema de Helly

Un convexo de $\mathbb{R}^d$ es un conjunto tal que cualquier segmento recto definido por dos de sus puntos queda totalmente contenido en el conjunto. Por ejemplo, los convexos de $\mathbb{R}$ son los intervalos, mientras que en el plano hay muchos más ejemplos, como lo muestra la figura.

Ejemplos de conjuntos convexos y no convexos
Ejemplos de conjuntos convexos y no convexos

Si tenemos un conjunto $X$ de $\mathbb{R}^d$, su envolvente convexa es el conjunto convexo más pequeño (por contención), que contiene a $X$. Cuando $X$ es un conjunto de puntos, tenemos algo como lo de la figura. Si todos los puntos de $X$ están sobre la frontera de su envolvente convexa, y no hay tres alineados, decimos que $X$ son puntos en posición convexa.

Envolvente convexa de un conjunto de puntos
Envolvente convexa de un conjunto de puntos. El conjunto $X$ no está en posición convexa.

Los conjuntos convexos son especiales en muchos sentidos. Uno de ellos es que la intersección de una familia de convexos se puede detectar «localmente».

Problema. A una plática de matemáticas de una hora asistieron una cantidad finita de matemáticos. La plática estaba tan aburrida, que cada matemático se durmió en cierto intervalo de tiempo de esa hora, pero sólo una vez. A la hora del café, los matemáticos platicaron entre sí, y si se dieron cuenta de que para cualesquiera dos de ellos, $I$ y $J$, hubo un momento en el que $I$ y $J$ estuvieron dormidos simultáneamente. Muestra que hubo un momento de la plática en la que todos los matemáticos estuvieron dormidos.

Sugerencia pre-solución. Hay muchas soluciones. Una es mediante un argumento de maximalidad.

Solución. En términos matemáticos, queremos ver que si tenemos una cantidad finita de intervalos acotados y cerrados en la recta real que se intersectan de dos en dos, entonces todos ellos se intersectan.

Tomemos el intervalo $I$ cuyo extremo derecho sea mínimo. Llamemos $x$ a este extremo derecho. Afirmamos que cualquier otro intervalo tiene a $x$. Sea $J$ cualquiera de estos intervalos, con extremo izquierdo $y$ y extremo derecho $z$.

Imagen auxiliar para intersección de intervalos
Imaten auxiliar para intersección de intervalos

Por la minimalidad de $x$, tenemos que $x\leq z$. Si $y>x$, entonces $J$ no intersecta a $I$ y se contradice la hipótesis. Entonces, para que $J$ pueda intersectar a $I$, necesitamos que $y \leq x$. Pero entonces $x$ queda entre los extremos del intervalo $J$ y por lo tanto $x$ está en $J$. Esto termina la prueba.

$\square$

En dimensiones más altas, tenemos el siguiente resultado.

Teorema (Helly). Sea $\mathcal{F}$ una familia finita de al menos $d+1$ conjuntos convexos compactos en $\mathbb{R}^d$. Si cada subfamilia de $\mathcal{F}$ de $d+1$ convexos tiene intersección no vacía, entonces $\mathcal{F}$ tiene intersección no vacía.

El teorema de Helly es una de las piedras angulares de la geometría discreta. Una cantidad de enorme de investigación ha resultado de considerar variantes del teorema con hipótesis más débiles o más fuertes.

Politopos y la fórmula de Euler

Otra área muy rica de la geometría discreta es la teoría de politopos. Un politopo es la generalización a altas dimensiones de un polígono, o de un poliedro. Hay dos formas de definir politopos. Una es tomar puntos en $\mathbb{R}^d$ y considerar su envolvente convexa. Esto es un $V$-politopo. Para la otra necesitamos algunas definiciones adicionales.

Un subespacio afín de $\mathbb{R}^d$ es la traslación de un subespacio lineal, y su dimensión es la dimensión del subespacio lineal trasladado. Por ejemplo, cualquier punto de $\mathbb{R}^d$ es un subespacio afín de dimensión $0$ pues es la traslación del subespacio trivial $\{0\}$. Las rectas en $\mathbb{R}^d$, incluso aquellas que no pasan por el $0$, son subespacios afines de dimensión $0$. A los subespacios afines de dimensión $n-1$ les llamamos hiperplanos. Así, las líneas son los hiperplanos de $\mathbb{R}^2$, los planos los hiperplanos de $\mathbb{R}^3$, etc.

Si $P$ es un hiperplano de $\mathbb{R}^d$, un semiespacio definido por $P$ es todo lo que queda en uno de los lados de $P$. Si es abierto, no incluye a $P$, y si es cerrado, sí incluye a $P$. Un hiperplano siempre define dos semiespacios abiertos, y dos cerrados.

Hay otra forma de pensar a los politopos: tomamos una cantidad finita de semiespacios cerrados y los intersectamos. Si esa intersección está acotada, entonces a lo que obtenemos le llamamos un $H$-politopo. Piensa, por ejemplo, en los hiperplanos que determinan las caras de un cubo, y en los semiespacios «hacia adentro».

Un resultado clásico es que todo $H$-politopo es un $V$-politopo, así que podemos usar la descripción que nos convenga de acuerdo al problema que estemos resolviendo.

Un hiperplano $H$ es hiperplano soporte de un politopo $P$ si el politopo se queda totalmente contenido en alguno de los semiespacios definidos por $H$. Una cara de $P$ es la intersección de $P$ con alguno de sus hiperplanos soporte. Resulta que las caras de politopos son politopos. Para que todo funcione bien, debemos considerar al vacío como un politopo.

La dimensión de un politopo es la menor dimensión de un subespacio afín que lo contiene. Por definición, la dimensión del vacío es $-1$. Si una cara de un politopo es $k$, entonces la llamamos una $k$-cara. Los valores de $k$ sólo pueden ir de $0$ a $d$. A las $0$-caras les llamamos los vértices de $P$. A las $1$-caras les llamamos las aristas.

Para cada $k$ de $0$ a $n$, usamos $f_k$ para denotar la cantidad de $k$ caras del politopo, y a $$(f_0,f_1,f_2,\ldots,f_d)$$ le llamamos el $f$-vector del politopo. Estamos listos para enunciar un resultado crucial en la teoría de politopos.

Teorema (fórmula de Euler). Sea $P$ un politopo de dimensión $d$ en $\mathbb{R}^d$. Entonces

$$f_0-f_1+f_2-\ldots + (-1)^d f_d = 1.$$

Observa que $f_d$ siempre es $1$ pues la única $d$ cara de un politopo $P$ de dimensión $d$ es $P$ mismo.

En $\mathbb{R}^2$ esta fórmula no es tan útil, pues simplemente nos dice que si un polígono tiene $V$ vértices y $A$ aristas, entonces $V-A=0$, es decir, que tiene la misma cantidad de vértices y aristas, lo cual es inmediato.

En $\mathbb{R}^3$ la fórmula nos dice que si un poliedros tiene $V$ vértices, $A$ aristas y $F$ caras, entonces $$V-A+F=2.$$ Este fórmula se puede usar en varios problemas matemáticos de poliedros.

Problema. Muestra que el tetraedro, el cubo, el octaedro, el dodecaedro y el icosaedro son los únicos poliedros en $\mathbb{R}^3$ tales que a cada vértice una misma cantidad $a$ de caras, y cada cara consiste de la misma cantidad $b$ de vértices.

Sugerencia pre-solución. Usa notación adecuada, poniendo la cantidad de vértices, aristas y caras en términos de $a$ y $b$. Usa la fórmula de Euler. Luego, da un argumento de desigualdades.

Solución. A cada vértice llegan por lo menos $3$ caras, y cada cara tiene por lo menos $3$ vértices. Así, $a\geq 3$ y $b\geq 3$.

Si hay $A$ aristas, entonces tanto $2A$ como $bF$ cuentan la cantidad de parejas $(e,c)$ donde $e$ es una arista y $c$ una cara que lo tiene. Esto se debe a que cada arista está exactamente en dos caras, y a que como cada cara tiene $b$ vértices, entonces tiene $b$ aristas. Por lo tanto, $2A=bF$, de donde $$A=\frac{bF}{2}.$$

De manera similar, si hay $V$ vértices y $F$ caras, entonces tanto $aV$ como $bF$ cuentan la cantidad de parejas $(v,c)$, donde $v$ es un vértice y $c$ es una cara que lo tiene. De esta forma, $aV=bF$, de lo cual $$V=\frac{bF}{a}.$$

Por la fórmula de Euler, tenemos entonces que $$\frac{bF}{a}-\frac{bF}{2}+F = 2.$$ Esta igualdad implica, en particular, que al determinar los valores de $a$ y $b$, se determinan $F$ y entonces $V$ y $A$.

Si multiplicamos por $\frac{2}{bF}$ de ambos lados, y sumamos $1$ de ambos lados, tenemos que \begin{equation}
\frac{2}{a}+\frac{2}{b}= \frac{4}{bF}+1 > 1.
\end{equation}

Como $a\geq 3$, entonces $\frac{2}{a}\leq \frac{2}{3}$. De este modo,
\begin{align*}
\frac{2}{b}&> 1 – \frac{2}{a}\\
&\geq 1-\frac{2}{3} \\
&= \frac{1}{3}.
\end{align*}

Esto muestra que $b<6$, de modo que $b\leq 5$. Por simetría, $a\leq 5$. Podemos entonces simplemente estudiar los casos $a=2,3,4$ y $b=2,3,4$.

Si $a=5$, entonces la desigualdad (1) se cumple sólo si $b=3$. Si $a=4$, la desigualdad (1) se cumple sólo si $b=3$. Finalmente, si $a=3$, la desigualdad se cumple para $b=3,4,5$. De este modo, las únicas parejas de $(a,b)$ que sirven son:

  • $(3,3)$, que nos da el tetraedro.
  • $(3,4)$, que nos da el cubo.
  • $(4,3)$, que nos da el octaedro.
  • $(3,5)$, que nos da el dodecaedro.
  • $(5,3)$, que nos da el icosaedro.

$\square$

La fórmula de Euler es sólo una de las relaciones lineales que satisfacen las entradas del $f$-vector de un politopo. Otros dos resultados interesantes del área son:

  • Las relaciones de Dehn-Sommerville, que dan otras relaciones lineales que satisfacen las entradas del $f$-vector.
  • El teorema de la cota superior que para $d$, $n$ y $k$ fijas acota el número de $k$-caras que puede tener un politopo de dimensión $d$ con $n$-vértices.

Un libro canónico para aprender de politopos de manera sistemática es el Lectures on Polytopes de Günter M. Ziegler.

Conjuntos de puntos y teoremas extremales

La última área de la que hablaremos serán los problemas extremales en geometría discreta. Nos enfocaremos únicamente en problemas sobre conjuntos de puntos, pero se podrían hacer preguntas análogas para otras familias de objetos geométricos. De manera informal, pero intuitiva, un problema extremal de geometría consiste en mostrar que si un número es suficientemente grande, entonces empiezan a pasar cosas interesantes con ciertos objetos geométricos.

Uno de los resultados clásicos es el teorema de Erdős-Szekeres. A grandes rasgos, lo que dice es que si tenemos muchos puntos en posición general en el plano (no hay tres colineales), entonces siempre es posible encontrar un subconjunto grande de ellos que está en posición convexa.

Teorema (Erdős-Szekeres). Sea $n$ un entero positivo. Entonces, existe un entero $f(n)$ tal que si se tiene un conjunto $S$ con $f(n)$ o más puntos en el plano en posición general, entonces hay un subconjunto de tamaño $n$ de $S$ que consiste de puntos en posición convexa.

Típicamente, es bastante difícil encontrar los valores exactos de las funciones involucradas en problemas extremales de geometría discreta. El tipo de resultados de interés para la investigación matemática es encontrar las mejores «cotas asintóticas», que digan, más o menos, cómo se comporta la función que se está estudiando. En el caso del teorema de Erdős-Szekeres, las mejores cotas se enuncian así:

$$1+2^{n-2}\leq f(n) \leq 2^{n+o(n)}.$$

La notación $h(n)=o(g(n))$ quiere decir que $\frac{h(n)}{g(n)}\to 0$ cuando $n\to \infty$.

Aunque sea difícil determinar los valores exactos de $f(n)$ para toda $n$, hay algunos valores pequeños que sí se pueden determinar.

Problema. Demuestra que $f(4)=5$, es decir:

  • Que hay conjuntos de $4$ puntos en posición general en el plano que no tienen subconjuntos de tamaño $4$ en posición convexa.
  • Que cualquier subconjunto de $5$ puntos en posición general en el plano tiene un subconjunto de $4$ puntos en posición convexa.

Sugerencia pre-solución. Encontrar el ejemplo para el primer punto es fácil, simplemente explora el problema haciendo varias figuras. Divide el problema en casos de acuerdo a la cantidad de puntos que forman la envolvente convexa. Para uno de los casos, usa el principio de las casillas.

Solución. El siguiente ejemplo son $4$ puntos que no están en posición convexa, y que por lo tanto no tienen subconjuntos de tamaño $4$ en posición convexa.

Cuatro puntos que no están en posición convexa
Cuatro puntos que no están en posición convexa

Mostraremos ahora que $5$ puntos en posición general en el plano siempre tienen un subconjunto de tamaño $4$ en posición convexa. Procedemos por casos de acuerdo a la cantidad de puntos que están en la frontera de la envolvente convexa. Si son $4$ ó $5$, entonces inmediatamente entre ellos hay $4$ en posición convexa.

Si son $3$, entonces llamemos $A$, $B$, $C$ a esos puntos y $D$ y $E$ a los otros dos, que quedan dentro de $\triangle ABC$. La recta $DE$ divide al plano en dos semiplanos. Por principio de las casillas, hay dos puntos de entre $A$, $B$ y $C$ que yacen en el mismo semiplano, digamos $A$ y $B$.

Caso con tres puntos en la envolvente convexa
Caso con tres puntos en la envolvente convexa

Como la recta $DE$ no corta al segmento $AB$ (por estar $D$ y $E$ en el mismo semiplano), y la recta $AB$ no corta al segmento $DE$ (por ser $AB$ un lado de la envolvente convexa), entonces los puntos $A$, $B$, $D$, $E$ están en posición convexa.

$\square$

Finalmente, presentamos un par de resultados más. También son problemas extremales, pero en vez de hablar de envolventes convexas, hablan acerca de distancias.

Si lo piensas un poco, es imposible colocar $4$ puntos distintos en el plano de modo que todas las parejas estén a distancia uno. Si tienes $n$ puntos en el plano, entonces ellos definen $\binom{n}{2}=\frac{n(n-1)}{2}\approx \frac{n^2}{2}$ parejas de puntos. ¿Cuántos de ellos pueden estar a distancia $1$? Estudiar esta cantidad es un problema que fue propuesto por Paul Erdős. Si $u(n)$ denota este máximo, las mejores cotas que hay para el problema son $$n^{1+d/\log \log n} \leq f(n) \leq O(n^{4/3}).$$

Aquí $d$ es una constante que sirve para toda $n$. La notación $h(n)\leq O(g(n))$ se refiere a que existe una constante $c$ tal que $h(n)\leq cg(n)$ para $n$ suficientemente grande.

Por supuesto, la distancia $1$ no tiene nada de especial. En realidad, ninguna distancia puede repetirse demasiado. Ya que ninguna distancia aparece muchas veces, la intuición (por principio de las casillas), nos debe decir que entonces para un conjunto de puntos, sus parejas deben definir muchas distancias diferentes. Llamemos $d(n)$ a la cantidad de distancias diferentes que define un conjunto de $n$ puntos en el plano. Erdős también preguntó, ¿cómo se comporta este número?. Las mejores cotas son $$\Omega\left(\frac{n}{\log }\right)\leq d(n) \leq O\left(\frac{n}{\sqrt{\log n}}\right).$$

La notación $h(n)\geq\Omega(g(n))$ se refiere a que existe una constante $c$ tal que $h(n)\geq cg(n)$ para $n$ suficientemente grande.

El problema de las distancias unitarias y el problema de las distancias diferentes han estimulado mucha de la investigación en geometría discreta. Las demostraciones de sus cotas, han introducido al área varias técnicas de teoría de números, del método probabilista y de geometría algebraica.

Un libro con mucho material de problemas extremales y otros temas es Combinatorial Geometry and its Algorithmic Applications de Janos Pach y Micha Sharir.

Más problemas

En resumen, en los siguientes libros hay bastante material para aprender los temas de esta entrada:

Álgebra Superior II: El teorema de derivadas y multiplicidad

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores definimos qué quiere decir que un real sea una raíz de un polinomio. Luego, vimos que mediante el teorema del factor se puede definir una relación entre las raíces de un polinomio y los polinomios lineales que lo dividen. Sin embargo, es posible que un real sea una raíz de un polinomio «más de una vez», que fue un concepto que formalizamos en la entrada de desigualdades de polinomios. En esta entrada veremos que a través de las derivadas de polinomios, podemos determinar la multiplicidad de sus raíces.

Como recordatorio, la multiplicidad de una raíz $r$ de un polinomio $p(x)$ en $\mathbb{R}[x]$ es el mayor entero $m$ tal que $(x-r)^m$ divide a $p(x)$ en $\mathbb{R}[x]$. También, en esta entrada haremos uso de la regla del producto para derivadas.

El teorema de derivadas y multiplicidad

El siguiente resultado es fundamental para la detección de raíces múltiples. Su demostración es sencilla pues usamos varios de los resultados que hemos obtenido anteriormente.

Teorema (derivadas y multiplicidad). Sea $r$ una raíz del polinomio $p(x)$ en $\mathbb{R}[x]$ de multiplicidad $m$. Si $m>1$, entonces $r$ es una raíz de la derivada $p'(x)$, y es de multiplicidad $m-1$. Si $m=1$, entonces $r$ no es raíz de $p'(x)$.

Demostración. Como $r$ es una raíz de $p(x)$ de multiplicidad $m$, entonces se puede escribir $p(x)=(x-r)^m q(x)$, en donde $q(x)$ es un polinomio que ya no es divisible entre $x-r$. Derivando, por regla del producto tenemos que
\begin{align*}
p'(x)&=m(x-r)^{m-1}q(x) + (x-r)^m q'(x)\\
&=(x-r)^{m-1}(mq(x)+(x-r)q'(x)).
\end{align*}

Afirmamos que $x-r$ no divide a $mq(x)+(x-r)q'(x)$. Si lo dividiera, como divide a $(x-r)q'(x)$ entonces también tendría que dividir a $mq(x)$ y por lo tanto a $q(x)$. Pero esto sería una contradicción con la elección de $q(x)$.

De esta forma, si $m=1$ entonces $x-r$ no divide a $p'(x)$ y por el teorema del factor entonces $r$ no es raíz de $p'(x)$. Y si $m>1$, entonces $(x-r)^{m-1}$ divide a $p'(x)$ por la expresión que encontramos de la derivada, pero $(x-r)^m$ no, pues $x-r$ no divide al segundo factor. Esto termina la prueba.

$\square$

Ejemplo. Consideremos al polinomio $p(x)=(x-3)^3(x+1)$. Tanto $3$ como $-1$ son raíces de $p(x)$. La multiplicidad de la raíz $3$ es tres y la multiplicidad de la raíz $-1$ es uno. Si derivamos a $p(x)$ usando la regla del producto, tenemos que
\begin{align*}
p'(x)&=3(x-3)^2(x+1)+(x-3)^3\\
&=3(x-3)^2(x+1+x-3)\\
&=3(x-3)^2(2x-2)\\
&=6(x-3)^2(x-1)
\end{align*}

Observa que $p'(x)$ en efecto tiene a $3$ como raíz de multiplicidad dos y ya no tiene a $1$ como raíz.

$\triangle$

Es muy importante respetar la hipótesis de que $r$ sea raíz de $p(x)$. Por ejemplo, en el ejemplo anterior $1$ es raíz de $p'(x)$ de multiplicidad $1$, pero $1$ no es raíz de $p(x)$ (y mucho menos de multiplicidad $2$).

El teorema de derivadas y multiplicidad es interesante, pero todavía no es útil en aplicaciones prácticas. Sin embargo, tiene dos consecuencias que sí se pueden usar para estudiar polinomios concretos.

Encontrar la multiplicidad de una raíz

El teorema de derivadas y multiplicidad nos dice que la multiplicidad de una raíz «baja en uno» al pasar de un polinomio a su derivada, pero aún no nos dice cuál es esa multiplicidad. Sin embargo, lo podemos aplicar repetidamente para obtener esta información. Recuerda que para $k$ un entero no negativo y $p(x)$ en $\mathbb{R}[x]$, usamos $p^{(k)}(x)$ para denotar $k$-ésima derivada de un polinomio. Aquí $p^{(0)}(x)$ es simplemente $p(x)$.

Proposición. Sea $r$ una raíz del polinomio $p(x)$ en $\mathbb{R}[x]$ de multiplicidad $m$. Si $k$ el mayor entero positivo tal que $r$ es raíz de $$p^{(0)}(x), p^{(1)}(x),\ldots,p^{(k)}(x),$$ entonces $m=k+1$.

Demostración. Usando el teorema anterior de manera inductiva, tenemos que para cada entero $0\leq \ell<m$, se tiene que $r$ es raíz de multiplicidad $m-\ell$ de $p^{(\ell)}(x)$ En particular, es raíz de todas estas derivadas. Además, por el mismo teorema, se tiene que $r$ ya no es raíz de $p^{(m)}(x)$. De esta forma, tenemos que $k=m-1$, de donde se obtiene el resultado deseado.

$\square$

La proposición anterior ahora sí nos da una manera de encontrar la multiplicidad de una raíz de un polinomio.

Ejemplo. Sabiendo que $3$ es una raíz del polinomio $$p(x)=x^5-9x^4+28x^3-36x^2+27x-27,$$ vamos a encontrar su multiplicidad.

Para esto, vamos a calcular sus derivadas:
\begin{align*}
p'(x)&=5x^4-36x^3+84x^2-72x+27\\
p^{(2)}(x)&=20x^3-108x^2+168x-72\\
p^{(3)}(x)&=60x^2-216x+168\\
p^{(4)}(x)&=120x-216\\
p^{(5)}(x)&=120\\
p^{(6)}(x)&=0
\end{align*}

Tenemos que
\begin{align*}
p'(3)&=5\cdot 81 – 36 \cdot 27 +84 \cdot 9 -72\cdot 3 + 27\\
&=405-972+756-216+27\\
&=0.
\end{align*}

Hasta aquí, sabemos que $3$ es raíz de multiplicidad al menos dos. Tenemos también que
\begin{align*}
p^{(2)}(3)&=20\cdot 27-108\cdot 9 +168 \cdot 3 – 72\\
&=540-972+504-72\\
&=0.
\end{align*}

Hasta aquí, sabemos que $3$ es raíz de multiplicidad al menos tres. Siguiendo,
\begin{align*}
p^{(3)}&=60\cdot 9-216\cdot 3 +168\\
&=720-648+168\\
&=240.
\end{align*}

Como la tercera derivada ya no se anuló en $3$, la multiplicidad de $3$ como raíz es exactamente tres.

$\triangle$

Es importante que revisemos todas las derivadas, y que sea una por una. En el ejemplo anterior, $p^{(6)}(3)=0$, pero eso no quiere decir que $3$ sea raíz de multiplicidad $7$, pues la evaluación falla desde la tercera derivada.

Simplificar un polinomio para encontrarle sus raíces

Hay otra consecuencia práctica del teorema de multiplicidades y derivadas, que puede ser de utilidad en algunos problemas. Recuerda que para polinomios $p(x)$ y $q(x)$ en $\mathbb{R}[x]$ usamos $\MCD{p(x),q(x)}$ para denotar al máximo común divisor de dos polinomios. En particular, divide a $p(x)$ en $\mathbb{R}[x]$, de modo que $$\frac{p(x)}{\MCD{p(x),q(x)}}$$ es un polinomio en $\mathbb{R}[x]$.

Proposición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ y $p'(x)$ su derivada. El polinomio $$q(x):=\frac{p(x)}{\MCD{p(x),p'(x)}}$$ es un polinomio en $\mathbb{R}[x]$, con las mismas raíces reales que $p(x)$, pero todas ellas tienen multiplicidad $1$.

Demostración. Factoricemos a todas las raíces reales de $p(x)$ con sus multiplicidades correspondientes para escribir $$p(x)=(x-r_1)^{m_1}\cdot \ldots \cdot (x-r_n)^{m_n} r(x),$$ en donde $r(x)$ ya no tiene raíces reales. De acuerdo al teorema de derivadas y multiplicidad, podemos escribir $$p'(x)=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n)^{m_n-1} s(x),$$ en donde ningún $x-r_i$ divide a $s(x)$. Es sencillo entonces mostrar, y queda como tarea moral, que $\MCD{p(x),p'(x)}$ es $$(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \cdot \MCD{r(x),s(x)}.$$

A partir de esto, concluimos que
\begin{align*}
q(x)&=\frac{p(x)}{\MCD{p(x),p'(x)}}\\
&= (x-r_1)\cdot \ldots \cdot (x-r_n) \cdot \frac{r(x)}{\MCD{r(x),s(x)}}.
\end{align*}

De aquí se ve que $r_1,\ldots,r_n$ son raíces de multiplicidad $1$ de $q(x)$. No hay más raíces reales en $\frac{r(x)}{\MCD{r(x),s(x)}}$, pues si hubiera una raíz $\alpha$, entonces por el teorema del factor $x-\alpha$ dividiría a este polinomio, y por lo tanto a $r(x)$, de donde $\alpha$ sería raíz de $r(x)$, una contradicción.

$\square$

La proposición anterior se puede usar de manera práctica como sigue:

  • Para empezar, tomamos un polinomio arbitrario $p(x)$.
  • Luego, lo derivamos para obtener $p'(x)$.
  • Después, usando el algoritmo de Euclides, encontramos al polinomio $\MCD{p(x),q(x)}$.
  • Ya con el máximo común divisor, hacemos división polinomial para encontrar $q(x)=\frac{p(x)}{\MCD{p(x),q(x)}}$.
  • Si $p(x)$ tenía raíces repetidas, entonces ahora $q(x)$ será de grado menor, y quizás más fácil de estudiar. Encontramos las raíces de $q(x)$. Estas son las raíces de $f(x)$.
  • Finalmente, usamos el teorema de la sección anterior para encontrar la multiplicidad de cada raíz.

Veamos un problema interesante en el que se conjuntan varias ideas de esta entrada.

Problema. Factoriza en $\mathbb{R}[x]$ al polinomio $$-x^5+5x^4+5x^3-45x^2+108.$$

Solución. Este es un polinomio de grado cinco, para el cual hasta antes de ahora no teníamos muchas herramientas para estudiarlo. Vamos a aplicar el método explicado arriba. Lo primero que haremos es factorizar un $-1$ para volver este polinomio mónico. Recordaremos poner este signo al final. Tomemos entonces $$p(x)=x^5-5x^4-5x^3+45x^2-108.$$ Su derivada es $$p'(x)=5x^4-20x^3+15x^2+90x,$$

Se puede verificar, y queda como tarea moral, que el máximo común divisor de $p(x)$ y $p'(x)$ es el polinomio $$M(x)=x^3-4x^2-3x+18.$$ Haciendo la división polinomial, tenemos que $$\frac{p(x)}{M(x)}=x^2-x-6=(x+2)(x-3).$$ Como este polinomio tiene las mismas raíces que $p(x)$, concluimos que $-2$ y $3$ son las raíces de $p(x)$.

Usando la proposición para multiplicidades de raíces (que también queda como tarea moral), se puede verificar que $-2$ es raíz de multiplicidad dos y que $3$ es raíz de multiplicidad $3$. Como $p(x)$ es un polinomio de grado $5$ y es mónico, entonces se debe de dar la igualdad $$p(x)=(x+2)^2(x-3)^3.$$

Al regresar al polinomio original, debemos agregar un signo menos. Concluimos que la factorización del polinomio del problema es $$-(x+2)^2(x-3)^3.$$

$\triangle$

Esta proposición nos da una manera de encontrar raíces. En las siguientes dos entradas veremos otras dos formas de encontrarlas. Para cuando los polinomios son de grado $3$ y $4$, podemos encontrar las raíces de manera explícita. Para cuando los polinomios tienen coeficientes enteros, podemos encontrar una cantidad finita de candidatos a ser raíces racionales.

Más adelante…

En esta entrada dimos varias herramientas para encontrar las raíces de un polinomio y por lo tanto, para poder factorizar los polinomios, nota que estas entradas dependieron fuertemente del uso del cálculo, y del concepto de la derivada. Sin embargo, regresaremos una última vez al terreno algebraico para poder dar más formas de poder encontrar raíces de un polinomio.

Sin embargo, en las entradas siguientes, pondremos a prueba todo lo aprendido en el curso, desde las propiedades de la teoría de los números enteros, hasta la de los números complejos, y obviamente seguiremos ocupando los teoremas que hemos desarrollado en esta sección de polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Verifica que $1$ es raíz del polinomio $$x^8-x^7-9x^6+19x^5+5x^4-51x^3+61x^2-31x+6$$ y encuentra su multiplicidad.
  2. En la demostración de la última proposición, muestra la igualdad $$\MCD{p(x),p'(x)}=(x-r_1)^{m_1-1}\cdot \ldots \cdot (x-r_n) \MCD{r(x),s(x)}.$$
  3. En el último ejemplo, aplica el algoritmo de Euclides a $p(x)$ y $p'(x)$ para mostrar que el máximo común divisor es el que se afirma.
  4. Aplica la proposición de multiplicidad de raíces en el último ejemplo para verificar que en efecto las multiplicidades de $2$ y $3$ son las que se afirman.
  5. Aplica el mismo método que en la última sección para factorizar el polinomio $$x^6+8x^5+18x^4-4x^3-47x^2-12x+36.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Propiedades del polinomio característico

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuamos con el estudio de eigenvalores y eigenvectores de matrices y trasformaciones lineales. Para ello, estudiaremos más a profundidad el polinomio característico.

Como recordatorio, en una entrada pasada demostramos que si $A$ es una matriz en $M_n(F)$, entonces la expresión $\det (\lambda I_n – A)$ es un polinomio en $\lambda$ de grado $n$ con coeficientes en $F$. A partir de ello, definimos el polinomio característico de $A$ como $$\chi_A(\lambda)=\det(\lambda I_n – A).$$

En esta entrada probaremos algunas propiedades importantes del polinomio característico de matrices. Además, hablaremos de la multiplicidad algebraica de los eigenvalores. Finalmente enunciaremos sin demostración dos teoremas fundamentales en álgebra lineal: el teorema de caracterización de matrices diagonalizables y el teorema de Cayley-Hamilton.

Las raíces del polinomio característico son los eigenvalores

Ya vimos que las raíces del polinomio característico son los eigenvalores. Pero hay que tener cuidado. Deben ser las raíces que estén en el campo en el cual la matriz esté definida. Veamos un ejemplo más.

Problema. Encuentra el polinomio característico y los eigenvalores de la matriz \begin{align*}
\begin{pmatrix}
0&1&0&0\\
2&0&-1&0\\
0& 7 & 0 & 6\\
0 & 0 & 3 & 0
\end{pmatrix}.
\end{align*}

Solución. Debemos encontrar las raíces del polinomio dado por el siguiente determinante:
\begin{align*}
\begin{vmatrix}
\lambda&-1&0&0\\
-2&\lambda&1&0\\
0& -7 & \lambda & -6\\
0 & 0 & -3 & \lambda
\end{vmatrix}.
\end{align*}

Haciendo expansión de Laplace en la primer columna, tenemos que este determinante es igual a

\begin{align*}
\lambda\begin{vmatrix}
\lambda&1&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}
+2\begin{vmatrix}
-1&0&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}.
\end{align*}

Para calcular los determinantes de cada una de las matrices de $3\times 3$ podemos aplicar la fórmula por diagonales para obtener:
\begin{align*}
\lambda\begin{vmatrix}
\lambda&1&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}&=
\lambda(\lambda^3-18\lambda+7\lambda)\\
&=\lambda(\lambda^3-11\lambda)\\
&=\lambda^4-11\lambda^2
\end{align*}

y
\begin{align*}
2\begin{vmatrix}
-1&0&0\\
-7 & \lambda & -6\\
0 & -3 & \lambda
\end{vmatrix}&=
2(-\lambda^2+18)\\
&=-2\lambda^2+36.
\end{align*}

Concluimos que el polinomio característico es
\begin{align*}
\lambda^4-13\lambda^2+36&=(\lambda^2-4)(\lambda^2-9)\\
&=(\lambda+2)(\lambda-2)(\lambda+3)(\lambda-3).
\end{align*}

De esta factorización, las raíces del polinomio (y por lo tanto los eigenvalores que buscamos) son $-2,2,-3,3$.

Si quisiéramos encontrar un eigenvector para, por ejemplo, el eigenvalor $-2$, tenemos que encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo $$(-2I_n-A)X=0.$$

$\triangle$

Propiedades del polinomio característico

Veamos ahora algunas propiedades importantes del polinomio característico. El primer resultado habla del polinomio característico de matrices triangulares superiores. Un resultado análogo se cumple para matrices inferiores, y su enunciado y demostración quedan como tarea moral.

Proposición. Si $A=[a_{ij}]$ es una matriz triangular superior en $M_n(F)$, entonces su polinomio característico es $$\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).$$

Demostración. Como $A$ es triangular superior, entonces $\lambda I_n -A$ también, y sus entradas diagonales son precisamente $\lambda-a_{ii}$ para $i=1,\ldots,n$. Como el determinante de una matriz triangular es el producto de sus entradas en la diagonal, tenemos que $$\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).$$

$\square$

Como el polinomio característico es un determinante, podemos aprovechar otras propiedades de determinantes para obtener otros resultados.

Proposición. Una matriz y su transpuesta tienen el mismo polinomio característico.

Demostración. Sea $A$ una matriz en $M_n(F)$. Una matriz y su transpuesta tienen el mismo determinante. Además, transponer es una transformación lineal. De este modo:
\begin{align*}
\chi_A(\lambda)&=\det(\lambda I_n – A)\\
&=\det({^t(\lambda I_n-A)})\\
&=\det(\lambda({^tI_n})-{^tA})\\
&=\det(\lambda I_n – {^tA})\\
&=\chi_{^tA}(\lambda).
\end{align*}

$\square$

Ya antes habíamos mostrado que matrices similares tienen los mismos eigenvalores, pero que dos polinomios tengan las mismas raíces no necesariamente implica que sean iguales. Por ejemplo, los polinomios $$(x-1)^2(x+1) \quad \text{y} \quad (x+1)^2(x-1)$$ tienen las mismas raíces, pero no son iguales.

De esta forma, el siguiente resultado es más fuerte de lo que ya habíamos demostrado antes.

Proposición. Sean $A$ y $P$ matrices en $M_n(F)$ con $P$ invertible. Entonces $A$ y $P^{-1}AP$ tienen el mismo polinomio característico.

Demostración. El resultado se sigue de la siguiente cadena de igualdades, en donde usamos que $\det(P)\det(P^{-1})=1$ y que el determinante es multiplicativo:

\begin{align*}
\chi_{P^{-1}AP}(\lambda) &= \det(P) \chi_{P^{-1}AP}(\lambda) \det(P)^{-1}\\
&=\det(P) \det(\lambda I_n – P^{-1}AP) \det(P^{-1})\\
&=\det(P(\lambda I_n – P^{-1}AP)P^{-1})\\
&=\det(\lambda PP^{-1}-PP^{-1}APP^{-1})\\
&=\det(\lambda I_n – A)\\
&=\chi_{A}(\lambda)
\end{align*}

$\square$

Ten cuidado. El determinante es multiplicativo, pero el polinomio característico no es multiplicativo. Esto es evidente por el siguiente argumento. Si $A$ y $B$ son matrices en $M_n(F)$, entonces $\chi_A(\lambda)$ y $\chi_B(\lambda)$ son cada uno polinomios de grado $n$, así que su producto es un polinomio de grado $2n$, que por lo tanto no puede ser igual al polinomio característico $\chi_{AB}(\lambda)$ pues este es de grado $n$. Así mismo, $\chi_{A^2}(\lambda)$ no es $\chi_{A}(\lambda)^2$.

Una última propiedad que nos interesa es mostrar que el determinante de una matriz y su traza aparecen en los coeficientes del polinomio característico.

Teorema. Sea $A$ una matriz en $M_n(F)$ y $\chi_A(\lambda)$ su polinomio característico. Entonces $\chi_{A}(\lambda)$ es de la forma $$\lambda^n-(\text{tr} A) \lambda^{n-1}+\ldots+(-1)^n \det A.$$

Demostración. Tenemos que mostrar tres cosas:

  • El polinomio $\chi_{A}$ es mónico, es decir, tiene coeficiente principal $1$,
  • que el coeficiente del término de grado $n-1$ es $-\text{tr} A$ y
  • el coeficiente libre es $(-1)^n \det A$.

El coeficiente libre de un polinomio es su evaluación en cero. Usando la homogeneidad del determinante, dicho coeficiente es:
\begin{align*}
\chi_A(0)&=\det(0\cdot I_n-A)\\
&=\det(-A)\\
&=(-1)^n\det(A).
\end{align*}

Esto muestra el tercer punto.

Para el coeficiente del término de grado $n-1$ y el coeficiente principal analicemos con más detalle la fórmula del determinante
\begin{align*}
\begin{vmatrix}
\lambda – a_{11} & -a_{12} & \ldots & -a_{1n}\\
-a_{21} & \lambda – a_{22} & \ldots & -a_{1n}\\
\vdots & & \ddots & \\
-a_{n1} & -a_{n2} & \ldots & \lambda – a_{nn}
\end{vmatrix}
\end{align*}
en términos de permutaciones.

Como discutimos anteriormente, la única forma de obtener un término de grado $n$ es cuando elegimos a la permutación identidad. Pero esto también es cierto para términos de grado $n-1$, pues si no elegimos a la identidad, entonces la permutación elige por lo menos dos entradas fuera de la diagonal, y entonces el grado del producto de entradas correspondiente es a lo más $n-2$.

De este modo, los únicos términos de grado $n$ y $n-1$ vienen del producto $$(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).$$

El único término de grado $n$ viene de elegir $\lambda$ en todos los factores, y se obtiene el sumando $\lambda^n$, lo cual muestra que el polinomio es mónico.

Los únicos términos de grado $n-1$ se obtienen de elegir $\lambda$ en $n-1$ factores y un término del estilo $-a_{ii}$. Al considerar todas las opciones, el término de grado $n-1$ es $$-(a_{11}+a_{22}+\ldots+a_{nn})\lambda^{n-1}=-(\text{tr} A) \lambda^{n-1},$$ que era lo último que debíamos mostrar.

$\square$

Ejemplo. El teorema anterior muestra que si $A$ es una matriz en $M_2(F)$, es decir, de $2\times 2$, entonces $$\chi_A(\lambda)=\lambda^2 – (\text{tr}A) \lambda +\det A.$$ De manera explícita en términos de las entradas tendríamos entonces que si $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, entonces su polinomio característico es $$\lambda^2-(a+d)\lambda+(ad-bc).$$

Como ejemplo, si $A=\begin{pmatrix} 5 & 2 \\ -8 & -3 \end{pmatrix}$, entonces su polinomio característico es $$\lambda^2 -2\lambda +1=(\lambda-1)^2.$$ Su único eigenvalor sería entonces $1$.

$\triangle$

Suma y producto de eigenvalores de matrices complejas

A veces queremos referirnos al conjunto de todos los eigenvalores de una matriz.

Definición. Para $A$ una matriz en $M_n(F)$, el espectro de $A$ es el conjunto de eigenvalores de $A$. Lo denotamos por $\text{spec} (A)$

Tenemos una definición análoga para el espectro de una transformación lineal. Esa definición da un poco de intuición de por qué los teoremas de diagonalización de matrices se llaman teoremas espectrales. La siguiente definición habla de un sentido en el cual un eigenvalor «se repite».

Definición. Sea $A$ una matriz en $M_n(F)$ y $\lambda$ un eigenvalor de $A$. La multiplicidad algebraica de $\lambda$ es el mayor entero $m_{\lambda}$ tal que $(x-\lambda)^{m_\lambda}$ divide a $\chi_A(x)$.

Cuando estamos en $\mathbb{C}$, por el teorema fundamental del álgebra todo polinomio de grado $n$ se puede factorizar en exactamente $n$ términos lineales. Además, los polinomios característicos son mónicos. De este modo, si tenemos una matriz $A$ en $M_n(\mathbb{C})$, su polinomio característico se puede factorizar como sigue:

$$\chi_A(\lambda) = \prod_{j=1}^n (\lambda-\lambda_j),$$

en donde $\lambda_1,\ldots,\lambda_n$ son eigenvalores de $A$, no necesariamente distintos, pero en donde cada eigenvalor aparece en tantos términos como su multiplicidad algebraica.

Desarrollando parcialmente el producto del lado derecho, tenemos que el coeficiente de $\lambda^{n-1}$ es $$-(\lambda_1+\ldots+\lambda_n)$$ y que el coeficiente libre es $$(-1)^n\lambda_1\cdot\ldots\cdot\lambda_n.$$ Combinando este resultado con el de la sección anterior y agrupando eigenvalores por multiplicidad, se demuestra el siguiente resultado importante. Los detalles de la demostración quedan como tarea moral.

Teorema. Sea $A$ una matriz en $M_n(\mathbb{C})$

  • La traza $A$ es igual a la suma de los eigenvalores, contando multiplicidades algebraicas, es decir: $$\text{tr} A = \sum_{\lambda \in \text{spec}(A)} m_{\lambda} \lambda.$$
  • El determinante de $A$ es igual al producto de los eigenvalores, contando multiplicidades algebraicas, es decir: $$\det A = \prod_{\lambda \in \text{spec} (A)} \lambda^{m_{\lambda}}.$$

Veamos un problema en donde se usa este teorema.

Problema. Sea $A$ una matriz en $M_n(\mathbb{C})$ tal que $A^2-4A+3I_n=0$. Muestra que el determinante de $A$ es una potencia de $3$.

Solución. Sea $\lambda$ un eigenvalor de $A$ y $v$ un eigenvector para $\lambda$. Tenemos que $$A^2v=A(\lambda v) = \lambda(Av)=\lambda^2 v.$$ De esta forma, tendríamos que
\begin{align*}
0&=(A^2-4A+3I_n)v\\
&=(\lambda^2 v – 4\lambda v + 3 v)\\
&=(\lambda^2-4\lambda+3) v.
\end{align*}

Como $v$ no es el vector $0$, debe suceder que $\lambda^2-4\lambda+3=0$. Como $\lambda^2-4\lambda+3 = (\lambda-3)(\lambda-1)$, entonces $\lambda=1$ ó $\lambda=3$. Con esto concluimos que los únicos posibles eigenvectores de $A$ son $1$ y $3$.

Como $A$ es una matriz en $\mathbb{C}$, tenemos entonces que su polinomio característico es de la forma $(x-1)^a(x-3)^b$ con $a$ y $b$ enteros no negativos tales que $a+b=n$. Pero entonces por el teorema de producto de eigenvalores, tenemos que el determinante es $1^a\cdot 3^b=3^b$, con lo que queda demostrado que es una potencia de $3$.

$\square$

Dos teoremas fundamentales de álgebra lineal (opcional)

Tenemos todo lo necesario para enunciar dos resultados de álgebra lineal. Sin embargo, las demostraciones de estos resultados requieren de más teoría, y se ven en un siguiente curso. No los demostraremos ni los usaremos en el resto de este curso, pero te pueden servir para anticipar el tipo de resultados que verás al continuar tu formación en álgebra lineal.

El primer resultado fundamental es una caracterización de las matrices que pueden diagonalizarse. Para ello necesitamos una definición adicional. Hay otro sentido en el cual un eigenvalor $\lambda$ de una matriz $A$ puede repetirse.

Definición. Sea $A$ una matriz en $M_n(F)$ y $\lambda$ un eigenvalor de $A$. La multiplicidad geométrica de $\lambda$ es la dimensión del kernel de la matriz $\lambda I_n -A$ pensada como transformación lineal.

En estos términos, el primer teorema al que nos referimos queda enunciado como sigue.

Teorema. Una matriz $A$ en $M_n(F)$ es diagonalizable si y sólo si su polinomio característico $\chi_A(\lambda)$ se puede factorizar en términos lineales en $F[\lambda]$ y además, para cada eigenvalor, su multiplicidad algebraica es igual a su multiplicidad geométrica.

Ejemplo. La matriz $$A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$ tiene como polinomio característico a $\chi_A(\lambda)=\lambda^2+1$. Este polinomio no se puede factorizar en $\mathbb{R}[x]$, así que $A$ no es diagonalizable con matrices de entradas reales.

Sin embargo, en $\mathbb{C}$ tenemos la factorización en términos lineales $\lambda^2+1=(\lambda+i)(\lambda-i),$ que dice que $i$ y $-i$ son eigenvalores de multiplicidad algebraica $1$. Se puede mostrar que la multiplicidad geométrica también es $1$. Así, $A$ sí es diagonalizable con matrices de entradas complejas.

$\square$

El segundo resultado fundamental dice que «cualquier matriz se anula en su polinomio característico». Para definir correctamente esto, tenemos que decir qué quiere decir evaluar un polinomio en una matriz. La definición es más o menos natural.

Definición. Si $A$ es una matriz en $M_n(F)$ y $p$ es un polinomio en $F[\lambda]$ de la forma $$p(\lambda)=a_0+a_1\lambda+a_2\lambda^2+\ldots+a_n\lambda^n,$$ definimos a la matriz $p(A)$ como la matriz $$a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.$$

En estos términos, el resultado queda enunciado como sigue.

Teorema (Cayley-Hamilton). Si $A$ es una matriz en $M_n(F)$ y $\chi_A(x)$ es su polinomio característico, entonces $$\chi_A(A)=O_n.$$

Ejemplo. Tomemos de nuevo a la matriz $$A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$ del ejemplo anterior. Su polinomio característico es $x^2+1$. En efecto, verificamos que se cumple el teorema de Cayley-Hamilton pues:
\begin{align*}
A^2+I_2 &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}+\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\end{align*}

$\square$

Más adelante…

En esta entrada estudiamos algunas propiedades de los eigenvalores y eigenvectores de transformaciones lineales y matrices; vimos cómo obtener eigenvalores de una matriz a partir del polinomio característico y enunciamos dos teoremas muy importantes como parte opcional del curso.

En la siguiente entrada haremos varios ejercicios para desarrollar un poco de práctica al obtener los eigenvalores y eigenvectores de una transformación lineal y de una matriz.

Entradas relacionadas

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Enuncia y demuestra cómo es el polinomio característico de una matriz triangular inferior.
  • Completa los detalles de la demostración del teorema de suma y producto de eigenvalores. Úsalo para encontrar la suma y producto (con multiplicidades) de los eigenvalores de la matriz $$\begin{pmatrix}5 & 0 & -1 & 2 \\ 3 & -2 & 1 & -2 \\ 0 & 0 & 0 & 5\\ 0 & 2 & 4 & 0 \end{pmatrix}.$$
  • Sea $A$ una matriz en $M_n(F)$. ¿Cómo es el polinomio característico de $-A$ en términos del polinomio característico de $A$?
  • Tomemos $A$ una matriz en $M_n(F)$ y $k$ un entero positivo. Muestra que si $\lambda$ es un eigenvalor de la matriz $A$, entonces $\lambda^k$ es un eigenvalor de la matriz $A^k$.

De la sección opcional:

  • Demuestra, haciendo todas las cuentas, el caso particular del teorema de Cayley-Hamilton para matrices de $2\times 2$.
  • Ya sabemos calcular el polinomio característico de matrices diagonales. Muestra el teorema de Cayley-Hamilton en este caso particular.
  • Las matrices diagonales trivialmente son diagonalizables. Muestra que la multiplicidad algebraica de sus eigenvalores en efecto coincide con la multiplicidad geométrica.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: Vectores en geometría

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, comenzamos esta serie de entradas de geometría platicando de algunas técnicas euclideanas o sintéticas que se pueden usar para resolver problemas en el plano. Después, tomamos herramientas de la geometría analítica, las cuales nos permiten poner problemas en términos de coordenadas y ecuaciones. Lo que haremos ahora es ver varios ejemplos del uso de vectores en geometría.

A diferencia de la geometría analítica, cuando hablamos de soluciones por vectores estamos hablando de aquellas que aprovechan la estructura de espacio vectorial en $\mathbb{R}^2$. En otras palabras, usamos argumentos en los cuales pensamos a los puntos del plano como vectores, los cuales tienen una dirección y una magnitud. Los vectores tienen operaciones de suma y de producto por un escalar. Además, tienen producto punto, norma y transformaciones dadas por matrices. Apenas tocaremos la superficie del tipo de teoría que se puede usar. Un buen curso de álgebra lineal te puede dar más herramientas para resolver problemas geométricos.

Interpretar puntos como vectores

Pongamos un origen $O$ en el plano. A cada punto $P$ le corresponden ciertas coordenadas dadas por parejas de reales $(x,y)$, que identificaremos con $P$. Al origen le corresponden las coordenadas $(0,0)$. Si tenemos otro punto $Q=(w,z)$, entonces su suma es el vector $P+Q=(x+w,y+z)$. Si tomamos un real $r$, el vector $rP$ es el vector de coordenadas $(rx,ry)$.

Suma de vectores
Suma de vectores

La suma $P+Q$ se puede encontrar mediante la ley del paralelogramo: los puntos $O,P,P+Q,Q$ hacen un paralelogramo en ese orden cíclico. La resta $Q-P$ está definida por $Q+(-1)P$, y la llamamos el vector $PQ$. Geométricamente coincide con el vector que va «de $P$ a $Q$». Observa que el orden es importante y que $OP=P$.

Resta de vectores
Resta de vectores

Proposición (de la razón). Si tenemos dos puntos $P$ y $Q$ distintos y $m,n$ son reales, entonces podemos encontrar al único punto $R$ en la recta por $P$ y $Q$ tal que $$\frac{PR}{RQ}=\frac{m}{n}$$ así: $$R=\frac{n}{m+n}P + \frac{m}{m+n} Q.$$

Punto en una recta con cierta razón
Punto en una recta con cierta razón

Veamos dos problemas en los que se usan estas ideas de vectores en geometría, en particular, la proposición de la razón.

Problema. En el triángulo $ABC$ se toman puntos $D,E,F$ sobre los segmentos $BC,CA,AB$ tales que $\frac{BD}{DC}=\frac{CE}{EA}=\frac{AF}{FB}=\frac{1}{4}$. Muestra que $ABC$ y $DEF$ tienen el mismo gravicentro.

Sugerencia pre-solución. Encuentra una fórmula en términos vectoriales para el gravicentro de un triángulo $ABC$.

Solución. Tomemos un triángulo $PQR$ y pensemos a sus vértices como vectores. Afirmamos que su gravicentro $X$ es el punto correspondiente a $\frac{P+Q+R}{3}$ Demostraremos esto.

El gravicentro está a un tercio del punto medio hacia el vértice correspondiente
Razón del gravicentro en la mediana

Primero haremos un argumento de geometría sintética. El gravicentro es por definición el punto de intersección de las medianas de un triángulo. Si $L$ es el punto medio de $QR$ y $M$ es el punto medio de $RP$, entonces $X$ es el punto de intersección de $PL$ y $QM$. Tenemos que $$\frac{RL}{LQ}=1=\frac{RM}{MP},$$ así que por el teorema de Tales se tiene que la recta por $L$ y $M$ es paralela al lado $PQ$, y $\frac{LM}{PQ}=\frac{1}{2}$. Esto muestra que los triángulos $XLM$ y $XPQ$ son semejantes en razón $1$ a $2$. Por lo tanto, $\frac{LX}{XP}=\frac{1}{2}$.

Ahora hagamos el argumento vectorial, pensando a los puntos como vectores. El punto $L$ está a la mitad de $QR$, así que por la proposición de la razón, $$L=\frac{Q+R}{2}.$$ El punto $X$ cumple $\frac{LX}{XP}=\frac{1}{2}$, así que de nuevo por la proposición de la razón.
\begin{align*}
X&=\frac{2L+P}{2+1}\\
&=\frac{Q+R+P}{3}\\
&=\frac{P+Q+R}{3}.
\end{align*}

Esto es el resultado auxiliar que queríamos mostrar. Regresemos al problema.

De acuerdo al resultado auxiliar, el gravicentro de $ABC$ es $$G:=\frac{A+B+C}{3}.$$ Usando una vez más la proposición de la razón, los puntos $D$, $E$ y $F$ los podemos calcular como sigue:
\begin{align*}
D&=\frac{4B+C}{4+1}=\frac{4B+C}{5}\\
E&=\frac{4C+A}{4+1}=\frac{4C+A}{5}\\
F&=\frac{4A+B}{4+1}=\frac{4A+B}{5}.
\end{align*}

De esta forma, el gravicentro $G’$ de $DEF$ lo podemos encontrar como sigue:
\begin{align*}
G’&=\frac{D+E+F}{3}\\
&=\frac{\frac{4B+C}{5}+\frac{4C+A}{5}+\frac{4A+B}{5}}{3}\\
&=\frac{A+B+C}{3}\\
&=G.
\end{align*}

Esto termina la solución del problema.

$\square$

Problema. En el paralelogramo $ABCD$ el punto $F$ es el punto medio de $CD$. Muestra que el segmento $AF$ corta a la diagonal $BD$ en un punto $E$ tal que $\frac{DE}{DB}=\frac{1}{3}$.

Sugerencia pre-solución. Hay varias formas de hacer las cuentas en este problema, pero el uso de una notación adecuada te hará simplificar muchas operaciones.

Solución. Pensemos a los puntos de la figura como vectores. Coloquemos al punto $A$ en el origen. El punto $C$ está dado por $B+D$, de modo que $$F:=\frac{C+D}{2}=\frac{B+2D}{2}.$$

Vectores en geometría: problema de paralelogramo
Figura auxiliar para problema de paralelogramo

Para encontrar al punto $E$, notemos que está en las rectas $AF$ y $BD$. De esta forma, deben existir reales $r$ y $s$ tales que $$E=rF$$ y $$E=sB+(1-s)D.$$ Expresando $F$ en términos de $B$ y $D$ en la primer ecuación, tenemos que $$E=\frac{rB+2rD}{2}=\frac{rB}{2}+rD.$$ De ambas expresiones para $E$, concluimos que
\begin{align*}
s=\frac{r}{2}\\
1-s=r.
\end{align*}

Este sistema de ecuaciones tiene solución $r=\frac{2}{3}$, $s=\frac{1}{3}$, y por lo tanto $E=\frac{B+2D}{3}$. De aquí se obtiene $\frac{DE}{EB}=\frac{1}{2}$, o bien $\frac{DE}{DB}=\frac{DE}{DE+EB}=\frac{1}{3}$, como queríamos mostrar.

$\square$

Producto punto, norma y ángulos

Para dos vectores $P=(x,y)$ y $Q=(w,z)$ definimos su producto punto como la cantidad $P\cdot Q = xw+yz$. El productos puntos es:

  • Conmutativo: $P\cdot Q = Q\cdot P$
  • Abre sumas: $P\cdot (Q+R)=P\cdot Q + P\cdot R$
  • Saca escalares: $(rP)\cdot Q = r(P\cdot Q)$.

La norma de $P$ se define como $\norm{P}=\sqrt{P\cdot P}$, y coincide con la distancia de $P$ al origen. La norma de $PQ$ es entonces $\norm{PQ}=\sqrt{(Q-P)\cdot (Q-P)}$ y coincide con la distancia de $P$ a $Q$.

El ángulo entre dos vectores $PQ$ y $RS$ se define como el ángulo cuyo coseno es $$\frac{PQ \cdot RS}{\norm{PQ}\norm{RS}},$$ y coincide precisamente con el ángulo (orientado) geométrico entre las rectas $PQ$ y $RS$. De esta forma, las rectas $PQ$ y $RS$ son perpendiculares si y sólo si el producto punto $PQ\cdot RS$ es cero.

Problema. Sea $ABC$ un triángulo con sus vértices pensados como vectores. Sean $H$ y $O$ su ortocentro y circuncentro respectivamente. Supongamos que el circuncentro $O$ está en el origen. Muestra que $H=A+B+C$.

Sugerencia pre-solución. Trabaja hacia atrás. Define al punto $A+B+C$ y ve que las rectas que unen a los vértices con este punto en efecto son alturas. Para calcular los ángulos, usa el producto punto y sus propiedades.

Solución. Como el circuncentro equidista de $A$. $B$ y $C$, tenemos que $$\norm{A}=\norm{B}=\norm{C}.$$ Tomemos el punto $H’=A+B+C$.

Vectores en geometría para encontrar el ortocentro
Ortocentro con vectores

Calculemos el ángulo entre las rectas $BC$ y $AH’$, haciendo su producto punto:
\begin{align*}
BC\cdot AH’ &= (C-B)\cdot (H’-A)\\
&=(C-B)\cdot(C+B)\\
&=C\cdot C + C\cdot B – B\cdot C – B\cdot B\\
&=\norm{C}^2 – \norm{B}^2\\
&=0.
\end{align*}

Observa que estamos usando la linealidad y conmutatividad del producto punto. Al final usamos que $A$ y $C$ tienen la misma norma.

Esto muestra que la recta $AH’$ es la altura al lado $BC$. De manera análoga, $BH’$ y $CH’$ son las alturas a los lados $CA$ y $AB$ respectivamente. Por lo tanto, $H’$ es el ortocentro, así que $H=A+B+C$.

$\square$

Cualquier triángulo $ABC$ en el plano se puede trasladar para que su circuncentro $O$ quede en el origen. El ortocentro estará en $H=A+B+C$ y el gravicentro, como vimos antes, en $G=\frac{A+B+C}{3}$, que es un múltiplo escalar de $H$. Por lo tanto, $O$, $H$ y $G$ están alineados. Acabamos de demostrar con vectores en geometría un clásico resultado euclideano.

Teorema (recta de Euler). En cualquier triángulo $ABC$, el circuncentro $O$, el gravicentro $G$ y el ortocentro $H$ están alineados. Además, $$\frac{OG}{GH}=\frac{1}{2}.$$

Teorema de la recta de Euler
Teorema de la recta de Euler

Si el circuncentro no está en el origen, ahora podemos usar el teorema de la recta de Euler y la proposición de la razón para concluir que $G=\frac{2O+H}{3}$. Usando que $G=\frac{A+B+C}{3}$, obtenemos el siguiente corolario

Corolario. Sea $ABC$ un triángulo en el plano, $H$ su ortocentro y $O$ su circuncentro. Entonces al pensar a los puntos como vectores tenemos que $$A+B+C=2O+H.$$

Más problemas

Puedes encontrar más problemas del uso de vectores en geometría en la sección 8.3 del libro Problem Solving through Problems de Loren Larson.