Seminario de Resolución de Problemas: Sucesiones periódicas y pre-periódicas

Introducción

En la entrada anterior, comenzamos a hablar de sucesiones. Dimos las definiciones básicas y vimos sucesiones aritméticas y geométricas. Aunque una sucesión tenga una cantidad infinita de términos, las sucesiones aritméticas y geométricas son “sencillas”, pues en realidad sólo dependen de dos parámetros: un término inicial y una diferencia (o razón). Ahora veremos otro tipo de sucesiones que también tienen cierta “finitud”. Estudiaremos las sucesiones periódicas y pre-periódicas.

La intuición detrás de las sucesiones periódicas y pre-periódicas es que “se repiten y se repiten” después de un punto. Así, estas sucesiones sólo pueden tomar un número finito de valores, y de hecho después de un punto los empiezan a tomar “de manera cíclica”.

Sucesiones periódicas

Las siguientes sucesiones tienen una característica peculiar:

  • 1,2,3,4,1,2,3,4,1,2,3,4,1,2,\ldots
  • 7,8,7,11,7,7,8,7,11,7,7,\ldots
  • Para \omega una raíz cúbica de la unidad en \mathbb{C}: 1,\omega, \omega^2, \omega^3, \omega^4, \omega^5, \omega ^6,\ldots

Dicho de manera informal, estas sucesiones se “repiten y se repiten”.

Definición. Una sucesión es periódica si existe un entero positivo p tal que x_{n+p}=x_n para todo entero n\geq 0. A p se le conoce como un periodo y al mínimo p que satisface esto se le llama un periodo mínimo.

Las sucesiones ejemplo tienen periodo 4, 5 y 3 respectivamente.

Cuando una sucesión \{x_n\} es periódica de periodo p, se puede mostrar inductivamente que x_{n+p}=x_{n+mp} para todo entero positivo m. También, se puede mostrar que cualquier término es igual a alguno de los términos x_0,\ldots,x_{p-1}. Concretamente, si usamos el algoritmo de la división para expresar n=qp+r con r el residuo de la división de n entre q, tenemos que x_n=x_r. Esto hace que trabajar con sucesiones periódicas de periodo p se parezca a trabajar con los enteros módulo p.

Problema. La sucesión \{x_n\} es periódica de periodo 91 y tiene un número irracional. La sucesión \{y_n\} es periódica de periodo 51. Muestra que si la sucesión \{x_n+y_n\} tiene puros números racionales, entonces la sucesión \{y_n\} tiene puros números irracionales.

Sugerencia pre-solución. Recuerda cómo se resuelven las ecuaciones diofantinas lineales en enteros, o bien usa el teorema chino del residuo.

Solución. Como \{x_n\} tiene periodo 91, podemos suponer que su término irracional es x_k con k en \{0,\ldots,90\}. Ya que \{y_n\} es periódica de periodo 51, basta con que probemos que y_r es irracional para cada r en \{0,\ldots,50\}. Tomemos una de estas r.

Como 91 y 51 son primos relativos, por el teorema chino del residuo existe un entero m tal que

    \begin{align*}m&\equiv k \pmod {91}\\m&\equiv r \pmod {51}.\end{align*}

Sumando múltiplos de 91\cdot 51 a m, podemos suponer que m es positivo. Para esta m tenemos que x_m=x_k y que y_m=y_r. De esta forma,

    \begin{align*}y_r&=y_m\\&=(y_m+x_m)-x_m\\&=(y_m+x_m)-x_k.\end{align*}


A la derecha, tenemos una resta de un número racional, menos uno irracional, el cual es un número irracional. Esto muestra que y_r es irracional, como queríamos.

\square

Veamos otro ejemplo, que toca un poco el tema de sucesiones recursivas, del cual hablaremos con más profundidad más adelante.

Problema. Considera la sucesión \{a_n\} en \mathbb{Z}_{13} (los enteros módulo 13, con su aritmética modular), en donde los primeros tres términos son a_0=[0]_{13}, a_1=[1]_{13} y a_2=[2]_{13} y para todo entero n\geq 0 se tiene que

    \[a_{n+3}=[a_n+a_{n+1}+a_{n+2}+n]_{13}.\]

Muestra que la sucesión \{a_n\} es periódica.

Sugerencia pre-solución. El residuo al dividir entre 13 de cada término de la sucesión depende de cuatro enteros entre 0 y 12. ¿Cuáles? Usa el principio de las casillas y luego trabaja hacia atrás.

Solución. Para simplificar la notación, no usaremos el subíndice 13, con el entendido de que siempre se deben simplificar los números de los que hablemos módulo 13. Para cada n\geq 0, consideremos el vector

    \[v_n=(a_n,a_{n+1},a_{n+2},n).\]

Visto módulo 13, este vector puede tomar 13^4 posibles valores, y define el valor de a_{n+3}. Por principio de las casillas, debe haber dos enteros m y p tales que v_m=v_{m+p}. Afirmamos que p es un periodo para \{a_n\}.

Vamos a probar esto. Primero lo haremos para los enteros n\geq m. Esto lo haremos mostrando que v_{m+k}=v_{m+k+p} por inducción sobre k.

El caso k=0 es la igualdad v_m=v_{m+p} de arriba. Si suponemos que v_{m+k}=v_{m+p+k}, entonces automáticamente tenemos la igualdad de las primeras dos entradas de v_{m+k+1} y v_{m+p+k+1}, y como a_{m+k+3} y a_{m+k+p+3} quedan totalmente determinados por v_{m+k}=v_{m+p+k}, entonces también las terceras entradas son iguales. Para la cuarta entrada, usamos que

    \[m+k\equiv m+p+k\pmod {13},\]

de donde

    \[m+k+1\equiv m+p+k+1\pmod {13}.\]

Esto termina la inducción. En particular, tenemos que a_{m+k}=a_{m+k+p} para todo k\geq 0.

Falta mostrar que la sucesión también es periódica antes de a_m. Pero este se hace con un argumento análogo al anterior, pero trabajando hacia atrás, notando que a_{n-1} queda totalmente determinado mediante la ecuación

    \[a_{n-1}=a_{n+2}-a_n-a_{n+1}-(n-1).\]

\square

Sucesiones pre-periódicas

A veces una sucesión puede ser casi periódica, a excepción de sus primeros términos. Estas sucesiones comparten muchas propiedades con las sucesiones periódicas, así que vale la pena definirlas.

Definición. Una sucesión es pre-periódica si existen enteros positivos N y p tales que x_{n+p}=x_p para todo entero n \geq N. Si tomamos N como el menor entero para el que se cumpla la propiedad, a los términos

    \[(x_0,x_1,\ldots,x_{N-1})\]

se les conoce como la parte pre-periódica. La sucesión \{x_{n+N}\} es una sucesión periódica y se le conoce como la parte periódica de \{x_n\}.

Las sucesiones pre-periódicas juegan un papel importante en la clasificación de los números racionales.

Teorema. Sea x un real. Las siguientes tres afirmaciones son equivalentes:

  • x es racional
  • Los dígitos después del punto decimal de x en alguna base entera b\geq 2 forman una sucesión pre-periódica.
  • Los dígitos después del punto decimal de x en toda base entera b\geq 2 forman una sucesión pre-periódica.

Problema. Demuestra que el número

    \[X:\sum_{j=1}^\infty \frac{1}{10^{j^2}}\]

es un número irracional.

Sugerencia pre-solución. Escribe las primeras sumas parciales de la serie para encontrar un patrón de cómo se ven los dígitos de X después del punto decimal. Procede por contradicción.

Solución. Otra forma de escribir a X es en base 10:

    \[X=0.a_1a_2a_3a_4\ldots,\]

en donde \{a_n\} es la sucesión de dígitos después del punto decimal. Nota que a_i=1 si y sólo si i es un número cuadrado.

Si X fuera racional, \{a_n\} sería pre-periódica, de periodo, digamos p. Pero en \{a_n\} podemos encontrar p ceros consecutivos, incluso después del pre-periodo, ya que hay bloques tan largos como se quiera de enteros que no son números cuadrados. Esto mostraría que el periodo sería de puros ceros, y que por lo tanto a partir de un punto \{a_n\} es constantemente cero. Esto es imposible pues hay números cuadrados arbitrariamente grandes.

\square

Combinando tipos de sucesiones

Hasta ahora, hemos hablado de sucesiones aritméticas, geométricas, periódicas y pre-periódicas. Seguiremos hablando de otros tipos de sucesiones en entradas posteriores. Una cosa sistemática que te puede ayudar a entender estos conceptos mejor es preguntarte cuándo una sucesión satisface más de una de estas propiedades.

Problema. Determina todas las sucesiones en \mathbb{C} que sean simultáneamente geométricas y periódicas.

Sugerencia pre-solución. Elige una notación adecuada para trabajar en este problema.

Solución. El primer término a de una sucesión así tiene que ser igual a otro. Como la sucesión es geométrica, eso otro término es de la forma r^ma para m un entero positivo.

Si a=0, la sucesión es la sucesión constante 0, que es geométrica y periódica de periodo 1. Si a\neq 0, entonces r^m=1, de modo que r es una raíz m-ésima de la unidad.

Y en efecto, para r una raíz m-ésima de la unidad y a cualquier complejo, tenemos que \{ar^n\} es una sucesión geométrica y de periodo m.

\square

Más problemas

Esta entrada es una extensión de las secciones 5 y 6 del curso de sucesiones que impartí para los entrenadores de la Olimpiada Mexicana de Matemáticas. Puedes consultar las notas de este curso en el siguiente PDF, en donde hay más problemas de práctica:

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.