Archivo de la etiqueta: potencias

Álgebra Superior II: Otras definiciones recursivas en los naturales (exponenciación y factorial)

Introducción

En las entradas pasadas hemos dado la definición recursiva de la suma y del producto usando el teorema de la recursión débil y probamos las propiedades elementales de estas operaciones usando el principio de inducción.

Continuando con esta línea de pensamiento, en esta entrada definiremos las funciones exponenciales usando las funciones producto; sin embargo, para definir estas funciones, también ocuparemos el teorema de recursión débil. Para ver que no enunciamos en vano la versión fuerte de este teorema, daremos como aplicación la definición de la función factorial, y de la misma forma a como lo hicimos antes, probaremos algunas de sus propiedades haciendo uso del principio de Inducción. Sin embargo, dejaremos algunas de las propiedades como ejercicio para que puedas practicar este tipo de pruebas una vez más.

Exponenciación en los naturales

Desde la educación elemental nos enseñan que «multiplicar es sumar repetidas veces» y que «exponenciar es multiplicar repetidas veces». Formalicemos esta intuición mediante el teorema de recursión.

Definición: Sea $m\in \mathbb{N}$. Definimos $\eta_{m}:\mathbb{N}\longrightarrow\mathbb(N),$ como la función que satisface las siguientes propiedades:

  1. $\eta_{m}(0)=1$
  2. $\eta_m(\sigma(n))=p_{m}(\eta_{m}(n)) $

Así como lo hemos hecho con la definición de producto y de suma, introduciremos la «notación usual» para hablar de esta función. En este caso, definimos $m^n:=\eta_m(n)$.

De este modo, en términos de las notaciones usuales, podemos suplir la propiedad (2) de la definición anterior como $m^{n+1}=m\cdot m^n$.

Las potencias de $0$ y de $1$

Así como lo hicimos con la suma y el producto, analizaremos de forma especial a las funciones $\eta_{0}$ y $\eta_{1}$.

Teorema: Tenemos que $\eta_{0}(0)=1$ y si $n\neq 0$, entonces $\eta_{0}(n)=0$.

La demostración queda como un ejercicio moral. La buena noticia es que hemos trabajado lo suficiente como para no tener que realizar una prueba por inducción. Cuando intentes demostrar esto por tu cuenta, recuerda qué sucede cuando multiplicamos por $0$.

Notemos que así como lo definimos, $0^0$ es $1$ en los números naturales. Sin embargo, como veremos más adelante y como posiblemente lo sabrás ya, la expresión $0^0$ no estará definida en otros sistemas numéricos como los números reales. Al igual que «$0$ es un natural», la definición de $0^0$ frecuentemente varía dependiendo del contexto.

Teorema: Tenemos que $\eta_{1}(n) =1$ para todo $n$ en los naturales.

Demostración. Para este resultado sí procederemos por inducción sobre $n$. Por la parte (1) de la definición de $\eta_{1}$, tenemos que $\eta_{1}(0)=1$. Esta es nuestra base de inducción.

Supongamos que $\eta_{1}(n)=1$. Queda demostrar que $\eta_{1}(\sigma(n))=1.$ Sin embargo esto se sigue ya que por definición, $\eta_{1}(\sigma(n))=1\cdot\eta_{1}(n)=1\cdot 1=1$. Te invitamos a identificar los argumentos que se ocuparon en cada paso

$\square$

La exponencial no conmuta ni asocia

Como la notación que ocupamos para las funciones $\eta_{m}$ no es tan simétrica como la que ocupamos para el producto o para la suma, uno puede esperar que esta operación no sea en general conmutativa. En efecto esto es cierto, solo basta notar que

$0^1\neq1^0$

Así mismo la exponenciación no es en general asociativa, es decir que existen casos en que

$(n^m)^l\neq n^{(m^l)}$

Encontrar un contraejemplo queda como un ejercicio moral.

Le exponenciación y otras operaciones.

Cuando estudiamos el producto de números naturales, vimos que esta operación se distribuye sobre la suma, entonces una buena pregunta es preguntarnos qué pasa cuando mezclamos la exponenciación con el producto y la suma. Quedará como ejercicio dar contraejemplos a todas las siguientes proposiciones:

  1. $n^{(l\cdot m)}=n^l\cdot n^l$
  2. $(l+m)^n=l^n+m^n$
  3. $n^{l+m}=n^l+n^m$

Sin embargo, probaremos dos teoremas conocidos usualmente como las leyes de los exponentes. El primero de ellos dice que por la izquierda, la exponenciación sí se distribuye sobre el producto.

Teorema: Si $a,b,n\in\mathbb{N}$, entonces $(a\cdot b)^n=a^n\cdot b^n$.

Demostración. Procedamos por inducción sobre $n$. De la definición de exponencial, tenemos que $(a\cdot b)^0=1=1\cdot 1= a^0\cdot b^0$, por lo que la base de inducción es cierta.

Supongamos que para algún $n$ se tiene que $(a\cdot b)^n=a^n\cdot b^n$ y probemos que $(a\cdot b)^{\sigma(n)}=a^{\sigma(n)}\cdot b^{\sigma(n)}$. Esto es cierto ya que

\begin{align*}
(a\cdot b)^{\sigma(n)}&=(a\cdot b)\cdot (a\cdot b)^n\\
&=(a\cdot b)\cdot (a^n\cdot b^n)\\
&=(a\cdot a^n)\cdot (b\cdot b^n)\\
&=a^{\sigma(n)}\cdot b^{\sigma(n)}
\end{align*}

A diferencia de las entradas anteriores ya ocupamos sin mención las propiedades ya demostradas o la hipótesis de inducción; sin embargo, sería bueno que detallaras las pruebas.

$\square$

Aunque vimos que en general no podemos hablar de que la exponencial se distribuya, sí hay importantes relaciones que notaremos en los siguientes dos teoremas.

Teorema: Si $a,b,n\in\mathbb{N}$, entonces $a^{b+n}=a^b\cdot a^n$

Demostración. De nuevo procederemos por inducción sobre $n$. Si $n=0$, entonces $a^{b+0}=a^b =a ^b \cdot 1=a^b \cdot a^0$, con lo que probamos la base de inducción.

Supongamos entonces que para algún $n$ se tiene que $a^{b+n}=a^b\cdot a^n$, y demostremos el caso para $\sigma(n)$. Sabemos que

\begin{align*}
a^{b+ \sigma(n)}=&a^{\sigma(b+n)}\\
=&a\cdot a^{b+n}\\
=&a\cdot (a^b\cdot a^n)\\
=&a^b\cdot (a \cdot a^n)\\
=&a^b\cdot a^{\sigma(n)}
\end{align*}

Con esto termina la prueba.

$\square$

El siguiente teorema queda como ejercicio de la tarea moral, para que puedas practicar.

Teorema: Si $a,b,n\in\mathbb{N}$, entoces $(a^b)^n=a^{b\cdot n}$.

El factorial

Hasta ahora, sólo hemos ocupado el teorema de recursión débil a la hora de definir las operaciones. A pesar de que antes demostramos que ambas versiones del teorema son equivalentes, la siguiente definición mostrará la naturalidad que tiene el ocupar el teorema de Recursión Fuerte para algunas cosas.

Definición: Se define la función factorial, $f:\mathbb{N}\to \mathbb{N}$, como la única función dada por el teorema de recursión fuerte que cumple que

  • $f(0)=1$
  • $f(\sigma(n))=p_{\sigma(n)}(f(n))$

Usaremos la notación $n!:=f(n)$. Así, la primer parte de la definición dice que $0!=1$ y la segunda dice que $(n+1)!=(n+1)\cdot n!$.

Notemos que en la definición anterior es necesario ocupar el teorema de Recursión Fuerte ya que en cada paso damos una función distinta. En concreto, para dar la definición en $\sigma(n)$ usamos a la función $p_{\sigma(n)}$.

El factorial es una función que jugará un papel importante en varios temas que verás en la facultad. Tiene una fuerte relación con contar cosas, el cual es un tema que posiblemente hayas estudiado en Álgebra Superior II. Aparece al contar las permutaciones de objetos, pero también como parte de la fórmula para los coeficientes binomiales $\binom{n}{k}$. También, lo encontraremos en este curso a la hora de enunciar el teorema de Wilson de teoría de números, pero necesitamos definir más cosas antes de llegar ahí.

Sin embargo, algo que sí podemos hacer ahora es demostrar una propiedad interesante que satisface el factorial.

Proposición: Para todo $n\in \mathbb{N}$, se tiene que $0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+1=(n+1)!$

Demostración. Procederemos por inducción, el caso base es claro ya que $0\cdot 0!+1= 0+1=1!.$

Supongamos que el resultado es cierto para alguna $n$ y con esta suposición probemos que

$0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+(n+1)\cdot(n+1)!+1=(n+2)!$.

Sabemos por nuestra hipótesis de inducción que

\begin{align*}
&0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+(n+1)\cdot(n+1)!+1\\
=&(0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+1)+(n+1)\cdot(n+1)! \\
=&(n+1)!+ (n+1)\cdot(n+1)!\\
=&(n+1)!(1+n+1)\\
=&(n+1)!(n+2)\\
=&(n+2)!
\end{align*}

En la primer igualdad estamos usando la conmutatividad y asociatividad de la suma. En la segunda igualdad, la hipótesis de inducción. Para la tercer igualdad estamos factorizando el término $(n+1)!$. El resto de igualdades se siguen de las definiciones.

$\square$

Resumen de las propiedades de los exponentes

Para finalizar con la entrada, hacemos un repaso de las propiedades que demostramos, posiblemente las conozcas como las leyes de los exponentes

  • Para todo $n$ número natural, se tiene que $n^0=1$
  • Si $n\neq 0$,entonces $0^n=0$
  • Para todo $n$ número natural, se tiene que $n^1=n$
  • Para todo $n$ número natural, se tiene que $1^n=1$
  • Para $l,m,n$ naturales, se tiene que $(l\cdot m)^n=l\n\cdot m^n$
  • Para $l,m,n$ naturales, se tiene que $n^{l+m}=n^l\cdot n^m$
  • Para $l,m,n$ naturales, se tiene que $n^{l\cdot m}=(n^l)^m$

Tarea moral

  1. Encuentra los contraejemplos que faltaron en la entrada
  2. Da la demostración de que $0^n=0$, para toda $n$
  3. Prueba que para todos los naturales $a,b,n$, se tiene que $(a^b)^n=a^{b\cdot n}$
  4. El factorial consiste en «multiplicar los primeros enteros». ¿Qué pasa si queremos hacer algo análogo para sumar los primeros enteros? Da una definición recursiva de una función $S(n)=0+1+2+…+n$, ¿por qué en realidad no es necesario dar una definición recursiva de esta función?
  5. Demuestra que si $n,m$ son naturales tales que existe $k\in\mathbb{N}$ tal que $n\cdot k=n^k=m$, entonces $n^m=m^n$. El regreso de esta afirmación es también verdadero, pero para verlo formalmente, necesitamos desarrollar más teoría

Más adelante…

Con esta entrada, acabamos con las definiciones de operaciones a través de los teoremas de Recursión; sin embargo, no podemos decir que no ocuparemos este teorema en futuras ocasiones, al menos de forma implícita, mucho menos nos olvidaremos del principio de Inducción, el cuál irá siempre adherido al concepto de número natural.

En las siguientes entradas, estudiaremos otro tipo de propiedades de los naturales, relacionadas con el orden y el tamaño que estos tienen. Sin embargo, aún ocuparemos las operaciones que definimos y las relacionaremos; por ejemplo, con el orden que les daremos.

Entradas relacionadas

Seminario de Resolución de Problemas: Polinomios asociados a matrices y el teorema de Cayley-Hamilton

Introducción

Para terminar esta serie de entradas de álgebra lineal, y con ello el curso de resolución de problemas, hablaremos de polinomios especiales asociados a una matriz: el polinomio mínimo y el polinomio característico. Después, hablaremos del teorema de Cayley-Hamilton, que a grandes rasgos dice que una matriz se anula en su polinomio característico.

Estos resultados forman parte fundamental de la teoría que se aprende en un curso de álgebra lineal. En resolución de problemas, ayudan mucho para entender a los eigenvalores de una matriz, y expresiones polinomiales de matrices.

Polinomio mínimo de una matriz

Podemos evaluar un polinomio en una matriz cuadrada de acuerdo a la siguiente definición.

Definición. Si $A$ es una matriz de $n\times n$ con entradas reales y $p(x)$ es un polinomio en $\mathbb{R}[x]$ de la forma $$p(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n,$$ definimos a la matriz $p(A)$ como la matriz $$a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.$$

De manera análoga se puede dar una definición cuando las entradas de la matriz, o los coeficientes del polinomio, son números complejos.

Cuando una matriz está diagonalizada, digamos $A=P^{-1}DP$ con $P$ invertible y $D$ diagonal, entonces evaluar polinomios en $A$ es sencillo. Se tiene que $p(A)=P^{-1} p(D) P$, y si las entradas en la diagonal principal de $D$ son $d_1,\ldots,d_n$, entonces $p(D)$ es diagonal con entradas en la diagonal principal iguales a $p(d_1),\ldots,p(d_n)$.

Dada una matriz $A$, habrá algunos polinomios $p(x)$ en $\mathbb{R}[x]$ para los cuales $p(A)=0$. Si $p(x)$ es uno de estos, entonces cualquier eigenvalor de $A$ debe ser raíz de $p(x)$. Veamos un problema de la International Mathematics Competition de 2011 que usa esto. Es el Problema 2 del día 1.

Problema. Determina si existe una matriz $A$ de $3\times 3$ con entradas reales tal que su traza es cero y $A^2+ {^tA} = I_3$.

Sugerencia pre-solución. Busca un polinomio $p(x)$ tal que $p(A)=0$.

Solución. La respuesta es que no existe dicha matriz. Procedamos por contradicción. Si existiera, podríamos transponer la identidad dada para obtener que
\begin{align*}
A&=I _3- {^t(A^2)}\\
&=I_3-({^tA})^2\\
&=I_3-(I_3 – A^2)^2\\
&=2A^2 – A^4.
\end{align*}

De aquí, tendríamos que $A^4-2A^2+A = 0$, de modo que cualquier eigenvalor de $A$ debe ser una raíz del polinomio $$p(x)=x^4-2x^2+x=x(x-1)(x^2+x-1),$$

es decir, debe ser alguno de los números $$0,1,\frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}.$$

Los eigenvalores de $A^2$ son los cuadrados de los eigenvalores de $A$, así que son algunos de los números $$0,1,\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}.$$

Como la traza de $A$ es $0$, la suma de sus tres eigenvalores (con multiplicidades), debe ser $0$. Como la traza de $A^2$ es la de $I_3-{ ^tA}$, que es $3$, entonces la suma de los eigenvalores de $A$ al cuadrado (con multiplicidades), debe ser $0$. Un sencillo análisis de casos muestra que esto no es posible.

$\square$

De entre los polinomios que se anulan en $A$, hay uno especial. El polinomio mínimo de una matriz $A$ con entradas reales es el polinomio mónico $\mu_A(x)$ de menor grado tal que $\mu_A(A)=O_n$, donde $O_n$ es la matriz de $n\times n$ con puros ceros. Este polinomio siempre es de grado menor o igual a $n$.

Una propiedad fundamental del polinomio mínimo de una matriz es que es mínimo no sólo en un sentido de grado, sino también de divisibilidad.

Teorema. Sea $A$ una matriz de $n\times n$ con entradas reales. Entonces para cualquier polinomio $p(x)$ en $\mathbb{R}[x]$ tal que $p(A)=O_n$, se tiene que $\mu_A(x)$ divide a $p(x)$ en $\mathbb{R}[x]$.

Veamos cómo se puede usar este resultado.

Problema. La matriz $A$ de $2\times 2$ con entradas reales cumple que $$A^3-A^2+A=O_2.$$ Determina los posibles valores que puede tener $A^2-A$.

Sugerencia pre-solución. Encuentra las posibles opciones que puede tener el polinomio mínimo de $A$ y haz un análisis de casos con respecto a esto.

Solución. La matriz $A$ se anula en el polinomio $$p(x)=x^3-x^2+x=x(x^2-x+1),$$ en donde $x^2-x+1$ tiene discriminante negativo y por lo tanto es irreducible.

El polinomio mínimo $\mu_A(x)$ debe ser un divisor de $p(x)$. Además, es de grado a lo más $2$. Esto nos deja con las siguientes opciones:

  • $\mu_A(x)=x$, de donde $A=O_2$, y por lo tanto $A^2=O_2$. De aquí, $A^2-A=O_2$.
  • $\mu_A(x)=x^2-x+1$. En este caso, tenemos que $A^2-A+I_2=0$. Así, $A^2-A=-I_2$.

Para mostrar que ambas opciones son posibles, en el primer caso usamos $A=O_2$ y en el segundo caso usamos $$A=\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

$\square$

Polinomio característico de una matriz

El polinomio característico de una matriz $A$ de $n\times n$ se define como $$\chi_A(x)=\det(xI_n – A).$$

Teorema. El polinomio característico de una matriz $A$ cumple que:

  • Es un polinomio mónico en $x$ de grado $n$.
  • El coeficiente del término de grado $n-1$ es la traza de $A$.
  • El coeficiente libre es $\chi_A(0)=(-1)^n\det(A)$.
  • Es igual al polinomio característico de cualquier matriz similar a $A$.

Para ver ejemplos de cómo obtener el polinomio característico y cómo usar sus propiedades, hacemos referencia a la siguiente entrada:

Propiedades del polinomio característico

En particular, para fines de este curso, es importante leer los ejemplos y problemas resueltos de esa entrada.

El teorema de Cayley-Hamilton y una demostración con densidad

Finalmente, hablaremos de uno de los resultados fundamentales en álgebra lineal.

Teorema (Cayley-Hamilton). Si $A$ es una matriz de $n\times n$ con entradas en $\mathbb{C}$ y $\chi_A(x)$ es su polinomio característico, entonces $$\chi_A(A)=O_n.$$

En realidad el teorema de Cayley-Hamilton es válido para matrices más generales. Daremos un esbozo de demostración sólo para matrices con entradas complejas pues eso nos permite introducir una técnica de perturbaciones.

Esbozo de demostración. Vamos a hacer la técnica de la bola de nieve, construyendo familias poco a poco más grandes de matrices que satisfacen el teorema.

Si $A$ es una matriz diagonal, las entradas en su diagonal son sus eigenvalores $\lambda_1,\ldots, \lambda_n$. Por la discusión al inicio de esta entrada, $\chi_A(A)$ es diagonal con entradas $\chi_A(\lambda_1),\ldots,\chi_A(\lambda_n)$, y como los eigenvalores son raíces del polinomio característico, entonces todos estos valores son $0$, y por lo tanto $\chi_A(A)=0$.

Si $A$ es diagonalizable, digamos, de la forma $A=P^{-1} D P$, entonces $A$ y $D$ tienen el mismo polinomio característico. Por la discusión al inicio de la entrada, y por el caso anterior:
\begin{align*}
\chi_A(A) &= \chi_D(A)\\
&= \chi_D(P^{-1} D P)\\
&=P^{-1}\chi_D(D) P\\
&=P^{-1}O_n P \\
&=O_n.
\end{align*}

Si $A$ tiene todos sus eigenvalores distintos, se puede mostrar que $A$ es diagonalizable. Ahora viene la idea clave del argumento de continuidad.

Pensemos al espacio métrico de matrices de $n\times n$. Afirmamos que las matrices con eigenvalores todos distintos son densas en este espacio métrico. Para ello, tomemos una matriz $A$. En efecto, como estamos trabajando en $\mathbb{C}$, existe una matriz invertible $P$ tal que $P^{-1}A P$ es triangular. Como $P$ es invertible, define una transformación continua. Los eigenvalores de $P^{-1} A P$ son sus entradas en la diagonal, y podemos perturbarlos tan poquito como queramos para hacer que todos sean distintos.

De esta forma, existe una sucesión de matrices $A_k$, todas ellas diagonalizables, tales que $A_k \to A$ conforme $k\to \infty$. El resultado se sigue entonces de las siguientes observaciones:

  • Los coeficientes del polinomio característico de una matriz dependen continuamente de sus entradas.
  • Las entradas de potencias de una matriz dependen continuamente de sus entradas.
  • Así, la función $\chi_{M}(M)$ es continua en la matriz variable $M$.

Concluimos como sigue $\chi_{A_k}(A_k)=0$, por ser cada una de las matrices $A_k$ diagonalizables. Por la continuidad de $\chi_{M}(M)$, tenemos que
\begin{align*}
\chi_A(A)&=\lim_{k\to \infty} \chi_{A_k}(A_k)\\
&= \lim_{k\to \infty} O_n \\
&= O_n.
\end{align*}

$\square$

Terminamos esta entrada con un problema que usa el teorema de Cayley-Hamilton.

Problema. Muestra que para cualesquiera matrices $X,Y,Z$ de $2\times 2$ con entradas reales se cumple que
\begin{align*}
&ZXYXY + ZYXYX + XYYXZ + YXXYZ\\
= &XYXYZ + YXYXZ + ZXYYX + ZYXXY.
\end{align*}

Sugerencia pre-solución. Muestra que las matrices reales de $2\times 2$ de traza cero conmutan con cualquier matriz de $2\times 2$.

Solución. Si $A$ es una matriz de $2\times 2$ de traza cero, su polinomio característico es
\begin{align*}
\chi_A(x)&=x^2 – \text{tr}(A) x + \det(A)\\
&=x^2 + \det(A).
\end{align*}

Por el teorema de Cayley-Hamilton, se satisface entonces que $A^2=-\det(A) I_2$, así que $A^2$ es un múltiplo de la identidad, y por lo tanto conmuta con cualquier matriz de $2\times 2$.

La identidad que queremos mostrar se puede reescribir como $$Z(XY-YX)^2 = (XY-YX)^2Z.$$

La traza de $XY$ es igual a la traza de $YX$, y como la traza es una transformación lineal, tenemos que $$\text{tr}(XY-YX)= \text{tr}(XY)-\text{tr}(YX)=0.$$ El problema se termina aplicando la discusión de arriba a la matriz $$A=XY-YX.$$

$\square$

Más problemas

Puedes encontrar más problemas relacionados con el polinomio mínimo, el polinomio característico y el teorema de Cayley-Hamilton en la Sección 8.2, 8.4 y 8.5 del libro Essential Linear Algebra de Titu Andreescu. También hay más problemas relacionados con el teorema de Cayley-Hamilton en el Capítulo 4 del libro Mathematical Bridges de Andreescu, Mortici y Tetiva.

Álgebra Lineal I: Transformaciones multilineales

Introducción

Con esta entrada empieza el cuarto y último bloque del curso de Lineal I. En este último bloque hablaremos de determinantes de matrices, de eigenvectores, eigenvalores y de polinomios característicos. Además, probaremos el teorema espectral para matrices simétricas reales. Nuestro cimiento teórico para definir a los determinantes y probar sus propiedades fácilmente serán las transformaciones multilineales, que generalizan a las formas bilineales de las que ya hemos hablado.

Antes de empezar, vale la pena recapitular lo que hemos aprendido en los bloques anteriores:

  • Bloque 1: Primero, hablamos de vectores y matrices con entradas reales, y sus operaciones básicas. Luego, vimos que nos ayudan a plantear y resolver sistemas de ecuaciones lineales. Aquí hablamos de varias equivalencias de matrices invertibles. Al final de este bloque, definimos espacios vectoriales en general. En ellos hablamos de conjuntos generadores, independientes y bases. Mediante el lema de Steinitz definimos y probamos propiedades de espacios de dimensión finita.
  • Bloque 2: Vimos la teoría básica de transformaciones lineales. Hablamos de imágenes y kernels de transformaciones. Vimos cómo se comportan con independientes y bases. Luego hablamos de cómo representar transformaciones lineales entre espacios de dimensión finita usando matrices, y en particular cómo hacer cambios de base.
  • Bloque 3: Este bloque fue más «geométrico». Primero, vimos formas lineales y la teoría de dualidad y la aplicamos para ver que todo subespacio es intersección de hiperplanos. Luego, definimos formas bilineales y cuadráticas. De ahí salió la noción de producto interior, que nos permite «hacer geometría» en espacios vectoriales. Hablamos de desigualdades vectoriales, de bases ortogonales, para qué sirven y cómo encontrarlas.

La intuición que obtuvimos de formas bilineales nos ayudará a entender formas multilineales. Pero antes de entrar en este tema, que es un poco técnico, veamos un ejemplo que nos ayudará a entender lo que nos espera en este bloque.

Elevando una matriz a la 100

Considera la matriz $$A=\begin{pmatrix}-4&-10\\3&7\end{pmatrix}.$$ Imagina que para alguna aplicación queremos elevarla a la $100$. Esto probablemente lo puedas hacer a mano, y mejor aún, a computadora. Pero en aplicaciones en la vida real, puede que hacer los cálculos matriciales sea mucho incluso para una computadora. ¿Habrá una forma de que sea más fácil hacer $A^{100}$?

Resulta que para este caso en particular, sí. Considera las matrices $$B=\begin{pmatrix}3 & 5\\ 1& 2\end{pmatrix}$$ y $$D=\begin{pmatrix}1&0\\0&2\end{pmatrix}.$$ La matriz $B$ es invertible, con inversa $$B^{-1}=\begin{pmatrix}2&-5 \\-1&3\end{pmatrix},$$ como puedes verificar. Además, la matriz $A$ se puede «factorizar» así: $$A=B^{-1}DB.$$

Esto es muy útil para nuestros fines. Nota que
\begin{align*}
A^2&=(B^{-1}DB)(B^{-1}DB)\\
&=B^{-1}D^2B,
\end{align*}

y que de hecho inductivamente $A^n=B^{-1}D^n B$ para cualquier entero positivo $n$.

Por otro lado, como la matriz $D$ es diagonal, sus potencias son muy sencillas, de hecho, se puede probar inductivamente que $D^n=\begin{pmatrix}1&0\\0&2^{n}\end{pmatrix}$ para cualquier entero positivo $n$. De esta forma, podemos hacer $A^n$ con tan solo dos multiplicaciones de matrices:
\begin{align*}
A^n&=B^{-1}D^nB\\
&=\begin{pmatrix}2&-5 \\ -1&3\end{pmatrix}\begin{pmatrix}1&0\\ 0&2^{n}\end{pmatrix}\begin{pmatrix}3 & 5\\ 1& 2\end{pmatrix}\\
&=\begin{pmatrix}2&-5 \\ -1&3\end{pmatrix}\begin{pmatrix}3&5 \\ 2^n&2^{n+1}\end{pmatrix}\\
&=\begin{pmatrix}6-5\cdot 2^n& 10-5\cdot 2^{n+1}\\ -3+3\cdot 2^n & -5+3\cdot 2^{n+1}\end{pmatrix}
\end{align*}

Así, el problema que queremos resolver es sencillo ahora. Basta tomar $n=100$ para obtener $$A^{100}=\begin{pmatrix}6-5\cdot 2^{100} & 10-5\cdot 2^{101}\\ -3+3\cdot 2^{100} & -5+3\cdot 2^{101}\end{pmatrix}.$$

Si podemos escribir una matriz $A$ como $B^{-1}DB$ con $B$ invertible y $D$ diagonal, decimos que es diagonalizable. La conclusión anterior es que una matriz diagonalizable se puede elevar fácilmente a potencias.

Todo esto está muy bien pero, ¿de dónde salen las matrices $B$ y $D$? ¿toda matriz es diagonalizable? ¿qué otras ventajas tiene diagonalizar una matriz? Este tipo de preguntas son las que estudiaremos en este bloque.

Diagonalizar matrices de 2×2

El determinante de una matriz $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ en $M_2(\mathbb{R})$, como quizás hayas visto antes, está dado por $ad-bc$. Resulta que una forma sistemática para encontrar matrices $B$ y $D$ como las del ejemplo de arriba es la siguiente:

  • Tomar una matriz $A$.
  • Considerar el polinomio $P(\lambda)=\det(\lambda I – A)$. A este polinomio se le conoce como el polinomio característico de $A$.
  • Encontrar las raíces $\lambda_1$ y $\lambda_2$ de $P(\lambda)$. A estos valores se les llama los eigenvalores de $A$.
  • Encontrar vectores $v_1$ y $v_2$ no cero tales que $(A-\lambda_1I) v_1 =0$ y $(A-\lambda_2 I)v_2 = 0$. Estos simplemente son sistemas lineales homogéneos, que ya sabemos resolver con reducción gaussiana. A estos vectores se les llama eigenvectores de $A$.
  • Usar a $\lambda_1$ y $\lambda_2$ como las entradas de la matriz diagonal $D$.
  • Usar a $v_1$ y $v_2$ como columnas de la matriz $B^{-1}$. Encontrar la inversa de $B^{-1}$ para encontrar a $B$.

¿Cómo se hace en dimensiones más altas? ¿Siempre podemos seguir este proceso esto? ¿Hay algunos tipos de matrices para los que siempre funcione? Estas son otras preguntas que responderemos en el transcurso de estas semanas.

Mientras tanto, veamos qué sucede si aplicamos este método para la matriz $A=\begin{pmatrix}-4&-10\\3&7\end{pmatrix}$ del ejemplo. Tenemos que el determinante de $\lambda I-A = \begin{pmatrix}\lambda+4&-10\\-3&\lambda – 7\end{pmatrix}$ es el polinomio \begin{align*}P(\lambda)&= (\lambda+4)(\lambda-7)+30\\ &=\lambda^2-3\lambda-28+30\\ &=\lambda^2-3\lambda+2,\end{align*} cuyas raíces son $1$ y $2$. De aquí construimos $$D=\begin{pmatrix}1&0\\0&2\end{pmatrix}.$$

Busquemos los eigenvectores. Por un lado, si queremos que suceda que $Av=v$ para un vector $v=(x,y)$, necesitamos que $$(-4x-10y, 3x+7y)=(x,y),$$ y una de las soluciones es $(x,y)=(2,-1)$. Por otro lado, si queremos que suceda que $Av=2v$ para un vector $v=(x,y)$, necesitamos que $$(-4x-10y,3x+7y)=(2x,2y),$$ y una de las soluciones es $(x,y)=(-5,3)$. De aquí construimos $$B^{-1}=\begin{pmatrix}2&-5 \\-1&3\end{pmatrix},$$ y podemos hacer reducción gaussiana para encontrar $B$. Observa que obtenemos exactamente las mismas matrices que propusimos en el ejemplo.

Nos gustaría poder hacer esto mismo en dimensiones más altas y entender cuándo y por qué funciona. Para ello, lo primero que necesitamos hacer es entender muy bien el concepto de determinante y aprender a manejar hábilmente sus propiedades principales.

Hay varias formas de definir determinante y quizás ya hayas visto algunas en cursos anteriores. En este curso definiremos determinante mediante transformaciones multilineales. Es un poco más abstracto, pero ayuda a que sea más fácil probar técnicas para trabajar con determinantes y entender por qué funcionan.

Transformaciones multilineales

En el bloque anterior ya hablamos de formas bilineales. Como recordatorio, tomábamos un espacio vectorial real $V$ y una forma bilineal era una función $b:V\times V\to \mathbb{R}$ tal que cada que fijábamos una entrada, la función era lineal en la otra. La palabra «forma» la usábamos porque la imagen caía en el campo.

Generalizaremos esta idea para más entradas, y para cuando la imagen cae en cualquier espacio vectorial. Trabajaremos en espacios vectoriales sobre un campo $F$, que puedes pensar que es $\mathbb{R}$ o $\mathbb{C}$.

Definición. Sean $V_1,\ldots, V_d$ y $W$ espacios vectoriales sobre $F$. Una función $f:V_1\times \ldots \times V_d\to W$ es multilineal si cada que fijamos una $i$ y para cada $j\neq i$ fijamos vectores $v_j$ en $V_j$, la transformación $$V_i\to W$$ dada por $$v_i\mapsto f(v_1,v_2,\ldots,v_d)$$ es lineal.

Aclaración. De nuevo, es muy importante no confundir una transformación multilineal con una transformación lineal del espacio vectorial $V_1\times \ldots \times V_d$ a $W$.

Ejemplo. Consideremos $\mathbb{R}^3=\mathbb{R}\times \mathbb{R} \times \mathbb{R}$ y consideramos la transformación $T:\mathbb{R}^3\to \mathbb{R}$ dada por $T(x,y,z)=xyz.$ Afirmamos que esta es una transformación multilineal.

Si fijamos $y$ y $z$, tenemos que mostrar que la transformación $x\mapsto xyz$ es lineal, lo cual es cierto pues para $x_1,x_2$ reales y $r$ real se cumple que
\begin{align*}
T(x_1+rx_2,y,z)&=(x_1+rx_2)yz\\
&=x_1yz + rx_2yz\\
&=T(x_1,y,z)+rT(x_2,y,z).
\end{align*}

De manera similar se prueba para las otras entradas.

Sin embargo, $T$ no es una transformación lineal. Por ejemplo, no saca escalares ya que $T(1,1,1)=1\cdot 1\cdot 1=1$ y $$T(2,2,2)=8\neq 2 = 2T(1,1,1).$$

$\square$

Las transformaciones multilineales son muy generales, y ayudan a crear algo que se llama el producto tensorial. Sin embargo, para los fines que necesitamos ahora, no hace falta tanta generalidad. Sólo nos enfocaremos en las transformaciones multilineales cuando $V_1=V_2=\ldots=V_d$, es decir, en transformaciones $f:V^d\to W$.

Definición. Para $d$ un entero positivo y $V$, $W$ espacios vectoriales, una transformación $d$-lineal es una transformación multilineal de $V^d$ a $W$.

Ejemplo. Si $V$ es un espacio vectorial real y $W=\mathbb{R}$, entonces toda forma bilineal $b:V\times V\to \mathbb{R}$ es una transformación $2$-lineal.

Ejemplo. Tomemos $V=\mathbb{R}^3$ y $d=4$. Tomemos las siguientes formas lineales en $V$:
\begin{align*}
l_1(x,y,z)&=x+y+z\\
l_2(x,y,z)&=3x-2y+z\\
l_3(x,y,z)&=y\\
l_4(x,y,z)&=x+z.
\end{align*}

Consideremos la transformación $T:V^4\to \mathbb{R}$ dada por $$T(v_1,v_2,v_3,v_4)=l_1(v_1)l_2(v_2)l_3(v_3)l_4(v_4),$$ por ejemplo, si $v_1=(1,0,0)$, $v_2=(0,1,0)$, $v_3=(0,1,1)$ y $v_4=(1,1,1)$, tenemos que

\begin{align*}
l_1(v_1)&=l_1(1,0,0)=1+0+0=1\\
l_2(v_2)&=l_2(0,1,0)=0-2+0=-2\\
l_3(v_3)&=l_3(0,1,1)=1\\
l_4(v_4)&=l_4(1,1,1)=1+1=2,
\end{align*}

y por lo tanto $$T(v_1,v_2,v_3,v_4)=(1)(-2)(1)(2)=-4.$$

Tenemos que $T$ es $4$-lineal pues para cada $i$, al fijar las tres entradas $v_j$ con $j\neq i$ tenemos que $T(v_1,v_2,v_3,v_4)$ es de la forma $cl_i(v_i)$ con $c$ un escalar. Como $l_i$ es una forma lineal, $cl_i$ también.

$\square$

Nos interesan un tipo todavía más restringido de transformaciones multilineales. Para definirlas, tenemos que hacer una pequeña desviación hacia el tema de permutaciones.

Permutaciones y signos

Tomemos un entero positivo y usemos $[n]$ para hablar del conjunto de los enteros de $1$ a $n$, es decir, $[n]:=\{1,2,\ldots,n\}$.

Definicion. Una permutación de $[n]$ es una función biyectiva $\sigma: [n]\to [n]$.

En otras palabras, una permutación básicamente «revuelve los elementos» de $[n]$. Usualmente expresamos a la permutación con la notación $$\begin{pmatrix} 1 & 2 & \ldots & n\\ \sigma(1) & \sigma(2) & \ldots & \sigma(n)\end{pmatrix}$$

Ejemplo. La función $\sigma:[3]\to [3]$ tal que $\sigma(1)=2$, $\sigma(2)=3$ y $\sigma(3)=1$ es una permutación que manda al conjunto ordenado $(1,2,3)$ al conjunto ordenado $(2,3,1)$. La expresamos como $$\begin{pmatrix} 1& 2 & 3\\ 2 & 3 & 1\end{pmatrix}.$$

$\square$

Como las permutaciones son funciones, entonces podemos componerlas. Para evitar complicar la notación, no pondremos el signo de composición $\circ$, sino simplemente permutaciones adyacentes. La composición usualmente no es conmutativa.

Ejemplo. Tomemos la permutación $\sigma_1:[4]\to [4]$ representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{pmatrix}$$ y la permutación $\sigma_2:[4]\to [4]$ representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 4 & 2 & 3 & 1\end{pmatrix}.$$

¿Qué hace la función $\sigma_1 \sigma_2$? Es una función de $[4]$ a $[4]$ y cumple lo siguiente:
\begin{align*}
\sigma_1(\sigma_2(1))&=\sigma_1(4)=4,\\
\sigma_1(\sigma_2(2))&=\sigma_1(2)=2,\\
\sigma_1(\sigma_2(3))&=\sigma_1(3)=1,\\
\sigma_1(\sigma_2(4))&=\sigma_1(1)=3,
\end{align*}

es decir, la composición es la permutación representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 4 & 2 & 1 & 3\end{pmatrix}.$$

Por otro lado, la función $\sigma_2\sigma_1$ hace algo un poco diferente. También es una función de $[4]$ a $[4]$ y cumple lo siguiente:
\begin{align*}
\sigma_2(\sigma_1(1))&=\sigma_2(3)=3,\\
\sigma_2(\sigma_1(2))&=\sigma_2(2)=2,\\
\sigma_2(\sigma_1(3))&=\sigma_2(1)=4,\\
\sigma_2(\sigma_1(4))&=\sigma_2(4)=1,
\end{align*}

así que es la permutación representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 3 & 2 & 4 & 1\end{pmatrix}.$$

$\square$

Al conjunto de permutaciones de $[n]$ le llamamos $S_n$. Tomemos una permutación $\sigma$ en $S_n$. Para dos elementos $i<j$ en $[n]$, decimos que $\sigma$ los invierte si $\sigma(i)>\sigma(j)$.

Definición. Sea $\sigma$ un elemento de $S_n$. Decimos que el signo de $\sigma$ es $1$ si invierte una cantidad par de parejas, y es $-1$ si invierte una cantidad impar de parejas. Al signo de $\sigma$ lo denotamos $\text{sign}(\sigma)$.

Ejemplo. La permutación $$\begin{pmatrix}1& 2 & 3 & 4 & 5\\ 5 & 2 & 1 & 4 & 3\end{pmatrix}$$ invierte a la pareja $(1,2)$ pues $\sigma(1)=5>2=\sigma(2)$. Todas las parejas que invierte son $(1,2)$, $(1,3)$, $(1,4)$, $(1,5)$, $(2,3)$, $(4,5)$. Estas son $6$ parejas, que son una cantidad par, así que la permutación tiene signo $1$.

La permutación identidad en $S_n$ no invierte ninguna pareja, así que tiene signo $1$.

$\square$

En la siguiente entrada combinaremos estas nociones de permutaciones y de transformaciones multilineales para hablar de antisimetría y alternancia. Por el momento, reflexiona en lo siguiente: si $\sigma$ es una permutación en $S_n$ y $f:V^n\to W$ es una transformación $n$-lineal, entonces la transformación $\sigma f:V^n \to W$ definida por $$(\sigma f)(x_1,x_2,\ldots,x_n) = f(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma(n)})$$ también es una transformación $n$-lineal.

Tarea moral

  • Toma $T:V^d\to W$ una transformación $d$-lineal. Muestra que si de entre $x_1,\ldots,x_d$ elementos de $V$ alguno de ellos es el vector $0$, entonces $T(x_1,\ldots,x_d)=0$.
  • Muestra que la transformación del ejemplo de transformaciones multilineales también es lineal en la segunda y tercera entradas.
  • Supón que $l_1,\ldots,l_d$ son formas lineales de $V$ al campo $F$. Muestra que $f:V^d\to F$ dada por $$f(x_1,\ldots,x_d)=l_1(x_1)\ldots l_d(x_d)$$ es una transformación $d$-lineal.
  • Encuentra una transformación lineal $T:\mathbb{R}^3\to \mathbb{R}$ que no sea una transformación multilineal.
  • Muestra que la composición de dos permutaciones siempre es una permutación.
  • Muestra que para dos permutaciones $\sigma_1$ y $\sigma_2$ se tiene que $$\text{sign}(\sigma_1\sigma_2)=\text{sign}(\sigma_1)\text{sign}(\sigma_2).$$

Más adelante…

En esta primera entrada de la cuarta unidad hemos visto cómo la intuición que obtuvimos cuando estudiamos formas bilineales, nos ha ayudado a entender el concepto de formas multilíneales. En las siguientes entradas del blog, abordaremos el concepto de determinante y aprenderemos cómo se usa.

Para la definición de determinante y para demostrar algunas de sus propiedades , usaremos lo que aprendimos en esta entrada sobre las transformaciones multilineales. Veremos que es una herramienta del álgebra lineal bastante útil y entender detalladamente cómo funciona será fundamental para abordar uno de los teoremas más importantes del curso: el teorema espectral.

Entradas relacionadas

Álgebra Superior II: Problemas de fórmula de De Moivre y raíces n-ésimas

Introducción

En una entrada anterior, vimos cómo se comporta la multiplicación en forma polar y cómo podemos aprovechar esto para hacer potencias. Concretamente, el teorema de De Moivre es muy útil para elevar complejos a potencias sin tener que hacer gran cantidad de productos.

Los primeros dos videos son ejercicios que ejemplifican lo anterior. Después, usamos lo que aprendimos en la entrada de raíces $n$-ésimas para resolver dos problemas más.

Al final, compartimos un enlace en el que puedes practicar más con operaciones de números complejos.

Problemas de fórmula de De Moivre

Para empezar, vemos dos problemas de exponenciación completa. El primero es una aplicación directa de la fórmula de De Moivre.

Problema. Usa el teorema de De Moivre para elevar a la potencia indicada $$\left(\sqrt{3}(\cos 25^\circ + i \sin 25^\circ\right)^6.$$

En algunos problemas es posible que sea necesario primero obtener la forma polar de un complejo antes de poder usar la fórmula de De Moivre. El segundo problema es un ejemplo de esto.

Problema. Encuentra el valor de $(\sqrt{3}-i)^{12}$.

Problemas de raíces $n$-ésimas

Si ahora, en vez de querer elevar a cierta potencia, queremos obtener raíces $n$-ésimas, con el uso de un poderoso teorema que dedujimos a partir de la fórmula de De Moivre, sabemos que son exactamente $n$ raíces, y podemos calcularlas explícitamente. A continuación, vemos dos ejercicios que ejemplifican lo anterior.

Problema. Obtén las raíces cúbicas del complejo $3+4i$.

Problema. Obtén las raíces quintas del complejo $16\sqrt{2}(-1+i)$.

Ojo. En algún momento del siguiente video se encuentra que el ángulo es $360^\circ – 45^\circ$. Sin embargo, debe decir $180^\circ – 45^\circ$, pues se debe estar en el cuadrante 2, ya que la parte real es negativa y la compleja es positiva.

Fotos de los ejercicios de hoy

Finalmente, les dejo fotos de lo resuelto en los videos, para quienes tengan dificultades para ver los videos. En la tercera foto no están tan desarrolladas las cuentas como en el video.

Problemas de fórmula de De Moivre, 1
Problemas de fórmula de De Moivre y de raíces
Problemas de raíces n-ésimas.

Más material de De Moivre y raíces

Puedes practicar más acerca de exponenciación y raíces complejas con los videos y ejercicios del tema en Khan Academy.

Álgebra Superior II: Raíces en los complejos y raíces de la unidad.

Introducción

En esta entrada veremos cómo resolver, en $\mathbb{C}$, la ecuación $w^n=z$, en donde $z$ es un complejo y $n$ es un entero positivo. Puedes pensar esto como que aprenderemos a obtener raíces en los complejos, pero sólo para $n$ entero. Más adelante hablaremos de la función exponencial compleja que nos permitirá elevar a otro tipo de exponentes.

Nuestra herramienta principal será la fórmula de De Moivre, que ya demostramos en una entrada anterior. Encontrar raíces $n$-ésimas es una herramienta más en nuestra caja para trabajar con números complejos, que hasta el momento ya incluye resolver ecuaciones cuadráticas complejas y sistemas de ecuaciones lineales complejos.

Introducción a raíces en los complejos

Pensemos en un ejemplo sencillo. ¿Cuáles son los complejos $w$ tales que $w^4=1$? En $\mathbb{R}$ tenemos dos de ellos: $1$ y $-1$. Como $$(-i)^4=i^4=(-1)^2=1,$$ en $\mathbb{C}$ tenemos otras dos soluciones: $i$ y $-i$. Así que tenemos $4$ soluciones en $\mathbb{C}$: $1$, $-1$, $i$ y $-i$.

Para mostrar que son las únicas en este sencillo caso, podemos hacer lo siguiente. Expresamos $1$ en forma polar $1=\text{cis}(0)$ y también, en forma polar, una solución $w=s\text{cis}(\alpha)$, con $\theta$ en $[0,2\pi)$. Por el teorema de De Moivre, tenemos que $$1=w^4=s^4\text{cis}(4\alpha).$$

Así, la norma $s$ de $w$ debe satisfacer $s^4=1$, y además $\text{cis}(4\alpha)$ debe ser $1$, por lo que $4\alpha$ debe ser un múltiplo entero de $2\pi$. La norma es un real positivo, así que la única solución para $s$ es $1$. Ahora, ¿cuántos argumentos $\alpha$ en $[0,2\pi)$ hacen que $4\alpha$ sea un múltiplo entero de $2\pi$?

Para determinar esto, notemos que $4\alpha$ está en $[0,8\pi)$, y ahí hay exactamente cuatro múltiplos enteros de $2\pi$, que son $$0,2\pi, 4\pi, 6\pi.$$ Esto es justo lo que limita las soluciones a que sean a lo más $4$.

Podemos continuar para verificar que en efecto son las soluciones que ya encontramos. Las soluciones para $\alpha$ en cada caso son $$0,\frac{\pi}{2},\pi,\frac{3\pi}{2}.$$ Concluimos entonces que las soluciones complejas de $w^4=1$ son, en forma polar,
\begin{align*}
w_1&=\text{cis}(0)\\
w_2&=\text{cis}\left(\frac{\pi}{2}\right)\\
w_3&=\text{cis}\left(\pi\right)\\
w_4&=\text{cis}\left(\frac{3\pi}{2}\right),
\end{align*}

que son exactamente $1,i,-1,-i$.

$\square$

El teorema de raíces en los complejos

La discusión anterior funciona en general para cualquier entero positivo $n$ y para cualquier complejo $\mathbb{C}$. Siempre tenemos exactamente $n$ soluciones y sabemos cómo se ven en forma polar.

Teorema. Sea $z=r\text{cis}(\theta)$ un número complejo, distinto de cero, dado en forma polar y $n$ un entero positivo. Existen exactamente $n$ elementos distintos de $\mathbb{C}$ tales que $w^n = z$. Están dados en forma polar por $$w_j=r^{1/n} \text{cis}\left(\frac{\theta}{n} + j\frac{2\pi}{n}\right)$$ para $j=0,1,2\ldots,n-1$.

Demostración. Tomemos una solución $w$ y la escribimos en forma polar $w=s\text{cis}(\alpha)$, con $\alpha$ en $[0,2\pi)$. Usando que $w$ es solución y la fórmula de De Moivre, obtenemos que $$r\text{cis}(\theta)=s^n\text{cis}(n\alpha).$$ Como $s$ tiene que ser real positivo, obtenemos que $s=r^{1/n}$ (aquí estamos usando la raíz $n$-ésima en los reales).

El ángulo $n\alpha$ está en el intervalo $[0,2n\pi)$, y debe diferir en un múltiplo entero de $2\pi$ del ángulo $\theta$. Como $\theta$ está en $[0,2\pi)$, las únicas posibilidades para $n\alpha$ pueden ser los $n$ valores $$\theta, \theta+2\pi,\ldots, \theta+2(n-1)\pi,$$ de donde las soluciones para $\alpha$ son $$\frac{\theta}{n},\frac{\theta}{n}+\frac{2\pi}{n}, \ldots, \frac{\theta}{n} + (n-1)\frac{2\pi}{n},$$ respectivamente. Como son ángulos distintos en $[0,2\pi)$, obtenemos las posibles soluciones distintas $$r^{1/n} \text{cis}\left(\frac{\theta}{n} + j\frac{2\pi}{n}\right)\quad \text{para $j=0,\ldots,n-1$}.$$

Verificar que en efecto son soluciones es sencillo, ya sea revirtiendo los pasos que hicimos, o usando directamente la fórmula de De Moivre. Esta verificación queda como tarea moral.

$\square$

Observa que el teorema dice que para obtener una raíz podemos empezar del complejo de norma $r^{1/n}$ y argumento $\frac{\theta}{n}$, y de ahí obtener el resto de las raíces en los complejos «rotando repetidamente $\frac{2\pi}{n}$ en el plano complejo». Esto muestra que las raíces forman los vértices de un $n$-ágono regular.

Nos costó un poco de trabajo mostrar que teníamos a lo más $n$ soluciones. En realidad, cualquier ecuación polinomial de grado $n$, es decir, de la forma $$a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0=0$$ tiene a lo más $n$ soluciones. Esto lo veremos con toda generalidad en la última unidad, cuando hablemos de polinomios.

Ejemplos de obtener raíces en los complejos

Ejemplo. Encontremos todas las raíces séptimas del complejo $128\text{cis}\left(\frac{14\pi}{13}\right)$. Para empezar, notemos que $128^{1/7}=2$, de modo que todas las raíces tienen norma $2$.

Una de las raíces tiene argumento $\frac{14\pi}{7\cdot 13}=\frac{2\pi}{13}$ y el argumento del resto difiere en múltiplos enteros de $\frac{2\pi}{7}$. De esta forma, las raíces son

\begin{align*}
w_1&=2\text{cis}\left(\frac{2\pi}{13}\right)\\
w_2&=2\text{cis}\left(\frac{2\pi}{13}+\frac{2\pi}{7}\right)=2\text{cis}\left(\frac{40\pi}{91}\right)\\
w_3&=2\text{cis}\left(\frac{2\pi}{13}+\frac{4\pi}{7}\right)=2\text{cis}\left(\frac{66\pi}{91}\right)\\
w_4&=2\text{cis}\left(\frac{2\pi}{13}+\frac{6\pi}{7}\right)=2\text{cis}\left(\frac{92\pi}{91}\right)\\
w_5&=2\text{cis}\left(\frac{2\pi}{13}+\frac{8\pi}{7}\right)=2\text{cis}\left(\frac{118\pi}{91}\right)\\
w_6&=2\text{cis}\left(\frac{2\pi}{13}+\frac{10\pi}{7}\right)=2\text{cis}\left(\frac{144\pi}{91}\right)\\
w_7&=2\text{cis}\left(\frac{2\pi}{13}+\frac{12\pi}{7}\right)=2\text{cis}\left(\frac{170\pi}{91}\right).
\end{align*}

$\square$

Problema. Sabemos que $(2-3i)^4=-119+120i$. Encuentra las otras raíces cuartas de $-119+120i$.

Solución. Podríamos pasar $-119+120i$ a forma polar y usar el método anterior. Esto funciona y dará una solución. Pero veamos una solución alternativa más corta, que nos ayuda a entender mejor el teorema de raíces en los complejos.

De acuerdo con lo que probamos, las raíces varían únicamente en argumento, al que se le va sumando $\frac{\pi}{2}$. Es decir, si tenemos una raíz en el plano complejo, las demás se obtienen de ir rotando $\frac{\pi}{2}$ (recuerda que esto es $90^\circ$) desde el origen. Al ir rotando el punto $(2,-3)$ en el plano complejo en este ángulo, obtenemos los puntos $(-3,-2)$, $(-2,3)$ y $(3,2)$, de modo que las otras tres raíces son $-3-2i$, $-2+3i$ y $3+2i$.

Otra forma más de pensarlo es la siguiente. Si ya tenemos una raíz cuarta $w$ de un complejo $z$, entonces todas las raíces se obtienen multplicando por $1,i,-1, -i$. En efecto, por ejemplo, $$(iw)^4=i^4w^4=w^4=1.$$ Así, para el problema que nos interesa, las soluciones son

\begin{align*}w_1&=2-3i\\w_2&=i(2-3i)=3+2i\\w_3&=-(2-3i)=-2+3i\\w_4&=-i(2-3i)=-3-2i,\end{align*}
lo cual coincide con lo que habíamos encontrado antes.

$\square$

Raíces $n$-ésimas de la unidad

Un caso particular importante de la teoría desarrollada en la sección anterior es cuando $z$ es $1$. Sea $n$ un entero positivo y $w$ un complejo tal que $w^n=1$. A $w$ se le conoce como una raíz $n$-ésima de la unidad.

Teorema (de las raíces $n$-ésimas de la unidad). Sea $n$ un entero positivo. Existen exactamente $n$ raíces $n$-ésimas de la unidad distintas. Si $\omega$ es la que tiene el menor argumento positivo, entonces dichas raíces son $$1,\omega, \omega^2,\ldots, \omega^{n-1}.$$

La demostración se sigue fácilmente del teorema de raíces $n$-ésimas y queda como tarea moral. Cualquier raíz $n$-ésima $\omega$ tal que sus primeras potencias generen todas las raíces $n$-ésimas de la unidad se le conoce como una raíz primitiva.

Las raíces $n$-ésimas de la unidad tienen una interpretación geométrica bonita. Forman los vértices del $n$-ágono regular con $n$ vértices, sobre la circunferencia unitaria, donde uno de los vértices es $1$.

Ejemplo. Obtengamos las raíces quintas de la unidad. Primero, obtengamos la de menor argumento positivo, que por el teorema de raíces en los complejos, es $$\omega = \text{cis}\left(\frac{2\pi}{5}\right).$$ El resto de las raíces son entonces $\omega^2$, $\omega^3$, $\omega^4$ y $1$. Las podemos encontrar en el plano complejo como vértices del siguiente pentágono regular:

Ejemplo de raíces en los complejos: raíces quintas de la unidad
Raíces quintas de la unidad

Cualquiera de $\omega$, $\omega^2$, $\omega^3$ y $\omega^4$ son raíces primitivas, pero $1$ no es raíz primitiva pues sus potentcias sólo son él mismo.

$\square$

Las raíces $n$-ésimas de la unidad se utilizan en muchos contextos. Aunque se puede trabajar con ellas de forma explícita, muchas veces se utilizan sólo las propiedades algebraicas que cumplen. A continuación enunciamos algunas.

Teorema. Sea $\omega$ una raíz primitva $n$-ésima de la unidad. Las raíces $n$-ésimas de la unidad $$\omega_i = \omega^i $$ para $i=0,\ldots,n-1$ satisfacen las siguientes propiedades:

  • Para $n>1$, se tiene que $\omega_0+\ldots+\omega_{n-1}=0$.
  • Para $k=0,1,\ldots,n-1$, se tiene que $$(\omega_k)^{-1}=\overline{\omega_k}=\omega_{n-k}.$$
  • Se tiene que $\omega_0\cdot\ldots\cdot \omega_{n-1} = (-1)^{n+1}$.

Demostración. Empezamos con el primer inciso. Si $n>1$, tenemos que $1$ no es raíz primitiva, así que para el primer inciso sabemos que $\omega\neq 1$. Usamos la fórmula para suma de términos en una progresión geométrica:
\begin{align*}
\omega_0+\omega_1&+\ldots+\omega_{n-1}\\
&= 1+\omega+\ldots+\omega^{n-1}\\
&=\frac{1-\omega^n}{1-\omega}\\
&=\frac{1-1}{1-\omega}\\
&=0.
\end{align*}

Para la segunda parte, notemos que $$\omega_k\omega_{n-k}=\omega^k\omega^{n-k}=\omega^n=1,$$ lo cual prueba una de las igualdades. La otra igualdad se sigue del hecho general que el inverso de un complejo de norma $1$ es su conjugado, cuya demostración queda como tarea moral.

La tercera parte se sigue de la propiedad anterior. Al multiplicar todas las raíces de la unidad, podemos emparejar a cada raíz con su conjugado para obtener producto $1$. Las únicas excepciones es cuando emparejamos a un complejo consigo mismo, es decir, para cuando $\omega_k=\overline{\omega_k}$, lo cual sucede sólo cuando $\omega_k$ es real. Las únicas posibilidades son $1$ ó $-1$. El $1$ no tiene problema pues colabora con un factor $1$. Si $n$ es impar, $-1$ no es raíz $n$-ésima, así que no contribuye al producto. Si $n$ es par sí. Esto muestra lo que queremos pues $(-1)^{n+1}$ es $1$ si $n$ es impar y $-1$ si es par.

$\square$

Para un entero positivo $n$, llamemos $(U_n,\cdot)$ al conjunto de raíces $n$-ésimas de la unidad equipadas con el producto complejo.

Teorema. Para cada entero positivo $n$, se tiene que $(U_n,\cdot)$ es un grupo y es isomorfo a $(\mathbb{Z}_n,+)$.

Demostración. El producto de cualesquiera dos raíces $n$-ésimas es también una raíz $n$-ésima. Por el teorema anterior, los inversos multiplicativos de las raíces $n$-ésimas también son raíces $n$-ésimas. Esto basta para mostrar que se forma un grupo.

Para la segunda parte, notamos que ambos grupos son el grupo cíclico de $n$ elementos. Una correspondencia entre ellos está dada por mandar $[1]_n$ a cualquier raíz primitiva.

$\square$

Tarea moral

  • Encuentra las raíces cúbicas de $8-8i$ y dibújalas en el plano complejo.
  • Verifica que las soluciones obtenidas en el teorema de raíces $n$-ésimas en efecto son soluciones.
  • Muestra el teorema de las raíces $n$-ésimas de la unidad.
  • Prueba que si $z$ es un complejo de norma $1$, entonces su inverso es su conjugado.
  • Sea $\omega$ una raíz $n$-ésima primitiva de la unidad. Muestra que $w^k$ es una raíz primitiva si y sólo si $n$ y $k$ son primos relativos, es decir, $\MCD{n,k}=1$. Sugerencia: Usa lo que sabemos de soluciones a ecuaciones diofantinas lineales.
  • Encuentra de manera explícita la parte real y la parte imaginaria de todas las raíces quintas de la unidad.
    Sugerencia: La ecuación $w^5-1=0$ se puede factorizar como $$(w-1)(w^4+w^3+w^2+w+1)$$ y $w^4+w^3+w^2+w+1$ se puede factorizar como $$\left(w^2+\frac{1+\sqrt{5}}{2}w+1\right)\left(w^2+\frac{1-\sqrt{5}}{2}w+1\right).$$ Usa lo que sabemos de resolver ecuaciones cuadráticas cojmplejas.