Introducción
Una de las nociones más importantes en álgebra lineal es la de «matriz invertible». Llamemos a la matriz identidad de
, es decir, a la que tiene
en cada entrada de la diagonal principal, y
en las demás.
Una matriz
de
es invertible si existe una matriz
de
tal que
.
Una consecuencia rápida es que dicha matriz es única, así que le podemos dar la notación
. De la definición (y asociatividad) se puede ver rápido que si
y
son invertibles, entonces su producto
también, con inversa
, en otras palabras, «producto de invertibles es invertible».
Un detalle curioso de la definición es que pide no sólo que , sino que para la misma matriz
también se tenga que
. Por un lado, a priori esto tiene sentido pues el producto de matrices no es conmutativo, es decir, ocurre a veces que
. Sin embargo, como veremos más adelante en esta entrada, en la definición de matriz invertible basta con tener una de estas igualdades.
De hecho, la idea de esta entrada es presentar y demostrar varias equivalencias a la afirmación « es una matriz invertible». La presentación sigue un poco el orden de ideas del capítulo 3.4 del libro Essential Linear Algebra with Applications: A Problem-Solving Approach de Titu Andreescu. La idea es explicar el siguiente diagrama, en donde agrupamos a las equivalencias en grupitos que corresponden a partes de una mariposa:

Algunas definiciones
Antes de enunciar el resultado principal, conviene recordar algunas definiciones y un par de resultados importantes.
Una operación elemental es aplicar a una matriz de las siguientes operaciones:
- Intercambio de dos filas.
- Multiplicar todas las entradas de alguna de sus filas por un elemento
no cero.
- Sumar a una fila un múltiplo de otra fila.
Una matriz elemental es una matriz obtenida de aplicar a exactamente una operación elemental.
Una fila de una matriz es una fila cero si todas sus entradas son iguales a cero. A la primer entrada no cero (de izquierda a derecha) de una fila que no sea fila cero se le llama pivote. Una matriz es escalonada reducida si cumple las siguientes tres propiedades:
- Todas las filas cero están hasta abajo.
- En todas las filas no cero los pivotes son iguales a
.
- Si una fila no cero
está arriba de otra fila no cero
, entonces el pivote de
está estrictamente a la izquierda del pivote de
.
- Si una entrada tiene al pivote de una fila, entonces todas las demás entradas de la columna son iguales a
.
Un resultado (no trivial) es que cualquier matriz se puede llevar a una (y sólo una) matriz escalonada reducida usando únicamente operaciones elementales, a la cual le llamamos su forma escalonada reducida. Estas son todas las definiciones que necesitamos. Estamos listos para pasar al enunciado del teorema principal.
Teorema de la mariposa de equivalencias
Teorema: Sea una matriz de
con entradas en un campo
. Entonces, todas las siguientes afirmaciones son equivalentes:
es una matriz invertible.
- La forma escalonada reducida
de
es
.
es producto de matrices elementales.
- Para todo
, el sistema de ecuaciones
tiene una única solución
.
- Para todo
, el sistema de ecuaciones
tiene una solución
.
- Existe una matriz
de
tal que
.
- Existe una matriz
de
tal que
.
Por supuesto, estas no son todas las formas de caracterizar una matriz invertible. Hay otras formas de hacerlo en términos de determinantes, por ejemplo. En el camino recordaremos varias de las definiciones que están en este teorema.
Le llamo el teorema de la mariposa de equivalencias porque podemos agrupar a estos números en tres «grupos» principales de equivalencias «parecidas», que además nos van a recordar cómo va la prueba.

Primero veremos la equivalencia entre 1, 2 y 3 (un ala). Luego, entre 1,4,5 (otra ala). Después, entre 1 y 6 (antena derecha). Finalmente, entre 1 y 7 (antena izquierda).
Un par de lemas auxiliar
Antes de demostrar el teorema de equivalencias, enunciamos y argumentamos dos resultados útiles
Es fácil convencerse de que aplicar una operación elemental a una matriz es lo mismo que multiplicar a
por la izquierda por la matriz elemental correspondiente a la operación. Como toda matriz
se puede llevar a su forma escalonada reducida mediante operaciones elementales, concluimos lo siguiente.
Lema 1: Para toda matriz existe una matriz
que es producto de matrices elementales tal que
es la forma escalonada reducida de
, es decir
.
También es fácil convencerse de que cada matriz elemental es invertible, pues las operaciones elementales se pueden revertir, y la inversa de la matriz elemental es precisamente la matriz elemental correspondiente a la operación inversa. Además, producto de matrices invertibles es invertible. De este modo, concluimos lo siguiente:
Lema 2: Si es una matriz que es producto de matrices elementales, entonces
es invertible y también es producto de matrices elementales.
La demostración del teorema de la mariposa
Usaremos el diagrama de la mariposa para demostrar todas las equivalencias. Lo que haremos es probar una implicación por cada una de las siguientes flechas:

Empezamos con el ala izquierda de la mariposa.
(1) implica (2): Tomemos una matriz invertible . Por el Lema 1, existe una matriz producto de elementales tal que
. Como
y
son invertibles, entonces
también es invertible.
Si tuviera una fila cero, digamos la
, no sería invertible. Esto sucede ya que para cualquier matriz
de
tendríamos que la fila
de
también sería cero, y entonces
nunca sería
. Como sabemos que
es invertible, entonces todas sus filas no son cero y por lo tanto todas tienen pivote. Así, tenemos
pivotes y por lo tanto tiene que haber exactamente un pivote por columna. Como
es escalonada reducida, estos pivotes tienen que estar exactamente uno en cada entrada de la diagonal principal. Como además cada pivote es la única entrada no cero de su columna, concluimos que
es la identidad.
(2) implica (3): Tomemos una matriz cuya forma escalonada reducida es la identidad. Por el Lema 1, existe una matriz producto de elementales tal que
. Por el Lema 2,
es invertible y
es producto de matrices elementales. Multiplicando por
a la izquierda a la identidad
obtenemos
, es decir,
es producto de matrices elementales.
(3) implica (1): Finalmente, si es producto de matrices elementales, por el Lema 2 tenemos que
es invertible.
Con esto terminamos la primer ala de la mariposa. Notemos que cierran un ciclo, así que a partir de ahora podemos usar libremente la equivalencia entre 1, 2 y 3. Hagamos la segunda ala.

(1) implica (4): Supongamos que es invertible y tomemos cualquier
en
. Notemos que
es solución de
pues satisface
. Además, si
y
son soluciones de
, tendríamos que
y mutiplicando por
a la izquierda tendríamos que
. De este modo,
tiene una única solución para todo
en
.
(4) implica (5): Esta demostración es inmediata. Si tiene una única solución, en particular tiene una solución.
(5) implica (1): Supongemos que tiene una solución
en
para todo
en
. Afirmamos que esto implica que
tiene solución para para todo
en
. Tomemos una
en
. Por el Lema 1, hay una matriz invertible
tal que
. Por hipótesis, existe una solución
para
. Tomemos esa
. Notemos que
. Es decir, justo esa
es solución para
.
En particular, tiene solución para cuando
es el vector cuya
-ésima entrada es
y las demás cero. Así, es imposible que la
-ésima fila de
sea cero, ya que en caso contrario
siempre tendría
-ésima entrada cero y
no tendría solución. Como ya vimos antes, si
no tiene filas cero, entonces es la identidad. Por la equivalencia entre (1) y (2) concluimos que
es invertible.
Esto termina las equivalencias en la segunda ala, así que ahora podemos usar libremente las implicaciones entre 1, 2, 3, 4 y 5. Ya nada más nos faltan las antenas.

Por supuesto, las implicaciones (1) implica (6) y (1) implica (7) son triviales, pues la matriz de (1) en particular funciona para (6) y (7). Lo que falta ver son los regresos de estas implicaciones.
(6) implica (1): Supongamos que existe una matriz tal que
. Tomemos
en
. Notemos que
es solución de
pues
. De este modo,
tiene solución para todo
en
y por la equivalencia entre (1) y (5) tenemos que
es invertible. Si tomamos a su inversa
y la multiplicamos a la izquierda en la hipótesis, obtenemos
, de modo que también
.
(7) implica (1): Supongamos que existe una matriz tal que
. Por la equivalencia entre (1) y (6), tenemos que
es invertible, de inversa
. De este modo,
. De este modo,
es la inversa de una matriz invertible y por tanto es invertible, y por lo tanto
.

¡Listo! Con esto tenemos la equivalencia entre todas las afirmaciones.
¿Ahora qué?
Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:
- El lema del intercamio de Steinitz
- Una demostración del teorema de la función inversa
- Un ejemplo de aplicación del teorema de la función inversa
- Los teoremas fundamentales de los cuadraditos, o bien, una introducción amigable a los teoremas fundamentales del cálculo
- Un problema de probabilidad y escuchar música
- Mariposa de siete equivalencias de invertibilidad de matrices
muy interesante cuando hice algebra lineal en la Universidad, durante la cursada seguí el grossman y llegue a decirme que fea materia. pero para el examen final la prepara siguiendo el «anton» y quede fascinado Saludos desde Argentina…
Hola Diegochenko. En efecto, la visión que uno tiene de las materias luego depende mucho del material con el que se estudie y de los profesores con quienes la toma. Gracias por el comentario.