Archivo de la etiqueta: cayley-hamilton

Álgebra lineal II: Demostración de Cayley-Hamilton

Introducción

En esta entrada demostraremos el teorema de Cayley-Hamilton. Daremos dos demostraciones de sabores muy diferentes, y terminaremos con un par de ejercicios de aplicación. La primera demostración explota las propiedades de la matriz adjunta, mientras que la segunda echa mano de las familias especiales de las cuales calculamos el polinomio característico.

Primera demostración

La primera demostración del teorema de Cayley-Hamilton usa algunas propiedades de la matriz adjunta. Recordamos el teorema y lo demostramos a continuación:

Teorema. (Cayley-Hamilton)

Para cualquier matriz $A\in M_n(F)$ se cumple que

\begin{align*}
\chi_A(A)=O_n.
\end{align*}

Demostración. Sea $A\in M_n(F)$ y sea $B=XI_n-A\in M_n(K)$ dónde $K=F(X)$ es el campo de fracciones racionales en la variable $X$. Es decir, un elemento de $K$ es un cociente de la forma

\begin{align*}
\frac{A(X)}{B(X)}, \hspace{2mm} A(X),B(X)\in F[X]
\end{align*}

con $B$ no idénticamente cero.

Sea $C$ la matriz adjunta de $B$, es decir $C=\operatorname{adj}(B)$. Sus entradas son (por definición) los determinantes de las matrices de tamaño $(n-1)$ cuyas entradas son a su vez polinomios de grado a lo más $1$. Es decir cada entrada de $C$ es un polinomio de grado a lo más $n-1$. Luego, sea

\begin{align*}
c_{ij}= c_{ij}^{(0)}+c_{ij}^{(1)}X+\dots+c_{ij}^{(n-1)} X^{n-1}
\end{align*}

la $(i,j)$-ésima entrada de $C$, con $c_{ij}^{(0)},\dots, c_{ij}^{(n-1)}\in F$. Sea $C^{(k)}$ la matriz cuyas entradas son $c_{ij}^{(k)}$. Entonces

\begin{align*}
C=C^{(0)}+C^{(1)}X+\dots+ C^{(n-1)}X^{n-1}.
\end{align*}

Enseguida, recuerda que

\begin{align*}
B\cdot C=B \cdot \operatorname{adj}(B)=\det(B)\cdot I_n=\chi_A(X)\cdot I_n.
\end{align*}

Es decir

\begin{align*}
(X I_n-A)\cdot \left(C^{(0)}+C^{(1)}X+\dots+C^{(n-1)}X^{n-1}\right)=\chi_A(X)\cdot I_n.
\end{align*}

Por otro lado, si escribimos a $\chi_A(X)$ como $\chi_A(X)=X^{n}+u_{n-1}X^{n-1}+\dots + u_0\in F[X]$, la igualdad anterior se convierte en

\begin{align*}
&-AC^{(0)}+(C^{(0)}-AC^{(1)})X+ (C^{(1)}-AC^{(2)})X^2+\dots + (C^{(n-2)}-AC^{(n-1)})X^{n-1}\\ &+C^{(n-1)}X^{n}= u_0 I_n+\dots + u_{n-1}I_nX^{n-1}+I_nX^{n}.
\end{align*}

Identificando los términos de cada coeficiente llegamos a

\begin{align*}
\begin{cases} -AC^{(0)}= u_0 I_n,\\ C^{(0)}-AC^{(1)}= u_1 I_n,\\ \vdots\\ C^{(n-2)}-AC^{(n-1)}=u_{n-1}I_n,\\ C^{(n-1)}=I_n.
\end{cases}
\end{align*}

Comenzando con la última igualdad, tenemos que $C^{(n-1)}=I_n$. Sustituyendo en la anterior llegamos a que $C^{(n-2)}=A+u_{n-1}I_n$, e inductivamente se cumple que

\begin{align*}
C^{(n-j-1)}=A^{j}+u_{n-1}A^{j-1}+\dots+u_1 I_n.
\end{align*}

En particular

\begin{align*}
C^{(0)}=A^{n-1}+u_{n-1}A^{n-2}+\dots+u_1 I_n.
\end{align*}

Multiplicando ambos lados por $A$ y usando que $-AC^{(0)}=u_0 I_n$ finalmente llegamos a

\begin{align*}
A^{n}+u_{n-1}A^{n-1}+\dots+ u_0 I_n=O_n.
\end{align*}

Pero esta igualdad no es nada más que $\chi_A(A)=O_n$, lo que concluye la prueba.

$\square$

Segunda demostración

Para la segunda demostración enunciaremos el teorema de una manera distinta pero equivalente (¿por qué?). Usaremos una estrategia fundada en el cálculo de polinomios característicos de familias conocidas de una entrada previa.

Teorema. (Cayley-Hamilton)

Sea $V$ un espacio vectorial de dimensión finita sobre $F$ y sea $T:V\to V$ una transformación lineal. Entonces $\chi_T(T)=0$.

Demostración. La idea es reducir el problema a transformaciones lineales para las que podemos calcular $\chi_T$ fácilmente. Sin embargo, los detalles son un poco complicados.

Fijemos $x\in V$. Para $m\geq 0$ fijamos

\begin{align*}
W_m=\operatorname{Span}(T^0(x), T^1(x), \dots, T^{m}(x)).
\end{align*}

Nota como $W_0\subset W_1\subset \dots \subset V$ y que $\dim W_m\leq \dim W_{m+1}\leq \dim V$ para todo $m\geq 0$. Entonces debe existir algún $m$ mínimo tal que $\dim W_{m-1}=\dim W_m$. Entonces como $W_{m-1}\subset W_{m}$ se tiene que $W_{m-1}=W_{m}$. Luego $T^{m}(x)\in W_{m-1}$, es decir existe una combinación lineal

\begin{align*}
T^{m}(x)=\sum_{k=0}^{m-1} a_k T^{k}(x).
\end{align*}

Nota que esto implica que $W_{m-1}$ es estable bajo $T$. Como $m$ es mínimo, los vectores $T^{0}(x),\dots, T^{m-1}(x)$ deben ser linealmente independientes: en efecto, si no lo fueran existiría una relación de dependencia entre $T^{m-1}(x)$ y términos de grado menor y así $\dim W_{m-1}=\dim W_{m-2}$ y entonces $m$ no sería mínimo. Por lo tanto forman una base para $W_{m-1}$ y respecto a esta base la matriz asociada a $T\vert_{W_{m-1}}$ es

\begin{align*}
A=\begin{pmatrix} 0 & 0 & 0 &\dots & 0 & a_0\\ 1 & 0 & 0 & \dots & 0 & a_1\\ 0 & 1 & 0 & \dots & 0 & a_2\\ \vdots & \vdots &\vdots &\ddots &\vdots &\vdots\\ 0 & 0 & 0 & \dots & 1 & a_n\end{pmatrix}.
\end{align*}

El polinomio característico de matrices como esta lo calculamos en esta entrada y es igual a $X^{m}-a_{m-1}X^{m-1}-\dots -a_0$. Entonces

\begin{align*}
\chi_{T\vert_{W_{m-1}}}(T)(x)= T^{m}(x)-\sum_{k=0}^{m-1}a_k T^{k}(x)=0.
\end{align*}

Pero como $W_{m-1}$ es $T-$estable, el polinomio característico de $T\vert_{W_{m-1}}$ divide al polinomio característico de $T$ (este es un ejercicio en la tarea moral de esta entrada) y por tanto $\chi_T(T)(x)=0$. Como $x$ fue arbitrario concluimos que $\chi_T(T)$ es la transformación cero.

$\square$

Más adelante

En la próxima entrada veremos aplicaciones del teorema de Cayley-Hamilton.

Tarea Moral

  1. Supón que $T:V\to V$ es una transformación lineal y $V$ es de dimensión finita. Demuestra que si $W$ es un subespacio $T$-estable de $V$ entonces $\chi_{T\vert_{W}}(X)$ divide a $\chi_{T}(X)$. Sugerencia. Considera una base de $W$, extiéndela a una base de $V$. ¿Cómo se ve la matriz asociada a $T$ en esta base?
  2. Explica por qué las dos versiones que dimos del teorema de Cayley-Hamilton son equivalentes.
  3. Demuestra la propiedad de la matriz adjunta que se menciona en la primera demostración.
  4. Sean $A,B,C\in M_2(\mathbb{C})$ matrices tales que $AC=CB$ y $C\neq O_n$. Demuestra que para cualquier polinomio $P$ se cumple que $P(A)C=CP(B)$. Usando esto y escogiendo un polinomio adecuado, deduce que $A$ y $B$ tienen un eigenvalor en común. Sugerencia: Usa el teorema de Cayley-Hamilton.
  5. Sea la matriz
    \begin{align*}
    A=\begin{pmatrix}
    0 & 2 & 0\\
    1 & 1 & -1\\
    -1 & 1& 1
    \end{pmatrix}.
    \end{align*}
    Usa el teorema de Cayley-Hamilton para calcular $A^{1000}$. Sugerencia: El teorema de Cayley-Hamilton te debería dar una relación entre algunas potencias de $A$.

Álgebra lineal II: Introducción al teorema de Cayley-Hamilton

Introducción

En esta entrada introducimos el teorema de Cayley-Hamilton, el primer teorema importante del curso. Intuitivamente este teorema nos dice que ‘el polinomio característico mata al operador lineal’. Es decir, si $P(\lambda)$ es el polinomio característico de una transformación lineal $T$, entonces $P(T)=0$.

Algunos ejemplos

Damos unos cuantos ejemplos para que entendamos que está pasando.

Ejemplo. Sea $A\in M_2(\mathbb{R})$ la matriz dada por

\begin{align*}
A=\begin{pmatrix} 0 & -1\\ 1 & 0
\end{pmatrix}.
\end{align*}

Calculemos su polinomio característico

\begin{align*}
\chi_A(X)=\det \begin{pmatrix} X & 1\\ -1 & X\end{pmatrix}=X^2+1.
\end{align*}

Así, si evaluamos al polinomio $\chi_A$ en la matriz $A$ tenemos que calcular

\begin{align*}
\chi_A(A)= A^2+I_2.
\end{align*}

Por un lado

\begin{align*}
A^2=\begin{pmatrix} 0 & 1\\ -1 & 0\end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\ -1 & 0\end{pmatrix}=\begin{pmatrix} -1 &0 \\ 0 & -1\end{pmatrix}=-I_2.
\end{align*}

Luego

\begin{align*}
\chi_A(A)=A^2+I_2= -I_2+I_2=O_2.
\end{align*}

Es decir, ¡$\chi_A(A)$ es la matriz cero!

$\square$

Ejemplo. Calculemos el polinomio característico de la matriz $A\in M_3(\mathbb{R})$ dónde $A$ está dada por

\begin{align*}
A=\begin{pmatrix}
0 & -1 & -2\\ 0 & 3 &4\\ 0 & 0 & -5.
\end{pmatrix}
\end{align*}

Notamos que $A$ es una matriz triangular superior. Por una entrada anterior sabemos que el polinomio característico es solo el producto de los monomios $(X-a_{ii})$. Es decir

\begin{align*}
\chi_A(X)=(X-0)(X-3)(X-(-5))= X(X-3)(X+5).
\end{align*}

Enseguida, evaluemos $\chi_A(A)$. Recordamos que esto quiere decir que tenemos que calcular

\begin{align*}
\chi_A(A)=A(A-3I_3)(A+5I_3).
\end{align*}

Por un lado

\begin{align*}
A-3I_3=\begin{pmatrix}
-3 & -1 & -2\\ 0 & 0 & 4\\ 0 & 0 & -8
\end{pmatrix},
\end{align*}

y por otro

\begin{align*}
A+5I_3=\begin{pmatrix}
5 & -1 & -2\\ 0 & 8 & 4\\ 0 & 0 &0
\end{pmatrix}.
\end{align*}

Así

\begin{align*}
(A-3I_3)(A+5I_3)&=\begin{pmatrix}
-3 & -1 & -2\\ 0 & 0 & 4\\ 0 & 0 & -8
\end{pmatrix}\cdot \begin{pmatrix}
5 & -1 & -2\\ 0 & 8 & 4\\ 0 & 0 &0
\end{pmatrix}\\ &=\begin{pmatrix} -15 & -5 & -2\\ 0 &0 &0 \\ 0 & 0 &0\end{pmatrix}.
\end{align*}

Finalmente

\begin{align*}
A(A-I_3)(A+5I_3)=\begin{pmatrix}
0 & -1 & -2\\ 0 & 3 &4\\ 0 & 0 & -5.
\end{pmatrix}\cdot \begin{pmatrix} -15 & -5 & -2\\ 0 &0 &0 \\ 0 & 0 &0\end{pmatrix}=O_3.
\end{align*}

Una vez más $\chi_A(A)=0$.

$\square$

El teorema

Los ejemplos anteriores sirven de calentamiento para enunciar el teorema de Cayley-Hamilton, que dice exactamente lo que sospechamos.

Teorema. (De Cayley-Hamilton)

Para cualquier matriz $A\in M_n(F)$ se cumple

\begin{align*}
\chi_A(A)=O_n.
\end{align*}

En otras palabras, si $\chi_A(X)=X^n+a_{n-1}X^{n-1}+\dots+a_0$ entonces

\begin{align*}
A^{n}+a_{n-1}A^{n-1}+\dots+a_0 I_n=O_n.
\end{align*}

Demostraremos este teorema en la próxima entrada. Uno podría sospechar que la demostración consiste en simplemente sustituir $A$ en la expresión de $\chi_A$ como sigue

\begin{align*}
\chi_A(A)= \det(AI_n-A)=\det(0)=0.
\end{align*}

Sin embargo, esta ‘prueba’ no es correcta, ya que estamos multiplicando a $A$ con $I_n$ como si fueran matrices, mientras que la expresión de $\chi_A$ se refiere a escalares. Más aún, observa como el resultado de la expresión que anotamos es el escalar cero, mientras que sabemos que $\chi_A(A)$ debería ser la matriz cero.

Concluimos esta sección con una breve aplicación del teorema de Cayley-Hamilton.

Proposición.

El polinomio mínimo de una matriz $A\in M_n(F)$ divide al polinomio característico.

Demostración.

Por el teorema de Cayley-Hamilton, $\chi_A(A)=0$. Luego por definición del polinomio mínimo se sigue que $\mu_A(X)$ divide a $\chi_A(X)$.

$\square$

Más adelante

En la próxima entrada demostraremos el teorema de Cayley-Hamilton, y luego pasaremos a dar aplicaciones de este.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. En una entrada anterior calculamos el polinomio característico de una matriz nilpotente. Explica por qué el teorema de Cayley-Hamilton es compatible con dicho cálculo. De otra manera, verifica el teorema de Cayley-Hamilton en ese caso particular.
  2. Sea $A\in M_3(\mathbb{R})$ tal que $\operatorname{Tr}(A)=\operatorname{Tr}(A^2)=0$. Usa el teorema de Cayley-Hamilton para demostrar que existe un $\alpha\in \mathbb{R}$ tal que $A^3=\alpha I_3$.
  3. Calcula el polinomio característico de $A\in M_2(\mathbb{C})$ donde
    \begin{align*}
    A=\begin{pmatrix} 0 & -1\\ 1 & 0\end{pmatrix}.
    \end{align*}
    Es decir, $A$ es la misma matriz que en el ejemplo pero pensada como una matriz compleja. Verifica que $\chi_A(A)=O_2$.
  4. Verifica que $\chi_A(A)=O_3$ con
    \begin{align*}
    A= \begin{pmatrix} 1 & 0 & -1\\ 1 & 1 & 1 \\ 0 & 2 & 1\end{pmatrix}\in M_3(\mathbb{R}).
    \end{align*}
  5. Sea $A\in M_n(\mathbb{R})$ una matriz tal que $A$ y $3A$ son similares. Demuestra que $A^n=O_n$.

Seminario de Resolución de Problemas: Polinomios asociados a matrices y el teorema de Cayley-Hamilton

Introducción

Para terminar esta serie de entradas de álgebra lineal, y con ello el curso de resolución de problemas, hablaremos de polinomios especiales asociados a una matriz: el polinomio mínimo y el polinomio característico. Después, hablaremos del teorema de Cayley-Hamilton, que a grandes rasgos dice que una matriz se anula en su polinomio característico.

Estos resultados forman parte fundamental de la teoría que se aprende en un curso de álgebra lineal. En resolución de problemas, ayudan mucho para entender a los eigenvalores de una matriz, y expresiones polinomiales de matrices.

Polinomio mínimo de una matriz

Podemos evaluar un polinomio en una matriz cuadrada de acuerdo a la siguiente definición.

Definición. Si $A$ es una matriz de $n\times n$ con entradas reales y $p(x)$ es un polinomio en $\mathbb{R}[x]$ de la forma $$p(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n,$$ definimos a la matriz $p(A)$ como la matriz $$a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.$$

De manera análoga se puede dar una definición cuando las entradas de la matriz, o los coeficientes del polinomio, son números complejos.

Cuando una matriz está diagonalizada, digamos $A=P^{-1}DP$ con $P$ invertible y $D$ diagonal, entonces evaluar polinomios en $A$ es sencillo. Se tiene que $p(A)=P^{-1} p(D) P$, y si las entradas en la diagonal principal de $D$ son $d_1,\ldots,d_n$, entonces $p(D)$ es diagonal con entradas en la diagonal principal iguales a $p(d_1),\ldots,p(d_n)$.

Dada una matriz $A$, habrá algunos polinomios $p(x)$ en $\mathbb{R}[x]$ para los cuales $p(A)=0$. Si $p(x)$ es uno de estos, entonces cualquier eigenvalor de $A$ debe ser raíz de $p(x)$. Veamos un problema de la International Mathematics Competition de 2011 que usa esto. Es el Problema 2 del día 1.

Problema. Determina si existe una matriz $A$ de $3\times 3$ con entradas reales tal que su traza es cero y $A^2+ {^tA} = I_3$.

Sugerencia pre-solución. Busca un polinomio $p(x)$ tal que $p(A)=0$.

Solución. La respuesta es que no existe dicha matriz. Procedamos por contradicción. Si existiera, podríamos transponer la identidad dada para obtener que
\begin{align*}
A&=I _3- {^t(A^2)}\\
&=I_3-({^tA})^2\\
&=I_3-(I_3 – A^2)^2\\
&=2A^2 – A^4.
\end{align*}

De aquí, tendríamos que $A^4-2A^2+A = 0$, de modo que cualquier eigenvalor de $A$ debe ser una raíz del polinomio $$p(x)=x^4-2x^2+x=x(x-1)(x^2+x-1),$$

es decir, debe ser alguno de los números $$0,1,\frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}.$$

Los eigenvalores de $A^2$ son los cuadrados de los eigenvalores de $A$, así que son algunos de los números $$0,1,\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}.$$

Como la traza de $A$ es $0$, la suma de sus tres eigenvalores (con multiplicidades), debe ser $0$. Como la traza de $A^2$ es la de $I_3-{ ^tA}$, que es $3$, entonces la suma de los eigenvalores de $A$ al cuadrado (con multiplicidades), debe ser $0$. Un sencillo análisis de casos muestra que esto no es posible.

$\square$

De entre los polinomios que se anulan en $A$, hay uno especial. El polinomio mínimo de una matriz $A$ con entradas reales es el polinomio mónico $\mu_A(x)$ de menor grado tal que $\mu_A(A)=O_n$, donde $O_n$ es la matriz de $n\times n$ con puros ceros. Este polinomio siempre es de grado menor o igual a $n$.

Una propiedad fundamental del polinomio mínimo de una matriz es que es mínimo no sólo en un sentido de grado, sino también de divisibilidad.

Teorema. Sea $A$ una matriz de $n\times n$ con entradas reales. Entonces para cualquier polinomio $p(x)$ en $\mathbb{R}[x]$ tal que $p(A)=O_n$, se tiene que $\mu_A(x)$ divide a $p(x)$ en $\mathbb{R}[x]$.

Veamos cómo se puede usar este resultado.

Problema. La matriz $A$ de $2\times 2$ con entradas reales cumple que $$A^3-A^2+A=O_2.$$ Determina los posibles valores que puede tener $A^2-A$.

Sugerencia pre-solución. Encuentra las posibles opciones que puede tener el polinomio mínimo de $A$ y haz un análisis de casos con respecto a esto.

Solución. La matriz $A$ se anula en el polinomio $$p(x)=x^3-x^2+x=x(x^2-x+1),$$ en donde $x^2-x+1$ tiene discriminante negativo y por lo tanto es irreducible.

El polinomio mínimo $\mu_A(x)$ debe ser un divisor de $p(x)$. Además, es de grado a lo más $2$. Esto nos deja con las siguientes opciones:

  • $\mu_A(x)=x$, de donde $A=O_2$, y por lo tanto $A^2=O_2$. De aquí, $A^2-A=O_2$.
  • $\mu_A(x)=x^2-x+1$. En este caso, tenemos que $A^2-A+I_2=0$. Así, $A^2-A=-I_2$.

Para mostrar que ambas opciones son posibles, en el primer caso usamos $A=O_2$ y en el segundo caso usamos $$A=\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

$\square$

Polinomio característico de una matriz

El polinomio característico de una matriz $A$ de $n\times n$ se define como $$\chi_A(x)=\det(xI_n – A).$$

Teorema. El polinomio característico de una matriz $A$ cumple que:

  • Es un polinomio mónico en $x$ de grado $n$.
  • El coeficiente del término de grado $n-1$ es la traza de $A$.
  • El coeficiente libre es $\chi_A(0)=(-1)^n\det(A)$.
  • Es igual al polinomio característico de cualquier matriz similar a $A$.

Para ver ejemplos de cómo obtener el polinomio característico y cómo usar sus propiedades, hacemos referencia a la siguiente entrada:

Propiedades del polinomio característico

En particular, para fines de este curso, es importante leer los ejemplos y problemas resueltos de esa entrada.

El teorema de Cayley-Hamilton y una demostración con densidad

Finalmente, hablaremos de uno de los resultados fundamentales en álgebra lineal.

Teorema (Cayley-Hamilton). Si $A$ es una matriz de $n\times n$ con entradas en $\mathbb{C}$ y $\chi_A(x)$ es su polinomio característico, entonces $$\chi_A(A)=O_n.$$

En realidad el teorema de Cayley-Hamilton es válido para matrices más generales. Daremos un esbozo de demostración sólo para matrices con entradas complejas pues eso nos permite introducir una técnica de perturbaciones.

Esbozo de demostración. Vamos a hacer la técnica de la bola de nieve, construyendo familias poco a poco más grandes de matrices que satisfacen el teorema.

Si $A$ es una matriz diagonal, las entradas en su diagonal son sus eigenvalores $\lambda_1,\ldots, \lambda_n$. Por la discusión al inicio de esta entrada, $\chi_A(A)$ es diagonal con entradas $\chi_A(\lambda_1),\ldots,\chi_A(\lambda_n)$, y como los eigenvalores son raíces del polinomio característico, entonces todos estos valores son $0$, y por lo tanto $\chi_A(A)=0$.

Si $A$ es diagonalizable, digamos, de la forma $A=P^{-1} D P$, entonces $A$ y $D$ tienen el mismo polinomio característico. Por la discusión al inicio de la entrada, y por el caso anterior:
\begin{align*}
\chi_A(A) &= \chi_D(A)\\
&= \chi_D(P^{-1} D P)\\
&=P^{-1}\chi_D(D) P\\
&=P^{-1}O_n P \\
&=O_n.
\end{align*}

Si $A$ tiene todos sus eigenvalores distintos, se puede mostrar que $A$ es diagonalizable. Ahora viene la idea clave del argumento de continuidad.

Pensemos al espacio métrico de matrices de $n\times n$. Afirmamos que las matrices con eigenvalores todos distintos son densas en este espacio métrico. Para ello, tomemos una matriz $A$. En efecto, como estamos trabajando en $\mathbb{C}$, existe una matriz invertible $P$ tal que $P^{-1}A P$ es triangular. Como $P$ es invertible, define una transformación continua. Los eigenvalores de $P^{-1} A P$ son sus entradas en la diagonal, y podemos perturbarlos tan poquito como queramos para hacer que todos sean distintos.

De esta forma, existe una sucesión de matrices $A_k$, todas ellas diagonalizables, tales que $A_k \to A$ conforme $k\to \infty$. El resultado se sigue entonces de las siguientes observaciones:

  • Los coeficientes del polinomio característico de una matriz dependen continuamente de sus entradas.
  • Las entradas de potencias de una matriz dependen continuamente de sus entradas.
  • Así, la función $\chi_{M}(M)$ es continua en la matriz variable $M$.

Concluimos como sigue $\chi_{A_k}(A_k)=0$, por ser cada una de las matrices $A_k$ diagonalizables. Por la continuidad de $\chi_{M}(M)$, tenemos que
\begin{align*}
\chi_A(A)&=\lim_{k\to \infty} \chi_{A_k}(A_k)\\
&= \lim_{k\to \infty} O_n \\
&= O_n.
\end{align*}

$\square$

Terminamos esta entrada con un problema que usa el teorema de Cayley-Hamilton.

Problema. Muestra que para cualesquiera matrices $X,Y,Z$ de $2\times 2$ con entradas reales se cumple que
\begin{align*}
&ZXYXY + ZYXYX + XYYXZ + YXXYZ\\
= &XYXYZ + YXYXZ + ZXYYX + ZYXXY.
\end{align*}

Sugerencia pre-solución. Muestra que las matrices reales de $2\times 2$ de traza cero conmutan con cualquier matriz de $2\times 2$.

Solución. Si $A$ es una matriz de $2\times 2$ de traza cero, su polinomio característico es
\begin{align*}
\chi_A(x)&=x^2 – \text{tr}(A) x + \det(A)\\
&=x^2 + \det(A).
\end{align*}

Por el teorema de Cayley-Hamilton, se satisface entonces que $A^2=-\det(A) I_2$, así que $A^2$ es un múltiplo de la identidad, y por lo tanto conmuta con cualquier matriz de $2\times 2$.

La identidad que queremos mostrar se puede reescribir como $$Z(XY-YX)^2 = (XY-YX)^2Z.$$

La traza de $XY$ es igual a la traza de $YX$, y como la traza es una transformación lineal, tenemos que $$\text{tr}(XY-YX)= \text{tr}(XY)-\text{tr}(YX)=0.$$ El problema se termina aplicando la discusión de arriba a la matriz $$A=XY-YX.$$

$\square$

Más problemas

Puedes encontrar más problemas relacionados con el polinomio mínimo, el polinomio característico y el teorema de Cayley-Hamilton en la Sección 8.2, 8.4 y 8.5 del libro Essential Linear Algebra de Titu Andreescu. También hay más problemas relacionados con el teorema de Cayley-Hamilton en el Capítulo 4 del libro Mathematical Bridges de Andreescu, Mortici y Tetiva.