Archivo de la etiqueta: naturales

Teoría de los Conjuntos I: Producto en los naturales

Por Gabriela Hernández Aguilar

Introducción

Ahora que hemos definido a la suma en el conjunto de los naturales, podemos definir el producto, pues éste se refiere a sumar cierta cantidad de veces un mismo número. De este modo, el producto se definirá recursivamente en términos de la suma, así como la suma fue definida recursivamente en términos de la función sucesor.

Producto de naturales

Utilizando el teorema de recursión se puede mostrar, al igual que con la operación suma, que existe una única función $\cdot: \mathbb{N}\times\mathbb{N}\to \mathbb{N}$, denotada por $\cdot(m,n)=m\cdot n$, que satisface las siguientes condiciones:

  1. $0\cdot n=0$ para cualquier $n\in \mathbb{N}$,
  2. $s(m)\cdot n= (m\cdot n)+n$.

Dado que seguimos trabajando con conjuntos y hemos definido una nueva operación binaria, podemos preguntarnos si esta operación conmuta, es asociativa o si cumple alguna otra propiedad tal como lo hace el producto cartesiano y la suma en los naturales. Además veremos que esta operación se distribuye con la suma.

Distributividad del producto sobre la suma

Teorema. Para cualesquiera $m,n,k\in \mathbb{N}$, se tiene que $m\cdot(n+k)=m\cdot n+ m\cdot k$.

Demostración. Procederemos por inducción sobre $m$ y dejaremos fijos a $n$ y $k$.

Base de inducción. Si $m=0$, $0\cdot(n+k)=0=0+0=(0\cdot n)+(0\cdot k)$.

Hipótesis de inducción. Supongamos que se cumple para $m$, es decir, $m\cdot(n+k)= (m\cdot n)+(m\cdot k)$.

Paso inductivo. Veamos que se cumple para $m+1$, es decir, $(m+1)\cdot(n+k)=(m+1)\cdot n+(m+1)\cdot k$.

\begin{align*}
(m+1)\cdot (n+ k)&=m\cdot (n+ k)+(n+ k) \tag{Definición $\cdot$}\\
&= (m\cdot n+m\cdot k)+(n+ k) \tag{Hipótesis de inducción}\\
&= ((m\cdot n)+n)+((m\cdot k)+k)\tag{Conmutatividad y asociatividad de $+$}\\
&= (m+1)\cdot n+(m+1)\cdot k \tag{Definición $\cdot$}.
\end{align*}

Por lo tanto, $m\cdot(n+k)=m\cdot n+m\cdot k$ para cualesquiera $m, n, k\in \mathbb{N}$.

$\square$

Conmutatividad del producto

Para demostrar que el producto es conmutativo primero vamos a demostrar los siguientes lemas:

Lema 1. Para cualquier $n\in \mathbb{N}$, se tiene que $n\cdot 0=0$.

Demostración.

Procederemos por inducción sobre $n$.

Base de inducción. Si $n=0$, tenemos que $0\cdot 0=0$.

Hipótesis de inducción. Supongamos que para algún $k\in \mathbb{N}$ se satisface que $k\cdot 0=0$.

Paso de inductivo. Veamos que se cumple para $k+1$, es decir, $(k+1)\cdot 0=0$.

\begin{align*}
(k+1)\cdot 0 &=(k\cdot 0)+0\tag{Definición $\cdot$}\\
&= 0+0\tag{Hipótesis de inducción}\\
&= 0\tag{Propiedad $+$}.
\end{align*}

Por lo tanto, $n\cdot 0=0$, para cualquier $n\in \mathbb{N}$.

$\square$

Lema 2. Para cualquier $n\in \mathbb{N}$, se tiene que $n\cdot 1=n$.

Demostración.

Procederemos por inducción sobre $n$.

Base de inducción. Si $n=0$, tenemos que $0\cdot 1= 0$ por la definición de $\cdot$.

Hipótesis de inducción. Supongamos que para algún $k\in \mathbb{N}$ se satisface que $k\cdot 1=k$.

Paso de inductivo. Veamos que se cumple para $k+1$, es decir, $(k+1)\cdot 1=k+1$.

\begin{align*}
(k+1)\cdot 1&=(k\cdot 1)+1\tag{Definición $\cdot$}\\
&= k+1. \tag{Hipótesis de Inducción}
\end{align*}

Por lo tanto, para cualquier $n\in \mathbb{N}$, $n\cdot 1=n$.

$\square$

Teorema. Para cualesquiera $m,n\in \mathbb{N}$, $n\cdot m=m\cdot n$.

Demostración.

Por inducción sobre $m$.

Base de inducción. Si $m=0$, entonces $0\cdot n=0=n\cdot 0$, por el Lema 1.

Hipótesis de inducción. Supongamos que para $k$ se cumple que $n\cdot k=k\cdot n$.

Paso inductivo. Veamos que para $k+1$ se satisface que $n\cdot (k+1)= (k+1)\cdot n$.

\begin{align*}
(k+1)\cdot n&= (k\cdot n)+n\tag{Definición $+$}\\
&= (n\cdot k)+n\tag{Hipótesis de Inducción}\\
&= (n\cdot k)+(n\cdot 1) \tag{Lema 2}\\
&= n\cdot (k+1) \tag{Distributividad}.
\end{align*}

Por lo tanto, $\cdot$ es conmutativo.

$\square$

Asociatividad del producto

Teorema. Para cualesquiera $m,n,k\in \mathbb{N}$, se tiene que $m\cdot(n\cdot k)=(m\cdot n)\cdot k$.

Demostración. Procederemos por inducción sobre $m$ y dejaremos fijos a $n$ y $k$.

Base de inducción. Si $m=0$, $0\cdot(n\cdot k)=0=0\cdot k = (0\cdot n)\cdot k$.

Hipótesis de inducción. Supongamos que se cumple para $m$, es decir, $m\cdot(n\cdot k)= (m\cdot n)\cdot k$.

Paso inductivo. Veamos que se cumple para $m+1$, es decir, $(m+1)\cdot(n\cdot k)=((m+1)\cdot n)\cdot k$.

\begin{align*}
(m+1)\cdot (n\cdot k)&=(m\cdot (n\cdot k))+(n\cdot k) \tag{Definición $\cdot$}\\
&= ((m\cdot n)\cdot k)+(n\cdot k) \tag{Hipótesis de inducción}\\
&=(k\cdot(m\cdot n))+(k\cdot n) \tag{Conmutatividad del producto}\\
&=k\cdot(m\cdot n+n) \tag{Distributividad}\\
&= (m\cdot n+n)\cdot k\tag{Conmutatividad del producto}\\
&= ((m+1)\cdot n)\cdot k\tag{Definición $\cdot$}.
\end{align*}

Por lo tanto, $\cdot$ es asociativa.

$\square$

Ley de cancelación

En álgebra, cuando tenemos una ecuación como la siguiente #$x\cdot z=y\cdot z,$$ siempre que $z\not=0$, concluimos que $x=y$. Esto tiene una justificación y la llamaremos ley de cancelación para el producto. En los naturales se cumple esta ley.

Teorema. Sean $n, m, k\in \mathbb{N}$ con $k\not=0$. Si $n\cdot k=m\cdot k$, entonces $n=m$.

Para probar dicho teorema, utilizaremos la siguiente serie de resultados.

Proposición. Si $n,m\in\mathbb{N}$ son tales que $n\leq m$, entonces, existe $t\in\mathbb{N}$ tal que $n+t=m$.

Demostración (Proposición).

Mostraremos por inducción sobre $m$ que para todo $n\leq m$, existe $t_n\in \mathbb{N}$ tal que $n+t_n=m$.

Base de inducción. $k=0$. Si $n\leq 0$, entonces $n=0$, pues recordemos que dos números naturales $n$ y $m$ satisfacen $n\leq m$ si, y sólo si, $n\in m$ o $n=m$. Así, si $n\leq 0$, entonces $n\in 0$ o $n=0$, pero dado que el enunciado $n\in 0$ no puede ser cierto pues $0=\emptyset$ no tiene elementos, se sigue que $n=0$ tiene que ser verdadero. De este modo, si $n\leq 0$, entonces $n=0$ y tomando $t=0$ se tiene que $n+t=0+0=0$. Por lo tanto, para todo $n\leq 0$ existe $t_n\in\mathbb{N}$ tal que $n+t_n=0$. Por lo tanto, la proposición es cierta para $k=0$.

Hipótesis de inducción. Supongamos que para algún $k\in\mathbb{N}$ se satisface que para todo $n\leq k$, existe $t_n\in\mathbb{N}$ tal que $n+t_n=k$.

Paso inductivo. Veamos que se cumple para $s(k)$. Sea $n\leq s(k)$. Luego, $n\in s(k)$ o $n=s(k)$. Si $n=s(k)$, entonces tomamos $t=0$ y se tiene que $n+t=s(k)+0=s(k)$. Supongamos ahora que $n\in s(k)$.

Como $n\in s(k)$, entonces $n=k$ o $n\in k$, es decir, $n\leq k$. Luego, por hipótesis de inducción, existe $t_n\in\mathbb{N}$ tal que $n+t_n=k$. De este modo, si tomamos $s(t_n)\in\mathbb{N}$ se tiene que $n+s(t_n)=s(t_n)+n=s(t_n+n)=s(k)$.

En cualquier caso para $n$ hemos concluido que existe $t_n\in\mathbb{N}$ tal que $n+t_n=s(k)$.

Por lo tanto, la proposición es verdadera.

$\square$

Proposición. Si $n\in\mathbb{N}$, entonces $n\leq n+t$ para todo $t\in\mathbb{N}$.

Demostración (Proposición).

Sea $n\in\mathbb{N}$. Probaremos por inducción sobre $t$ que $n\leq n+t$ para todo $t\in\mathbb{N}$.

Base. $t=0$. Para $t=0$ tenemos que $n+t=n+0=n$, por lo que es verdad que $n\leq n+t$.

Hipótesis de inducción. Supongamos que para algún $t\in\mathbb{N}$, $n\leq n+t$.

Bajo esta hipótesis veamos que $n\leq n+s(t)$. Primero, notemos que $n+s(t)=s(t)+n$ por la conmutatividad de la suma. Luego, por definición de la suma, $s(t)+n=s(t+n)$. Dado que $s(t+n)=(t+n)\cup\set{t+n}$, entonces $n+t\in s(t+n)$. Ahora bien, por hipótesis de inducción, $n\leq n+t$, es decir, $n=n+t$ o $n\in n+t$. Si $n=n+t$, entonces $n\in s(n+t)$, ya que $n+t\in s(n+t)$, por lo que $n\leq s(n+t)=n+s(t)$.

Ahora, si $n\in n+t$, entonces, $n\in s(n+t)$ por transitividad de la pertenencia en los naturales, por lo que también se cumple que $n\leq n+s(t)$.

En cualquier caso concluimos que $n\leq n+s(t)$, lo que concluye la prueba de la proposición.

$\square$

El último resultado que veremos, antes de iniciar con la demostración de la ley de la cancelación del producto, dice lo siguiente:

Corolario. Si $n\in\mathbb{N}$ es distinto de $0$, entonces $n+t$ es distinto de $0$ para todo $t\in\mathbb{N}$.

Demostración (Corolario).

Sea $n\in\mathbb{N}$ distinto de $0$ y supongamos que $t\in\mathbb{N}$ es arbitrario. Por la proposición anterior, $n\leq n+t$, es decir, $n=n+t$ o $n\in n+t$. Si $n=n+t$, entonces $n+t$ es distinto de $0$ por la hipótesis sobre $n$. Si ahora $n\in n+t$, entonces $n+t$ es distinto de $0$, pues $n+t$ tiene un elemento, el cual es $n$, mientras que el $0$ no tiene elementos. Esto concluye la prueba.

$\square$

Ya que contamos con esta serie de resultados previos podemos dar la demostración de la ley de cancelación del producto.

Demostración (Ley de cancelación del producto).

Supongamos que $n\cdot k = m\cdot k$ con $k \neq 0$. Como el orden $\leq$ es un buen orden en $\mathbb{N}$, entonces es total. Así, $n\leq m$ o $m\leq n$. Haremos el caso $n\leq m$ pues el otro caso es análogo. Como $n\leq m$, existe un natural $t$ tal que $n+t=m$. Como $k\neq 0$, existe un natural $s$ tal que $k=s+1$. De esta manera,

\begin{align*}
ns+n &= n(s+1)\\
&=nk\\
&=mk\\
&=(n+t)(s+1)\\
&=ns+n+ts+t.
\end{align*}

En esta cadena de igualdades hemos usado las propiedades que ya hemos probado de la suma y el producto. Usando ahora la ley de cancelación de la suma, obtenemos que $0=ts+t$. Como aquí hay una suma de naturales igualada a cero, cada sumando es igual a cero. En particular, $t=0$ y por lo tanto $m=n+0=n$, como queríamos.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta sección:

  1. Demuestra que para cualesquiera $m,n,l\in \mathbb{N}$ tal que $l\not=0$, si $m<n$, entonces $l\cdot m<l\cdot n$.
  2. Demuestra que para cualesquiera $m,n\in \mathbb{N}$, si $m\cdot n=0$, entonces $m=0$ o $n=0$.
  3. Usa el teorema de recursión para probar la existencia y unicidad de una función $F:\mathbb{N}\to \mathbb{N}$ que satisfaga lo siguiente:
    $F(0)=1$,
    $F(1)=1$,
    $F(2)=2\cdot 1$,
    $\vdots$
    $F(n)=n\cdot (n-1)\cdots 2\cdot 1$.
    A la función $F$ se le llama el factorial y la denotamos por $F(n)=n!$.
  4. Usa el teorema de recursión y unicidad para probar para cada natural $n$ la existencia de una función $w_n:\mathbb{N}\to \mathbb{N}$ que cumple $w_n(0)=1$ y $w_n(m+1)=n\cdot w_n(m)$. Usa las funciones $w_n$ para definir la exponenciación en $\mathbb{N}$ como la operación binaria de $\mathbb{N}$ en $\mathbb{N}$ denotada por $n^m=w_n(m)$. Prueba que la exponenciación cumple las siguientes propiedades:
    • Para todo natural $m>0$, se cumple que $0^m=0$ y $1^m=1$.
    • Para cualesquiera naturales $l,m,n$, se cumple que $(m\cdot n)^l=m^l\cdot n^l$, que $l^{m+n}=l^m\cdot l^n$ y que $(l^m)^n=l^{m\cdot n}$.
  5. Encuentra todas las soluciones en los naturales a la ecuación $m^2+n=n^2+m$. ¡Ten cuidado! En $\mathbb{N}$ todavía no hemos definido la resta, así que como primer paso no puedes «pasar restando». Todos tus argumentos tendrán que permanecer en lo que hemos construido de $\mathbb{N}$.

Más adelante…

Con esta entrada concluimos el contenido acerca de números naturales. Es lo único que haremos en este curso sobre la construcción de sistemas numéricos, pero todos estos conocimientos sirven para constuir a los enteros y los racionales. Puedes hacer clic en los enlaces para consultar el contenido de la construcción de los números enteros y de los números racionales que se encuentra en el curso de Álgebra Superior II.

Nuestro enfoque continuará siendo conjuntista, y ahora nos enfocaremos en la noción de que dos conjuntos «tengan la misma cantidad de elementos». Así, en la siguiente unidad hablaremos acerca de equipotencia, finitud, infinitud, dominancia y aritmética cardinal. El conjunto de los números naturales jugará un papel clave para esta teoría.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Principio de inducción

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca del principio de inducción. Será de gran importancia pues una vez que lo demostremos, se podrá utilizar como método de demostración para proposiciones cuyo enunciado depende de un número natural. En otras palabras, el principio de inducción nos ayudará a demostrar que ciertas proposiciones o propiedades se cumplen para cualquier natural $n$.

Principio de inducción

El principio de inducción dice lo siguiente.

Teorema. Sea $P(n)$ una proposición (como las que se vieron en la primera unidad) que depende de un número natural $n$. Supongamos que las siguientes dos cosas son ciertas.

  1. $P(0)$ se cumple.
  2. Para cualquier $n\in \mathbb{N}$, si $P(n)$ es verdadero, entonces $P(s(n))$ también es verdadero.

Entonces, $\set{n\in \mathbb{N}:P(n)}=\mathbb{N}$, es decir, la proposición es cierta para cualquier número natural $n$.

Demostración.

Tomemos $P(n)$ una propiedad. Si se cumplen 1) y 2), entonces

$A=\set{n\in \mathbb{N}: P(n)}$

es un conjunto inductivo.

En la entrada anterior probamos que cualquier conjunto inductivo contiene a los naturales. Así, $\mathbb{N}\subseteq A$.

Además, $A\subseteq \mathbb{N}$ pues para cualquier $n\in A$, $n\in \mathbb{N}$ y por lo tanto, $A=\mathbb{N}$.

$\square$

Para entender este teorema, podemos imaginar una fila con tantas fichas de dominó como números naturales, como en la imagen. Hay una primera ficha. Para cualquier ficha hay una siguiente. ¿Qué necesitamos para garantizar que se caigan todas las fichas mediante el «efecto dominó»?

Por Leonardo Martínez con Stable Difussion

Podemos interpretar al teorema como sigue. Tomemos informalmente la proposición $P(n):$»el dominó $n$ cae». Lo que nos diría el punto 1) del principio de inducción es que la ficha correspondiente a cero. Lo que nos diría el punto 2) del principio de inducción es que tenemos la garantía de que para cualquier natural $n$ «si el dominó $n$ se cae, entonces el dominó $n+1$ también», por ejemplo, porque el dominó $n$ y $n+1$ están suficientemente cerca como para que el dominó $n$ empuje al $n+1$ al caer. Lo que garantizaría el principio de inducción es que todas las fichas caerán.

Orden de los naturales

A continuación definiremos una relación en el conjunto de números naturales, la cual resultará ser una relación de orden, pero esto último lo probaremos en la próxima entrada.

Definición. Sean $n,m\in \mathbb{N}$. Decimos que $n\leq m$ si y sólo si $n\in m$ o $n=m$.

Ejemplos.

  • $0=\emptyset$ y $1=\set{\emptyset}$ son números naturales. Luego, $0\leq 1$ pues $\emptyset\in \set{\emptyset}$.
  • $0=\emptyset$ y $2=\set{\emptyset, \set{\emptyset}}$ son números naturales. Luego, $0\leq 2$ pues $\emptyset\in \set{\emptyset, \set{\emptyset}}$.
  • $1=\set{\emptyset}$ y $2=\set{\emptyset, \set{\emptyset}}$ son números naturales. Luego, $1\leq 2$ pues $\set{\emptyset}\in \set{\emptyset, \set{\emptyset}}$.

$\square$

A continuación veremos un ejercicio en el que usaremos la relación que definimos arriba y el principio de inducción.

Proposición. $0\leq m$ para cualquier $m\in \mathbb{N}$.

Demostración.

Debemos probar que $\set{m\in \mathbb{N}: 0\leq m}=\mathbb{N}$. Procederemos usando el principio de inducción.

  • $0\leq 0$ pues $0=0$.
  • Ahora, si $0\leq m$ para algún $m\in \mathbb{N}$, veamos que $0\leq s(m)$. Dado que $0\leq m$, $0=m$ ó $0\in m$. Consecuentemente, $0\in s(m)$, es decir, $0\leq s(m)$.

Por lo tanto, $\set{m\in\mathbb{N}:0\leq m}=\mathbb{N}$.

$\square$

Tarea moral

  1. Demuestra que la relación $\leq$ que definimos en esta entrada es un orden parcial.
  2. Demuestra que cualesquiera naturales $n$ y $m$ son $\leq$-comparables, aplicando inducción sobre $n$. ¿Puedes dar una demostración alternativa que use un resultado de la entrada?
  3. Demuestra que para todo natural $n\not=0$, existe un natural $k$ tal que $n=s(k)$.
  4. Demuestra que para cualquier $n\in \mathbb{N}\setminus \set{0,1}$, existe $k\in \mathbb{N}$ tal que $n=s(s(k))$.
  5. Muestra que $\mathbb{N}$ no tiene máximo con el orden $\leq$ que hemos definido.

Más adelante…

En la siguiente entrada probaremos que el conjunto de los naturales con el orden que hemos definido en esta entrada es un buen orden.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Sucesor

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada hablaremos acerca del sucesor de un número natural. Este concepto nos permitirá definir un poco más adelante qué son los conjuntos inductivos, que simultáneamente nos dará un método de demostración muy versátil, y conectará nuestro estudio de los números naturales con el de los conjuntos infinitos.

Sucesor

La noción que estudiaremos ahora es la siguiente.

Definición. Sea $x$ un conjunto. Definimos al sucesor de $x$ como $s(x)=x\cup \set{x}$.

Ejemplos.

  • El sucesor de $\emptyset$ es $s(\emptyset)=\emptyset\cup \set{\emptyset}=\set{\emptyset}$.
  • El sucesor de $\set{\emptyset}$ es $s(\set{\emptyset})=\set{\emptyset}\cup \set{\set{\emptyset}}=\set{\emptyset, \set{\emptyset}}$.
  • Luego, el sucesor de $\set{\emptyset, \set{\emptyset}}$ es $s(\set{\emptyset, \set{\emptyset}})=\set{\emptyset,\set{\emptyset}}\cup \set{\set{\emptyset, \set{\emptyset}}}=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$.
  • El sucesor de $\set{\set{\emptyset}}$ es $s(\set{\set{\emptyset}})=\set{\set{\emptyset}}\cup \set{\set{\set{\emptyset}}}= \set{\set{\emptyset}, \set{\set{\emptyset}}}$.

$\square$

La noción de sucesor está definida para cualquier conjunto. Pero dado que en esta unidad únicamente estaremos trabajando con números naturales, prácticamente nos limitaremos a usar la definición de sucesor para conjuntos que son números naturales. En este caso sucede algo especial: si $n$ es un número natural, entonces $s(n)$ también lo es. Vamos a demostrar esto, pero antes demostraremos algunos lemas que nos serán de utilidad.

Unos lemas sobre la pertenencia

A continuación probaremos algunos resultados sobre la pertenencia de números naturales en sí mismos y de unos en otros. Cuando los leas, te darás cuenta de que ya habíamos demostrado resultados similares y más generales en la entrada del axioma de buena fundación. Sin embargo, nota que en las siguientes demostraciones no es necesario utilizar este axioma, pues la definición de número natural nos da todo lo que necesitamos.

Lema 1. Para cualquier número natural $n$, no es posible que $n\in n$.

Demostración.

Sea $n$ un número natural. Entonces $\in_n$ es un orden total estricto para $n$. Si sucediera que $n\in n$, entonces tendríamos una contradicción pues tendríamos $n\in_n n$ y $n\in_n n$, lo que contradice la asimetría de $\in_n$. Así, $n\not \in n$.

$\square$

Lema 2. Si $n$, $m$ son números naturales, entonces no es posible que $n\in m$ y $m\in n$ al mismo tiempo.

Demostración.

Sean $n$ y $m$ números naturales. Si $n\in m$ y $m\in n$, entonces $n\in n$ pues $n$ es conjunto transitivo. Esto contradice el lema anterior.

Por lo tanto, no es posible que $n\in m$ y $m\in n$ al mismo tiempo.

$\square$

Así, hemos logrado hacer estas demostraciones sin recurrir al axioma de buena fundación. Como comentario tangencial, en teoría de los conjuntos no sólo resulta de interés probar resultados que se deducen de los axiomas, sino que a veces también es interesante identificar realmente cuáles son los «axiomas suficientes» para tener algún resultado de la teoría. Nos encontraremos nuevamente con preguntas de este estilo cuando hablemos del axioma de elección.

El sucesor de un natural

Ahora que demostramos los lemas anteriores, estamos listos para probar que el sucesor de un número natural es un número natural.

Teorema. Si $n$ es un número natural, entonces $s(n)$ es un número natural.

Demostración.

Sea $n$ un número natural. Veamos que $s(n)$ es un número natural. Para ello tenemos que probar todo lo siguiente:

  • $s(n)$ es transitivo.
  • $\in_{s(n)}$ es un orden total estricto en $s(n)$.
  • Cualquier $B\subseteq s(n)$ no vacío tiene mínimo y máximo con respecto a $\in_{s(n)}$.

A continuación hacemos todo esto.

$s(n)$ es transitivo.

Sea $y\in s(n)=n\cup\set{n}$. Si $y\in n$, dado que $n$ es un número natural, entonces $n$ es transitivo y por lo tanto, $y\subseteq n$. Así, $y\subseteq n\cup\set{n}$. Si $y\in \set{n}$, entonces $y=n$ y en particular, $y\subseteq n$ y así, $y\subseteq n\cup\set{n}$. En cualquier caso, $y\subseteq s(n)$. Por lo tanto, $s(n)$ es un conjunto transitivo.

$\in_{s(n)}$ es un orden total estricto en $s(n)$.

Para esta parte debemos probar que $\in_{s(n)}$ es una relación asimétrica, transitiva y que cualquiera dos elementos de $s(n)$ son $\in_{s(n)}$ comparables.

Veamos que $\in_{s(n)}$ es asimétrica. Sean $y,z\in s(n)$. Como $y\in s(n)=n\cup \{n\}$, entonces o bien $y=n$, y entonces $y$ es natural, o bien $y\in n$, y entonces $y$ es natural por el teorema de la entrada anterior. De manera análoga, $z$ es natural. Por el Lema 2 de esta entrada, es imposible que $y \in_{s(n)} z$ y $z \in_{s(n)} y$ simultáneamente, por lo que $\in_{s(n)}$ es asimétrica.

Antes de ver que la relación es transitiva, veamos que cualesquiera dos elementos son comparables. Tomemos $y,z \in s(n)$ arbitrarios. Si ambos están en $n$, entonces como $\in_n$ es total, tenemos que o $y\in_n z$, o $y=z$, o $z\in_n y$. Respectivamente tendríamos que $y\in_{s(n)} z$, o $y=z$, o $z\in_{s(n)} y$. Si ambos están en $\{n\}$, entonces $y=n=z$ y así $y=z$. Si $y$ está en $n$ y $z$ está en $\{n\}$, entonces $z=n$ y por lo tanto $y\in z$, de donde $y\in_{s(n)} z$. Si $z$ está en $n$ y $y$ está en $\{n\}$, entonces $y=n$ y por lo tanto $z\in_{s(n)} y$, de donde $z\in_{s(n)} y$.

Para terminar de ver que $\in_{s(n)}$ es un orden total estricto, falta ver que es una relación transitiva. Para ello tomemos $w,y,z\in s(n)$ arbritarios tales que $w\in_{s(n)} y$ y $y\in_{s(n)} z$ y veamos que $w\in_{s(n)} z$. De acuerdo a en dónde están $w,y,z$ en $s(n)=n\cup \{n\}$, tenemos 8 casos. Pero podemos reducirlos a las siguientes tres posibilidades.

  • $w,y,z\in n$, en cuyo caso se da $w\in_n z$ por transitividad de $\in_n$, y así $w\in_{s(n)} z$.
  • Exactamente uno de $w,y,z$ es igual a $n$. No se puede $w=n$ pues llegamos a la contradicción $n=w\in y$ (por nuestra suposición) y $y\in n$ (pues exactamente hay uno igual a $n$). Análogamente, tampoco se puede $y=n$ pues llegamos a la contradicción $n\in z$ y $z\in n$. Así, sólo puede ser $z$, pero entonces $w\in n=z$, de donde $w\in_{s(n)} z$.
  • Al menos dos de $w,y,z$ es igual a $n$. Este caso es imposible pues lleva o bien a una contradicción del estilo $n\in n$ (cuando $w=n=y$ o $y=n=z$), o bien a la contradicción $n\in y \in n$.

Lo anterior cubre todos los casos para mostrar que la relación es transitiva. Hemos entonces mostrado que $\in_{s(n)}$ es un orden total y estricto para $s(n)$.

Cualquier $B\subseteq s(n)$ no vacío tiene mínimo y máximo con respecto a $\in_{s(n)}$.

Supongamos que $B$ conjunto no vacío es subconjunto de $s(n)$ y veamos que $B$ tiene máximo y mínimo.

Caso 1: Si $B\subseteq \set{n}$, como $B\not=\emptyset$ entonces $B=\set{n}$.

Luego, $n=\min (B)$ pues se satisface que para cualquier $y\in B\setminus \set{n}=\emptyset$, se tiene que $n\in y$ por vacuidad.

Finalmente, $n=\max (B)$ pues se satisface que para cualquier $y\in B\setminus \set{n}=\emptyset$, se tiene que $y\in n$ por vacuidad.

Caso 2: Si $B\subseteq n$, entonces $B$ es un subconjunto no vacío de $n$, así que tiene un mínimo $a$ y un máximo $b$ con respecto a $\in_n$, que son a la vez mínimo y máximo con respecto a $\in_{s(n)}$.

Caso 3: Si no pasa que $B\subseteq \set{n}$, ni $B\subseteq n$, entonces hay elementos de $B$ en $\set{n}$ y en $n$. Así, $n\in B$ y podemos definir $a$ como el mínimo de $B\cap n$. Afirmamos que $n=\max(B)$ y $a=\min(B)$.

En efecto, todo $y\in B\setminus\{n\}$ está en $n$ y por lo tanto $y\in_{s(n)} n$. Además, si tomamos $z\in B\setminus \{a\}$, entonces hay dos posibilidades. O bien $z=n$, que acabamos de ver que cumple $a\in_{s(n)} n$. O bien $z\in n$, pero entonces $z\in B\cap n$ y como $a$ es mínimo de $B\cap n$, tenemos entonces $a\in_n z$ y por lo tanto $a\in_{s(n)} z$.

Con esto terminamos de demostrar todo lo que necesitábamos para ver que $s(n)$ es un natural.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá aprender otras propiedades del sucesor de un número natural:

  1. Describe al sucesor del natural $\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}, \set{\emptyset, \set{\emptyset},\set{\emptyset, \set{\emptyset}}}}$.
  2. Sean $x$ y $y$ conjuntos cualesquiera. Demuestra que si $s(x)=s(y)$, entonces $x=y$.
  3. Prueba que para cualquier natural $n$ se cumple que $\bigcup s(n)=n$.
  4. Sea $x$ un conjunto. Demuestra que $x$ y $s(x)$ son conjuntos distintos. ¿Será siempre cierto que $x$ y $s(s(x))$ son conjuntos disintos? En caso de que sí, da una prueba. En caso de que no, da un contraejemplo.

Más adelante…

En la siguiente entrada definiremos a los conjuntos inductivos. Tales conjuntos nos darán la base para definir al conjunto de los números naturales. Además hablaremos de un nuevo axioma: el axioma del infinito.

Entradas relacionadas

En los siguientes enlaces podrás repasar el contenido acerca de números naturales.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior II: Introducción a estructuras algebraicas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Finalmente terminamos de construir a los números naturales, sus operaciones y su orden. El siguiente conjunto que nos interesa construir es $\mathbb{Z}$, el conjunto de los números enteros. Haremos esto en breve. Sin embargo, primero haremos un paréntesis para hablar de estructuras algebraicas.

Quizás hayas escuchado hablar de varias de ellas. En cálculo y geometría analítica se habla de los números reales y se comenta que es muy importante que sea un campo. En geometría moderna se habla de transformaciones geométricas y cómo algunas de ellas forman un grupo. También es común escuchar de los anillos de enteros o de polinomios (que estudiaremos más adelante). Y por supuesto, también están los espacios vectoriales, que están fuertemente conectados con resolver sistemas de ecuaciones lineales y hacer cálculo y geometría en altas dimensiones.

Todos estos conceptos (campos, grupos, anillos, espacios vectoriales, etc.) son ejemplos de estructuras algebraicas. Cada tipo de estructura algebraica es muy especial por sí misma y sus propiedades se estudian por separado en distintas materias, notablemente aquellas relacionadas con el álgebra moderna. La idea de esta entrada es dar una muy breve introducción al tema, para que te vayas acostumbrando al uso del lenguaje. Esto te servirá más adelante en tu formación matemática.

Intuición de estructuras algebraicas

De manera intuitiva, una estructura algebraica consiste de tomar un conjunto, algunas operaciones en ese conjunto, y ciertas propiedades que tienen que cumplir las operaciones. Eso suena mucho a lo que hemos trabajado con $\mathbb{N}$: es un conjunto, con las operaciones de suma y producto. Y ya demostramos que estas operaciones tienen propiedades especiales como la conmutatividad, la distributividad y la existencia de neutros.

En realidad podríamos tomar cualquier conjunto y cualquier operación y eso nos daría una cierta estructura.

Ejemplo. Consideremos el conjunto $\mathbb{N}$ con la operación binaria $\star$ tal que $$a\star b=ab+a+b.$$ Tendríamos entonces que $$3\star 1=3\cdot 1+3+1= 7,$$ y que $$10\star 10=10\cdot 10 + 10 + 10 = 120.$$

Es posible que la operación $\star$ tenga ciertas propiedades especiales, y entonces algunas proposiciones matemáticas interesantes consistirían en enunciar las propiedades de $\star$.

$\triangle$

Aunque tenemos mucha libertad en decidir cuál es el conjunto, cuáles son las operaciones que le ponemos y qué propiedades vamos a pedir, hay algunos ejemplos que se aparecen muy frecuentemente en las matemáticas. Aparecen de manera tan frecuente, que ameritan nombres especiales. Comencemos a formalizar esto.

Operaciones binarias y magmas

Dado un conjunto $S$, una operación binaria toma parejas de elementos de $S$ y los lleva a otro elemento de $S$. En símbolos, es una función $\star: S\times S\to S$. Cuando usamos la notación de función, tendríamos que escribir todo el tiempo $\times(a,b)$ para referirnos a lo que esta operación le hace a cada pareja de elementos $a$ y $b$ en $S$. Sin embargo, esto resulta poco práctico, y es por esta razón que se usa mucho más la notación $a\times b:=\times (a,b)$.

Ejemplo. En $\mathbb{N}$ ya definimos la operación binaria $+$, que toma dos enteros $a$ y $b$ y los manda a $s_a(b)$, donde $s_a:\mathbb{N}\to \mathbb{N}$ es la función que construimos usando el teorema de recursión estableciendo que $s_a(0)=a$ y $s_a(\sigma(n))=\sigma(s_a(n))$.

$\triangle$

Aquí lo único que nos importa es establecer una operación binaria. No nos importa si tiene otras propiedades adicionales.

Definición. Un magma consiste de un conjunto $S$ con una operación binaria $\ast$.

Otros ejemplos de magma son $\mathbb{N}$ con la operación que dimos en la parte de intuición, o bien $\mathbb{N}$ con el producto que ya definimos. También podemos tener magmas en conjuntos que no sea el de los enteros. Por ejemplo, si $P$ es el conjunto de subconjuntos de $\{0,1,2,3,4\}$, y le damos la operación que manda $A$ y $B$ a $A\cup B\cup \{0\}$, entonces también obtenemos un magma.

Conmutatividad

Cuando tenemos un conjunto $S$ y una operación binaria $\star$ en $S$, puede suceder que de lo mismo hacer $a\star b$ que $b\star a$. Esto ya es una propiedad especial que pueden cumplir las operaciones binarias, y tiene un nombre.

Definición. Decimos que una operación binaria $\star$ en un conjunto $S$ es conmutativa si para cualesquiera dos elementos $a$ y $b$ de $S$ se cumple que $a\star b=b\star a$.

Observa que la igualdad debe suceder para cualesquiera dos elementos. Basta con que falle para una pareja para que la operación ya no sea conmutativa.

Ejemplo. Una de las propiedades que demostramos de la operación de suma en $\mathbb{N}$ es que $s_a(b)=s_b(a)$, es decir, que $a+b=b+a$. En otras palabras, la operación binaria $+$ en $\mathbb{N}$ es conmutativa. Así mismo, vimos que el producto era conmutativo, es decir, que $p_a(b)=p_b(a)$, que en términos de la operación binaria $\cdot$ quiere decir que $a\cdot b=b\cdot a$.

$\triangle$

Más adelante veremos que otras funciones de suma y producto también son conmutativas, por ejemplo, las de los enteros, racionales, reales y complejos. Sin embargo, hay algunas operaciones binarias muy importantes en matemáticas que no son conmutativas. Un ejemplo de ello es el producto de matrices. Otro ejemplo es la diferencia de conjuntos.

Ejemplo. Si $P$ es el conjunto de subconjuntos de $\{0,1,2,3,4\}$ y le damos la operación binaria $\setminus$ tal que dados $A$ y $B$ en $P$ los manda a $A\setminus B$, entonces obtenemos un magma. Sin embargo, la operación $\setminus$ no es conmutativa pues, por ejemplo, $$\{1,2,3\}\setminus\{2,3,4\}=\{1\},$$ pero $$\{2,3,4\}\setminus\{1,2,3\}=\{4\}.$$

$\triangle$

En $\mathbb{N}$ no tenemos una operación de resta, como discutiremos en breve. Pero en el conjunto de los enteros sí, y ese sería otro ejemplo de una operación que no es conmutativa.

Asociatividad y semigrupos

Otra de las propiedades importantes que demostramos de la suma y producto de naturales es que son operaciones asociativas. En general, podemos definir la asociatividad para una operación binaria como sigue.

Definición. Sea $\star$ una operación binaria en un conjunto $S$. Decimos que $\star$ es asociativa si $a\star (b\star c)=(a\star b)\star c$ para cualesquiera tres elementos $a,b,c$ de $S$.

Tanto la suma como el producto de naturales dan una operación asociativa pues ya demostramos que si $a,b,c$ son naturales, entonces $a+(b+c)=(a+b)+c$ y $a(bc)=(ab)c$. Esta propiedad también la tendremos para la suma y producto de enteros, racionales, reales, complejos, polinomios, etc.

A partir de la asociatividad podemos definir la primer estructura algebraica que requiere un poco más de propiedades.

Definición. Un semigrupo es un conjunto $S$ con una operación asociativa $\star$.

Si además $\star$ es una operación conmutativa, entonces decimos que es un semigrupo conmutativo. En realidad, en cualquiera de las definiciones que daremos a continuación podemos agregar el adjetivo «conmutativo» y esto querrá decir que además de las propiedades requeridas, también se cumple que la operación es conmutativa.

En los semigrupos (y demás estructuras con asociatividad) tenemos la ventaja de que podemos «olvidarnos de los paréntesis» sin la preocupación de que haya ambigüedad. Por ejemplo, en los naturales la expresión $3+((2+4)+8)$ se puede escribir simplemente como $3+2+4+8$, pues cualquier otra forma de poner paréntesis, como $(3+2)+(4+8)$, debe dar exactamente el mismo resultado por asociatividad.

Ejemplo. Una operación que no es asociativa es la resta en los enteros. Aunque no hemos definido formalmente esta operación, es intuitivamente claro que $3-(2-1)$ no es lo mismo que $(3-2)-1$.

$\triangle$

Unidades y magmas unitales

A veces sucede que algunos elementos de un conjunto «no afectan a nadie» bajo una cierta operación binaria dada. Por ejemplo, en los naturales «sumar cero» no cambia a ningún entero.

Definición. Sea $\star$ una operación binaria en un conjunto $S$. Una unidad o neutro para $\star$ es un elemento $e$ en $S$ para el cual se cumple que para cualquier elemento $a$ de $S$ se tenga $a\star e = a$ y $e\star a = a$.

Observa que es muy importante pedir las dos igualdades de la definición. Si una se cumple, no necesariamente tiene que pasar la otra, pues no necesariamente la operación es conmutativa. Por supuesto, si ya se sabe que la operación es conmutativa, entonces basta con ver una de ellas.

En $\mathbb{Z}$ tenemos las operaciones de suma y producto. Para no confundir a sus neutros, a $0$ le llamamos el neutro aditivo para hacer énfasis que es el neutro de la suma. Y a $1$ le llamamos el neutro multiplicativo para hacer énfasis que es el neutro del producto. Entre las propiedades que probamos, en efecto vimos que $a+0=a=0+a$ y que $a\cdot 1 = a = 1\cdot a$ para cualquier entero $a$.

Definición. Un magma unital es un conjunto $S$ con una operación $\star$ que tiene un neutro.

El conjunto de naturales con la operación $\star$ que dimos en la sección de intuición también es un magma unital. ¿Puedes decir quién es su neutro?

Monoides

Se puede pedir más de una propiedad a una operación binaria y entonces obtenemos estructuras algebraicas más especiales.

Definición. Un monoide es un conjunto $S$ con una operación $\star$ que es asociativa y que tiene un neutro.

En otras palabras, un monoide es un magma unital con operación asociativa. O bien, un semigrupo cuya operación tiene unidad. Por supuesto, si la operación además es conmutativa entonces decimos que es un monoide conmutativo.

Ejemplo. Por todo lo que hemos visto en esta entrada, tenemos que $\mathbb{N}$ con la suma es un monoide conmutativo. Así mismo, $\mathbb{N}$ con el producto es un monoide conmutativo.

$\triangle$

Semianillos

La última idea importante para discutir en esta entrada es que una estructura algebraica puede tener más de una operación binaria, y además de pedir propiedades para cada operación, también se pueden pedir propiedades que satisfagan ambas operaciones en igualdades que las involucran a las dos.

Definición. Un seminanillo es un conjunto $S$ con dos operaciones binarias $\square$ y $\star$ que satisfacen las siguientes propiedades:

  • $\square$ es un monoide conmutativo
  • $\star$ es un monoide
  • Se cumple distributividad, es decir, que para cualesquiera tres elementos $a,b,c$ de $S$ se tiene $a\star(b\square c) = (a\star b)\square(a\star c)$ y $(a\square b)\star c = (a\star c)\square(b\star c)$.
  • El neutro $e$ de $\square$ aniquila a los elementos bajo $\star$, es decir, para cualquier elemento $a$ de $S$ se tiene que $a\star 0=0$ y $0\star a = 0$.

Un semianillo conmutativo es un semianillo en donde la operación $\star$ también es conmutativa. Las propiedades que hemos de los números naturales nos permiten enunciar el siguiente resultado.

Teorema. El conjunto $\mathbb{N}$ con las operaciones binarias de suma y producto es un semianillo conmutativo.

Más adelante…

Este sólo fue un pequeño paréntesis para comenzar a hablar de operaciones binarias y de estructuras algebraicas. Ahora regresaremos a seguir construyendo de manera formal los sistemas numéricos con los que se trabaja usualmente: los enteros, los racionales, los reales y los complejos.

Un poco más adelante haremos otro paréntesis de estructuras algebraicas, en el que hablaremos de otras propiedades más que puede tener una operación binaria. Una muy importante es la existencia de inversos para la operación binaria. Esto llevará a las definiciones de otras estructuras algebraicas como los grupos, los anillos, los semigrupos con inversos, los quasigrupos y los campos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra el neutro de la operación $\star$ dada en la sección de intuición. Verifica que en efecto es un neutro.
  2. Demuestra que el conjunto de los naturales pares $\{0,2,4,6,\ldots\}$ sí tiene un neutro para la operación de suma, pero no para la operación de producto.
  3. Considera el conjunto $P(S)$ de subconjuntos de un conjunto $S$. Considera las operaciones binarias de unión e intersección de elementos de $P(S)$. Muestra que $P(S)$ con estas operaciones es un semianillo conmutativo.
  4. Da un ejemplo de un magma que no sea un magma unital. Da un ejemplo de un magma unital que no sea un monoide.
  5. Da o busca un ejemplo de un semianillo que no sea un semianillo conmutativo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Inmersión de $\mathbb{N}$ en $\mathbb{Z}$

Por Ana Ofelia Negrete Fernández

Introducción

Desde la educación básica pensamos al conjunto de los números enteros como aquél que está conformado por los naturales, sus negativos y el cero: $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \} .$$ Sin embargo, para poder fundamentar nuestra construcción, hasta ahora tenemos que el conjunto $\mathbb{Z}$ consiste por definición de ciertas clases de equivalencia de una relación en $\mathbb{N}\times \mathbb{N}$. ¡Observa que ni siquiera $\mathbb{N}$ es un subconjunto de $\mathbb{Z}$ a partir de esta definición! ¿Cómo le hacemos para que estos dos puntos de vista coincidan?

En esta entrada veremos dos cosas muy importantes que nos permitirán unificar ambas ideas. Lo primero que haremos es ver que, en efecto, podemos pensar que $\mathbb{N}$ «es un subconjunto» de $\mathbb{Z}$. Esto lo ponemos entre comillas pues en realidad lo que demostraremos es que hay una copia de $\mathbb{N}$ dentro de $\mathbb{Z}$, con toda la estructura que tenía $\mathbb{N}$ originalmente: sus operaciones, sus identidades, su orden.

Después de esto, nos enfocaremos en ver que $\mathbb{Z}$ consiste exactamente de esta copia y de sus inversos aditivos. Así, habremos formalizado que $\mathbb{Z}$ consiste exactamente de los naturales, sus inversos aditivos y ningún otro elemento.

Inmersión de los naturales en los enteros

En la entrada anterior hablamos acerca del orden en $\mathbb{Z}$. Para ello hablamos del conjunto de enteros positivos $P$. También definimos las relaciones $<$ y $\leq$. En un sentido bastante formal, los enteros mayores o iguales a cero son exactamente los números naturales. La manera en la que enunciamos este resultado es la siguiente.

Teorema. Existe una función biyectiva $\gamma:\mathbb{N}\to P\cup \{\overline{(0,0)}\}$ que preserva las operaciones de suma, producto, el inverso aditivo, el inverso multiplicativo y el orden. Esta función está dada por $\gamma(n)=\overline{(n,0)}$.

Una vez que demostremos esto, la imagen $\gamma(\mathbb{N})$ será exactamente la «copia» de los naturales que vive en los enteros y que precisamente tiene todas las propiedades algebraicas de los naturales que nos interesaban.

Para hacer la demostración de este teorema, probaremos el resultado poco a poco, a través de varios lemas.

Lema 1. La función $\gamma$ está bien definida y es biyectiva.

Demostración. La función $\gamma$ está bien definida pues las clases del estilo $\overline{(n,0)}$ siempre están en $P\cup \{\overline{(0,0)}\}$: si $n=0$, entonces obtenemos la clase $\overline{(0,0)}$ y si $n\neq 0$, entonces $n>0$, lo cual justifica que $\overline{(n,0)}$ es un entero positivo, es decir, en $P$.

Veamos que la función $\gamma$ es biyectiva. Para ver que es inyectiva tomamos dos naturales $m$ y $n$ tales que $\gamma(m)=\gamma(n)$, es decir, tales que $\overline{(m,0)}=\overline{(n,0)}$. Esto quiere decir que $m+0=n+0$, pero entonces $m=n$. Para ver que es suprayectiva, ya sabemos que tomemos una clase $\overline{(a,b)}$ en $P\cup \{\overline{(0,0)}\}$. Por lo visto en la entrada anterior, esto nos dice que $a\geq b$, pero entonces existe un natural $k$ tal que $a=b+k$, de modo que $a+0=b+k$ y por lo tanto $\overline{(a,b)}=\overline{(k,0)}$. Con esto concluimos que $$\gamma(k)=\overline{(k,0)}=\overline{(a,b)}.$$

$\square$

Observa que, sin embargo, no sucede que $\gamma(\mathbb{N})$ sea todo $\mathbb{Z}$. Es decir, hay enteros diferentes de las clases $\overline{(n,0)}$, por ejemplo, el $\overline{(0,1)}$. Se puede verificar que la imagen de $\gamma$ cubre a los enteros no negativos y sólo a esos.

Regresando al enunciado del teorema, lo que veremos ahora es que $\gamma$ respeta las operaciones de suma y producto, así como sus respectivas identidades.

Lema 2. Para cualesquiera naturales $m$ y $n$ se cumple que $$\gamma(m)+\gamma(n)=\gamma(m+n)$$ y que $$\gamma(m)\gamma(n)=\gamma(mn).$$ Además, $\gamma(0)$ es la identidad aditiva en $\mathbb{Z}$ y $\gamma(1)$ es la identidad multiplicativa en $\mathbb{Z}$.

Demostración. Basta usar la definición de $\gamma$ y de la suma en $\mathbb{Z}$:
\begin{align*}
\gamma (m)+\gamma(n)&=\overline{(m,0)}+\overline{(n,0)}\\
&= \overline{(m+n,0)}\\
&=\gamma{m+n}.
\end{align*}

De modo similar, para el producto usamos la definición de $\gamma$ y la del producto en $\mathbb{Z}$:

\begin{align*}
\gamma (m)\gamma(n)&=\overline{(m,0)}\overline{(n,0)}\\
&= \overline{(mn+0\cdot 0,m\cdot 0 + 0 \cdot n)}\\
&= \overline{(mn,0)}\\
&=\gamma{mn}.
\end{align*}

La parte de las identidades es sencilla de hacer y queda como tarea moral.

$\square$

Ya vimos que $\gamma$ respeta las operaciones. Ahora veamos que también respeta el orden.

Lema 3. Para cualesquiera naturales $m$ y $n$, sucede que $m < n$ si y sólo si $\gamma(m) < \gamma(n)$.

Demostración. Por definición de $\gamma$, tenemos que $\gamma(m)<\gamma(n)$ si y sólo si $\overline{(m,0)}<\overline{(n,0)}$. En la entrada anterior vimos que esto sucede si y sólo si en $\mathbb{N}$ tenemos que $m+0<n+0$. Pero esto es justo $m<n$.

$\square $

Los lemas 1, 2 y 3 conforman la demostración del teorema de esta sección.

Caracterización de los enteros

En vista del teorema de la sección anterior, dentro de $\mathbb{Z}$ hay metida una copia de $\mathbb{N}$. ¿Cuáles son los otros elementos de $\mathbb{Z}$? ¿Hay muchos más enteros que eso? La respuesta es que no. Para acabar de tener a todos los elementos de $\mathbb{Z}$ basta con tomar esta copia de los enteros y considerar a sus inversos aditivos.

Proposición. Para cualquier entero $\overline{(a,b)}$, tenemos que sucede una y exactamente una de las afirmaciones siguientes:

  • $\overline{(a,b)}=\overline{(0,0)}$.
  • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
  • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.

Demostración. Por el principio de tricotomía en $\mathbb{N}$, sabemos que se cumple una y exactamente una de las afirmaciones siguientes:

  • $a=b$
  • $a>b$
  • $a<b$

Si pasa la primera, entonces $\overline{(a,b)}=\overline{(0,0)}$. Si pasa la segunda, es porque existe un natural $n\neq 0$ tal que $a=b+n$, pero entonces $a+0=b+n$ y así $\overline{(a,b)}=\overline{(n,0)}$. Si pasa la tercera, es porque existe un natural $n,0$ tal que $a+n=b=b+0$, y entonces $\overline{(a,b)}=\overline{(0,n)}$.

De esta manera, se ve que siempre se cumple al menos una de las afirmaciones del enunciado. Ver que se cumple a lo más una es sencillo y queda como tarea moral.

$\square$

Siguiendo la demostración anterior con cuidado, nos damos cuenta que los casos corresponden precisamente al entero cero, a los positivos y a los negativos. La proposición anterior es una manera de ilustrar, en particular, que hay que hay el mismo número de números naturales positivos como números enteros negativos: a cada uno de ellos le podemos asociar (de manera biyectiva), un natural. Otra forma de dar esta biyección es mandar el entero positivo $\overline{(n,0)}$ al entero negativo $\overline{(0,n)}$, que es precisamente su inverso aditivo.

Re-etiquetando a los enteros

Estamos listos para abandonar la notación de parejas y clases de equivalencia. En vista de los resultados anteriores, cualquier entero positivo $\overline{(a,b)}$ es el mismo que un entero de la forma $\overline{(n,0)}$. Y los enteros de esta forma justo conforman una copia de $\mathbb{N}$ con toda la estructura algebraica que nos interesa. Así, ya nunca más tenemos que llamar a $\overline{(a,b)}$ con este nombre: basta simplemente llamarlo $n$.

Si tenemos un entero de la forma $\overline{(a,b)}$ con $a=b$, entonces simplemente lo llamaremos $0$. Y finalmente, si el entero $\overline{(a,b)}$ es negativo, podemos escribirlo de la forma $\overline{(0,n)}$ y en vista de lo anterior simplemente lo llamaremos $-n$. Todo esto funciona bien, porque también sabemos que justo $\overline{(n,0)}$ y $\overline{(0,n)}$ son inversos aditivos entre sí.

Pero, ¿cómo sabremos si al usar el símbolo $1$ nos estamos refiriendo al natural $\{\emptyset\}$ o al entero $\overline{(\{\emptyset\},\emptyset)}$? En realidad ya no es relevante, pues tenemos la total garantía de que los enteros no negativos se comportan exactamente como $\mathbb{N}$.

De esta manera, $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \}$$ y además tenemos la total garantía de que los enteros no negativos se comportan exactamente como los naturales.

Más adelante…

Después de liberar la gran carga que teníamos de usar la notación de parejas y de relaciones de equivalencia, ahora ya podemos usar a los enteros tal y como los conocíamos desde educación básica: como el cero, los enteros que no son cero, y sus negativos. Además, gracias a todo lo que demostramos, ya podemos utilizar las propiedades de la suma, el producto y el orden con la confianza de que están bien fundamentadas.

Lo que sigue es estudiar con más profundidad al conjunto $\mathbb{Z}$. Aunque no haya propiamente «divisiones exactas» en este conjunto, sí podemos preguntarnos qué sucede cuando dividimos un entero por otro, y cuánto queda. Esto lleva a las nociones de divisibilidad y residuos, que a su vez llevan a áreas muy interesantes de las matemáticas como el álgebra moderna y la teoría de números.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que en efecto no existe ningún natural $m$ tal que $\gamma(m)=\overline{(0,1)}$.
  2. Verifica que $\gamma(0)$ es la identidad aditiva de $\mathbb{Z}$ y $\gamma(1)$ es su identidad multiplicativa.
  3. Explica por qué para un entero $\overline{(a,b)}$ no puede suceder más de una de las siguientes afirmaciones:
    • $\overline{(a,b)}=\overline{(0,0)}$.
    • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
    • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.
  4. La función $\gamma$ no es una biyección entre $\mathbb{N}$ y $\mathbb{Z}$. Pero sí existen biyecciones entre estos dos conjuntos. Construye una y demuestra que en efecto es una biyección.
  5. Da una biyección que muestre que el conjunto de los enteros no negativos pares, $\{0, 2, 4, 6, \ldots\}$ y el conjunto de los enteros no negativos positivos, $\{ 0, 1, 2, 3, \ldots \}$ tienen la misma cardinalidad. ¿Será posible construir la biyección de modo que se preserve la operación de suma? ¿Será posible construirla de modo que se preserve la operación de producto?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»