Archivo de la etiqueta: naturales

Teoría de los Conjuntos I: Principio de inducción

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca del principio de inducción, este principio nos permitirá demostrar propiedades que cumple los números naturales. Será de gran importancia pues emplearemos este teorema como método de demostración en el conjunto de los naturales.

Principio de inducción

Teorema: Sea $P(x)$ una propiedad. Supongamos que:

  1. $P(0)$,
  2. Para cualquier $n\in \mathbb{N}$, si $P(n)$ se satisface, entonces $P(s(n))$ se cumple.

Entonces, $\set{n\in \mathbb{N}:P(n)}=\mathbb{N}$.

Demostración:

Sea $P(x)$ una propiedad. Supongamos que se satisfacen 1) y 2), entonces

$A=\set{n\in \mathbb{N}: P(n)}$

es un conjunto inductivo.

En la entrada anterior probamos que cualquier conjunto inductivo contiene a los naturales. Así, $\mathbb{N}\subseteq A$.

Además, $A\subseteq \mathbb{N}$ pues para cualquier $n\in A$, $n\in \mathbb{N}$ y por lo tanto, $A=\mathbb{N}$.

$\square$

Para entender este teorema podemos imaginar que apilamos una cantidad infinita de fichas de dominó de tal manera que al caer una vayan cayendo todas como se muestra en la imagen.

De este modo, podemos interpretar al teorema como sigue: $P(x): x\ \text{cae}$ donde $x$ es una ficha de dominó. Luego, estamos suponiendo que se cae la primer ficha de dominó y que si se cae la ficha $n$, entonces se cae la siguiente ficha.

Por lo que si asociamos a las fichas con los números naturales, podemos decir que cada ficha cumplirá la propiedad, o bien, que cada número natural lo hará.

Orden de los naturales

Ahora que hemos visto que la colección de los naturales es un conjunto podemos darle un orden a este conjunto.

Definición: Sean $n,m\in \mathbb{N}$. Decimos que $n\leq m$ si y sólo si $n\in m$ o $n=m$.

Ejemplos:

  • $0=\emptyset$ y $1=\set{\emptyset}$ son números naturales. Luego, $0\leq 1$ pues $\emptyset\in \set{\emptyset}$.
  • $0=\emptyset$ y $2=\set{\emptyset, \set{\emptyset}}$ son números naturales. Luego, $0\leq 2$ pues $\emptyset\in \set{\emptyset, \set{\emptyset}}$.
  • $1=\set{\emptyset}$ y $2=\set{\emptyset, \set{\emptyset}}$ son números naturales. Luego, $1\leq 2$ pues $\set{\emptyset}\in \set{\emptyset, \set{\emptyset}}$.

$\square$

A continuación demostraremos el siguiente lema que nos dice que la intersección de dos números naturales resulta ser un número natural.

Lema: Si $n,m\in \mathbb{N}$, entonces $n\cap m\in \mathbb{N}$.

Demostración:

Sean $n,m\in \mathbb{N}$. Tenemos los siguientes casos:

Caso 1: Si $n\cap m=\emptyset$, entonces $n\cap m\in \mathbb{N}$.

Caso 2: $n\cap m\not=\emptyset$.

$n\cap m$ es un conjunto transitivo: Sea $z\in n\cap m$, entonces $z\in n$ y $z\in m$, dado que $n,m\in \mathbb{N}$, entonces $n$ y $m$ son conjuntos transitivos, por lo que $z\subseteq n$ y $z\subseteq m$ y así, $z\subseteq n\cap m$, lo que demuestra que $n\cap m$ es un conjunto transitivo.

$n\cap m$ es un orden total con la pertenencia:

Asimetría de $\in$ en $n\cap m$:

Sean $z,w\in n\cap m$, tales que $z\in_{n\cap m} w$. Veamos que $w\notin_{n\cap m} z$. Dado que $z,w\in n\cap m$, entonces $z,w\in n$ y $z,w\in m$. Así, al ser $n$ un número natural, sabemos que $(n, \in_n)$ es un orden total, por lo que $\in_n$ es una relación asimetrica y por lo tanto, no puede ocurrir que $w\in_n z$. Además, como $(m, \in_m)$ es un orden total, $\in_m$ es una relación asimétrica en $m$ y por lo tanto, no puede ocurrir que $w\in_m z$. Por lo tanto, $w\notin_{n\cap m} z$.

Transitividad de $\in$ en $n\cap m$:

Sean $z,w,y\in n\cap m$, tales que $z\in_{n\cap m} w$ y $w\in_{n\cap m} y$. Veamos que $z\in_{n\cap m} y$. Dado que $z,w,y\in n\cap m$, entonces $z,w,y\in n$ y $z,w,y\in m$. Así, al ser $n$ un número natural, sabemos que $(n, \in_n)$ es un orden total, por lo que $\in_n$ es una relación transitiva y por lo tanto, $z\in_n y$. Además, como $(m, \in_m)$ es un orden total, $\in_m$ es una relación transitiva en $m$ y por lo tanto, $w\in_m y$. Por lo tanto, $w\in_{n\cap m} y$.

$\in_{n\cap m}$-comparables:

Sean $z,w\in n\cap m$, entonces $z,w\in n$ y $z,w\in m$. Luego, como $n$ es un número natural, sabemos que $(n, \in_n)$ es un orden total, por lo que los elementos de $n$ son $\in_n$-comparables y por lo tanto, $z\in_n w$ o $w\in_n z$ o $w=z$. Además, como $(m, \in_m)$ es un orden total, los elementos de $m$ son $\in_m$-comparables y por lo tanto, $z\in_m w$ o $w\in_m z$ o $w=z$. Por lo tanto, los elementos de $n\cap m$ son $\in_{n\cap m}$-comparables.

Finalmente, veamos que para cualquier subconjunto $b$ no vacío de $n\cap m$, $b$ tiene elemento mínimo y máximo.

Dado que $b\subseteq n\cap m$, entonces $b\subseteq n$ y $b\subseteq m$. Dado que $n$ y $m$ son números naturales y $b$ es un subconjunto no vacío de $n$ y $m$, se tiene que $b$ tiene mínimo con respecto a $\in_n$ y $b$ tiene mínimo con respecto a $\in_m$, respectivamente.

Sea $a=\min(b)$ con respecto a $\in_n$ y $x=\min(b)$ con respecto a $\in_m$. Luego, como $b\subseteq n$ y $b\subseteq m$, se tiene que $a,x\in n$ y $a,x\in m$. Por lo tanto, $a,x\in n\cap m$.

Luego, sea $\alpha=\min(\set{a, x})$. Supongamos sin pérdida de la generalidad que $\alpha=a$.

Afirmación: $\alpha=\min(b)$ con respecto a la pertenencia en $n\cap m$.

Demostración de la afirmación:

Sea $k\in b\setminus \set{\alpha}$, entonces $k\in b$ y $k\notin \set{\alpha}$. Luego, $k\in n$, pues $b\subseteq n$ y por tanto, $\alpha\in k$ pues $\alpha=a=\min(b)$ con respecto a $\in_n$.

Por lo tanto, $\alpha=\min(b)$ con respecto a $\in_{n\cap m}$.

$\square$

Por lo tanto, si $n,m\in \mathbb{N}$, entonces $n\cap m\in \mathbb{N}$.

$\square$

En la tarea moral verás que te corresponde probar que cualquier subconjunto no vacío de $n\cap m$ tiene elemento máximo.

Tarea moral

La siguiente lista te ayudará a reforzar el contenido de esta entrada:

  • Sea $X$ un subconjunto no vacío de $\mathbb{N}$, demuestra que $\bigcap X\in \mathbb{N}\cap X$. (Nota que esta es una generalización del lema que probamos en la parte de arriba).

Más adelante

En la siguiente entrada probaremos que el conjunto de los naturales con el orden que hemos definido en esta entrada es un buen orden, para esta demostración nos será de gran utilidad el lema que probamos en esta sección.

Enlaces

Entrada anterior: Teoría de los Conjuntos I: Conjuntos inductivos y axioma del infinito

Entradas relacionadas: Álgebra Superior II: Principio de inducción y teoremas de recursión

Teoría de los Conjuntos I: Sucesor

Por Gabriela Hernández Aguilar

Introducción

En esta nueva sección hablaremos acerca del sucesor de un número natural. Este nuevo concepto nos permitirá definir a los conjuntos inductivos e iniciar a descubrir el concepto del infinito desde la perspectiva de la teoría de conjuntos.

Concepto

Definición: Sea $x$ un conjunto, definimos al sucesor de $x$ como $s(x)=x\cup \set{x}$.

Ejemplos:

  • El sucesor de $\emptyset$ es $s(\emptyset)=\emptyset\cup \set{\emptyset}=\set{\emptyset}$.
  • El sucesor de $\set{\emptyset}$ es $s(\set{\emptyset})=\set{\emptyset}\cup \set{\set{\emptyset}}=\set{\emptyset, \set{\emptyset}}$.
  • Luego, el sucesor de $\set{\emptyset, \set{\emptyset}}$ es $s(\set{\emptyset, \set{\emptyset}})=\set{\emptyset,\set{\emptyset}}\cup \set{\set{\emptyset, \set{\emptyset}}}=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$.
  • El sucesor de $\set{\set{\emptyset}}$ es $s(\set{\set{\emptyset}})=\set{\set{\emptyset}}\cup \set{\set{\set{\emptyset}}}= \set{\set{\emptyset}, \set{\set{\emptyset}}}$.

$\square$

Aunque podemos definir al sucesor para cualquier conjunto, dado que en esta unidad únicamente estaremos trabajando con números naturales, usaremos la definición de sucesor de un conjunto para conjuntos que son números naturales.

Bajo este hecho va a resultar que si $x$ es un número natural, entonces $s(x)$ es un número natural, vamos a demostrar esto, pero antes demostraremos algunos lemas que nos serán de utilidad.

Resultados previos

Lema 1: Para cualquier número natural $n$, no es posible que $n\in n$.

Demostración:

Sea $n$ un número natural, entonces $n$ es un orden total con la $\in$ y así, los elementos de $n$, son $\in$-comparables, es decir, para cualesquiera $w,z\in n$ se tiene que $w\in z$ o $z\in w$ o $z=w$.

Dado que $n=n$, no ocurre que $n\in n$.

$\square$

Lema 2: Si $n$, $m$ son números naturales, entonces no es posible que $n\in m$ y $m\in n$ al mismo tiempo.

Demostración:

Sean $n$ y $m$ números naturales. Si $n\in m$ y $m\in n$, entonces $n\in n$ por transitividad de $\in$ en $n$, lo cual contradice el lema anterior.

Por lo tanto, no es posible que $n\in m$ y $m\in n$ al mismo tiempo.

$\square$

El sucesor de un natural

Ahora que demostramos los lemas anteriores probaremos que el sucesor de un número natural es un número natural.

Teorema:

  1. $\emptyset$ es un número natural.
  2. Si $x$ es un número natural, entonces $s(x)$ es un número natural.

Demostración:

En la entrada anterior probamos que $\emptyset$ es un número natural, lo que prueba el punto uno del teorema.

Ahora, sea $x$ un número natural. Veamos que $s(x)$ es un número natural, para ello vamos a probar que $x\cup\set{x}$ es un conjunto transitivo, ordenado totalmente con $\in$ y que para cada subconjunto $b$ no vacío se cumple que $b$ tiene mínimo y máximo con la pertenencia en $b$.

Sea $y\in x\cup\set{x}$. Si $y\in x$ dado que $x$ es un número natural, entonces $x$ es un conjunto transitivo y por lo tanto, $y\subseteq x$. Así, $y\subseteq x\cup\set{x}$.

Si $y\in \set{x}$, entonces $y=x$ y en particular, $y\subseteq x$ y así, $y\subseteq x\cup\set{x}$.

Por lo tanto, $s(x)$ es un conjunto transitivo.

Ahora, queremos ver que $s(x)$ es un orden total con la $\in_{s(x)}$, para ello debemos probar que $\in_{s(x)}$ es una relación asimétrica y transitiva, además de que sus elementos son $\in_{s(x)}$ comparables.

Sean $y,z\in s(x)$ tales que $y\in_{s(x)} z$. Veamos que no es posible que $z\in_{s(x)} y$.

Dado que $y,z\in s(x)=x\cup \set{x}$, tenemos los siguientes casos:

Caso 1: Si $y\in x$ y $z\in x$, entonces por ser $\in_x$ una relación asimétrica en $x$ y $y\in z$, se tiene que no es posible que $z\in y$.

Caso 2: Si $y\in x$ y $z\in \set{x}$, entonces $z=x$. Dado que $y\in z$, si ocurriera que $z\in y$, entonces $x\in y$ y así, $x\in y$ y $y\in x$, lo cual probamos en el lema 2 que no ocurre, por lo tanto, $z\notin y$.

El caso $y\in \set{x}$ y $z\in x$, entonces $y=x$. Dado que $y\in z$, entonces $x\in z$, lo cual no puede ocurrir pues de ser así, $x\in z$ y $z\in x$ al mismo tiempo, lo que contradice al lema 2.

El caso en el que $y\in \set{x}$ y $z\in \set{x}$ no puede ocurrir pues de ser así, $y=x$ y $z=x$, en particular $y=z$ y por el primer lema de esta entrada vimos que no ocurre que $y\in y$.

Así, en cualquiera de los casos se satisface que $\in_{s(x)}$ es una relación asimétrica.

Ahora, veamos que $\in_{s(x)}$ es una relación transitiva. Para ello tomemos $w,y,z\in s(x)$ arbritarios tales que $w\in_{s(x)} y$ y $y\in_{s(x)} z$ y veamos que $w\in_{s(x)} z$.

Del hecho, $w\in_{s(x)} y$ y $y\in_{s(x)} z$ se derivan los siguientes casos:

Caso 1: Si $w\in x$, $y\in x$ y $z\in x$. Dado que $w\in y$ y $y\in z$, como $\in$ es una relación transitiva en $x$ se tiene que $w\in z$.

Caso 2: Si $w\in x$, $y\in x$ y $z\in \set{x}$, entonces $z=x$, por lo que $w\in z=x$.

El caso $w\in x$, $y\in \set{x}$ y $z\in \set{x}$, entonces $y=x=z$. Dado que $w\in y$ y $y\in z$, se tendría que $w\in y$ y $y\in y$, lo cual contradice al lema 1.

El caso $w,y,z\in\set{x}$ no es posible, pues de lo contrario $w=y=z=x$ y así $w\in w$, lo cual contradice al lema 1.

Por lo tanto, $\in_{s(x)}$ es una relación transitiva.

Finalmente, los elementos de $s(x)$ son $\in_{s(x)}$-comparables. En efecto, sean $y,z\in s(x)$.

Caso 1: Si $y\in x$ y $z\in x$, entonces como los elementos de $x$ son $\in$-comparables, debe ocurrir que $y\in z$ o $z\in y$ o $z=y$.

Caso 2: Si $y\in x$ y $z\in \set{x}$, entonces $z=x$. Por lo tanto, $y\in z$.

Caso 3: Si $y\in \set{x}$ y $z\in x$, entonces $y=x$. Por lo tanto, $z\in y$.

Caso 4: Si $y\in \set{x}$ y $z\in \set{x}$, entonces $y=x$ y $z=x$. Por lo tanto, $z=y$.

Por lo tanto, los elementos de $s(x)$ son $\in_{s(x)}$-comparables.

Así, $(s(x), \in)$ es un orden total.

Ahora, supongamos que $B$ conjunto no vacío es subconjunto de $s(x)$ y veamos que $B$ tiene máximo y mínimo.

Caso 1: Si $B\cap x=\emptyset$, entonces $B\subseteq \set{x}$ y como $B\not=\emptyset$ entonces $B=\set{x}$.

Luego, $x=\min (B)$ pues se satisface que para cualquier $y\in B\setminus \set{x}=\emptyset$, $x\in y$ por vacuidad.

Finalmente, $x=\max (B)$ pues se satisface que para cualquier $y\in B\setminus \set{x}=\emptyset$, $y\in x$ por vacuidad.

Caso 2: Si $B\cap x\not= \emptyset$, entonces $B\cap x$ es un subconjunto no vacío de $x$. Así, dado que $x$ es un natural, se satisface que $B\cap x$ tiene elemento mínimo y máximo con respecto a la $\in$ en $x$. Sea $b=\min (B\cap x)$ con respecto a la pertenencia en $x$ y $a=\max (B\cap x)$ con respecto a la pertenencia en $x$.

Veamos que $b=min(B)$ con respecto a $\in$ en $s(x)$. Sea $z\in B\setminus \set{b}$ arbitrario, vamos a probar que $b\in z$.

Caso 1: Si $z\in x$, entonces $z\in B\cap x$, entonces $b\in z$ pues $b=\min(B\cap x)$.

Caso 2: Si $z\notin x$, dado que $z\in s(x)=x\cup\set{x}$ entonces $z=x$. Como $b\in B\cap x$, entonces $b\in x$ y así, $b\in z$.

Así, $b=\min(B)$ para $B\subseteq s(x)$.

En la tarea moral será tu turno de probar que cualquier subconjunto no vacío de $s(x)$ tiene elemento máximo con respecto a la pertenencia en $s(x)$.

Por lo tanto, cualquier subconjunto de $s(x)$ tiene elemento mínimo y máximo con respecto a la $\in$ en $s(x)$.

Por lo tanto, $s(x)$ es un natural.

$\square$

Tarea moral

  • Describe al sucesor del natural $\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}, \set{\emptyset, \set{\emptyset},\set{\emptyset, \set{\emptyset}}}}$.
  • Demuestra que si $s(n)=s(m)$, entonces $n=m$.
  • Prueba que $\bigcup s(x)=x$.
  • Demuestra que si $B$ es un subconjunto no vacío de $s(x)$, entonces $B$ tiene elemento máximo con respecto a la pertenencia en $s(x)$.

Más adelante

En la siguiente sección definiremos a los conjuntos inductivos, tales conjuntos nos darán la base para definir al conjunto de los naturales. Además hablaremos de un nuevo axioma: el axioma del infinito.

Enlaces

En el siguiente enlace podrás repasar el contenido acerca de números naturales. así mismo podrás ver más contenido acerca del tema:

Nota 16. Los números naturales.

Álgebra Superior II: Introducción a estructuras algebraicas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Finalmente terminamos de construir a los números naturales, sus operaciones y su orden. El siguiente conjunto que nos interesa construir es $\mathbb{Z}$, el conjunto de los números enteros. Haremos esto en breve. Sin embargo, primero haremos un paréntesis para hablar de estructuras algebraicas.

Quizás hayas escuchado hablar de varias de ellas. En cálculo y geometría analítica se habla de los números reales y se comenta que es muy importante que sea un campo. En geometría moderna se habla de transformaciones geométricas y cómo algunas de ellas forman un grupo. También es común escuchar de los anillos de enteros o de polinomios (que estudiaremos más adelante). Y por supuesto, también están los espacios vectoriales, que están fuertemente conectados con resolver sistemas de ecuaciones lineales y hacer cálculo y geometría en altas dimensiones.

Todos estos conceptos (campos, grupos, anillos, espacios vectoriales, etc.) son ejemplos de estructuras algebraicas. Cada tipo de estructura algebraica es muy especial por sí misma y sus propiedades se estudian por separado en distintas materias, notablemente aquellas relacionadas con el álgebra moderna. La idea de esta entrada es dar una muy breve introducción al tema, para que te vayas acostumbrando al uso del lenguaje. Esto te servirá más adelante en tu formación matemática.

Intuición de estructuras algebraicas

De manera intuitiva, una estructura algebraica consiste de tomar un conjunto, algunas operaciones en ese conjunto, y ciertas propiedades que tienen que cumplir las operaciones. Eso suena mucho a lo que hemos trabajado con $\mathbb{N}$: es un conjunto, con las operaciones de suma y producto. Y ya demostramos que estas operaciones tienen propiedades especiales como la conmutatividad, la distributividad y la existencia de neutros.

En realidad podríamos tomar cualquier conjunto y cualquier operación y eso nos daría una cierta estructura.

Ejemplo. Consideremos el conjunto $\mathbb{N}$ con la operación binaria $\star$ tal que $$a\star b=ab+a+b.$$ Tendríamos entonces que $$3\star 1=3\cdot 1+3+1= 7,$$ y que $$10\star 10=10\cdot 10 + 10 + 10 = 120.$$

Es posible que la operación $\star$ tenga ciertas propiedades especiales, y entonces algunas proposiciones matemáticas interesantes consistirían en enunciar las propiedades de $\star$.

$\square$

Aunque tenemos mucha libertad en decidir cuál es el conjunto, cuáles son las operaciones que le ponemos y qué propiedades vamos a pedir, hay algunos ejemplos que se aparecen muy frecuentemente en las matemáticas. Aparecen de manera tan frecuente, que ameritan nombres especiales. Comencemos a formalizar esto.

Operaciones binarias y magmas

Dado un conjunto $S$, una operación binaria toma parejas de elementos de $S$ y los lleva a otro elemento de $S$. En símbolos, es una función $\star: S\times S\to S$. Cuando usamos la notación de función, tendríamos que escribir todo el tiempo $\times(a,b)$ para referirnos a lo que esta operación le hace a cada pareja de elementos $a$ y $b$ en $S$. Sin embargo, esto resulta poco práctico, y es por esta razón que se usa mucho más la notación $a\times b:=\times (a,b)$.

Ejemplo. En $\mathbb{N}$ ya definimos la operación binaria $+$, que toma dos enteros $a$ y $b$ y los manda a $s_a(b)$, donde $s_a:\mathbb{N}\to \mathbb{N}$ es la función que construimos usando el teorema de recursión estableciendo que $s_a(0)=a$ y $s_a(\sigma(n))=\sigma(s_a(n))$.

$\square$

Aquí lo único que nos importa es establecer una operación binaria. No nos importa si tiene otras propiedades adicionales.

Definición. Un magma consiste de un conjunto $S$ con una operación binaria $\ast$.

Otros ejemplos de magma son $\mathbb{N}$ con la operación que dimos en la parte de intuición, o bien $\mathbb{N}$ con el producto que ya definimos. También podemos tener magmas en conjuntos que no sea el de los enteros. Por ejemplo, si $P$ es el conjunto de subconjuntos de $\{0,1,2,3,4\}$, y le damos la operación que manda $A$ y $B$ a $A\cup B\cup \{0\}$, entonces también obtenemos un magma.

Conmutatividad

Cuando tenemos un conjunto $S$ y una operación binaria $\star$ en $S$, puede suceder que de lo mismo hacer $a\star b$ que $b\star a$. Esto ya es una propiedad especial que pueden cumplir las operaciones binarias, y tiene un nombre.

Definición. Decimos que una operación binaria $\star$ en un conjunto $S$ es conmutativa si para cualesquiera dos elementos $a$ y $b$ de $S$ se cumple que $a\star b=b\star a$.

Observa que la igualdad debe suceder para cualesquiera dos elementos. Basta con que falle para una pareja para que la operación ya no sea conmutativa.

Ejemplo. Una de las propiedades que demostramos de la operación de suma en $\mathbb{N}$ es que $s_a(b)=s_b(a)$, es decir, que $a+b=b+a$. En otras palabras, la operación binaria $+$ en $\mathbb{N}$ es conmutativa. Así mismo, vimos que el producto era conmutativo, es decir, que $p_a(b)=p_b(a)$, que en términos de la operación binaria $\cdot$ quiere decir que $a\cdot b=b\cdot a$.

$\square$

Más adelante veremos que otras funciones de suma y producto también son conmutativas, por ejemplo, las de los enteros, racionales, reales y complejos. Sin embargo, hay algunas operaciones binarias muy importantes en matemáticas que no son conmutativas. Un ejemplo de ello es el producto de matrices. Otro ejemplo es la diferencia de conjuntos.

Ejemplo. Si $P$ es el conjunto de subconjuntos de $\{0,1,2,3,4\}$ y le damos la operación binaria $\setminus$ tal que dados $A$ y $B$ en $P$ los manda a $A\setminus B$, entonces obtenemos un magma. Sin embargo, la operación $\setminus$ no es conmutativa pues, por ejemplo, $$\{1,2,3\}\setminus\{2,3,4\}=\{1\},$$ pero $$\{2,3,4\}\setminus\{1,2,3\}=\{4\}.$$

$\square$

En $\mathbb{N}$ no tenemos una operación de resta, como discutiremos en breve. Pero en el conjunto de los enteros sí, y ese sería otro ejemplo de una operación que no es conmutativa.

Asociatividad y semigrupos

Otra de las propiedades importantes que demostramos de la suma y producto de naturales es que son operaciones asociativas. En general, podemos definir la asociatividad para una operación binaria como sigue.

Definición. Sea $\star$ una operación binaria en un conjunto $S$. Decimos que $\star$ es asociativa si $a\star (b\star c)=(a\star b)\star c$ para cualesquiera tres elementos $a,b,c$ de $S$.

Tanto la suma como el producto de naturales dan una operación asociativa pues ya demostramos que si $a,b,c$ son naturales, entonces $a+(b+c)=(a+b)+c$ y $a(bc)=(ab)c$. Esta propiedad también la tendremos para la suma y producto de enteros, racionales, reales, complejos, polinomios, etc.

A partir de la asociatividad podemos definir la primer estructura algebraica que requiere un poco más de propiedades.

Definición. Un semigrupo es un conjunto $S$ con una operación asociativa $\star$.

Si además $\star$ es una operación conmutativa, entonces decimos que es un semigrupo conmutativo. En realidad, en cualquiera de las definiciones que daremos a continuación podemos agregar el adjetivo «conmutativo» y esto querrá decir que además de las propiedades requeridas, también se cumple que la operación es conmutativa.

En los semigrupos (y demás estructuras con asociatividad) tenemos la ventaja de que podemos «olvidarnos de los paréntesis» sin la preocupación de que haya ambigüedad. Por ejemplo, en los naturales la expresión $3+((2+4)+8)$ se puede escribir simplemente como $3+2+4+8$, pues cualquier otra forma de poner paréntesis, como $(3+2)+(4+8)$, debe dar exactamente el mismo resultado por asociatividad.

Ejemplo. Una operación que no es asociativa es la resta en los enteros. Aunque no hemos definido formalmente esta operación, es intuitivamente claro que $3-(2-1)$ no es lo mismo que $(3-2)-1$.

$\square$

Unidades y magmas unitales

A veces sucede que algunos elementos de un conjunto «no afectan a nadie» bajo una cierta operación binaria dada. Por ejemplo, en los naturales «sumar cero» no cambia a ningún entero.

Definición. Sea $\star$ una operación binaria en un conjunto $S$. Una unidad o neutro para $\star$ es un elemento $e$ en $S$ para el cual se cumple que para cualquier elemento $a$ de $S$ se tenga $a\star e = a$ y $e\star a = a$.

Observa que es muy importante pedir las dos igualdades de la definición. Si una se cumple, no necesariamente tiene que pasar la otra, pues no necesariamente la operación es conmutativa. Por supuesto, si ya se sabe que la operación es conmutativa, entonces basta con ver una de ellas.

En $\mathbb{Z}$ tenemos las operaciones de suma y producto. Para no confundir a sus neutros, a $0$ le llamamos el neutro aditivo para hacer énfasis que es el neutro de la suma. Y a $1$ le llamamos el neutro multiplicativo para hacer énfasis que es el neutro del producto. Entre las propiedades que probamos, en efecto vimos que $a+0=a=0+a$ y que $a\cdot 1 = a = 1\cdot a$ para cualquier entero $a$.

Definición. Un magma unital es un conjunto $S$ con una operación $\star$ que tiene un neutro.

El conjunto de naturales con la operación $\star$ que dimos en la sección de intuición también es un magma unital. ¿Puedes decir quién es su neutro?

Monoides

Se puede pedir más de una propiedad a una operación binaria y entonces obtenemos estructuras algebraicas más especiales.

Definición. Un monoide es un conjunto $S$ con una operación $\star$ que es asociativa y que tiene un neutro.

En otras palabras, un monoide es un magma unital con operación asociativa. O bien, un semigrupo cuya operación tiene unidad. Por supuesto, si la operación además es conmutativa entonces decimos que es un monoide conmutativo.

Ejemplo. Por todo lo que hemos visto en esta entrada, tenemos que $\mathbb{N}$ con la suma es un monoide conmutativo. Así mismo, $\mathbb{N}$ con el producto es un monoide conmutativo.

$\square$

Semianillos

La última idea importante para discutir en esta entrada es que una estructura algebraica puede tener más de una operación binaria, y además de pedir propiedades para cada operación, también se pueden pedir propiedades que satisfagan ambas operaciones en igualdades que las involucran a las dos.

Definición. Un seminanillo es un conjunto $S$ con dos operaciones binarias $\square$ y $\star$ que satisfacen las siguientes propiedades:

  • $\square$ es un monoide conmutativo
  • $\star$ es un monoide
  • Se cumple distributividad, es decir, que para cualesquiera tres elementos $a,b,c$ de $S$ se tiene $a\star(b\square c) = (a\star b)\square(a\star c)$ y $(a\square b)\star c = (a\star c)\square(b\star c)$
  • El neutro $e$ de $\square$ aniquila a los elementos bajo $\star$, es decir, para cualquier elemento $a$ de $S$ se tiene que $a\star 0=0$ y $0\star a = 0$

Un semianillo conmutativo es un semianillo en donde la operación $\star$ también es conmutativa. Las propiedades que hemos de los números naturales nos permiten enunciar el siguiente resultado.

Teorema. El conjunto $\mathbb{N}$ con las operaciones binarias de suma y producto es un semianillo conmutativo.

Más adelante…

Este sólo fue un pequeño paréntesis para comenzar a hablar de operaciones binarias y de estructuras algebraicas. Ahora regresaremos a seguir construyendo de manera formal los sistemas numéricos con los que se trabaja usualmente: los enteros, los racionales, los reales y los complejos.

Un poco más adelante haremos otro paréntesis de estructuras algebraicas, en el que hablaremos de otras propiedades más que puede tener una operación binaria. Una muy importante es la existencia de inversos para la operación binaria. Esto llevará a las definiciones de otras estructuras algebraicas como los grupos, los anillos, los semigrupos con inversos, los quasigrupos y los campos.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Encuentra el neutro de la operación $\star$ dada en la sección de intuición. Verifica que en efecto es un neutro.
  2. Demuestra que el conjunto de los naturales pares $\{0,2,4,6,\ldots\}$ sí tiene un neutro para la operación de suma, pero no para la operación de producto.
  3. Considera el conjunto $P(S)$ de subconjuntos de un conjunto $S$. Considera las operaciones binarias de unión e intersección de elementos de $P(S)$. Muestra que $P(S)$ con estas operaciones es un semianillo conmutativo.
  4. Da un ejemplo de un magma que no sea un magma unital. Da un ejemplo de un magma unital que no sea un monoide.
  5. Da o busca un ejemplo de un semianillo que no sea un semianillo conmutativo.

Entradas relacionadas

Álgebra Superior II: Inmersión de $\mathbb{N}$ en $\mathbb{Z}$

Por Ana Ofelia Negrete Fernández

Introducción

Desde la educación básica pensamos al conjunto de los números enteros como aquél que está conformado por los naturales, sus negativos y el cero: $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \} .$$ Sin embargo, para poder fundamentar nuestra construcción, hasta ahora tenemos que el conjunto $\mathbb{Z}$ consiste por definición de ciertas clases de equivalencia de una relación en $\mathbb{N}\times \mathbb{N}$. ¡Observa que ni siquiera $\mathbb{N}$ es un subconjunto de $\mathbb{Z}$ a partir de esta definición! ¿Cómo le hacemos para que estos dos puntos de vista coincidan?

En esta entrada veremos dos cosas muy importantes que nos permitirán unificar ambas ideas. Lo primero que haremos es ver que, en efecto, podemos pensar que $\mathbb{N}$ «es un subconjunto» de $\mathbb{Z}$. Esto lo ponemos entre comillas pues en realidad lo que demostraremos es que hay una copia de $\mathbb{N}$ dentro de $\mathbb{Z}$, con toda la estructura que tenía $\mathbb{N}$ originalmente: sus operaciones, sus identidades, su orden.

Después de esto, nos enfocaremos en ver que $\mathbb{Z}$ consiste exactamente de esta copia y de sus inversos aditivos. Así, habremos formalizado que $\mathbb{Z}$ consiste exactamente de los naturales, sus inversos aditivos y ningún otro elemento.

Inmersión de los naturales en los enteros

En la entrada anterior hablamos acerca del orden en $\mathbb{Z}$. Para ello hablamos del conjunto de enteros positivos $P$. También definimos las relaciones $<$ y $\leq$. En un sentido bastante formal, los enteros mayores o iguales a cero son exactamente los números naturales. La manera en la que enunciamos este resultado es la siguiente.

Teorema. Existe una función biyectiva $\gamma:\mathbb{N}\to P\cup \{\overline{(0,0)}\}$ que preserva las operaciones de suma, producto, el inverso aditivo, el inverso multiplicativo y el orden. Esta función está dada por $\gamma(n)=\overline{(n,0)}$.

Una vez que demostremos esto, la imagen $\gamma(\mathbb{N})$ será exactamente la «copia» de los naturales que vive en los enteros y que precisamente tiene todas las propiedades algebraicas de los naturales que nos interesaban.

Para hacer la demostración de este teorema, probaremos el resultado poco a poco, a través de varios lemas.

Lema 1. La función $\gamma$ está bien definida y es biyectiva.

Demostración. La función $\gamma$ está bien definida pues las clases del estilo $\overline{(n,0)}$ siempre están en $P\cup \{\overline{(0,0)}\}$: si $n=0$, entonces obtenemos la clase $\overline{(0,0)}$ y si $n\neq 0$, entonces $n>0$, lo cual justifica que $\overline{(n,0)}$ es un entero positivo, es decir, en $P$.

Veamos que la función $\gamma$ es biyectiva. Para ver que es inyectiva tomamos dos naturales $m$ y $n$ tales que $\gamma(m)=\gamma(n)$, es decir, tales que $\overline{(m,0)}=\overline{(n,0)}$. Esto quiere decir que $m+0=n+0$, pero entonces $m=n$. Para ver que es suprayectiva, ya sabemos que tomemos una clase $\overline{(a,b)}$ en $P\cup \{\overline{(0,0)}\}$. Por lo visto en la entrada anterior, esto nos dice que $a\geq b$, pero entonces existe un natural $k$ tal que $a=b+k$, de modo que $a+0=b+k$ y por lo tanto $\overline{(a,b)}=\overline{(k,0)}$. Con esto concluimos que $$\gamma(k)=\overline{(k,0)}=\overline{(a,b)}.$$

$\square$

Observa que, sin embargo, no sucede que $\gamma(\mathbb{N})$ sea todo $\mathbb{Z}$. Es decir, hay enteros diferentes de las clases $\overline{(n,0)}$, por ejemplo, el $\overline{(0,1)}$. Se puede verificar que la imagen de $\gamma$ cubre a los enteros no negativos y sólo a esos.

Regresando al enunciado del teorema, lo que veremos ahora es que $\gamma$ respeta las operaciones de suma y producto, así como sus respectivas identidades.

Lema 2. Para cualesquiera naturales $m$ y $n$ se cumple que $$\gamma(m)+\gamma(n)=\gamma(m+n)$$ y que $$\gamma(m)\gamma(n)=\gamma(mn).$$ Además, $\gamma(0)$ es la identidad aditiva en $\mathbb{Z}$ y $\gamma(1)$ es la identidad multiplicativa en $\mathbb{Z}$.

Demostración. Basta usar la definición de $\gamma$ y de la suma en $\mathbb{Z}$:
\begin{align*}
\gamma (m)+\gamma(n)&=\overline{(m,0)}+\overline{(n,0)}\\
&= \overline{(m+n,0)}\\
&=\gamma{m+n}.
\end{align*}

De modo similar, para el producto usamos la definición de $\gamma$ y la del producto en $\mathbb{Z}$:

\begin{align*}
\gamma (m)\gamma(n)&=\overline{(m,0)}\overline{(n,0)}\\
&= \overline{(mn+0\cdot 0,m\cdot 0 + 0 \cdot n)}\\
&= \overline{(mn,0)}\\
&=\gamma{mn}.
\end{align*}

La parte de las identidades es sencilla de hacer y queda como tarea moral.

$\square$

Ya vimos que $\gamma$ respeta las operaciones. Ahora veamos que también respeta el orden.

Lema 3. Para cualesquiera naturales $m$ y $n$, sucede que $m < n$ si y sólo si $\gamma(m) < \gamma(n)$.

Demostración. Por definición de $\gamma$, tenemos que $\gamma(m)<\gamma(n)$ si y sólo si $\overline{(m,0)}<\overline{(n,0)}$. En la entrada anterior vimos que esto sucede si y sólo si en $\mathbb{N}$ tenemos que $m+0<n+0$. Pero esto es justo $m<n$.

$\square $

Los lemas 1, 2 y 3 conforman la demostración del teorema de esta sección.

Caracterización de los enteros

En vista del teorema de la sección anterior, dentro de $\mathbb{Z}$ hay metida una copia de $\mathbb{N}$. ¿Cuáles son los otros elementos de $\mathbb{Z}$? ¿Hay muchos más enteros que eso? La respuesta es que no. Para acabar de tener a todos los elementos de $\mathbb{Z}$ basta con tomar esta copia de los enteros y considerar a sus inversos aditivos.

Proposición. Para cualquier entero $\overline{(a,b)}$, tenemos que sucede una y exactamente una de las afirmaciones siguientes:

  • $\overline{(a,b)}=\overline{(0,0)}$.
  • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
  • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.

Demostración. Por el principio de tricotomía en $\mathbb{N}$, sabemos que se cumple una y exactamente una de las afirmaciones siguientes:

  • $a=b$
  • $a>b$
  • $a<b$

Si pasa la primera, entonces $\overline{(a,b)}=\overline{(0,0)}$. Si pasa la segunda, es porque existe un natural $n\neq 0$ tal que $a=b+n$, pero entonces $a+0=b+n$ y así $\overline{(a,b)}=\overline{(n,0)}$. Si pasa la tercera, es porque existe un natural $n,0$ tal que $a+n=b=b+0$, y entonces $\overline{(a,b)}=\overline{(0,n)}$.

De esta manera, se ve que siempre se cumple al menos una de las afirmaciones del enunciado. Ver que se cumple a lo más una es sencillo y queda como tarea moral.

$\square$

Siguiendo la demostración anterior con cuidado, nos damos cuenta que los casos corresponden precisamente al entero cero, a los positivos y a los negativos. La proposición anterior es una manera de ilustrar, en particular, que hay que hay el mismo número de números naturales positivos como números enteros negativos: a cada uno de ellos le podemos asociar (de manera biyectiva), un natural. Otra forma de dar esta biyección es mandar el entero positivo $\overline{(n,0)}$ al entero negativo $\overline{(0,n)}$, que es precisamente su inverso aditivo.

Re-etiquetando a los enteros

Estamos listos para abandonar la notación de parejas y clases de equivalencia. En vista de los resultados anteriores, cualquier entero positivo $\overline{(a,b)}$ es el mismo que un entero de la forma $\overline{(n,0)}$. Y los enteros de esta forma justo conforman una copia de $\mathbb{N}$ con toda la estructura algebraica que nos interesa. Así, ya nunca más tenemos que llamar a $\overline{(a,b)}$ con este nombre: basta simplemente llamarlo $n$.

Si tenemos un entero de la forma $\overline{(a,b)}$ con $a=b$, entonces simplemente lo llamaremos $0$. Y finalmente, si el entero $\overline{(a,b)}$ es negativo, podemos escribirlo de la forma $\overline{(0,n)}$ y en vista de lo anterior simplemente lo llamaremos $-n$. Todo esto funciona bien, porque también sabemos que justo $\overline{(n,0)}$ y $\overline{(0,n)}$ son inversos aditivos entre sí.

Pero, ¿cómo sabremos si al usar el símbolo $1$ nos estamos refiriendo al natural $\{\emptyset\}$ o al entero $\overline{(\{\emptyset\},\emptyset)}$? En realidad ya no es relevante, pues tenemos la total garantía de que los enteros no negativos se comportan exactamente como $\mathbb{N}$.

De esta manera, $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \}$$ y además tenemos la total garantía de que los enteros no negativos se comportan exactamente como los naturales.

Más adelante…

Después de liberar la gran carga que teníamos de usar la notación de parejas y de relaciones de equivalencia, ahora ya podemos usar a los enteros tal y como los conocíamos desde educación básica: como el cero, los enteros que no son cero, y sus negativos. Además, gracias a todo lo que demostramos, ya podemos utilizar las propiedades de la suma, el producto y el orden con la confianza de que están bien fundamentadas.

Lo que sigue es estudiar con más profundidad al conjunto $\mathbb{Z}$. Aunque no haya propiamente «divisiones exactas» en este conjunto, sí podemos preguntarnos qué sucede cuando dividimos un entero por otro, y cuánto queda. Esto lleva a las nociones de divisibilidad y residuos, que a su vez llevan a áreas muy interesantes de las matemáticas como el álgebra moderna y la teoría de números.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Muestra que en efecto no existe ningún natural $m$ tal que $\gamma(m)=\overline{(0,1)}$.
  2. Verifica que $\gamma(0)$ es la identidad aditiva de $\mathbb{Z}$ y $\gamma(1)$ es su identidad multiplicativa.
  3. Explica por qué para un entero $\overline{(a,b)}$ no puede suceder más de una de las siguientes afirmaciones:
    • $\overline{(a,b)}=\overline{(0,0)}$.
    • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
    • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.
  4. La función $\gamma$ no es una biyección entre $\mathbb{N}$ y $\mathbb{Z}$. Pero sí existen biyecciones entre estos dos conjuntos. Construye una y demuestra que en efecto es una biyección.
  5. Da una biyección que muestre que el conjunto de los enteros no negativos pares, $\{0, 2, 4, 6, \ldots\}$ y el conjunto de los enteros no negativos positivos, $\{ 0, 1, 2, 3, \ldots \}$ tienen la misma cardinalidad. ¿Será posible construir la biyección de modo que se preserve la operación de suma? ¿Será posible construirla de modo que se preserve la operación de producto?

Entradas relacionadas

Álgebra Superior II: El producto en los enteros

Por Ana Ofelia Negrete Fernández

Introducción

En la entrada anterior hablamos de cómo se construye el conjunto $\mathbb{Z}$ de los números enteros y cómo definir una operación de suma en él. Vimos que esta operación de suma tenía cuatro propiedades clave: asociatividad, conmutatividad, existencia de un neutro y de inversos. A partir de ello definimos también la operación de resta. En esta entrada continuaremos con la construcción de las operaciones en $\mathbb{Z}$. Ahora definiremos el producto de números enteros.

Intuición del producto de enteros y su definición formal

La definición de la suma de los enteros resultó ser muy sencilla. Si tenemos enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ entonces para hacer la suma simplemente «sumamos entrada a entrada» para obtener $\overline{(a+c,b+d)}$. Uno podría pensar que para hacer el producto de enteros esto debe ser igual de fácil, definiendo al producto simplemente como $\overline{(ac,bd)}$. Sin embargo, esta definición no funciona, pues no tiene muchas de las propiedades valiosas que debería tener una operación de producto.

Antes de dar la definición, recordemos nuestra intuición de qué quería decir cada pareja $(a,b)$. En la entrada anterior, a cada pareja la asociábamos con la ecuación $a=x+b$. La relación de equivalencia que dimos consistía en asociar a las parejas cuyas ecuaciones daban la misma solución. De manera informal, podemos pensar entonces a la pareja $(a,b)$ como si fuera $a-b$. Pero ojo: esto sólo es intuición, pues $a$ y $b$ son elementos de $\mathbb{N}$ y ahí no hay operación de resta.

De cualquier forma, esta intuición es valiosa, pues nos sugiere cuál debería de ser la definición de producto. De manera intuitiva, queremos que suceda $(a-b)(c-d)=ac-ad-bc+bd=(ac+bd)-(ad+bc)$, y aquí cada término entre paréntesis sí es un natural válido: $ac+bd$ y $ad+bc$, así que el resultado correspondería a la pareja $(ac+bd,ad+bc)$. Es muy interesante que esta intuición informal en verdad da una buena definición de producto.

Definición. El producto en $\mathbb{Z}$ es la función $\star:\mathbb{Z}\times \mathbb{Z}\to \mathbb{Z}$ tal que para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$, se tiene que $$\overline{(a,b)} \star \overline{(c,d)}=\overline{(ac+bd),(ad+bc)}.$$

Como en el caso de la suma, estamos usando un símbolo especial para el producto en $\mathbb{Z}$, de modo que podamos distinguirlo del producto en $\mathbb{N}$. Así como en el caso de la suma, sólo haremos la distinción explícita en este momento. Usualmente nos referiremos al producto de enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ como $\overline{(a,b)}\cdot \overline{(c,d)}$, o simplemente como $\overline{(a,b)} \overline{(c,d)}$. Esto será claro por el contexto.

El producto en $\mathbb{Z}$ está bien definido

Nuestra definición de producto en $\mathbb{Z}$ es un poco extraña, así que debemos dedicar algo de trabajo a verificar que en realidad es el producto tal y como siempre lo habíamos conocido. La primer cosa que debemos hacer es ver que el producto en $\mathbb{Z}$ está bien definido, es decir, que el resultado es el mismo independientemente de los representantes que se elijan para realizar la multiplicación.

Proposición. El producto en $\mathbb{Z}$ está bien definido.

Demostración. Comencemos con parejas $(a,b)\sim (e,f)$ y $(c,d)\sim (g,h)$. Como $(a,b) \sim (e,f)$, entonces $$ a + f = b + e.$$ También, $(c,d) \sim (g,h)$, implica que $$c + h = d + g.$$

Usando la definición de producto de dos enteros, se tiene por un lado que
$$\overline{(a,b)}\overline{(c,d)} = \overline{(ac + bd, ad + bc)}.$$

Por otro lado, tenemos

$$\overline{(e,f)}\overline{(g,h)} = \overline{(eg + fh, eh + fg )}.$$

Así, debemos demostrar que $\overline{(ac + bd, ad + bc)} = \overline{(eg + fh, eh + fg )}$. Poniendo en términos de la relación de equivalencia, se deberá cumplir que $$ (ac + bd) + (eh + fg) = (ad + bc) + (eg + fh).$$

Multiplicando las primeras igualdades que encontramos, tenemos lo siguiente:
\begin{align*}
(a + f) (c+h) &= (b+e)(d +g) \\
ac + ah + fc + fh &= bd + bg + ed + eg.
\end{align*}

Sumemos $bd + fh$ en ambos lados de la ecuación y usemos nuevamente las hipótesis para obtener las siguientes igualdades:

\begin{align*}
(bd + fh) + ac + ah + fc + fh &= (bd + fh) + bd + bg + ed + eg \\
(ac + bd) + h(a + f) + f(c + h) &= b(d + g) + d(b +e) + (eg + fh) \\
(ac + bd) + h (b + e) + f (d + g) &= b(c + h) + d(a + f) + (eg + fh) \\
(ac + bd + eh + fg) + hb + df &= (bc + ad + eg + fh) + hb + df \\
ac + bd + eh + fg &= ad + bc + eg + fh.
\end{align*}

Esto es justo lo que queríamos mostrar.

$\square$

En la demostración anterior estamos usando las propiedades de las operaciones en $\mathbb{N}$ ya prácticamente sin enunciarlas. A estas alturas ya podemos hacer eso, pues hemos trabajado bastante con ellas. Sin embargo, es importante que de vez en cuando te preguntes por qué se vale cada una de las igualdades.

Propiedades del producto en $\mathbb{Z}$

Ya que hemos definido el producto en los enteros, es importante verificar que hay algunas propiedades que se cumplen. Esto nos permitirá más adelante trabajar sin problema con el producto de enteros, como se ha hecho desde la educación básica.

Proposición. Se satisfacen las siguientes propiedades para la operación de producto en $\mathbb{Z}$.

  • Asociatividad. Para enteros $\overline{(a,b)}$, $\overline{(c,d)}$ y $\overline{(e,f)}$ se satisface que $$(\overline{(a,b)}\overline{(c,d)})\overline{(e,f)}=\overline{(a,b)}(\overline{(c,d)}\overline{(e,f)}).$$
  • Conmutatividad. Para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se satisface que $$\overline{(a,b)}\overline{(c,d)}=\overline{(c,d)}\overline{(a,b)}.$$
  • Neutro. Existe un elemento neutro, es decir, existe un entero $\overline{(m,n)}$ tal que para cualquier entero $\overline{(a,b)}$ se cumple que $$\overline{(a,b)}\overline{(m,n)}=\overline{(a,b)}.$$
  • Los únicos elementos que tienen inverso multiplicativo son $\overline{(1,0)}$ y $\overline{(0,1)}$.

Demostración. Las demostraciones de la asociatividad y la conmutatividad quedan como tarea moral. La sugerencia es desarrollar ambos lados de las igualdades usando la definición de producto, y luego utilizar propiedades del producto y la suma en $\mathbb{N}$.

El elemento que sirve como neutro para el producto es el $\overline{(1,0)}$. En efecto, usando la definición tenemos que: $$\overline{(a,b)}\overline{(1,0)}=\overline{(a\cdot 1+b\cdot 0, a\cdot 0 + b\cdot 1)}=\overline{(a,b)}.$$

Es sencillo ver que los elementos indicados sí tienen inverso. El inverso de $\overline{(1,0)}$ es él mismo y el inverso de $\overline{(0,1)}$ también es él mismo. En efecto:

\begin{align*}
\overline{(1,0)}\overline{(1,0)}&=\overline{(1\cdot 1+0\cdot 0,1\cdot 0+0\cdot 1)}=\overline{(1,0)}\\
\overline{(0,1)}\overline{(0,1)}&=\overline{(0\cdot 0+1\cdot 1,0\cdot 1+1\cdot 0)}=\overline{(1,0)}.
\end{align*}

Para ver que estos son los únicos elementos que tienen inversos, supongamos que algún otro entero $\overline{(a,b)}$ tiene inverso multiplicativo $\overline{(c,d)}$. Esto querría decir que $\overline{(ac+bd,ad+bc)}=\overline{(1,0)}$, que en términos de la relación de equivalencia se traduce a $$ac+bd=ad+bc+1.$$

Si $a=b$, la igualdad no se puede dar pues tendríamos $ac+ad=ad+ac+1$, que es imposible. Por tricotomía en $\mathbb{N}$, tenemos entonces que $a>b$ o $a<b$. Resolveremos el caso $a>b$ y el caso $a<b$ quedará como tarea moral.

Si $a=b+1$, entonces la igualdad queda como $(b+1)c+bd=(b+1)d+bc+1$, que se simplifica a $c=d+1$. Esto nos da la solución $\overline{(a,b)\}=\overline{(c,d)\}=\overline{(1,0)\}$.

En otro caso, tenemos $a\geq b+2$ y por lo tanto podemos escribir $a=b+1+k$ con $k\geq 1$. La igualdad queda entonces como $$(b+1+k)c+bd=(b+1+k)d+bc+1.$$ Desarrollando y simplificando tenemos que $$c+kc=d+kd+1.$$ Si $d\geq c$, el lado derecho claramente es más grande, así que no hay solución. De este modo, $d<c$ y por lo tanto podemos escribir $c=d+l$ con $l\geq 1$. Usando esta igualdad en $c+kc=d+kd+1$, llegamos a la igualdad $$d+l+kd+kl=d+kd+1,$$ que se simplifica a $$l(k+1)=1.$$ Pero como $k\geq 1$, entonces $k+1\geq 2$ y como además $l\geq 1$, tenemos $l(k+1)\geq 2$, así que en este caso no tenemos soluciones.

$\square$

Las propiedades anteriores se pueden enunciar únicamente en términos de la operación de producto. Además de estas propiedades, hay otra que nos dice cómo el producto interactúa con la operación suma en $\mathbb{Z}$.

Proposición. Se cumple la ley distributiva para la suma y el producto, es decir, para enteros $\overline{(a,b)}$, $\overline{(c,d)}$ y $\overline{(e,f)}$ se cumple que $$\overline{(a,b)}(\overline{(c,d)}+\overline{(e,f)})=\overline{(a,b)}\overline{(c,d)}+\overline{(a,b)}\overline{(e,f)}.$$

Demostración. Realizando la operación correspondiente al lado izquierdo tenemos:

\begin{align*}
\overline{(a,b)}(\overline{(c,d)}+\overline{(e,f)})&=\overline{(a,b)}\overline{(c+e,d+f)}\\
&=\overline{(a(c+e)+b(d+f),a(d+f)+b(c+e))}\\
&=\overline{(ac+ae+bd+bf,ad+af+bc+be)}.
\end{align*}

Observa cómo aquí se está usando la propiedad distributiva, pero en $\mathbb{N}$.

Realizando la operación correspondiente al lado derecho tenemos:

\begin{align*}
\overline{(a,b)}\overline{(c,d)}+\overline{(a,b)}\overline{(e,f)}&=\overline{(ac+bd,ad+bc)}+\overline{(ae+bf,af+be)}\\
&=\overline{(ac+bd+ae+bf,ad+bd+af+be)}.
\end{align*}

Usando la conmutatividad de la suma en $\mathbb{N}$, obtenemos que esta expresión es igual a la del lado izquierdo, como queríamos.

$\square$

Divisores de cero y cancelación

Hasta donde hemos platicado, los enteros tienen suma, resta y producto. Sin embargo, en los enteros todavía no tenemos una operación de división. Esto causa un par de dificultades. Una de estas es que cuando queremos resolver ecuaciones del estilo $a=bx$ con $a$ y $b$ enteros y $x$ un entero por determinar, no podemos simplemente «pasar la $b$ dividiendo» y obtener $x=a/b$. Otra dificultad es que cuando tenemos una igualdad del estilo $ab=ac$ tampoco podemos simplemente «dividir entre $a$».

La primer dificultad la estudiaremos más a detalle cuando entremos a teoría de números qué es lo que sí se puede hacer en $\mathbb{Z}$. Para la segunda, resulta que de cualquier forma podemos concluir casi siempre que $b=c$.

Antes de demostrar esto, veamos un resultado intermedio auxiliar. La siguiente proposición a veces se enuncia como que $\mathbb{Z}$ no tiene divisores de cero, o bien como que si el producto de dos enteros es cero, entonces alguno de ellos debe de ser cero.

Proposición. Si $\overline{(a,b)}$, $\overline{(c,d)}$ pertenecen a $\mathbb{Z}$ y $\overline{(a,b)}\overline{(c,d)}=\overline{(0,0)}$, entonces $\overline{(a,b)}=\overline{(0,0)}$ o $\overline{(c,d)}=\overline{(0,0)}$.

Demostración. Para que el producto $$\overline{(a,b)}\overline{(c,d)}=\overline{(ac+bd,ad+bc)}$$ sea igual al entero $\overline{(0,0)}$, debe suceder que $$ac+bd+0=ad+bc+0,$$ es decir, que $ac+bd=ad+bc$. A partir de esto, debemos de demostrar que o bien $a=b$, o bien que $c=d$. Supongamos que $a\neq b$ (en otro caso, ya tenemos lo buscado). Por tricotomía, debe pasar $a>b$ ó $a<b$.

Si $a>b$, entonces existe un entero $k>1$ tal que $a=b+k$, de modo que tenemos las siguientes igualdades:

\begin{align*}
ac+bd&=ad+bc\\
(b+k)c+bd&=(b+k)d+bc\\
bc+kc+bd&=bd+kd+bc\\
kc&=kd.
\end{align*}

Como $k>=1$, podemos usar la cancelación del producto en $\mathbb{N}$ para obtener $c=d$, como queríamos. Falta el caso $a<b$, pero es análogo al anterior. Los detalles quedan como tarea moral.

$\square$

Ahora sí podemos demostrar que en $\mathbb{Z}$ se vale cancelar factores distintos de cero.

Proposición. Sean $\overline{(a,b)}$, $\overline{(c,d)}$, $\overline{(e,f)}$ elementos en $\mathbb{Z}$. Supongamos que $\overline{(a,b)}\neq \overline{(0,0)}$ y que $$\overline{(a,b)}\overline{(c,d)}=\overline{(a,b)}\overline{(e,f)}.$$

Entonces $\overline{(c,d)}=\overline{(e,f)}$.

Demostración. Tenemos las siguientes igualdades:

\begin{align*}
\overline{(a,b)}\overline{(c,d)}&=\overline{(a,b)}\overline{(e,f)}\\
\overline{(a,b)}\overline{(c,d)}-\overline{(a,b)}\overline{(e,f)}&=0\\
\overline{(a,b)}(\overline{(c,d)}-\overline{(e,f)})&=0.\\
\end{align*}

Para pasar de la primera a la segunda, estamos restando de ambos lados, lo cual es válido en $\mathbb{Z}$. De la segunda igualdad a la tercera se está usando la ley distributiva para la resta (ver Tarea moral). A partir de aquí podemos usar la proposición anterior. Como $\overline{(a,b)}$ no es cero, entonces $\overline{(c,d)}-\overline{(e,f)}=0$. De aquí se obtiene $\overline{(c,d)}=\overline{(e,f)}$, que es lo que queríamos mostrar.

$\square$

Más adelante…

Ya tenemos las operaciones para los números enteros. Aún nos falta introducir un concepto muy importante: el de orden. Esto lo haremos en la siguiente entrada. Además, veremos que la noción de orden en $\mathbb{Z}$ es compatible con sus operaciones.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Realiza por definición el producto de los enteros $\overline{(8,3)}$ y $\overline(3,5)$. ¿Lo que obtienes tiene sentido con el hecho de que $5\cdot (-2)=-10$?
  2. Demuestra que el producto en $\mathbb{Z}$ es asociativo y conmutativo.
  3. Para terminar la demostración de que $\mathbb{Z}$ no tiene divisores de cero, muestra que si se tienen naturales $a,b,c,d$ tales que $ac+bd=ad+bc$ y $a<b$, entonces $c=d$. Recuerda que debes trabajar todo en $\mathbb{N}$, en donde no se pueden restar elementos.
  4. Termina la demostración de que en $\mathbb{Z}$ los únicos elementos con inversos multiplicativos son $\overline{(1,0)}$ y $\overline{(0,1)}$. Tendrás que llegar a que en el caso faltante la única solución es $\overline{(a,b)}=\overline{(c,d)}=\overline{(0,1)}$.
  5. Enuncia y demuestra una ley distributiva para la resta.
  6. Si definiéramos al producto de dos enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ como el entero $\overline{(ac,bd)}$, ¿cuáles de las propiedades que hemos discutido en esta entrada fallarían?

Entradas relacionadas