Archivo de la etiqueta: espacio vectorial

1.9. BASE, DIMENSIÓN Y ESPACIO DE DIMENSIÓN (IN)FINITA: definiciones y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

Hemos estudiado a los conjuntos generadores ya los conjuntos linealmente independientes. Los conjuntos generadores son útiles porque nos permiten describir a todo vector del espacio en términos sólo de los vectores del conjunto generador. Por otro lado los conjuntos linealmente independientes son importante porque no tienen vectores que se escriban como combinación lineal de los demás por lo que intuitivamente no contienen información redundante. Será conveniente entonces considerar conjuntos de vectores que sean generadores y linealmente independientes al mismo tiempo y a éstos les llamaremos bases. Además la cardinalidad de un conjunto que cumpla ambas características se vuelve relevante.

De acuerdo a lo que hemos observado en $\mathbb{R}^3$ sabemos que sucede lo siguiente:
1) De todo subconjunto linealmente dependiente que genere podemos encontrar un subconjunto propio linealmente independiente que siga generando.
2) A todo subconjunto de $V$ linealmente independiente podemos agregarle elementos de $V$ hasta crear un conjunto generador de $V$ que siga siendo linealmente independiente.

Para conseguir un conjunto l.i. necesitamos en ocasiones hacer el original «más pequeño» y para conseguir un generador necesitamos a veces hacer el original «más grande».

Esta situación ocurre de manera más general y nos permite justificar la existencia de una base para espacios de dimensión finita.
Estudiaremos a continuación lo que es una base: un conjunto lo «suficientemente grande» para generar al espacio y lo «suficientemente pequeño» para ser linealmente independiente.

BASE DE UN ESPACIO VECTORIAL

Definición: Sean $V$ un $K$ – espacio vectorial, $B\subseteq V$. Decimos que $B$ es una base de $V$ si genera a $V$ y es linealmente independiente. Además, decimos que $V$ es de dimensión finita si tiene una base finita.

Ejemplos

  • Sea $K$ un campo.
    Consideremos las $n$-adas $e_1=(1_K,0_K,0_K,0_K,…,0_K,0_K), e_2=(0_K,1_K,0_K,0_K,…,0_K,0_K),$ $…,e_n=(0_K,0_K,0_K,0_K,…,0_K,1_K)$. El conjunto $\{ e_1,e_2,…,e_n\}$ es una base de $K^n$.

Justificación. Como $B =\{e_1,e_2,…,e_n\}$ es l.i., sólo falta ver que $\langle B\rangle =K^n$.
Sabemos que $K^n$ es un espacio vectorial y cada $e_i\in K^n$, entonces $\langle B\rangle\subseteq K^n$.
Ahora bien, sea $(x_1,x_2,…,x_n)\in K^n$.
Es claro que $(x_1,x_2,…,x_n)=x_1e_1+x_2e_2+…+x_ne_n\in\langle B\rangle$.
De donde $K^n\subseteq\langle B\rangle$.
$\therefore\langle B\rangle =K^n.$

  • Sea $W=\{(x,y,z)\in\mathbb{R}^3|x-y+2z=0\}$ que es un subespacio de $\mathbb{R}^3$.
    Tenemos que $1-1+2(0)=0$ y $-2-0+2(1)=0$, entonces $(1,1,0),(-2,0,1)\in W$.
    Resulta que $\{(1,1,0),(-2,0,1)\}$ es una base de $W$.

Justificación. Primero veamos que $B =\{(1,1,0),(-2,0,1)\}$ es l.i.
Sean $\lambda_1,\lambda_2\in\mathbb{R}$ tales que $\lambda_1(1,1,0)+\lambda_2(-2,0,1)=(0,0,0)$.
Entonces, $(\lambda_1-2\lambda_2,\lambda_1,\lambda_2)=(0,0,0)$.
Inmediatamente se concluye de lo anterior que $\lambda_1=\lambda_2=0$.
$\therefore B$ es l.i.
Como $W$ es un subespacio y $(1,1,0),(-2,0,1)\in W$, entonces $\langle B\rangle\subseteq W$.
Ahora bien, sea $(x,y,z)\in W$.
Por definición de $W$ tenemos que $x=y-2z$, y en consecuencia $(x,y,z)=(y-2z,y,z)$.
Es claro que $(x,y,z)=(y-2z,y,z)=y(1,1,0)+z(-2,0,1)\in\langle B\rangle$.
Así, $W\subseteq\langle B\rangle$.
$\therefore\langle B\rangle.$

Proposición: Sea $V$ un $K$ – espacio vectorial. Si $V$ tiene un conjunto generador finito, entonces $V$ tiene una base finita.

Demostración: Sea $S=\{v_1,v_2,…,v_n\}$ un conjunto generador finito de $V$.

Caso 1. $S$ es l.i.
Entonces $S$ es una base finita de $V$.

Caso 2. $S$ es l.d.
Por el lema de dependencia lineal existe $v_{j_1}\in S$ tal que $\langle S\setminus\{v_{j_1}\}\rangle =\langle S\rangle $. Así, podemos definir el siguiente conjunto:
$S_1=S\setminus\{v_{j_1}\}$ donde $j_1\in\{1,2,…,n\}$ y $\langle S\setminus\{v_{j_1}\}\rangle =\langle S\rangle =V.$
Si $S_1$ es l.i., entonces $S_1$ es una base finita de $V$.
Si $S_1$ es l.d., entonces repetimos el proceso. Observemos que de esta forma vamos encontrando $S_1, S_2, \dots$ subconjuntos de $S$ con $n-1,n-2,\dots$ elementos respectivamente, tales que $\langle S_i \rangle =\langle S\rangle =V$ para toda $i=1,2,\dots$. Este proceso es finito ya que $S$ lo es y termina después de a lo más $n$ pasos. El proceso termina en el momento en que encontramos un $S_t$ con $t\in\{1,\dots ,n\}$ subconjunto de $S$ tal que $S_t$ es l.i. y por la forma en que se construyeron los subconjuntos de $S$ en este proceso se tiene además que $\langle S_t \rangle =\langle S\rangle =V$.
Tenemos entonces que $S_t$ es una base finita de $V$.

Corolario: Sea $V$ un $K$ – espacio vectorial. $V$ tiene un conjunto generador finito si y sólo si $V$ es de dimensión finita.

Demostración: $\Rightarrow )$ Se cumple por el teorema anterior y la definición de espacio vectorial de dimensión finita.

$\Leftarrow )$ Por definición de espacio vectorial de dimensión finita, existe una base finita, es decir, un conjunto l.i. generador de cardinalidad finita, en particular esta base es un conjunto generador finito.

Obs. Si un $V$ espacio vectorial es de dimensión finita, entonces todo conjunto l.i. es finito.

Teorema: Sea $V$ un $K$ – espacio vectorial de dimensión finita. Todas las bases de $V$ son finitas y tienen el mismo número de elementos.

Demostración: Por la observación previa tenemos que todas las bases de $V$ son finitas, pues en particular son conjuntos l.i. Veamos que todas tienen la misma cardinalidad.

Sean $B_1$ y $B_2$ bases de $V$, que son finitas por lo antes mencionado.

Por definición de bases tenemos:
a) $B_1$ es l.i., b) $B_1$ es generador de $V$, c) $B_2$ es l.i., d) $B_2$ es generador de $V$.

Recordando la relación entre conjuntos linealmente independientes y conjuntos generadores tenemos que:
a) y d) implican que $|B_1|\leq |B_2|$,
b) y c) implican que $|B_2|\leq |B_1|$.
$\therefore |B_1|=|B_2|.$

A lo largo de esta entrada hemos logrado concluir que, si bien las bases no son únicas, su cardinalidad (en el caso de espacios de dimensión finita) sí es única.

DIMENSIÓN DE UN ESPACIO VECTORIAL

Definición: Sea $V$ un $K$ – espacio vectorial de dimensión finita. Decimos que la dimensión de $V$ es la cardinalidad de cualquiera de sus bases. Se denota como $dim_K V$.

Ejemplos

  • Sea $W=\langle 2-x+5x^2,3-2x^2,7-2x+8x^2\rangle\leq\mathcal{P}_2[\mathbb{R}]$.
    Tenemos que $dim_{\mathbb{R}}W=2$.

Justificación. Primero describamos los elementos de $V$ como combinaciones lineales de los vectores del conjunto generador.
Sea $a+bx+cx^2 \in V$. Entonces existen $\lambda,\mu,\nu\in\mathbb{R}$ tales que $\lambda (2-x+5x^2) + \mu (3-2x^2) + \nu (7-2x+8x^2)=a+bx+cx^2$
Entonces $(2\lambda + 3\mu +7\nu) + (-\lambda – 2\nu)x + (5\lambda – 2\mu + 8\nu)x^2=a+bx+cx^2$. Por lo tanto:
\begin{align*}2\lambda + 3\mu +7\nu&=a\\
-\lambda – 2\nu&=b\\
5\lambda – 2\mu + 8\nu&=c.\end{align*}

Tenemos entonces:

$\left( \begin{array}{rrr|r} 2 & 3 & 7 & a \\ -1 & 0 & -2 & b\\
5 & -2 & 8 & c \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 3 & 3 & a+2b\\ 0 & -2 & -2 & c+5b \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 1 & 1 & \frac{1}{3}(a+2b)\\ 0 & 1 & 1 & -\frac{1}{2}(c+5b) \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 1 & 1 & \frac{1}{3}(a+2b)\\ 0 & 0 & 0 & -\frac{1}{2}(c+5b) -\frac{1}{3}(a+2b) \end{array} \right)$

Así, $0=-\frac{1}{2}(c+5b) -\frac{1}{3}(a+2b)$.
Y esto ocurre si y sólo si $0=2a+19b+3c$.
Por lo tanto, $a=-\frac{19}{2}b-\frac{3}{2}c$.

$W=\{ a+bx+cx^2 \in \mathcal{P}_2(\mathbb{R})| a=-\frac{19}{2}b-\frac{3}{2}c \}$$=\{ (-\frac{19}{2}b-\frac{3}{2}c)+bx+cx^2\in \mathcal{P}_2(\mathbb{R})| b,c\in\mathbb{R} \}$$=\{ b(-19+x)+c(-1+x^2)|b,c\in\mathbb{R} \}$$=\langle -19+x,-1+x^2 \rangle$.

Se puede verificar que $\{ -19+x,-1+x^2 \}$ es linealmente independiente y claramente genera a $W$, entonces es una base de $W$. Por lo tanto, $dim_{\mathbb{R}}W=2$.

Tarea Moral

Más adelante…

Partiendo de cualquier espacio vectorial de dimensión finita $V$, veremos cómo obtener bases. Además analizaremos qué relación hay entre: a) la dimensión de $V$ y las dimensiones de sus subespacios y b) la base de $V$ y las bases de sus subespacios.

Entradas relacionadas

Álgebra Lineal I: Algunas aclaraciones sobre las formas lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Uno de los momentos del curso de Álgebra Lineal I en el que se da un brinco de abstracción es cuando se introduce el espacio dual. En ese momento, empiezan a aparecer objetos que tratamos simultáneamente como funciones y como vectores: las formas lineales. De repente puede volverse muy difícil trasladar incluso conceptos muy sencillos (como el de suma vectorial, o el de independencia lineal) a este contexto. En esta entrada intentaremos dejar esto mucho más claro.

Igualdad de funciones

Para hablar del dual de un espacio vectorial $V$ sobre un campo $F$, necesitamos hablar de las funciones $l:V\to F$. Antes de cualquier cosa, debemos de ponernos de acuerdo en algo crucial. ¿Cuándo dos funciones son iguales?

Definición. Dos funciones $f:A\to B$ y $g:C\to D$ son iguales si y sólo si pasan las siguientes tres cosas:

  • $A=C$, es decir, tienen el mismo dominio.
  • $B=D$, es decir, tienen el mismo codominio
  • $f(a)=g(a)$ para todo $a\in A$, es decir, tienen la misma regla de asignación.

Los dos primeros puntos son importantes. El tercer punto es crucial, y justo es lo que nos permitirá trabajar y decir cosas acerca de las funciones. Implica dos cosas:

  • Que si queremos demostrar la igualdad de dos funciones, en parte necesitamos demostrar que se da la igualdad de las evaluaciones para todos los elementos del conjunto.
  • Que si ya nos dan la igualdad de las funciones, entonces nos están dando muchísima información, pues nos están diciendo la igualdad de todas las evaluaciones posibles.

Veamos algunos ejemplos.

Ejemplo 1. Tomemos las funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las reglas de asignación $f(x,y)=2x+3y$ y $g(x,y)=6x-y$. ¿Son iguales? Los primeros dos puntos en la definición de igualdad se cumplen, pues tienen el mismo dominio y codominio. Entonces, debemos estudiar si tienen la misma regla de asignación.

Al evaluar en $(1,1)$ obtenemos que $f(1,1)=2+3=5$ y que $g(1,1)=6-1=5$. Al evaluar en $(2,2)$ obtenemos que $f(2,2)=4+6=10$ y que $g(2,2)=12-2=10$. Hasta aquí parecería que todo va bien, pero dos ejemplos no son suficientes para garantizar que $f=g$. Necesitaríamos la igualdad en todos los valores del dominio, es decir, en todas las parejas $(x,y)$.

Al evaluar en $(2,0)$ obtenemos que $f(2,0)=4+0=4$ y que $g(2,0)=12-0=12$. Los valores de las funciones fueron distintos, así que las funciones son distintas.

$\triangle$

Ejemplo 2. Imagina que $A$ y $B$ son dos números tales que las dos funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las siguientes reglas de asignación son iguales:

\begin{align*}
f(x,y)&=2x-5y+A\\
g(x,y)&=Bx-5y+3.
\end{align*}

¿Cuáles tendrían que ser los valores de $A$ y $B$? Por supuesto, una exploración «a simple vista» sugiere que tendríamos que poner $B=2$ y $A=3$. Pero, ¿cómo vemos formalmente esto? ¿Cómo nos aseguramos de que sea la única posibilidad? Lo que tenemos que hacer es usar nuestra definición de igualdad de funciones. Para ello, podemos utilizar los valores $(x,y)$ que nosotros queremos pues la igualdad de funciones garantiza la igualdad en todas las evaluaciones. Así, podemos ponernos creativos y proponer $(3,5)$ para obtener que:

\begin{align*}
f(3,5)&=6-25+A=-19+A\\
g(3,5)&=3B-25+3=3B-22.
\end{align*}

Como las funciones son iguales, debe pasar que $f(3,5)=g(3,5)$, por lo que $-19+A=3B-22$. ¿Esto es suficiente para saber quién es $A$ y $B$? Todavía no, aún hay muchas posibilidades. Propongamos entonces otro valor de $(x,y)$ para evaluar. Veamos qué sucede con $(-2,1)$. Obtenemos:

\begin{align*}
f(-2,1)&=-4-5+A=-9+A\\
g(-2,1)&=-2B-5+3=-2B-2.
\end{align*}

Ahora tenemos más información de $A$ y $B$. Sabemos que $-9+A=-2B-2$. Reordenando ambas cosas que hemos obtenido hasta ahora, tenemos el siguiente sistema de ecuaciones:

\begin{align*}
A-3B=-3\\
A+2B=7.
\end{align*}

Restando la primera de la segunda obtenemos $5B=10$, de donde $B=2$. Sustituyendo en la segunda obtenemos $A+4=7$, de donde $A=3$, justo como queríamos.

$\triangle$

En el ejemplo anterior pudimos haber sido más astutos y evitarnos el sistema de ecuaciones. Recordemos que la igualdad $f(x,y)=g(x,y)$ se tiene para todas todas las parejas $(x,y)$, así que nos conviene usar parejas que 1) Sean sencillas de usar y 2) Nos den suficiente información.

Ejemplo 3. En el ejemplo anterior hicimos un par de sustituciones que finalmente sí nos llevaron a los valores que queríamos. Pero hay «mejores» sustituciones. Si hubiéramos usado la pareja $(0,0)$ obtendríamos inmediatemente $A$ pues: $$A=0-0+A=f(0,0)=g(0,0)=0-0+3=3,$$ de donde $A=3$. Ya sabiendo $A$, pudimos usar la pareja $(1,0)$ para obtener $$B+3=B-0+3=g(1,0)=2-0+3=5.$$ De aquí se obtiene nuevamente $B=2$.

$\triangle$

Veamos un último ejemplo, en el que es imposible encontrar un valor fijo que haga que dos funciones que nos dan sean iguales.

Ejemplo 4. Veamos que es imposible encontrar un número real $A$ para el cual las dos funciones $f:\mathbb{R}^2\to\mathbb{R}$ y $g:\mathbb{R}^2\to \mathbb{R}$ con las siguientes reglas de asignación sean iguales:

\begin{align*}
f(x,y)&=x^2+Ay^2\\
g(x,y)&=Axy.
\end{align*}

Imaginemos, de momento, que esto sí es posible. Entonces, tendríamos la igualdad de funciones y por lo tanto tendríamos la igualdad para todas las evaluaciones. Evaluando en $(1,0)$ obtendríamos que $$0=A\cdot 1 \cdot 0 = g(1,0)=f(1,0)=1^2+A\cdot 0^2=1.$$ Esto nos lleva a la contradicción $0=1$, lo cual muestra que ningún valor de $A$ podría funcionar.

$\triangle$

La forma lineal cero

Otra noción básica, pero que es importante de entender, es la noción de la forma lineal cero.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $0$ el neutro aditivo del campo $F$. La forma lineal cero es la función $L_0:V\to F$ que manda a cualquier vector $v$ de $V$ a $0$, es decir, cuya regla de asignación es $L_0(v)=0$ para todo $v$ en $V$.

En álgebra lineal rápidamente nos queremos deshacer de notación estorbosa, pues muchas cosas son claras a partir del contexto. Pero esto tiene el problema de introducir ambigüedades que pueden ser confusas para alguien que apenas está comenzando a estudiar la materia. Lo que prácticamente siempre se hace es que a la forma lineal cero le llamamos simplemente $0$, y dejamos que el contexto nos diga si nos estamos refiriendo al neutro aditivo de $F$, o a la forma lineal cero $L_0$.

En esta entrada intentaremos apegarnos a llamar a la forma lineal cero siempre como $L_0$, pero toma en cuenta que muy probablemente más adelante te la encuentres simplemente como un $0$. Combinemos esta noción con la de igualdad.

Ejemplo. ¿Cómo tienen que ser los valores de $A$, $B$ y $C$ para que la función $l:\mathbb{R}^3\to \mathbb{R}$ con la siguiente regla de asignación sea igual a la forma lineal cero $L_0$? $$f(x,y,z)=(A+1)x+(B+C)y+(A-C)z$$

Debemos aprovechar la definición de igualdad de funciones: sabemos que la igualdad se da para las ternas que nosotros queramos. Evaluando en $(1,0,0)$ obtenemos $$A+1 = f(1,0,0)=L_0(1,0,0)=0.$$

Aquí a la derecha estamos usando que la forma lineal cero siempre es igual a cero. De manera similar, evaluando en $(0,1,0)$ y $(0,0,1)$ respectivamente obtenemos que \begin{align*}B+C&=f(0,1,0)=L_0(0,0,0)=0\\A-C&=f(0,0,1)=L_0(0,0,0)=0.\end{align*}

Ya tenemos información suficiente para encontrar $A$, $B$ y $C$. De la primer ecuación que obtuvimos, se tiene $A=-1$. De la tercera se tiene $C=A=-1$ y de la segunda se tiene $B=-C=1$.

Pero, ¡momento! Estos valores de $A$, $B$, $C$ funcionan para las tres ternas que dimos. ¿Funcionarán para cualquier otra terna? Si elegimos $A=-1$, $B=1$ y $C=-1$ entonces tendríamos $$f(x,y,z)=0\cdot x + 0\cdot y + 0\cdot z.$$ En efecto, sin importar qué valores de $(x,y,z)$ pongamos, la expresión anterior dará cero. Así, se daría la igualdad de reglas de correspondencia entre $f$ y $L_0$ y como tienen el mismo dominio y codominio concluiríamos que $f=L_0$.

$\triangle$

Suma y producto escalar de formas lineales

Otro aspecto que puede causar confusión es la suma de funciones y el producto escalar. En la duda, siempre hay que regresar a la definición. Enunciaremos los conceptos para formas lineales. Pero en realidad podemos definir la suma de funciones de manera similar siempre que el codominio sea un lugar en donde «se puede sumar». Similarmente, podríamos definir el producto escalar de un elemento con una función siempre que sepamos cómo multiplicar a ese elemento con cada elemento del codominio.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sean $l:V\to F$ y $m:V\to F$ formas lineales. Definimos la suma de $l$ con $m$, a la cual denotaremos por $l+m$, como la función $l+m:V\to F$ con la siguiente regla de asignación:$$(l+m)(v)=l(v)+m(v),$$ para cualquier $v$ en $V$.

De nuevo nos estamos enfrentando a un posible problema de ambigüedad de símbolos: por un lado estamos usando $+$ para referirnos a la suma en el campo $F$ y por otro lado para referirnos a la suma de funciones que acabamos de definir.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $l:V\to F$ una forma lineal y sea $r$ un elemento de $F$. Definimos el producto escalar de $r$ con $F$, al cual denotaremos por $r\cdot l$ como la función $r\cdot l:V\to F$ con la siguiente regla de asignación:$$(r\cdot l)(v)=r\cdot (l(v))$$ para cualquier $v$ en $V$.

Así, estamos usando tanto la suma en $F$ como el producto en $F$ para definir una nueva suma de funciones y un nuevo producto entre un real y una función. En el caso del producto escalar, como con muchos otros productos, usualmente quitamos el punto central y ponemos $rl$ en vez de $r\cdot l$.

Ejemplo. Tomemos las funciones $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3\to \mathbb{R}$ con las siguientes reglas de asignación:

\begin{align*}
f(x,y,z)&=2x-y+z\\
g(x,y,z)&=3x+y-5z.
\end{align*}

Mostraremos que la función $3f+(-2)g$ es igual a la función $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z)=-5y+13z$. Lo haremos con todo el detalle posible. Primero, notamos que las dos funciones tienen dominio $\mathbb{R}^3$ y codominio $\mathbb{R}$ así que nos podemos enfocar en la regla de asignación. Debemos ver que ambas coinciden para todas las ternas $(x,y,z)$ en $\mathbb{R}^3$. Tomemos entonces una de estas ternas $(x,y,z)$.

Por definición de producto escalar de funciones, tenemos que $$(3f)(x,y,z)=3(f(x,y,z))=3(2x-y+z)=6x-3y+3z.$$. Aquí estamos usando la distributividad en los reales. Por definición de producto escalar de funciones, tenemos que $$ ((-2)g)(x,y,z)=(-2)(g(x,y,z))=(-2)(3x+y-5z)=-6x-2y+10z.$$ Una vez más estamos usando distributividad. Luego, por definición de suma de funciones obtenemos que

\begin{align*}
(3f+(-2)g)(x,y,z)&=(3f)(x,y,z)+(-2g)(x,y,z)\\
&= (6x-3y+3z)+(-6x-2y+10z)\\
& = -5y+13z\\
&= h(x,y,z).
\end{align*}

$\square$

Usualmente tomamos atajos para seguir simplificando la notación. Por ello, típicamente a veces vemos escrito todo lo anterior simplemente como: $$3(2x-y+z)-2(2x+y-5z)=-5y+13z.$$ De hecho esto es muy práctico, pues se puede mostrar que las funciones «sí podemos operarlas como si fueran expresiones en $x$, $y$, $z$ y usáramos las reglas usuales». Así, podemos «trabajar simbólicamente» y concluir rápidamente que $$(x+y)+(3x+2z)-3(x+y-z)$$ en verdad tiene la misma regla de asignación que $-2y+5z$.

Ahora sí, ¿quién es el espacio dual?

Si tenemos un espacio vectorial $V$ sobre un campo $F$ podemos construirnos otro espacio vectorial con otro conjunto base y otras operaciones que no son las del espacio original. Una forma de hacer esto es construir el espacio dual, al que llamaremos $V^\ast$. Los elementos de $V^\ast$ son las formas lineales de $V$, es decir, funciones lineales con dominio $V$ y codominio $F$. Debemos acostumbrarnos a pensar simultáneamente a un elemento de $V^\ast$ tanto como un vector (de $V^\ast$) como una función (de $V$ a $F$).

Para verdaderamente pensar a $V^\ast$ como un espacio vectorial, debemos establecer algunas cosas especiales:

  • La suma vectorial de $V^\ast$ será la suma de funciones que platicamos en la sección anterior.
  • El producto escalar vectorial de $V^\ast$ será el producto escalar que platicamos en la sección anterior.
  • El neutro aditivo vectorial de $V^\ast$ será la forma lineal $L_0$, y se puede verificar que en efecto $l+L_0=l$ para cualquier forma lineal $l$.

Por supuesto, típicamente a la suma vectorial le llamaremos simplemente «suma» y al producto escalar vectorial simplemente «producto escalar». Aquí estamos haciendo énfasis en lo de «vectorial» sólo para darnos cuenta de que nuestras operaciones de funciones se transformaron en operaciones para el espacio vectorial que estamos definiendo.

El espacio dual cumple muchas propiedades bonitas, pero ahorita no nos enfocaremos en enunciarlas y demostrarlas. Esto se puede encontrar en la página del curso de Álgebra Lineal I en el blog. Lo que sí haremos es irnos a los básicos y entender cómo se verían algunas definiciones básicas de álgebra lineal en términos de lo que hemos discutido hasta ahora.

Combinaciones lineales de formas lineales

Para hablar de las nociones de álgebra lineal para formas lineales, hay que pensarlas como vectores y como funciones. ¿Qué sería una combinación lineal de las formas lineales $l_1,\ldots,l_r$ del espacio vectorial, digamos, $\mathbb{R}^n$. Debemos tomar elementos $\alpha_1,\ldots,\alpha_r$ en $\mathbb{R}$ y construir la función $\ell=\alpha_1l_1+\ldots+\alpha_rl_r$. Aquí estamos usando la suma vectorial y el producto escalar vectorial que quedamos que serían la suma como funciones y el producto escalar como funciones. Así, obtenemos un elemento $\ell$ que por un lado es un vector del espacio dual, y por otro es una función $\ell:\mathbb{R}^n\to \mathbb{R}$. ¿Cuál es la regla de asignación? Es precisamente la dada por las definiciones de suma y producto escalar para funciones. Para ser muy precisos, se puede mostrar inductivamente que su regla de asignación es:

\begin{align*}
(\alpha_1l_1+&\ldots+\alpha_rl_r)(x_1,\ldots,x_n)=\\
&\alpha_1(l_1(x_1,\ldots,x_n))+\ldots+\alpha_r(l_r(x_1,\ldots,x_n)).
\end{align*}

Entendiendo esto, ahora sí podemos preguntarnos si una forma lineal es combinación lineal de otras.

Ejemplo. La forma lineal $h:\mathbb{R}^2\to\mathbb{R}$ con regla de asignación $h(x,y)=2x-y$ es combinación lineal de las formas lineales $f(x,y):\mathbb{R}^2\to\mathbb{R}$ y $g(x,y):\mathbb{R}^2\to\mathbb{R}$ con reglas de asignación

\begin{align*}
f(x,y)&=x+y\\
g(x,y)&=x-y.
\end{align*}

En efecto, tenemos que es igual a la combinación lineal $\frac{1}{2}f + \frac{3}{2} g$, pues su regla de asignación es:

$$\left(\frac{1}{2}f + \frac{3}{2} g\right)(x,y)=\left(\frac{x+y}{2}\right)+\left(\frac{3x-3y}{2}\right)=2x-y,$$

que es justo la regla de asignación de $h$. Así, $h=\frac{1}{2}f+\frac{3}{2}g$.

$\triangle$

Independencia lineal de formas lineales

Veamos un ejemplo más de cómo entender nociones de álgebra lineal cuando hablamos de formas lineales (o funciones en general). ¿Cómo sería el concepto de independencia lineal para formas lineales $l_1,\ldots,l_r$? A partir de una combinación lineal de ellas igualada a la forma lineal cero $L_0$, debemos mostrar que todos los coeficientes son iguales a cero. Es decir, a partir de $$\alpha_1l_1+\ldots+\alpha_rl_r=L_0,$$ debemos mostrar que $\alpha_1=\ldots=\alpha_r=0.$$ Usualmente el truco en estas situaciones es que ya nos están dando una igualdad de funciones. Entonces, podemos evaluar en los valores que nosotros queramos de ambos lados de la igualdad pues funciones iguales tienen todas sus evaluaciones iguales. Esto se parece a los ejemplos de la sección de igualdad de funciones.

Ejemplo. Vamos a demostrar que las formas lineales de $\mathbb{R}^4$ dadas por $f(w,x,y,z)=4w+2x+z$, $g(w,x,y,z)=4w+2z+y$, $h(w,x,y,z)=4w+2y+x$, $k(w,x,y,z)=w+x+y+z$ son linealmente independientes. Tomemos una combinación lineal de ellas igualda a cero (¡recordemos que en este espacio vectorial el cero es la forma lineal $L_0$!):

$$Af+Bg+Ch+Dk=L_0.$$

Debemos demostrar que $A=B=C=D=0$. ¿Cómo hacemos esto? Lo que haremos es evaluar: pondremos valores convenientes de $(w,x,y,z)$ en la igualdad anterior para obtener información de $A$, $B$, $C$, $D$. Poniendo $(1,0,0,0)$ obtenemos que:

\begin{align*}
0&=L_0(1,0,0,0)\\
&= (Af+Bg+Ch+Dk)\\
&=Af(1,0,0,0)+ Bg(1,0,0,0) +Ch(1,0,0,0) +Dk(1,0,0,0) \\
&=4A + 4B + 4C + D.
\end{align*}

Así, $4A+4B+4C+D=0$. Usando esta ecuación y las evaluaciones $(0,1,0,0)$, $(0,0,1,0)$ y $(0,0,0,1)$, obtenemos todo lo siguiente:

\begin{align*}
4A+4B+4C+D&=0\\
2A+C+D&=0\\
B+2C+D&=0\\
A+2B+D&=0.
\end{align*}

De aquí se puede mostrar (como puedes verificar como ejercicio) que la única solución posible es $A=B=C=D=0$. De este modo, las formas lineales $f,g,h,k$ son linealmente independientes.

$\square$

Más adelante

Esta es más una entrada auxiliar que una entrada que forma parte del flujo de la teoría principal. Sin embargo, espero que te haya servido para dejar más claros los conceptos de cuándo tenemos formas lineales iguales, cómo se operan, cuándo varias formas lineales son linealmente independientes, etc.

Tarea moral…

  1. Verifica que para cualquier forma lineal $l:\mathbb{R}^n\to \mathbb{R}$ y la forma lineal cero $L_0:\mathbb{R}^n\to\mathbb{R}$ en efecto se tiene que $l+L_0=l$. Usa las definiciones de la forma lineal cero, de la igualdad de funciones y de la suma de funciones.
  2. Verifica que $V^\ast$ con las operaciones de suma, producto escalar y el neutro aditivo que dimos en efecto es un espacio vectorial. ¿Cómo tendrían que ser los inversos aditivos?
  3. Considera las formas lineales $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3 \to \mathbb{R}$ dadas por $f(x,y,z)=x+3y+z$ y $g(x,y,z)=-x+5y-z$.
    1. Demuestra que es imposible encontrar reales $A$ y $B$ ambos distintos de cero tales que $Af+Bg$ sea la forma lineal cero.
    2. Encuentra reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z) = -x + 21 – z$.
    3. Demuestra que es imposible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $j:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $j(x,y,z)= -2x + 4y -3z$.
    4. ¿Será posible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $k:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $k(x,y,z)=5x+5y+5z$?
  4. Para cada uno de los siguientes casos, determina si las formas lineales son linealmente independientes:
    1. $f(x,y)=5x+3y$, $g(x,y)=x-3y$.
    2. $f(x,y,z)=5x+2y-z$, $g(x,y,z)=z$, $h(x,y,z)=x-y-z$.
    3. $f(w,x,y,z)=w+y$, $g(w,x,y,z)=3x-2z$, $h(w,x,y,z)=x+y+z$, $k=(w,x,y,z)=w+2x-3z$.
  5. Considera el espacio vectorial de polinomios con coeficientes reales $\mathbb{R}[x]$. Considera la función $\text{ev}_k:\mathbb{R}[x]\to \mathbb{R}$ que a cada polinomio lo manda a su evaluación en $k$, es decir, con regla de asignación $\text{ev}_k(p)=p(k)$.
    1. Demuestra que cualquier $\text{ev}_k$ es una forma lineal.
    2. Sean $k_1,\ldots,k_r$ reales distintos. Muestra que $\text{ev}_{k_1},\ldots,\text{ev}_{k_r}$ son formas lineales linealmente independientes.

Entradas relacionadas

Álgebra Lineal II: Problemas de formas bilineales, cuadráticas y teorema de Gauss

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores nos dedicamos a recordar las definiciones y algunas propiedades de formas bilineales y cuadráticas en $\mathbb{R}^n$ con el fin de enunciar y demostrar el teorema de Gauss. La prueba da un método para representar cualquier forma cuadrática de este modo, pero es mucho más claro cómo se hace este método mediante ejemplos. En esta entrada veremos un par de problemas para seguir repasando formas bilineales y cuadráticas y luego veremos al teorema de Gauss en acción.

Ver que una función es una forma bilineal

Problema. Tomemos $V= \mathbb{R}^n$ y vectores $x,y$ en $V$ de coordenadas $x=(x_1, . . . , x_n)$ y $y =(y_1, . . . , y_n)$. Tomemos reales $a_1,\ldots, a_n$. Definamos a $b:V\times V\to \mathbb{R}$ como sigue:
\begin {align*} b(x,y)=a_1x_1y_1+ . . . + a_nx_ny_n.\end{align*}

Probemos que así definida, $b$ es una forma bilineal.

Solución. Para probar que $b$ es bilineal, probaremos que la función $b(x, \cdot)$ es lineal para cada $x \in \mathbb{R}^n$ fijo.

Sean $p,q \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$. Tenemos que:
\begin{align*} b(x,\lambda p+q)=\sum_{i=1}^n a_ix_i (\lambda p_i+q_i).\end{align*}

Como todos los miembros de esta operación son números reales, utilicemos las propiedades distributiva y conmutativa. Obtenemos:

\begin{align*} b(x,\lambda p+q)=&\sum_{i=1}^n a_ix_i \lambda p_i + \sum_{i=1}^n a_ix_iq_i\\
&=\lambda \sum_{i=1}^n a_ix_ip_i+ \sum_{i=1}^n a_ix_iq_i\\&=\lambda b(x,p) + b(x,q). \end{align*}

La demostración de que la función $b(\cdot,y)$ también es lineal para cada $y\in \mathbb{R}^n$ fijo es análoga.

$\square$

En particular, si tenemos que $a_1, \ldots, a_n =1$, obtenemos que $b$ es el producto interno canónico de $\mathbb{R}^n$, es decir el producto punto.

Ver que una función no es una forma cuadrática

Problema. Sea $q: \mathbb{R}^2 \rightarrow \mathbb{R}$ dada como sigue

\begin{align*} q(x,y)=x^2+y^2-8x. \end{align*}

¿Es $q$ una forma cuadrática?

Solución. La respuesta es que no. Con el fin de encontrar una contradicción, supongamos que $q$ sí es una forma cuadrática. Entonces su forma polar $b$ debe cumplir:

\begin{align*} b((x,y),(x,y))=x^2+y^2-8x.\end{align*}

Aplicando lo anterior al par $(-x,-y)$ obtendríamos:

\begin{align*} b((-x,-y),(-x,-y))=x^2+y^2+8x.\end{align*}

Por otro lado, sacando escalares en ambas entradas:

\begin{align*} b((-x,-y),(-x,-y))&=(-1)(-1)b((x,y),(x,y))\\&=b((x,y),(x,y)).\end{align*}

Juntando las igualdades, concluimos que

\begin{align*} x^2+y^2-8x=x^2+y^2+8x \end{align*}

por lo que

\begin{align*} 16x=0. \end{align*}

Pero esto no es cierto en general pues falla, por ejemplo, para la pareja $(1,0)$. Este error nació de suponer que $q$ era una forma cuadrática. Por lo tanto $q$ no es forma cuadrática.

$\triangle$

El teorema de Gauss en acción

Para simplificar el lenguaje, si logramos escribir a una forma cuadrática $q$ como nos dice el teorema de Gauss, es decir, de la forma \begin{align*} q(x)= \sum_{i=1}^r \alpha _i (l_i(x))^2,\end{align*} entonces diremos que $q$ es combinación cuadrática de las $l_i$ con coeficientes $\alpha_i$.

Problema. Toma la forma cuadrática $q$ de $\mathbb{R}^3$ definida como sigue:

\begin{align*} q(x,y,z)= 4xy+yz+xz \end{align*}

Escribe a $q$ como combinación cuadrática de formas lineales linealmente independientes.

Solución. Revisando la demostración dada en la entrada anterior, tenemos tres casos:

  • Que la forma cuadrática sea la forma cuadrática cero.
  • Que tenga «términos puros».
  • Que no tenga «términos puros», es decir, que tenga sólo «términos cruzados».

Como en este caso la forma $q$ no es la forma cero, ni aparecen términos $x^2$, $y^2$ o $z^2$, estamos en el tercer caso. La estrategia era tomar dos de las variables y separar los términos que sí las tengan de los que no. Luego, hay que usar las identidades:

\begin{align} AXY+BX+CY=A\left(X+\frac{C}{A}\right) \left(Y+\frac{B}{A}\right)-\frac{BC}{A},\end{align}

\begin{align} DE= \frac{1}{4}(D+E)^2 – \frac{1}{4} (D-E)^2.\end{align}

Tomemos por ejemplo $x$ y $y$. En la forma cuadrática todos los términos tienen $x$ ó $y$, así que podemos usar la identidad $(1)$ para escribir (nota que reordenamos algunos términos para hacer más cómodas las cuentas con las identidades):

\begin{align*}
4xy+zx+zy&= 4 \left(x+\frac{z}{4}\right) \left(y+\frac{z}{4}\right)-\frac{z^2}{4}
\end{align*}

Luego, continuamos mediante la identidad $(2)$:

\begin{align*}
= \left(x+y+\frac{z}{2}\right)^2 – (x-y)^2- \frac{1}{4} z^2.
\end{align*}

Esta expresión ya tiene la forma buscada. Tenemos que $q$ es combinación cuadrática de las formas lineales $x+y+\frac{z}{2}$, $x-y$ y $z$. Verifica que en efecto estas formas lineales son linealmente independientes.

$\triangle$

Cambiando el orden de los pasos

Problema. ¿Qué pasaría si en el ejemplo anterior en vez de hacer el paso inductivo con $x$ y $y$ hacemos el paso inductivo con $y$ y $z$?

Solución. Las cuentas cambian y obtenemos una nueva forma de escribir a $q$. En efecto, aplicando las identidades $(1)$ y $(2)$ pero ahora a $y$ y $z$ obtendríamos:

\begin{align*}
yz+4xy+xz&= (y+x) (z+4x)-4x^2\\
&=\frac{1}{4}(y+z+5x)^2-\frac{1}{4}(y-z-3x)^2-4x^2.
\end{align*}

Esta es otra forma válida de expresar a $q$ como combinación cuadrática de formas lineales linealmente independientes. Lo que nos dice es que la expresión para $q$ no necesariamente es única.

Sin embargo, un poco más adelante veremos que aunque haya muchas formas de expresar a $q$, en todas ellas permanece constante cuántos sumandos positivos y cuántos negativos hay.

$\triangle$

Cuidado con la independencia lineal

Problema. Toma la forma cuadrática $q$ de $\mathbb{R}^3$ definida como sigue:

\begin{align*} q(x,y,z)= (x – y)^2+(y – z)^2+ (z – x)^2 \end{align*}

Escribe a $q$ como combinación cuadrática de formas lineales linealmente independientes.

Solución. Sería fácil asumir que $q$ ya está de la forma deseada, sin embargo, una revisión rápida nos deja ver qué $x – y$, $y-z$ y $z-x$ no son linealmente independientes en $(\mathbb{R}^3)^*$.

Primero desarrollemos todo

\begin{align*} q(x,y,z)= 2x^2+2y^2+2z^2 -2xy-2xz-2yz \end{align*}

Ahora sí hay «términos puros» pues en particular el coeficiente de $x^2$ no es cero.

En este caso hay que pensar a $q$ como polinomio de segundo grado en $x$ para completar un cuadrado:

\begin{align*} 2x^2+&2y^2+2z^2 -2xy-2xz-2yz\\
&= 2 \left( x- \frac{y+z}{2}\right)^2 – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz \end{align*}

La demostración asegura que inductivamente los términos sin $x$ (en este caso $ – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz$)se pueden escribir como una combinación cuadrática de formas lineales linealmente independientes. Es decir, a ese término ahora podemos aplicar nuevamente el procedimiento hasta llegar a un caso pequeño.

Sin embargo, para nuestra suerte, una pequeña manipulación muestra que
\begin{align*} – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz = \frac{3}{2}(y – z)^2.\end{align*}

También, afortunadamente, $y-z$ es linealmente independiente con $x- \frac{y+z}{2}$. De este modo, una posible combinación cuadrática es la siguiente:

\begin{align*} q(x,y,z)= 2 \left( x- \frac{y+z}{2}\right)^2 + \frac{3}{2}(y – z)^2 \end{align*}

$\triangle$

El algoritmo

Con esto visto, podemos describir un algoritmo para encontrar una combinación cuadrática en 4 pasos.

  1. Desarrollar todos los términos $q$ si es necesario.
  2. Revisar qué forma tiene $q$ con respecto a los 3 casos que se vieron en la demostración.
  3. Reproducir el caso elegido de la demostración, dependiendo de la forma de $q$.
  4. Dentro de este paso, puede ser necesario repetir desde el paso 1.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

1.3. ESPACIOS VECTORIALES: propiedades

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Nota: Para simplificar notación (sobre todo en las demostraciones): $0_K$ será $0$; $\theta_V$ será $\theta$ y dependiendo de los elementos que se operen, serán las operaciones del campo o del espacio vectorial. Y en las justificaciones de pasos, tendremos que un número $m$ seguido $K$, hará referencia a la propiedad $m$ de la definición de campo y análogamente si el número $m$ es seguido por $V$ será la propiedad $m$ de la definición de espacio vectorial.

Recordemos que, por ahora, dado $u$ en un espacio vectorial, tenemos que $\tilde u$ denota a su inverso aditivo.

Proposición (1): Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
1. $0_K \cdot_V u = \theta_V$ $\forall u \in V$
2. $\lambda \cdot_V \theta_V = \theta_V$ $\forall \lambda\in K$

Demostración: Sean $u \in V$, $\lambda\in K$.

1. Tenemos por distributividad en $V$ que $(0+0)u=0u+0u$.
Y además, por ser $0$ el neutro de $K$ y $\theta$ el neutro de $V$, $(0+0)u=0u=\theta+0u$.
Así, $0u+0u=\theta+0u$.
De donde, $\widetilde{0u}+(0u+0u)=(\theta+0u)+\widetilde{0u}$

$\begin{align*}
\Rightarrow &(\widetilde{0u}+0u)+0u=\theta+(0u+\widetilde{0u})\tag{asociat. $+_V$}\\
\Rightarrow &\theta+0u=\theta+\theta\tag{inv. ad. $V$}\\
\Rightarrow &0u=\theta\tag{neu. ad. $V$}\\
\end{align*}$

2. Tenemos por distributividad en $V$ que $\lambda(\theta+\theta)= \lambda\theta+\lambda\theta$.
Y además, por ser $\theta$ el neutro de $V$, $\lambda(\theta+\theta)=\lambda\theta$.
Así, $\lambda\theta+\lambda\theta=\lambda\theta$.
De donde, $\widetilde{\lambda\theta}+(\lambda\theta+\lambda\theta)=\lambda\theta\widetilde{\lambda\theta}$

$\begin{align*}
\Rightarrow &(\widetilde{\lambda\theta}+\lambda\theta)+\lambda\theta=\lambda\theta_V+\widetilde{\lambda\theta}\tag{asociat. $+_V$}\\
\Rightarrow &\theta+\lambda\theta=\theta\tag{inv. ad. $V$}\\
\Rightarrow &\lambda\theta=\theta\tag{neu. ad. $V$}\\
\end{align*}$

Proposición (2): Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
Para todo $u \in V$, $(-1_K)\cdot_V u$ es el inverso aditivo de $u$.

Demostración: Sea $u\in V$.
Veamos que $u+(-1_K)u=\theta$

$\begin{align*}
u+(-1_K)u&=1_Ku+(-1_K)u\tag{propiedad 5. campo}\\
&=(1_K+(-1_K))u\tag{distrib. 7.1 $V$}\\
&=0u\tag{inv. ad. $K$}\\
&=\theta\tag{Prop. (1)}\\
\therefore u+(-1_K)u=\theta
\end{align*}$

Nota: Dada $u \in V$ denotaremos por $-u$ a su inverso aditivo.

Obs.* Existen resultados análogos para las dos proposiciones anteriores pero en el caso de los campos, y sus pruebas son también análogas.

Corolario: Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
$(-\lambda)u=-(\lambda u)=\lambda(-u)$ $\forall \lambda \in K$ , $\forall u \in V$

Demostración: Sean $\lambda\in K, u\in V$.
Por un lado,
\begin{align*}
\lambda(-u)&=\lambda((-1_K)u)\tag{Prop. (2)}\\
&=(\lambda(-1_K))u\tag{propiedad 6. campo}\\
&=(-\lambda)u\tag{Obs.*}\\
\therefore\lambda(-u)=(-\lambda)u
\end{align*}
Por otro lado,
\begin{align*}
(-\lambda)u&=((-1_K)\lambda)u\tag{Obs.*}\\
&=(-1_K)(\lambda u)\tag{propiedad 6. campo}\\
&=-(\lambda u)\tag{Prop. (2)}\\
\therefore (-\lambda)u=-(\lambda u)
\end{align*}

Proposición (3): Sea $K$ un campo y $V$ un $K$ – espacio vectorial.
Si $\lambda\cdot_V u = \theta_V$, entonces se cumple al menos uno de los siguientes casos:
1. $\lambda = 0_K$
2. $u = \theta_V$

Demostración: Sup. que $\lambda u=\theta$.
Tenemos dos posibilidades:
i) $\lambda=0$
ii) $\lambda\not=0$

Si se cumple i), entonces ya tenemos el caso 1.

Sup. que se cumple ii). Veamos que $u=\theta$.
Como nuestra hipótesis es que $\lambda\not=0$ y $\lambda\in K$, con $K$ un campo, entonces $\exists(\lambda^{-1})\in K$ inverso multiplicativo de $\lambda$. Así,

$\begin{align*}
\lambda u=\theta\Rightarrow &(\lambda^{-1})(\lambda u)=(\lambda^{-1})\theta\\
\Rightarrow &((\lambda^{-1})\lambda)u=(\lambda^{-1})\theta\tag{propiedad 6. esp. vect.}\\
\Rightarrow &((\lambda^{-1})\lambda)u=\theta\tag{Prop. (1)}\\
\Rightarrow &1_Ku=\theta\tag{inv. mult. $K$}\\
\Rightarrow &u=\theta\tag{propiedad 5. campo}\\
\end{align*}$

Nota: En adelante, $K$ denotará un campo.

TAREA MORAL

Sea $K$ un campo. Sea $V$ un $K$ – espacio vectorial. Demuestra que para cualesquiera $u,v,w \in V$ se cumplen las siguientes propiedades de cancelación:

  1. Si $u+v=w+v$, entonces $u=w$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Primero sup. que $u+v=w+v$ y justifiquemos por qué tiene que suceder que $u=w$.
    • Podemos sumar a la derecha de cada lado de la igualdad el inverso de $v$.
    • Una vez hecho eso, utiliza la asociatividad de la suma en $V$, luego la definición del inverso de $v$ y por último la definición del neutro aditivo en $V$.
  1. Si $v+u=v+w$, entonces $u=w$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Primero sup. que $u+v=w+v$ y justifiquemos por qué tiene que suceder que $u=w$.
    • Piensa en qué propiedad de la $+$ en $V$ te permite tener una ecuación de la forma que se presenta en el $1$. Una vez teniendo esa forma, por lo que ya probaste, obtienes lo que se necesitaba.
      • Observa que haciendo un proceso totalmente análogo a este inciso, se obtiene que también se cumple la cancelación si es de la forma $u+v=v+w$, o bien, de la forma $v+u=w+v$.

MÁS ADELANTE…

Ahora vamos a usar el concepto de espacio vectorial para obtener otro concepto: subespacio.

Entradas relacionadas

1.2. ESPACIOS VECTORIALES: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

A partir del interés de establecer métodos para resolver ecuaciones de tercer grado por medio de radicales, los matemáticos se encuentran con las raíces negativas e imaginarias. El concepto de número imaginario logra superponerse al paradigma y encuentra su lugar a través de su representación geométrica.

El físico William Rowan Hamilton se interesó por establecer propiedades de las operaciones entre números complejos y sostuvo que el álgebra tenía una relación muy estrecha con la física. Motivado con esta idea, establece conjuntos de números dotados de una estructura algebraica con una representación espacial muy útil para los trabajos en física. Sus propiedades resultan similares a las que actualmente se tienen para el producto escalar y vectorial.

Los cuaterniones de Hamilton son números de la forma: $P=a+bi+cj+dk$.
Donde $a,b,c,d\in\mathbb{R}$ y $k=ij=-ji$ es una unidad imaginaria.

En el álgebra lineal el concepto de «vector» adquiere su significado más general.

ESPACIO VECTORIAL

Definición: Sean $V$ un conjunto y sea $K$ un campo (con las operaciones $+_K$ y $\cdot_K$). Sean $+_V: V \times V \longrightarrow V$ y $\cdot_V: K \times V \longrightarrow V$ operaciones. Decimos que $V,+_V,\cdot_V$ es un espacio vectorial sobre el campo $K$, o bien un $K$ – espacio vectorial (y a los elementos de $K$ les llamamos vectores), si $+_V$ y $\cdot_V$ cumplen lo siguiente:

  1. $+_V$ es asociativa
    $\forall u,v,w \in V:$
    $(\,u+_V(v+_V w)=(u+_V v)+_V w\,)$
  2. $+_V$ es conmutativa
    $\forall u,v \in V:$
    $(\,u+_V v=v+_V u\,)$
  3. Existe neutro aditivo
    $\exists \theta_V \in V:$
    $\forall u \in V (\,\theta_V +_V u = u +_V \theta_V = u\,)$
  4. Todo elemento $u \in V$ tiene inverso aditivo
    $\forall u \in V:$
    $\exists \tilde {u} \in V (\,u+_V \tilde {u} = \tilde {u} +_V u = \theta_V\,)$
  1. $\forall u \in V:$
    $1_K \cdot_V u = u$
  2. $\forall \lambda,\mu \in K \forall u \in V:$
    $\lambda\cdot_K(\mu\cdot_K u)=(\lambda\cdot_K\mu)\cdot_V u$
  3. $\cdot_V$ es distributiva
    7.1 $\forall \lambda,\mu \in K \forall u \in V:$
    $(\lambda+_K\mu)\cdot_V u = (\lambda\cdot_V u)+(\mu\cdot_V u)$
    7.2 $\forall \lambda \in K \forall u,v \in K:$
    $\lambda\cdot_V(u+v)=\lambda\cdot_V u+\lambda\cdot_V v$

Nota: Es común encontrar la expresión «$V$ es un $K$ – espacio vectorial con las operaciones $+, \cdot$» en lugar de «$V,+,\cdot$ es un $K$ – espacio vectorial», al igual que «$V$ es un $K$ – espacio vectorial» sin la referencia a las operaciones cuando se trata de las usuales (se suponen por obviedad).

Nota: Para evitar confusiones, en caso de ser necesario, denotaremos por $u+_V v$ a la suma de los vectores $u$ y $v$, y por $\lambda\cdot_V v$ al producto del escalar $\lambda$ por el vector $v$, pero una vez que nos habituemos a ellas las denotaremos simplemente por $u+v$ y $\lambda v$.

Ejemplos:

  • $\mathbb{R}^n$ es un $\mathbb{R}$ – espacio vectorial con la suma y el producto por escalar usuales.
  • $<(1,1,1)> = \{\lambda(1,1,1):\lambda \in \mathbb{R} \}$ es un $\mathbb{R}^n$ – espacio vectorial.
  • Sea $K$ campo. $\mathcal{M}_{m\times n}(K)$ (las matrices con $m$ renglones y $n$ columnas, con entradas en $K$) es un $K$ – espacio vectorial con las operaciones usuales de suma y producto por escalar.
  • Sea $K$ campo. $K[x]$ (los polinomios en $x$ con coeficientes en $K$) es un $K$ – espacio vectorial con la suma y el producto por escalar usuales.
  • Sea $K$ campo. $K^{n} = \{(x_{1}, x_{2},…,x_{n}) : x_{1},x_{2},…,x_{n} \in K \}$ es un $K$ – espacio vectorial con la suma entrada a entrada y el producto definido como sigue:
    Sean $(x_{1},x_{2},…,x_{n}) \in K^{n}$, $\lambda \in K$. $\lambda \cdot (x_{1},x_{2},…,x_{n})=(\lambda x_{1}, \lambda x_{2},…,\lambda x_{n})$
  • Sea $K$ campo. $K^{\infty} = \{(x_{1}, x_{2},…) : x_{1},x_{2},… \in K \}$ es un $K$ – espacio vectorial con la suma entrada a entrada y el producto definido como sigue:
    Sean $(x_{1},x_{2},…) \in K^{n}$, $\lambda \in K$. $\lambda \cdot (x_{1},x_{2},…)=(\lambda x_{1}, \lambda x_{2},…)$

EJEMPLO FUNCIONES

Sea $K$ campo. $V=\{f|f:K \longrightarrow K\}$ es un $K$ – espacio vectorial con las operaciones $+_V$ y $\cdot_V$ definidas como sigue:

Sean $f,g \in V$, $\lambda \in K$.
$f +_V g : K \longrightarrow K$
$(f +_V g )(x) = f(x) +_K g(x)$ para todo $x\in K$ donde $+_K$ es la suma en $K$.

Sean $f \in V$, $\lambda \in K$.
$\lambda \cdot_V f : K \longrightarrow K$
$(\lambda \cdot_V f )(x) =\lambda \cdot_K f(x)$ para todo $x\in K$
donde $\cdot_K$ es el producto en $K$.

DEMOSTRACIÓN

Vamos a ver que las operaciones $+_V$, $\cdot_V$ cumplen las ocho condiciones suficientes y necesarias (por definición) para que $V$ sea espacio vectorial:

Sean $f,g,h \in V$, $\lambda, \mu \in K$.
Sea $x \in K$ arbitrario.

  1. P.D. $+_V$ es asociativa
    $i. e.$ $(f +_V g) +_V h = f +_V (g +_V h)$

Obs. 1 Tenemos que $f +_V g, g +_V h \in V$. Así, $(f +_V g) +_V h, f +_V (g +_V h) \in V$. Así que sólo falta ver que $(f +_V g) +_V h$ y $f +_V (g +_V h)$ tienen la misma regla de correspondencia.

$\begin{align*}
((f +_V g) +_V h)(x) &= (f +_V g)(x) +_K h(x)\tag{def. $+_V$}\\
&= (f(x) +_K g(x)) +_K h(x)\tag{def. $+_V$}\\
&= f(x) +_K (g(x) +_K h(x))\tag{asociat. $+_K$}\\
&= f(x) +_K (g +_V h)(x)\tag{def. $+_V$}\\
&= (f +_V (g +_V h))(x)\tag{def. $+_V$}\\
\therefore (f +_V g) +_V h &= f +_V (g +_V h)
\end{align*}$

  1. P.D. $+_V$ es conmutativa
    $i.e.$ $f +_V g = g +_V f$

Obs. 2 Tenemos que $f +_V g, g +_V f \in V$. Así que sólo falta ver que $f +_V g$ y $g +_V f$ tienen la misma regla de correspondencia.

$\begin{align*}
(f +_V g)(x) &= f(x) +_K g(x)\tag{def. $+_V$}\\
&= g(x) +_K f(x)\tag{conmutat. $+_K$}\\
&= (g +_V f)(x)\tag{def. $+_V$}\\
\therefore f +_V g &= g +_V f
\end{align*}$

  1. P.D. Existe neutro aditivo
    $i.e.$ $\exists \theta_V \in V:$
    $\theta_V +_V f = f +_V \theta_V = f$

Proponemos:
$\theta_V : K \longrightarrow K$ con
$\theta_V(x) = 0_K$ para todo $x\in K$
donde $0_K$ es neutro aditivo de $K$.

Obs. 3 Por construcción $\theta_V \in V$. Así, $f +_V \theta_V, \theta_V +_V f \in V$. Además, por $2$, se cumple que $\forall f \in V (\theta_V +_V f = f +_V \theta_V)$. Entonces sólo falta ver que $f +_V \theta_V$ y $f$ tienen la misma regla de correspondencia.

$\begin{align*}
(f +_V \theta_V)(x) &= f(x) +_K \theta_V(x)\tag{def. $+_V$}\\
&= f(x) +_K 0_K\tag{def. $\theta_V$}\\
&= f(x)\tag{neutro ad.}\\
\therefore \theta_V +_V f = f +_V \theta_V
\end{align*}$

  1. P.D. Todo elemento $f \in V$ tiene inverso aditivo
    $i.e.$ $\exists \tilde{f} \in V:$
    $f+ \tilde{f} = \tilde{f} + f = \theta_V$

Proponemos:
$\tilde{f} : K \longrightarrow K$ con
$\tilde{f}(x)=(-f(x))$ para todo $x\in K$
donde $(-f(x))$ es el inverso aditivo de $f(x) \in K$.

Obs. 4 Por construcción $\tilde{f} \in V$. Así, $f +_V \tilde{f}, \tilde{f} +_V f \in V$. Además, por $2$, se cumple que $\forall f \in V (f +_V \tilde{f} = \tilde{f} +_V f \in V)$. Entonces sólo falta ver que $f +_V \tilde{f}$ y $\theta_V$ tienen la misma regla de correspondencia.

$\begin{align*}
(f +_V \tilde{f})(x) &= f(x) +_K \tilde{f}(x)\tag{def. $+_V$}\\
&= f(x) +_K (-f(x)) \tag{def. $\tilde{f}$}\\
&= 0_K\tag{inv. ad.}\\
&= \theta_V (x)\tag{def. $\theta_V$}\\
\therefore f +_V \tilde{f} = \tilde{f} +_V f = \theta_V
\end{align*}$

  1. P.D. $1_K \cdot_V f = f$

Sea $1_K$ el neutro multiplicativo en $K$.

Obs. 5 Por construcción $1_K \in K$. Así, $1_K \cdot_V f \in V$. Así que sólo falta ver que $1_K \cdot_V f$ y $f$ tienen la misma regla de correspondencia.

$\begin{align*}
(1_K \cdot_V f)(x) &= 1_K \cdot_K f(x)\tag{def. $\cdot_V$}\\
&= f(x)\tag{neut. mult.}\\
\therefore 1_V \cdot_V f = f
\end{align*}$

  1. P.D. $\lambda\cdot_V(\mu\cdot_V f)=(\lambda\cdot_K\mu)\cdot_V f$

Obs. 6 Por construcción $\mu\cdot_V f \in V$. Así, $\lambda\cdot_V(\mu\cdot_V f) \in V$. También tenemos que $\lambda\cdot_K\mu\in K,$ por lo cual $(\lambda\cdot_K\mu)\cdot_V f\in V$ Entonces sólo falta ver que $\lambda\cdot_V(\mu\cdot_V f)$ y $(\lambda\cdot_K\mu)\cdot_V f$ tienen la misma regla de correspondencia.

$\begin{align*}
(\lambda\cdot_V(\mu\cdot_V f))(x) &= \lambda \cdot_K (\mu\cdot_V f)(x)\tag{def. $\cdot_V$}\\
&= \lambda\cdot_K(\mu\cdot_K f(x))\tag{def. $\cdot_V$}\\
&= (\lambda\cdot_K\mu)\cdot_K f(x)\tag{asociat. $\cdot_K$}\\
&= ((\lambda\cdot_K\mu)\cdot_V f)(x)\tag{def. $\cdot_V$}\\
\therefore \lambda\cdot_V(\mu\cdot_V f)=(\lambda\cdot_K\mu)\cdot_V f
\end{align*}$

  1. P.D. Se cumple la distributividad (7.1)
    $i.e.$ $(\lambda +_K \mu)\cdot_V f=(\lambda\cdot_V f) +_V (\mu\cdot_V f)$

Obs. 7 Tenemos que $\lambda,\mu,\lambda +_K \mu \in K$. Así, $(\lambda +_K \mu)\cdot_V f, (\lambda\cdot_V f) +_V (\mu\cdot_V f) \in V$. Así que solo falta ver que $(\lambda +_K \mu)\cdot_V f$ y $(\lambda\cdot_V f) +_V (\mu\cdot_V f)$ tienen la misma regla de correspondencia.

$\begin{align*}
((\lambda +_K \mu)\cdot_V f)(x) &= (\lambda +_K \mu)\cdot_K f(x)\tag{def. $+_V$}\\
&= (\lambda\cdot_K f(x)) +_K (\mu\cdot_K f(x))\tag{distrib.}\\
&= ((\lambda\cdot_V f)(x)) +_K ((\mu\cdot_V f)(x))\tag{def. $\cdot_V$}\\
&= ((\lambda\cdot_V f) +_V (\mu\cdot_V f))(x))\tag{def. $\cdot_V$}\\
\therefore (\lambda +_K \mu)\cdot_V f=(\lambda\cdot_V f) +_V (\mu\cdot_V f)
\end{align*}$

  1. P.D. Se cumple la distributividad (7.2)
    $i.e.$ $\lambda \cdot_V (f +_V g)= (\lambda \cdot_V f) +_V(\lambda \cdot_V g)$

Obs. 8 Tenemos que $\lambda \cdot_V (f +_V g), \lambda \cdot_V f, \lambda \cdot_V g \in V$. Así, $(\lambda \cdot_V f) +_V(\lambda \cdot_V g) \in V$. Entonces sólo falta ver que $\lambda \cdot_V (f +_V g)$ y $(\lambda \cdot_V f) +_V(\lambda \cdot_V g)$ tienen la misma regla de correspondencia.

$\begin{align*}
(\lambda \cdot_V (f +_V g))(x) &= \lambda \cdot_K (f +_V g)(x)\tag{def. $\cdot_V$}\\
&= \lambda \cdot_K (f(x) +_K g(x))\tag{def. $+_V$}\\
&= (\lambda \cdot_K f(x)) +_K (\lambda \cdot_K g(x))\tag{distrib.}\\
&= ((\lambda \cdot_V f)(x)) +_K ((\lambda \cdot_V g)(x))\tag{def. $\cdot_V$}\\
&= ((\lambda \cdot_V f) +_V (\lambda \cdot_V g))(x)\tag{def. $+_V$}\\
\therefore \lambda \cdot_V (f +_V g)= (\lambda \cdot_V f) +_V(\lambda \cdot_V g)
\end{align*}$

Por lo tanto $V=\{f|f:K \longrightarrow K\}$ es un $K$ – espacio vectorial con las operaciones $+_V$ y $\cdot_V$ trabajadas.

TAREA MORAL

  1. Encuentra un $K$ campo dentro de los ejemplos de la entrada anterior con el cual $\mathcal{M}_{m\times n}(K)$ sea un $K$ – espacio vectorial con una cantidad finita de elementos. Si $K$ no es concreto, exhibe un caso particular de ese campo y una vez que lo hagas, muestra todos los elementos del espacio vectorial obtenido.
  1. Demuestra que el neutro aditivo de $V$, un $K$ – espacio vectorial, es único.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Sabemos por la definición de espacio vectorial, que existe $\theta_V$ neutro.
    • Primero sup. que existe ${\theta_V}’ \in V$ que también lo es. Con el objetivo de demostrar que $\theta_V = {\theta_V}’$.
    • Ahora justifica cada una de las siguientes igualdades:
      $\theta_V = \theta_V +_V {\theta_V}’ = {\theta_V}’$
  1. Demuestra que los inversos aditivos en $V$ son únicos.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Sea $u \in V$. Sabemos por la definición de campo, que existe $\tilde{u} \in V$ inverso aditivo de $u$.
    • Primero sup. que existe $\tilde{u}’ \in V$ que también lo es. Con el objetivo de demostrar que $\tilde{u} = \tilde{u}’$.
    • Ahora justifica cada una de las siguientes igualdades:
      $\tilde{u} = \tilde{u} +_V \theta_V = \tilde{u} + (u + \tilde{u}’) = (\tilde{u} + u) + \tilde{u}’$
    • Completa la demostración con las igualdades necesarias y justifícalas.

MÁS ADELANTE…

Ahora analizaremos algunas propiedades de los espacios vectoriales, una de ellas nos dice quién es el elemento neutro dado el espacio vectorial. Además de dos identidades del elemento neutro.

Entradas relacionadas