Archivo de la etiqueta: espacio vectorial

Álgebra Lineal II: Problemas de formas bilineales, cuadráticas y teorema de Gauss

Introducción

En las entradas anteriores nos dedicamos a recordar las definiciones y algunas propiedades de formas bilineales y cuaráticas en $\mathbb{R}^n$ con el fin de enunciar y demostrar el teorema de Gauss. La prueba da un método para representar cualquier forma cuadrática de este modo, pero es mucho más claro cómo se hace este método mediante ejemplos. En esta entrada veremos un par de problemas para seguir repasando formas bilineales y cuadráticas y luego veremos al teorema de Gauss en acción.

Ver que una función es una forma bilineal

Problema. Tomemos $V= \mathbb{R}^n$ y vectores $x,y$ en $V$ de coordenadas $x=(x_1, . . . , x_n)$ y $y =(y_1, . . . , y_n)$. Tomemos reales $a_1,\ldots, a_n$. Definamos a $b:V\times V\to \mathbb{R}$ como sigue:
\begin {align*} b(x,y)=a_1x_1y_1+ . . . + a_nx_ny_n.\end{align*}

Probemos que así definida, $b$ es una forma bilineal.

Solución. Para probar que $b$ es bilineal, probaremos que la función $b(x, \cdot)$ es lineal para cada $x \in \mathbb{R}^n$ fijo.

Sean $p,q \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$. Tenemos que:
\begin{align*} b(x,\lambda p+q)=a_1x_1(\lambda p_1 + q_1) + a_2x_2(\lambda p_2 + q_2)+ \dots a_nx_n(\lambda p_n + q_n).\end{align*}

Como todos los miembros de esta operación son números reales, utilicemos las propiedades distributiva y conmutativa. Obtenemos:

\begin{align*} b(x,\lambda p+q)=&\lambda a_1x_1p_1 + \lambda a_2x_2 p_2 + \dots + \lambda a_nx_n p_n + a_1x_1q_1+a_2x_2q_2+ \dots + a_nx_nq_n \\
&=\lambda (a_1x_1p_1 + a_2x_2 p_2 + \dots + a_nx_n p_n)+ (a_1x_1q_1+a_2x_2q_2+ \dots + a_nx_nq_n)\\&=\lambda b(x,p) + b(x,q). \end{align*}

La demostración de que la función $b(\cdot,y)$ también es lineal para cada $y\in \mathbb{R}^n$ fijo es análoga.

$\square$

En particular, si tenemos que $a_1, \ldots, a_n =1$, obtenemos que $b$ es el producto interno canónico de $\mathbb{R}^n$, es decir el producto punto.

Ver que una función no es una forma cuadrática

Problema. Sea $q: \mathbb{R}^2 \rightarrow \mathbb{R}$ dada como sigue

\begin{align*} q(x,y)=x^2+y^2-8x. \end{align*}

¿Es $q$ una forma cuadrática?

Solución. La respuesta es que no. Con el fin de encontrar una contradicción, supongamos que $q$ sí es una forma cuadrática. Entonces su forma polar $b$ debe cumplir:

\begin{align*} b((x,y),(x,y))=x^2+y^2-8x.\end{align*}

Aplicando lo anterior al par $(-x,-y)$ obtendríamos:

\begin{align*} b((-x,-y),(-x,-y))=x^2+y^2+8x.\end{align*}

Por otro lado, sacando escalares en ambas entradas:

\begin{align*} b((-x,-y),(-x,-y))&=(-1)(-1)b((x,y),(x,y))\\&=b((x,y),(x,y)).\end{align*}

Juntando las igualdades, concluimos que

\begin{align*} x^2+y^2-8x=x^2+y^2+8x \end{align*}

por lo que

\begin{align*} 16x=0. \end{align*}

Pero esto no es cierto en general pues falla, por ejemplo, para la pareja $(1,0)$. Este error nació de suponer que $q$ era una forma cuadrática. Por lo tanto $q$ no es forma cuadrática.

$\square$

El teorema de Gauss en acción

Para simplificar el lenguaje, si logramos escribir a una forma cuadrática $q$ como nos dice el teorema de Gauss, es decir, de la forma \begin{align*} q(x)= \sum_{i=1}^r \alpha _i (l_i(x))^2,\end{align*} entonces diremos que $q$ es combinación cuadrática de las $l_i$ con coeficientes $\alpha_i$.

Problema. Toma la forma cuadrática $q$ de $\mathbb{R}^3$ definida como sigue:

\begin{align*} q(x,y,z)= 4xy+yz+xz \end{align*}

Escribe a $q$ como combinación cuadrática de formas lineales linealmente independientes.

Solución. Revisando la demostración dada en la entrada anterior, tenemos tres casos:

  • Que la forma cuadrática sea la forma cuadrática cero.
  • Que tenga «términos puros».
  • Que no tenga «términos puros», es decir, que tenga sólo «términos cruzados».

Como en este caso la forma $q$ no es la forma cero, ni aparecen términos $x^2$, $y^2$ o $z^2$, estamos en el tercer caso. La estrategia era tomar dos de las variables y separar los términos que sí las tengan de los que no. Luego, hay que usar las identidades:

\begin{align} AXY+BX+CY=A\left(X+\frac{C}{A}\right) \left(Y+\frac{B}{A}\right)-\frac{BC}{A},\end{align}

\begin{align} DE= \frac{1}{4}(D+E)^2 – \frac{1}{4} (D-E)^2.\end{align}

Tomemos por ejemplo $x$ y $y$. En la forma cuadrática todos los términos tienen $x$ ó $y$, así que podemos usar la identidad $(1)$ para escribir (nota que reordenamos algunos términos para hacer más cómodas las cuentas con las identidades):

\begin{align*}
4xy+zx+zy&= 4 \left(x+\frac{z}{4}\right) \left(y+\frac{z}{4}\right)-\frac{z^2}{4}
\end{align*}

Luego, continuamos mediante la identidad $(2)$:

\begin{align*}
= \left(x+y+\frac{z}{2}\right)^2 – (x-y)^2- \frac{1}{4} z^2.
\end{align*}

Esta expresión ya tiene la forma buscada. Tenemos que $q$ es combinación cuadrática de las formas lineales $x+y+\frac{z}{2}$, $x-y$ y $z$. Verifica que en efecto estas formas lineales son linealmente independientes.

$\square$

Cambiando el orden de los pasos

Problema. ¿Qué pasaría si en el ejemplo anterior en vez de hacer el paso inductivo con $x$ y $y$ hacemos el paso inductivo con $y$ y $z$?

Solución. Las cuentas cambian y obtenemos una nueva forma de escribir a $q$. En efecto, aplicando las identidades $(1)$ y $(2)$ pero ahora a $y$ y $z$ obtendríamos:

\begin{align*}
yz+4xy+xz&= (y+x) (z+4x)-4x^2\\
&=\frac{1}{4}(y+z+5x)^2-\frac{1}{4}(y-z-3x)^2-4x^2.
\end{align*}

Esta es otra forma válida de expresar a $q$ como combinación cuadrática de formas lineales linealmente independientes. Lo que nos dice es que la expresión para $q$ no necesariamente es única.

Sin embargo, un poco más adelante veremos que aunque haya muchas formas de expresar a $q$, en todas ellas permanece constante cuántos sumandos positivos y cuántos negativos hay.

$\square$

Cuidado con la independencia lineal

Problema. Toma la forma cuadrática $q$ de $\mathbb{R}^3$ definida como sigue:

\begin{align*} q(x,y,z)= (x – y)^2+(y – z)^2+ (z – x)^2 \end{align*}

Escribe a $q$ como combinación cuadrática de formas lineales linealmente independientes.

Solución. Sería fácil asumir que $q$ ya está de la forma deseada, sin embargo, una revisión rápida nos deja ver qué $x – y$, $y-z$ y $z-x$ no son linealmente independientes en $(\mathbb{R}^3)^*$.

Primero desarrollemos todo

\begin{align*} q(x,y,z)= 2x^2+2y^2+2z^2 -2xy-2xz-2yz \end{align*}

Ahora sí hay «términos puros» pues en particular el coeficiente de $x^2$ no es cero.

En este caso hay que pensar a $q$ como polinomio de segundo grado en $x$ para completar un cuadrado:

\begin{align*} 2x^2+&2y^2+2z^2 -2xy-2xz-2yz\\
&= 2 \left( x- \frac{y+z}{2}\right)^2 – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz \end{align*}

La demostración asegura que inductivamente los términos sin $x$ (en este caso $ – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz$)se pueden escribir como una combinación cuadrática de formas lineales linealmente independientes. Es decir, a ese término ahora podemos aplicar nuevamente el procedimiento hasta llegar a un caso pequeño.

Sin embargo, para nuestra suerte, una pequeña manipulación muestra que
\begin{align*} – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz = \frac{3}{2}(y – z)^2.\end{align*}

También, afortunadamente, $y-z$ es linealmente independiente con $x- \frac{y+z}{2}$. De este modo, una posible combinación cuadrática es la siguiente:

\begin{align*} q(x,y,z)= 2 \left( x- \frac{y+z}{2}\right)^2 + \frac{3}{2}(y – z)^2 \end{align*}

$\square$

El algoritmo

Con esto visto, podemos describir un algoritmo para encontrar una combinación cuadrática en 4 pasos.

  1. Desarrollar todos los términos $q$ si es necesario.
  2. Revisar qué forma tiene $q$ con respecto a los 3 casos que se vieron en la demostración.
  3. Reproducir el caso elegido de la demostración, dependiendo de la forma de $q$.
  4. Dentro de este paso, puede ser necesario repetir desde el paso 1.

Entradas relacionadas

Propiedades de los ESPACIOS VECTORIALES

Nota: Para simplificar notación (sobre todo en las demostraciones): $0_K$ será $0$; $\theta_V$ será $\theta$ y dependiendo de los elementos que se operen, serán las operaciones del campo o del espacio vectorial. Y en las justificaciones de pasos, tendremos que un número $m$ seguido $K$, hará referencia a la propiedad $m$ de la definición de campo y análogamente si el número $m$ es seguido por $V$ será la propiedad $m$ de la definición de espacio vectorial.

Recordemos que, por ahora, dado $u$ en un espacio vectorial, tenemos que $\tilde u$ denota a su inverso aditivo.

Proposición (1): Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
1. $0_K \cdot_V u = \theta_V$ $\forall u \in V$
2. $\lambda \cdot_V \theta_V = \theta_V$ $\forall \lambda\in K$

Demostración: Sean $u \in V$, $\lambda\in K$.
1. Tenemos por distributividad en $V$ que $(0+0)u=0u+0u$.
Y además, por ser $0$ el neutro de $K$ y $\theta$ el neutro de $V$, $(0+0)u=0u=\theta+0u$.
Así, $0u+0u=\theta+0u$.
De donde, $\widetilde{0u}+(0u+0u)=(\theta+0u)+\widetilde{0u}$
\begin{align*}
\Rightarrow &(\widetilde{0u}+0u)+0u=\theta+(0u+\widetilde{0u})\tag{asociat. $+_V$}\\
\Rightarrow &\theta+0u=\theta+\theta\tag{inv. ad. $V$}\\
\Rightarrow &0u=\theta\tag{neu. ad. $V$}\\
\end{align*}
2. Tenemos por distributividad en $V$ que $\lambda(\theta+\theta)= \lambda\theta+\lambda\theta$.
Y además, por ser $\theta$ el neutro de $V$, $\lambda(\theta+\theta)=\lambda\theta$.
Así, $\lambda\theta+\lambda\theta=\lambda\theta$.
De donde, $\widetilde{\lambda\theta}+(\lambda\theta+\lambda\theta)=\lambda\theta+\widetilde{\lambda\theta}$
\begin{align*}
\Rightarrow &(\widetilde{\lambda\theta}+\lambda\theta)+\lambda\theta=\lambda\theta_V+\widetilde{\lambda\theta}\tag{asociat. $+_V$}\\
\Rightarrow &\theta+\lambda\theta=\theta\tag{inv. ad. $V$}\\
\Rightarrow &\lambda\theta=\theta\tag{neu. ad. $V$}\\
\end{align*}

Proposición (2): Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
Para todo $u \in V$, $(-1_K)\cdot_V u$ es el inverso aditivo de $u$.

Demostración: Sea $u\in V$.
Veamos que $u+(-1_K)u=\theta$
\begin{align*}
u+(-1_K)u&=1_Ku+(-1_K)u\tag{5. $K$}\\
&=(1_K+(-1_K))u\tag{distrib. 7.1 $V$}\\
&=0u\tag{inv. ad. $K$}\\
&=\theta\tag{Prop. (1)}\\
\therefore u+(-1_K)u=\theta
\end{align*}

Nota: Dada $u \in V$ denotaremos por $-u$ a su inverso aditivo.

Obs.* Existen resultados análogos para las dos proposiciones anteriores pero en el caso de los campos, y sus pruebas son también análogas.

Corolario: Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
$(-\lambda)u=-(\lambda u)=\lambda(-u)$ $\forall \lambda \in K$ , $\forall u \in V$

Demostración: Sean $\lambda\in K, u\in V$.
Por un lado,
\begin{align*}
\lambda(-u)&=\lambda((-1_K)u)\tag{Prop. (2)}\\
&=(\lambda(-1_K))u\tag{6. $K$}\\
&=(-\lambda)u\tag{Obs.*}\\
\therefore\lambda(-u)=(-\lambda)u
\end{align*}
Por otro lado,
\begin{align*}
(-\lambda)u&=((-1_K)\lambda)u\tag{Obs.*}\\
&=(-1_K)(\lambda u)\tag{6. $K$}\\
&=-(\lambda u)\tag{Prop. (2)}\\
\therefore (-\lambda)u=-(\lambda u)
\end{align*}

Proposición (3): Sea $K$ un campo y $V$ un $K$ – espacio vectorial.
Si $\lambda\cdot_V u = \theta_V$, entonces se cumple al menos uno de los siguientes casos:
1. $\lambda = 0_K$
2. $u = \theta_V$

Demostración: Supongamos que $\lambda u=\theta$.
Tenemos dos posibilidades:
i) $\lambda=0$
ii) $\lambda\not=0$

Si se cumple i), entonces ya tenemos el caso 1.

Supongamos que se cumple ii). Veamos que $u=\theta$.
Como nuestra hipótesis es que $\lambda\not=0$ y $\lambda\in K$, con $K$ un campo, entonces $\exists(\lambda^{-1})\in K$ inverso multiplicativo de $\lambda$. Así,
\begin{align*}
\lambda u=\theta\Rightarrow &(\lambda^{-1})(\lambda u)=(\lambda^{-1})\theta\\
\Rightarrow &((\lambda^{-1})\lambda)u=(\lambda^{-1})\theta\tag{6. $V$}\\
\Rightarrow &((\lambda^{-1})\lambda)u=\theta\tag{Prop. (1)}\\
\Rightarrow &1_Ku=\theta\tag{inv. mult. $K$}\\
\Rightarrow &u=\theta\tag{5. $K$}\\
\end{align*}

Nota: En adelante, $K$ denotará un campo.

TAREA MORAL

Sea $K$ un campo. Sea $V$ un $K$ – espacio vectorial. Demuestra que para cualesquiera $u,v,w \in V$ se cumplen las siguientes propiedades de cancelación:

  1. Si $u+v=w+v$, entonces $u=w$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Primero sup. que $u+v=w+v$ y justifiquemos por qué tiene que suceder que $u=w$.
    • Podemos sumar a la derecha de cada lado de la igualdad el inverso de $v$.
    • Una vez hecho eso, utiliza la asociatividad de la suma en $V$, luego la definición del inverso de $v$ y por último la definición del neutro aditivo en $V$.
  1. Si $v+u=v+w$, entonces $u=w$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Primero sup. que $u+v=w+v$ y justifiquemos por qué tiene que suceder que $u=w$.
    • Piensa en qué propiedad de la $+$ en $V$ te permite tener una ecuación de la forma que se presenta en el $1$. Una vez teniendo esa forma, por lo que ya probaste, obtienes lo que se necesitaba.
      • Observa que haciendo un proceso totalmente análogo a este inciso, se obtiene que también se cumple la cancelación si es de la forma $u+v=v+w$, o bien, de la forma $v+u=w+v$.

MÁS ADELANTE…

Ahora vamos a usar el concepto de espacio vectorial para obtener otro concepto: subespacio.

Entradas relacionadas

Definición y ejemplos con demostración de ESPACIOS VECTORIALES

INTRODUCCIÓN

A partir del interés de establecer métodos para resolver ecuaciones de tercer grado por medio de radicales, los matemáticos se encuentran con las raíces negativas e imaginarias. El concepto de número imaginario logra superponerse al paradigma y encuentra su lugar a través de su representación geométrica.

El físico William Rowan Hamilton se interesó por establecer propiedades de las operaciones entre números complejos y sostuvo que el álgebra tenía una relación muy estrecha con la física. Motivado con esta idea, establece conjuntos de números dotados de una estructura algebraica con una representación espacial muy útil para los trabajos en física. Sus propiedades resultan similares a las que actualmente se tienen para el producto escalar y vectorial.

Los cuaterniones de Hamilton son números de la forma: P=a+bi+cj+dk, donde a,b,c y d son números reales y k=ij=-ji es una unidad imaginaria.

En el álgebra lineal el concepto de «vector» adquiere su significado más general.

ESPACIO VECTORIAL

Definición: Sean $V$ un conjunto y sea $K$ un campo (con las operaciones $+_K$ y $\cdot_K$). Sean $+_V: V \times V \longrightarrow V$ y $\cdot_V: K \times V \longrightarrow V$ operaciones. Decimos que $V,+_V,\cdot_V$ es un espacio vectorial sobre el campo $K$, o bien un $K$ – espacio vectorial (y a los elementos de $K$ les llamamos vectores), si $+_V$ y $\cdot_V$ cumplen lo siguiente:

  1. $+_V$ es asociativa
    $\forall u,v,w \in V:$
    $(\,u+_V(v+_V w)=(u+_V v)+_V w\,)$
  2. $+_V$ es conmutativa
    $\forall u,v \in V:$
    $(\,u+_V v=v+_V u\,)$
  3. Existe neutro aditivo
    $\exists \theta_V \in V:$
    $\forall u \in V (\,\theta_V +_V u = u +_V \theta_V = u\,)$
  4. Todo elemento $u \in V$ tiene inverso aditivo
    $\forall u \in V:$
    $\exists \tilde {u} \in V (\,u+_V \tilde {u} = \tilde {u} +_V u = \theta_V\,)$
  1. $\forall u \in V:$
    $1_K \cdot_V u = u$
  2. $\forall \lambda,\mu \in K \forall u \in V:$
    $\lambda\cdot_K(\mu\cdot_K u)=(\lambda\cdot_K\mu)\cdot_V u$
  3. $\cdot_V$ es distributiva
    7.1 $\forall \lambda,\mu \in K \forall u \in V:$
    $(\lambda+_K\mu)\cdot_V u = (\lambda\cdot_V u)+(\mu\cdot_V u)$
    7.2 $\forall \lambda \in K \forall u,v \in K:$
    $\lambda\cdot_V(u+v)=\lambda\cdot_V u+\lambda\cdot_V v$

Nota: Es común encontrar la expresión «$V$ es un $K$ – espacio vectorial con las operaciones $+, \cdot$» en lugar de «$V,+,\cdot$ es un $K$ – espacio vectorial», al igual que «$V$ es un $K$ – espacio vectorial» sin la referencia a las operaciones cuando se trata de las usuales (se suponen por obviedad).

Nota: Para evitar confusiones, en caso de ser necesario, denotaremos por $u+_V v$ a la suma de los vectores $u$ y $v$, y por $\lambda\cdot_V v$ al producto del escalar $\lambda$ por el vector $v$, pero una vez que nos habituemos a ellas las denotaremos simplemente por $u+v$ y $\lambda v$.

Ejemplos:

  • $\mathbb{R}^n$ es un $\mathbb{R}$ – espacio vectorial con la suma y el producto por escalar usuales.
  • $<(1,1,1)> = \{\lambda(1,1,1):\lambda \in \mathbb{R} \}$ es un $\mathbb{R}^n$ – espacio vectorial.
  • Sea $K$ campo. $\mathcal{M}_{m\times n}(K)$ (las matrices con $m$ renglones y $n$ columnas, con entradas en $K$) es un $K$ – espacio vectorial con las operaciones usuales de suma y producto por escalar.
  • Sea $K$ campo. $K[x]$ (los polinomios en $x$ con coeficientes en $K$) es un $K$ – espacio vectorial con la suma y el producto por escalar usuales.
  • Sea $K$ campo. $K^{n} = \{(x_{1}, x_{2},…,x_{n}) : x_{1},x_{2},…,x_{n} \in K \}$ es un $K$ – espacio vectorial con la suma entrada a entrada y el producto definido como sigue:
    Sean $(x_{1},x_{2},…,x_{n}) \in K^{n}$, $\lambda \in K$. $\lambda \cdot (x_{1},x_{2},…,x_{n})=(\lambda x_{1}, \lambda x_{2},…,\lambda x_{n})$
  • Sea $K$ campo. $K^{\infty} = \{(x_{1}, x_{2},…) : x_{1},x_{2},… \in K \}$ es un $K$ – espacio vectorial con la suma entrada a entrada y el producto definido como sigue:
    Sean $(x_{1},x_{2},…) \in K^{n}$, $\lambda \in K$. $\lambda \cdot (x_{1},x_{2},…)=(\lambda x_{1}, \lambda x_{2},…)$

EJEMPLO FUNCIONES

Sea $K$ campo. $V=\{f|f:K \longrightarrow K\}$ es un $K$ – espacio vectorial con las operaciones $+_V$ y $\cdot_V$ definidas como sigue:

Sean $f,g \in V$, $\lambda \in K$.
$f +_V g : K \longrightarrow K$
$(f +_V g )(x) = f(x) +_K g(x)$ para todo $x\in K$ donde $+_K$ es la suma en $K$.

Sean $f \in V$, $\lambda \in K$.
$\lambda \cdot_V f : K \longrightarrow K$
$(\lambda \cdot_V f )(x) =\lambda \cdot_K f(x)$ para todo $x\in K$
donde $\cdot_K$ es el producto en $K$.

DEMOSTRACIÓN

Vamos a ver que las operaciones $+_V$, $\cdot_V$ cumplen las ocho condiciones suficientes y necesarias (por definición) para que $V$ sea espacio vectorial:

Sean $f,g,h \in V$, $\lambda, \mu \in K$.
Sea $x \in K$ arbitrario.

  1. P.D. $+_V$ es asociativa
    $i. e.$ $(f +_V g) +_V h = f +_V (g +_V h)$

Obs. 1 Tenemos que $f +_V g, g +_V h \in V$. Así, $(f +_V g) +_V h, f +_V (g +_V h) \in V$. Así que sólo falta ver que $(f +_V g) +_V h$ y $f +_V (g +_V h)$ tienen la misma regla de correspondencia.

\begin{align*}
((f +_V g) +_V h)(x) &= (f +_V g)(x) +_K h(x)\tag{def. $+_V$}\\
&= (f(x) +_K g(x)) +_K h(x)\tag{def. $+_V$}\\
&= f(x) +_K (g(x) +_K h(x))\tag{asociat. $+_K$}\\
&= f(x) +_K (g +_V h)(x)\tag{def. $+_V$}\\
&= (f +_V (g +_V h))(x)\tag{def. $+_V$}\\
\therefore (f +_V g) +_V h &= f +_V (g +_V h)
\end{align*}

  1. P.D. $+_V$ es conmutativa
    $i.e.$ $f +_V g = g +_V f$

Obs. 2 Tenemos que $f +_V g, g +_V f \in V$. Así que sólo falta ver que $f +_V g$ y $g +_V f$ tienen la misma regla de correspondencia.

\begin{align*}
(f +_V g)(x) &= f(x) +_K g(x)\tag{def. $+_V$}\\
&= g(x) +_K f(x)\tag{conmutat. $+_K$}\\
&= (g +_V f)(x)\tag{def. $+_V$}\\
\therefore f +_V g &= g +_V f
\end{align*}

  1. P.D. Existe neutro aditivo
    $i.e.$ $\exists \theta_V \in V:$
    $\theta_V +_V f = f +_V \theta_V = f$

Proponemos:
$\theta_V : K \longrightarrow K$ con
$\theta_V(x) = 0_K$ para todo $x\in K$
donde $0_K$ es neutro aditivo de $K$.

Obs. 3 Por construcción $\theta_V \in V$. Así, $f +_V \theta_V, \theta_V +_V f \in V$. Además, por $2$, se cumple que $\forall f \in V (\theta_V +_V f = f +_V \theta_V)$. Entonces sólo falta ver que $f +_V \theta_V$ y $f$ tienen la misma regla de correspondencia.

\begin{align*}
(f +_V \theta_V)(x) &= f(x) +_K \theta_V(x)\tag{def. $+_V$}\\
&= f(x) +_K 0_K\tag{def. $\theta_V$}\\
&= f(x)\tag{neutro ad.}\\
\therefore \theta_V +_V f = f +_V \theta_V
\end{align*}

  1. P.D. Todo elemento $f \in V$ tiene inverso aditivo
    $i.e.$ $\exists \tilde{f} \in V:$
    $f+ \tilde{f} = \tilde{f} + f = \theta_V$

Proponemos:
$\tilde{f} : K \longrightarrow K$ con
$\tilde{f}(x)=(-f(x))$ para todo $x\in K$
donde $(-f(x))$ es el inverso aditivo de $f(x) \in K$.

Obs. 4 Por construcción $\tilde{f} \in V$. Así, $f +_V \tilde{f}, \tilde{f} +_V f \in V$. Además, por $2$, se cumple que $\forall f \in V (f +_V \tilde{f} = \tilde{f} +_V f \in V)$. Entonces sólo falta ver que $f +_V \tilde{f}$ y $\theta_V$ tienen la misma regla de correspondencia.

\begin{align*}
(f +_V \tilde{f})(x) &= f(x) +_K \tilde{f}(x)\tag{def. $+_V$}\\
&= f(x) +_K (-f(x)) \tag{def. $\tilde{f}$}\\
&= 0_K\tag{inv. ad.}\\
&= \theta_V (x)\tag{def. $\theta_V$}\\
\therefore f +_V \tilde{f} = \tilde{f} +_V f = \theta_V
\end{align*}

  1. P.D. $1_K \cdot_V f = f$

Sea $1_K$ el neutro multiplicativo en $K$.

Obs. 5 Por construcción $1_K \in K$. Así, $1_K \cdot_V f \in V$. Así que sólo falta ver que $1_K \cdot_V f$ y $f$ tienen la misma regla de correspondencia.

\begin{align*}
(1_K \cdot_V f)(x) &= 1_K \cdot_K f(x)\tag{def. $\cdot_V$}\\
&= f(x)\tag{neut. mult.}\\
\therefore 1_V \cdot_V f = f
\end{align*}

  1. P.D. $\lambda\cdot_V(\mu\cdot_V f)=(\lambda\cdot_K\mu)\cdot_V f$

Obs. 6 Por construcción $\mu\cdot_V f \in V$. Así, $\lambda\cdot_V(\mu\cdot_V f) \in V$. También tenemos que $\lambda\cdot_K\mu\in K,$ por lo cual $(\lambda\cdot_K\mu)\cdot_V f\in V$ Entonces sólo falta ver que $\lambda\cdot_V(\mu\cdot_V f)$ y $(\lambda\cdot_K\mu)\cdot_V f$ tienen la misma regla de correspondencia.

\begin{align*}
(\lambda\cdot_V(\mu\cdot_V f))(x) &= \lambda \cdot_K (\mu\cdot_V f)(x)\tag{def. $\cdot_V$}\\
&= \lambda\cdot_K(\mu\cdot_K f(x))\tag{def. $\cdot_V$}\\
&= (\lambda\cdot_K\mu)\cdot_K f(x)\tag{asociat. $\cdot_K$}\\
&= ((\lambda\cdot_K\mu)\cdot_V f)(x)\tag{def. $\cdot_V$}\\
\therefore \lambda\cdot_V(\mu\cdot_V f)=(\lambda\cdot_K\mu)\cdot_V f
\end{align*}

  1. P.D. Se cumple la distributividad (7.1)
    $i.e.$ $(\lambda +_K \mu)\cdot_V f=(\lambda\cdot_V f) +_V (\mu\cdot_V f)$

Obs. 7 Tenemos que $\lambda,\mu,\lambda +_K \mu \in K$. Así, $(\lambda +_K \mu)\cdot_V f, (\lambda\cdot_V f) +_V (\mu\cdot_V f) \in V$. Así que solo falta ver que $(\lambda +_K \mu)\cdot_V f$ y $(\lambda\cdot_V f) +_V (\mu\cdot_V f)$ tienen la misma regla de correspondencia.

\begin{align*}
((\lambda +_K \mu)\cdot_V f)(x) &= (\lambda +_K \mu)\cdot_K f(x)\tag{def. $+_V$}\\
&= (\lambda\cdot_K f(x)) +_K (\mu\cdot_K f(x))\tag{distrib.}\\
&= ((\lambda\cdot_V f)(x)) +_K ((\mu\cdot_V f)(x))\tag{def. $\cdot_V$}\\
&= ((\lambda\cdot_V f) +_V (\mu\cdot_V f))(x))\tag{def. $\cdot_V$}\\
\therefore (\lambda +_K \mu)\cdot_V f=(\lambda\cdot_V f) +_V (\mu\cdot_V f)
\end{align*}

  1. P.D. Se cumple la distributividad (7.2)
    $i.e.$ $\lambda \cdot_V (f +_V g)= (\lambda \cdot_V f) +_V(\lambda \cdot_V g)$

Obs. 8 Tenemos que $\lambda \cdot_V (f +_V g), \lambda \cdot_V f, \lambda \cdot_V g \in V$. Así, $(\lambda \cdot_V f) +_V(\lambda \cdot_V g) \in V$. Entonces sólo falta ver que $\lambda \cdot_V (f +_V g)$ y $(\lambda \cdot_V f) +_V(\lambda \cdot_V g)$ tienen la misma regla de correspondencia.

\begin{align*}
(\lambda \cdot_V (f +_V g))(x) &= \lambda \cdot_K (f +_V g)(x)\tag{def. $\cdot_V$}\\
&= \lambda \cdot_K (f(x) +_K g(x))\tag{def. $+_V$}\\
&= (\lambda \cdot_K f(x)) +_K (\lambda \cdot_K g(x))\tag{distrib.}\\
&= ((\lambda \cdot_V f)(x)) +_K ((\lambda \cdot_V g)(x))\tag{def. $\cdot_V$}\\
&= ((\lambda \cdot_V f) +_V (\lambda \cdot_V g))(x)\tag{def. $+_V$}\\
\therefore \lambda \cdot_V (f +_V g)= (\lambda \cdot_V f) +_V(\lambda \cdot_V g)
\end{align*}

Por lo tanto $V=\{f|f:K \longrightarrow K\}$ es un $K$ – espacio vectorial con las operaciones $+_V$ y $\cdot_V$ trabajadas.

TAREA MORAL

  1. Encuentra un $K$ campo dentro de los ejemplos de la entrada anterior con el cual $\mathcal{M}_{m\times n}(K)$ sea un $K$ – espacio vectorial con una cantidad finita de elementos. Si $K$ no es concreto, exhibe un caso particular de ese campo y una vez que lo hagas, muestra todos los elementos del espacio vectorial obtenido.
  1. Demuestra que el neutro aditivo de $V$, un $K$ – espacio vectorial, es único.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Sabemos por la definición de espacio vectorial, que existe $\theta_V$ neutro.
    • Primero sup. que existe ${\theta_V}’ \in V$ que también lo es. Con el objetivo de demostrar que $\theta_V = {\theta_V}’$.
    • Ahora justifica cada una de las siguientes igualdades:
      $\theta_V = \theta_V +_V {\theta_V}’ = {\theta_V}’$
  1. Demuestra que los inversos aditivos en $V$ son únicos.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Sea $u \in V$. Sabemos por la definición de campo, que existe $\tilde{u} \in V$ inverso aditivo de $u$.
    • Primero sup. que existe $\tilde{u}’ \in V$ que también lo es. Con el objetivo de demostrar que $\tilde{u} = \tilde{u}’$.
    • Ahora justifica cada una de las siguientes igualdades:
      $\tilde{u} = \tilde{u} +_V \theta_V = \tilde{u} + (u + \tilde{u}’) = (\tilde{u} + u) + \tilde{u}’$
    • Completa la demostración con las igualdades necesarias y justifícalas.

MÁS ADELANTE…

Ahora analizaremos algunas propiedades de los espacios vectoriales, una de ellas nos dice quién es el elemento neutro dado el espacio vectorial. Además de dos identidades del elemento neutro.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Propiedades del conjunto de soluciones a un sistema lineal de ecuaciones de primer orden

Introducción

En la entrada anterior comenzamos el estudio de los sistemas de ecuaciones diferenciales de primer orden $$\begin{alignedat}{4} \dot{x}_{1} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x}_{2} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x}_{n} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}$$ donde revisamos las principales definiciones y enunciamos el teorema de existencia y unicidad correspondiente a sistemas de primer orden y sus problemas de condición inicial. Es momento ahora de estudiar las principales propiedades que cumple el conjunto de soluciones a un sistema lineal de ecuaciones de primer orden, las cuales se comportan de una manera bastante similar al conjunto de soluciones a una ecuación de segundo orden lineal que revisamos en la unidad anterior.

Iniciaremos revisando al conjunto de soluciones al sistema lineal homogéneo $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}$$ el cual cumple el principio de superposición, es decir, si tenemos $n$ soluciones, digamos ${\textbf{X}_{1}}(t), {\textbf{X}_{2}}(t),…,{\textbf{X}_{n}}(t)$, entonces cualquier combinación lineal de estas también lo será. Si recuerdas tus cursos de Álgebra Lineal, esta última propiedad nos dice que el conjunto de soluciones es cerrado bajo la suma y producto por escalar usuales definidos para matrices. Con estas operaciones, veremos que el conjunto de soluciones al sistema lineal homogéneo forma un espacio vectorial.

Posteriormente definiremos el Wronskiano de un subconjunto de soluciones al sistema lineal homogéneo, el cual es similar más no igual al Wronskiano que definimos para ecuaciones lineales de segundo orden. En la tarea moral demostrarás la relación que tienen estos dos Wronskianos.

Si hablamos del Wronskiano y del conjunto de soluciones como un espacio vectorial, debemos hablar también de dependencia e independencia lineal entre las soluciones al sistema. Además, demostraremos que si el Wronskiano no se anula entonces el subconjunto de soluciones es linealmente independiente. Además si lo último ocurre podremos expresar cualquier solución como una combinación lineal de las soluciones linealmente independientes. Con estos conceptos podremos definir a la matriz fundamental de soluciones del sistema, la cual revisaremos más a detalle en entradas posteriores.

Terminaremos revisando el caso no homogéneo $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}+ {\textbf{Q}}$$ demostrando que su solución general será la suma de la solución general al sistema homogéneo y una solución particular al sistema no homogéneo.

El espacio vectorial del conjunto de soluciones a un sistema lineal homogéneo

En el primer video probamos el principio de superposición de soluciones al sistema lineal homogéneo. Además, vemos que el conjunto de soluciones al sistema forma un espacio vectorial con la suma y producto por escalar usuales para matrices.

El Wronskiano de un subconjunto de soluciones e independencia lineal

Definimos el Wronskiano de un subconjunto de soluciones al sistema lineal homogéneo, así como los conceptos de dependencia e independencia lineal de soluciones. Probamos un importante teorema que relaciona estos dos conceptos y nos dice cómo se ve la solución general al sistema. Finalizamos definiendo la matriz fundamental de soluciones del sistema.

Solución general al sistema lineal no homogéneo

Finalizamos la entrada demostrando que la solución general al sistema lineal no homogéneo es la suma de la solución general al sistema homogéneo y una solución particular al sistema no homogéneo.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿El conjunto de soluciones a un sistema lineal no homogéneo forma un espacio vectorial con las operaciones usuales de matrices?
  • Prueba que $$\textbf{X}_{1}(t)=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} ; \, \textbf{X}_{2}(t)=\begin{pmatrix} t \\ 2 \\ 0 \end{pmatrix} ; \, \textbf{X}_{3}(t)=\begin{pmatrix} t^{2} \\ t \\ 0 \end{pmatrix}$$ son linealmente independientes en $\mathbb{R}.$
  • Sean ${\textbf{X}_{1}}(t), {\textbf{X}_{2}}(t),…,{\textbf{X}_{n}}(t)$ soluciones al sistema $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}$$ en el intervalo $[a,b]$. Demuestra que $W[{\textbf{X}_{1}}, {\textbf{X}_{2}},…,{\textbf{X}_{n}}](t)=0 \, \, \forall t \in [a,b]$, ó $W[{\textbf{X}_{1}}, {\textbf{X}_{2}},…,{\textbf{X}_{n}}](t) \neq 0 \, \, \forall t \in [a,b]$.
  • Considera el sistema lineal $$\dot{\textbf{X}}=\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \textbf{X}.$$ Prueba que $$\textbf{X}_{1}(t)=\begin{pmatrix} e^{t} \\ -e^{t} \end{pmatrix} ; \, \textbf{X}_{2}(t)=\begin{pmatrix} e^{-t} \\ e^{-t} \end{pmatrix}$$ son soluciones al sistema. Además prueba que son linealmente independientes en $\mathbb{R}$ y por lo tanto forma una matriz fundamental de soluciones al sistema.
  • Considera la ecuación $$\ddot{y}+p(t)\dot{y}+q(t)y=0$$ y su sistema de ecuaciones correspondiente $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1 \\ -q(t) & -p(t) \end{pmatrix} \textbf{X}.$$ Prueba que si $\textbf{X}_{1}(t)$, $\textbf{X}_{2}(t)$ son soluciones linealmente independientes al sistema de ecuaciones, y si $y_{1}(t)$, $y_{2}(t)$ forman un conjunto fundamental de soluciones a la ecuación de segundo orden, entonces se satisface la identidad $$W[y_{1}, y_{2}](t)=cW[\textbf{X}_{1}, \textbf{X}_{2}](t)$$ para alguna constante $c \neq 0$.

Más adelante

En la siguiente entrada comenzaremos a resolver algunos sistemas lineales bastante sencillos. El método que estudiaremos será el de eliminación de variables, el cual consiste en eliminar variables dependientes hasta quedarnos con una ecuación diferencial de orden superior. Resolviendo esta última ecuación podremos encontrar la solución general al sistema original. Este método funciona para sistemas lineales con coeficientes constantes.

¡Hasta la próxima!

Entradas relacionadas

Geometría Analítica I: El espacio vectorial R²

Introducción

En la entrada anterior llegamos a una equivalencia entre un punto en el plano euclidiano y parejas de números $(x,y)$, donde $x, y \in \mathbb{R}$. Podemos imaginarnos entonces el conjunto de todas las parejas ordenadas de números reales como $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$, donde $\times$ hace referencia al producto cartesiano (en general para conjuntos $A$ y $B$, $A \times B := \{ (a,b) : a \in A, b \in B \}$).

Con esto en mente, es posible imaginaros a los postulados de Euclides ya no como afirmaciones incuestionables, sino como consecuencias de una geometría construida a partir de las parejas de números reales. Ahora nuestra base será la teoría de conjuntos, los números reales y las parejas ordenadas. Usaremos los axiomas y propiedades que tienen para construir nuestros objetos.

Para entender mejor cómo se trabajará en el espacio formado por todas las parejas $(x,y)$ de reales, comencemos esta entrada hablando de los números reales.

Los números reales

Como advertencia, esta sección tiene muchos símbolos. Es normal. Muy muy a grandes rasgos, lo que queremos recordar aquí es que los reales se pueden sumar, restar, multiplicar y dividir (excepto divisiones entre cero). Y que todas estas operaciones tienen propiedades bonitas.

A partir de este punto, pensaremos en los reales como algo que sabemos con seguridad puede ser construido, y tomaremos como ciertos todos los axiomas que éstos cumplen. Los axiomas se pueden resumir en la siguiente frase, que desglosaremos una vez enunciada:

«$\mathbb{R}$ es un campo ordenado y completo»

Que $\mathbb{R}$ sea un campo hace referencia a que como conjunto, tiene las operaciones de suma ($+$) y producto ($\cdot$) definidas tales que:

  • $\mathbb{R}$ con la suma, es un grupo conmutativo
    • La suma es asociativa, es decir: $ \forall a,b,c \in \mathbb{R}$, se tiene que $(a+b)+c=a+(b+c)$ ($\forall$ se lee para todo).
    • Existe $ 0 \in \mathbb{R}$ tal que $\forall a \in \mathbb{R}$, $a+0=a=0+a$
    • Existe $ b \in \mathbb{R}$ tal que $a+b=0=b+a$. ($b=-a$)
    • Es conmutativa, es decir, $\forall a,b \in \mathbb{R}$, se tiene que $a+b=b+a$.
  • $\mathbb{R} \setminus \{0\}$ (los reales sin el elemento cero) con el producto, es un grupo conmutativo; de manera análoga a la suma tenemos:
    • El producto es asociativo: $\forall a,b,c \in \mathbb{R}$, se tiene que $(ab)c=a(bc)$ (nota que estamos omitiendo el símbolo de multiplicación).
    • Existe $ 1 \in \mathbb{R}$ tal que $\forall a \in \mathbb{R}$, $a\cdot1=a=1\cdot a$
    • Existe $ b \in \mathbb{R}$ tal que $ab=1=ba$. ($b=\frac{1}{a}$)
    • Es conmutativo, es decir, $\forall a,b \in \mathbb{R}$, se tiene que $ab=ba$.
  • La suma y el producto se distribuyen: $\forall a,b,c \in \mathbb{R}$, se tiene que $a(b+c)=ab+ac$

Que sea ordenado nos indica que tenemos una relación que es un orden total y es compatible con la suma y el producto. $\forall a,b \in \mathbb{R}$:

  • Se cumple exactamente una de las siguientes relaciones: $a<b$, $b<a$, $a=b$.
  • Si $a \leq b$ y $b \leq c$, entonces $a \leq c$.
  • Si $a \leq b$, entonces $a+c \leq b+c$
  • Si $a,b \geq 0$ , entonces $ab \geq 0$

Por último, que sea completo es una noción formal en la cual no nos enfocaremos mucho, pero que a grandes rasgos quiere decir que en los números reales «no hay hoyos», lo cual es muy importante para cuando se quiere usar este sistema numérico para hacer cálculo diferencial e integral.

Por lo que vimos en la entrada anterior, podemos representar cualquier punto en el espacio euclidiano con una pareja de números reales. Ya que hemos dado un pequeño repaso formal de la estructura de $\mathbb{R}$ (todo esto lo cumple cada entrada de un punto $(a,b)$), demos el siguiente paso y exploremos el espacio vectorial $\mathbb{R}^2$.

Espacio vectorial $\mathbb{R}^2$

Comencemos definiendo formalmente un concepto que exploramos en la entrada anterior: el vector.

Definición. Un vector $v$ con dos entradas, es una pareja ordenada de números reales $v=(x,y)$.

Ejemplos. Algunos vectores en $\mathbb{R}^2$ son:

  • $(1,4)$
  • $(-3,2)$
  • $(\pi,1)$
  • $(2.3,-e)$

Utiliza el siguiente interactivo de GeoGebra: mueve el punto $C$ y explora cómo el vector cambia con esta acción.

Definición. El conjunto de todos los vectores con dos elementos (ambos reales) es $\mathbb{R}^2$. En símbolos tenemos que:

$\mathbb{R}^2=\{(x,y): x,y \in \mathbb{R} \}$

Si realizaste la tarea moral anterior, te habrás dado cuenta que podemos encontrar ciertas regiones geométricas al imponer condiciones sobre las entradas de un vector. En la tarea se hace referencia a áreas muy determinadas conocidas como cuadrantes, pero no son las únicas regiones existentes. Hagamos un ejercicio de esto.

Problema. Ubica dentro del plano de dos dimensiones las siguientes regiones geométricas definidas al imponer ciertas restricciones en las entradas de un vector:

  1. $\{ (x,y) \in \mathbb{R}^2 : x \leq 0, y \geq 1 \}$
  2. $\{ (x,y) \in \mathbb{R}^2 : x \geq \pi , y \leq \pi \}$
  3. $\{ (x,y) \in \mathbb{R}^2 : x \geq y \}$

Solución. Para encontrar estas áreas basta con ubicar la región en la que se vale cada condición por separado. La intersección de las regiones será la región que buscamos. Esto se vale para los dos primeros incisos.

Utiliza el siguiente interactivo de GeoGebra en el que ya están las condiciones para visualizar la primera región geométrica para localizar la región del segundo inciso.

¿Qué pasa con el inciso 3? Puede parecer más complicado porque ahora las coordenadas están conectadas en una sola restricción. Antes de introducir la condición en GeoGebra, imagina cuál es la región en la que la condición se cumple.

Ahora, utilicemos el siguiente interactivo para usar lo que ya sabemos y determinar intuitivamente cuál es el área que determina la condición $x \geq y$. Pensemos en el caso específico $x = 1$, $y$ puede ser a lo más $1$ ($y \leq 1$); al restringir nuestra $x$ podemos obtener dos condiciones a partir de las cuales ya sabemos cómo encontrar la región en las que se cumplen. Si ves el interactivo, notarás que la intersección de las regiones es únicamente la recta definida por $x=1$ pero no toda, sino que sólo a partir de cuando $y=1$ hacia abajo. ¿qué pasa si mueves los deslizadores para cambiar los valores de $x$ y $y$ ? Se obtienen segmentos de recta correspondientes a un valor de $x$ fijo que comienzan cuando $y$ es menor o igual a ese valor.

Resulta que estos segmentos de recta se obtienen para cualquier valor de $x$. ¿qué pasa ahora cuando unes todas estas líneas? En este punto es importante recordar que en $\mathbb{R}$ hay un real entre cada dos reales. Entonces, se puede construir el segmento de recta del que hemos hablado. Por lo que la únión de todas estas rectas define un área, ¿ya imaginas cuál es? Verifícalo al escribir la condición $y \leq x$ en el interactivo anterior.

$\square$

La suma en $\mathbb{R}^2$

Regresando a la teoría, el siguiente paso lógico después de definir ciertos objetos (en este caso vectores), es averiguar cómo operan. Definamos entonces la suma y el producto escalar de vectores haciendo uso del conocimiento que ya tenemos acerca de las operaciones en los reales.

Definición. Sean $v_1, v_2 \in \mathbb{R}^2$ dados por $v_1=(x_1,y_1)$ y $v_1=(y_1,y_2)$. Su suma está dada por el vector

$v_1+v_2 := (x_1+x_2,y_1+y_2)$

Esto es, que la suma de vectoes se hace entrada a entrada y esta bien definida pues al final lo que estamos sumando son números reales.

Ejemplos.

  • $(-3,4) + (2,2)=(-3+2,4+2)=(-1,6)$
  • $(7,4) + (2,1)=(7+2,4+1)=(9,5)$
  • $(-3.-7) + (1,2)=(-3+1,-7+2)=(-2,-5)$

En el siguiente interactivo podrás ver el primer ejemplo de manera gráfica en el plano, donde los vectores de colores son los que se suman y el vector negro es el resultante.

Además de poder obtener el vector suma de manera algebraica hay otra manera más de hacerlo: En el mismo interactivo hay una copia de cada vector de color, escoge uno de los dos vectores de la suma y transpórtalo por completo y paralelo a sí mismo para que su punto de inicio no sea el origen, si no el punto donde termina el otro vector. Por ejemplo, deja el vector azul en su lugar y transporta al verde para que su punto de partida sea la flecha del vector azul. Si lo hiciste correctamente, notarás que ahora ese vector transportado termina en donde el vector resultante de la suma (negro) termina. Resulta que si quieres sumar dos vectores, puedes avanzar desde el origen hasta las coordenadas de uno de ellos y ahora »tomando» como origen ese punto al que llegaste, avanzar las coordenadas del otro vector. Al final llegarás al punto del vector resultante de la suma. Este método es conocido como el método del paralelogramo.

El producto escalar en $\mathbb{R}^2$

Otra operación importante en $\mathbb{R}^2$ es el producto escalar, que intuitivamente combina a un real y a un vector y «reescala» al vector por el factor dado por el número real.

Definición. Para $r$ un número real y $v_1 \in \mathbb{R}^2$ dado por $v_1=(x,y)$, el producto escalar $rv$ está dado por:

$rv:=(rx,ry)$

Ejemplos.

  • $4(7,3.5)=(28,14)$
  • $2(5,3)=(10,6)$
  • $2.3(6,3)=(13.8,6.9)$

Utiliza el siguiente interactivo moviendo el deslizador del valor $a$ que multiplica al vector $(5,3)$ para interiorizar lo que implica multiplicar un vector por un escalar. Si lo notas, lo único que hace es reescalarlo, y si el escalar es negativo, entonces le cambia el sentido, pero no la dirección.

Una última cosa que es muy importante mencionar es que hasta ahora no hemos dicho cómo multiplicar dos (o más vectores). Sólo tenemos un producto que toma un escalar (un real) y lo multiplica con un vector, cuyo resultado acaba siendo un vector.

Tarea moral

  • Sean $v=(8,9)$, $w=(3,-2)$, $u=(-5-4)$. Calcula y dibuja las siguientes operaciones de vectores:
    • $5v+3u$
    • $u-3w$
    • $2.5v+9w-u$
  • Demuestra en $\mathbb{R}$ que si $-1$ es el inverso aditivo de $1$, entonces $-a$ es el inverso aditivo de $a$.
  • Por los axiomas, sabemos que la conmutatividad se vale para la suma de reales, es decir, que si $a$ y $b$ son reales, entonces $a+b=b+a$. Pero en esta entrada definimos una nueva suma: la de vectores. De entrada, no sabemos qué propiedades cumple. A partir de las definiciones que dimos, y de los axiomas de los reales, demuestra que también se tiene $u+v=v+u$ para $u$ y $v$ vectores en $\mathbb{R}^2$.
  • Determina, si es posible, las regiones siguientes geométricas. Si dicha región es vacía, argumenta por qué.
    • $\{ (x,y) \in \mathbb{R}^2 : x \leq y, y \geq x \}$
    • $\{ (x,y) \in \mathbb{R}^2 : x \leq y, y > x \}$
    • $\{ (x,y) \in \mathbb{R}^2 : x \leq 3, y > \pi \}$
  • En el interactivo de producto escalar siempre sucede que la línea que pasa por el extremo del vector verde y el extremo del vector rojo siempre pasa por el origen. ¿Por qué sucede esto?

Más adelante…

En esta entrada dimos un breve repaso acerca de los números reales que nos sirvió para entender el espacio $\mathbb{R}^2$ y las operaciones dentro de este. El desarrollo aquí hecho servirá como herramienta para construir la representación algebraica de una recta.