Archivo de la etiqueta: integral

Cálculo Diferencial e Integral II: Funciones integrables con finitas discontinuidades

Por Moisés Morales Déciga

Introducción

Hasta ahora, hemos hablado de funciones integrables en un intervalo cerrado, en términos de ciertas sumas superiores e inferiores. Vimos en la entrada de Propiedades de la integral que si una función es monótona o continua, entonces su integral siempre está definida. Ahora veremos qué sucede con las funciones que tienen discontinuidades. En esta entrada trataremos a las funciones que finitas discontinuidades. En la siguiente hablaremos de funciones con una infinidad de discontinuidades.

Breve repaso de integrabilidad

Recordemos que para determinar si una función acotada $f:\mathbb{R}\to \mathbb{R}$ es integrable en cierto intervalo $[a,b]$, debemos calcular ciertas sumas superiores e inferiores con respecto a una partición. Esto es tomar algunos puntos $x_0<\ldots<x_n$ en $[a,b]$, con $x_0=a$ y $x_n=b$. Escribimos $$P=\{ x_0, x_1, … , x_n \},$$

y decimos que $P$ genera los siguientes intervalos a los que llamamos celdas

$$[x_0,x_1],[x_1,x_2],…,[x_{n-1},x_n].$$

A $[x_{k-1},x_{k}]$ le llamamos la $k$-ésima celda de $P$, cuya longitud es $\Delta x_{k}=x_k-x_{k-1}$. Si $m_k$ es el ínfimo de los valores de $f$ en la $k$-ésima celda y $M_k$ es su supremo, entonces podemos definir respectivamente la suma inferior y superior como $$\underline{S}(f,P)=\sum_{k=1}^n m_k\Delta x_k \quad \text{y} \quad \overline{S}(f,P)=\sum_{k=1}^n M_k\Delta x_k.$$

La función $f$ es integrable cuando el ínfimo de las sumas superiores (tomado sobre todas las particiones) coindice con el supremos de las sumas inferiores. Vimos que esto es equivalente a pedir que para todo $\epsilon$ haya una partición en la que la suma superior y la inferior difieran menos que $\epsilon$ (a lo que llamamos el criterio de Riemann). Probamos varias otras propiedades de esta definición, pero una que será muy importante para esta entrada es la siguiente.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sea $c$ cualquier valor entre $[a,b]$. Si la integral

$$\int \limits_{a}^{b} f(x) \ dx$$

existe, entonces las dos integrales

$$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$

también existen. Y viceversa, si estas dos integrales existen, entonces la primera también.

Cuando las tres integrales existen, se cumple además la siguiente igualdad:

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Usaremos esta proposición en las siguientes secciones, pero necesitamos una versión un poco más versátil.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada y $n$ un entero positivo. Sea $P=\{x_0,\ldots,x_n\}$ una partición de $[a,b]$. Si la integral $$\int \limits_{a}^{b} f(x) \ dx$$ existe, entonces todas las integrales $$\int_{x_{k-1}}^{x_k} f(x)\, dx$$ para $k=1,\ldots,n$ existen. Y viceversa, si estas $n$ integrales existen, entonces la primera también. Cuando todas estas integrales existen, entonces $$\int \limits_{a}^{b} f(x) \ dx = \sum_{k=1} ^n \int_{x_{k-1}}^{x_k} f(x)\, dx.$$

La demostración de esta proposición no es difícil, pues se sigue de la proposición anterior y de una prueba inductiva. Por ello, la encontrarás como parte de los ejercicios.

Funciones escalonadas

Hablaremos de la integrabilidad de funciones escalonadas, para lo cual necesitaremos la siguiente definición.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es escalonada en el intervalo $[a,b]$, si existe una partición $P=\{ x_0, x_1, … , x_n\}$ del intervalo $[a,b]$, tal que $f$ es constante en cada subintervalo abierto de $P$. Es decir, para cada $k=1, 2, …, n$ existe un número real $s_k$ tal que:

$$f(x)=s_k, \quad \text{si} \quad x_{k-1} < x < x_k.$$

A las funciones escalonadas también se les conoce como funciones constantes a trozos.

Ejemplo. En algunos sistemas postales se deben poner estampillas en una carta para poderse enviar. La cantidad de estampillas que hay que poner está determinada por el peso de la carta. Supongamos que una estampilla cuesta $5$ pesos y que hay que poner una estampilla por cada $20g$ (o fracción) que pese la carta, hasta un máximo de $100g$.

Si el peso de la carta en gramos está en el intervalo $[0,20]$, entonces tienes que pagar $5$ pesos. Si está en el intervalo $(20,40]$, pagarás 10 pesos y así sucesivamente hasta que llegue a 100 gramos. Gráficamente, el costo de envío tendría el siguiente comportamiento (puedes dar clic en la imagen para verla a mayor escala).

Observa que en efecto parece ser que hay «escalones». Esta función es escalonada pues al dar la partición $P=\{0,20,40,60,80,100\}$, tenemos que la función es constante en cada intervalo abierto definido por la partición.

Si quisiéramos calcular la integral de esta función, ¿qué podríamos hacer? Podemos utilizar la proposición de separar la integral en intervalos que enunciamos arriba, usando la misma partición $P$. Como la función es constante en cada intervalo dado, entonces su integral existe. Así, la integral en todo el intervalo $[0,100]$ existirá y será la suma de las integrales en cada intervalo. Tendrás que encontrar el valor exacto como uno de los ejercicios.

$\triangle$

Integral para funciones escalonadas

Las funciones escalonadas en un cierto intervalo siempre son integrables, como lo afirma el siguiente resultado.

Teorema. Sea $f:\mathbb{R} \to \mathbb{R}$ una función. Si $f$ es escalonada en un intervalo $[a,b]$, entonces es integrable en $[a,b]$. Además, si la partición que muestra que es escalonada es $P=\{x_0,\ldots,x_n\}$, y para $x$ en el intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$) se cumple que $f(x)=s_k$, entonces se tiene que $$\int_a^b f(x)\, dx = \sum_{k=1}^n s_k (x_k-x_{k-1}).$$

El teorema nos dice entonces que el valor de la integral es la suma de los productos del valor $s_k$ (constante), por la longitud del $k$-ésimo intervalo. Esto tiene mucho sentido geométrico: cada uno de estos productos es el área de un rectángulo correspondiente a un «escalón». El teorema nos dice que el área buscada es la suma de las áreas de estos escalones.

Demostración. La demostración es consecuencia de la proposición para partir integrales en intervalos. Notemos que como $f$ es constante en cada intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$), entonces es integrable en dicho intervalo. En efecto, fijemos una $k\in \{1,\ldots,n\}$ y tomemos $Q=\{y_0,\ldots,y_m\}$ una partición de $[x_{k-1},x_k]$. En en este intervalo cualquier suma superior (o inferior) se hace tomando como supremo (o ínfimo) al valor constante $s_k$, de modo que:

\begin{align*}
\overline{S}(f,Q)&=\sum_{i=1}^m M_i \Delta y_i\\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k(x_k-x_{k-1}),\\
\underline{S}(f,Q)&= \sum_{i=1}^m m_i \Delta y_i \\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k (x_k – x_{k-1}).
\end{align*}

Así, el ínfimo de las particiones superiores y el supremo de las inferiores es $c_k(x_k-x_{k-1})$, por lo que la integral existe en cada intervalo $[x_{k-1},x_k]$ y es igual a $c_k (x_k – x_{k-1})$. Usando la proposición que enunciamos en la sección de recordatorio sobre partir la integral por intervalos, obtenemos

$$\int_a^b f(x)\, dx = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x)\, dx =\sum_{k=1}^n s_k (x_k-x_{k-1}),$$

como queríamos.

$\square$

Funciones continuas a trozos

Las funciones escalonadas son muy sencillas, pero las ideas que hemos discutido respaldan una cierta intuición de que para la integrabilidad «si la función se comporta bien en cada uno de una cantidad finita de intervalos, entonces se comporta bien en todo el intervalo». Esa idea se repite a continuación.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$. Diremos que $f$ es continua a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Pareciera que estamos pidiendo continuidad en todo el intervalo $[a,b]$. Sin embargo, hay algunas excepciones. Por la manera en la que está escrita la definición, la función $f$ no necesariamente es continua en los puntos $x_1,x_2,\ldots,x_{n-1}$.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es continua a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Demostración. Nos gustaría usar la proposición de separación de la integral por intervalos. Para ello, tomemos la partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$. Si $f$ fuera continua en cada intervalo cerrado $[x_{k-1},x_k]$, podríamos usar un resultado anterior para ver que es integrable en cada uno de estos intervalos, pero aquí tenemos una hipótesis un poco más débil, pues la continuidad es sólo en el abierto.

De cualquier manera, se puede ver que $f$ es integrable en cada intervalo cerrado $[x_{k-1},x_k]$. Para ello, fijemos $k$ y tomemos $\epsilon>0$. Como $f$ es acotada, tiene supremo $M$ e ínfimo $m$ en $[a,b]$. Si $M=m$, entonces $f$ es constante y no hay nada que hacer. Así, supongamos $M\neq m$ y tomemos una $\delta>0$ tal que $2\delta(M-m)< \frac{\epsilon}{2}$, y tal que $\delta<\frac{x_k-x_{k-1}}{2}$. La segunda condición nos dice que $[x_{k-1}+\delta,x_k-\delta]$ es no vacío. Como $f$ es continua en este intervalo cerrado, es integrable ahí. Por el criterio de Riemann, hay una partición $Q=\{y_1,\ldots,y_{l-1}\}$ de dicho intervalo tal que $$\overline{S}(f,Q)-\underline{S}(f,Q)<\frac{\epsilon}{2}.$$

Si a esta partición agregamos los puntos $y_0=x_{k-1}$ y $y_l=x_k$, entonces obtenemos una partición $Q’=\{y_0,\ldots,y_l\}$ la cual su primera y última celda tienen longitud $\delta$ y cumple

\begin{align*}
\overline{S}(f,Q’)-\underline{S}(f,Q’)&=(\overline{S}(f,Q)-\underline{S}(f,Q))+(M_1-m_1)\Delta y_1 + (M_l-m_l)\Delta y_l\\
&<\frac{\epsilon}{2}+ (M-m)\delta + (M-m)\delta\\
&=\frac{\epsilon}{2}+ 2(M-m)\delta\\
&<\frac{\epsilon}{2}+\frac{\epsilon}{2}\\
&=\epsilon.
\end{align*}

Así, hemos encontrado una partición $Q’$ de $[x_{k-1},x_k]$ donde las sumas superior e inferior difieren en menos de $\epsilon$. Por el criterio de Riemann, $f$ es integrable en ese intervalo, para cada $k=1,\ldots,n$. Concluimos la demostración usando nuevamente la proposición de separación de la integral en intervalos.

$\square$

Ejemplo. La siguiente función $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$

es integrable en el intervalo $[0,4.5]$. Tendrás que calcular su integral en los ejercicios.

$\triangle$

Funciones monótonas a trozos

Para esta discusión de funciones monótonas, vale la pena que tengas presente las definiciones de funciones crecientes y decrecientes, que puedes consultar en la entrada correspondiente del curso de Cálculo Diferencial e Integral I.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es monótona a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es monótona en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Podemos pensar cómo sería la gráfica de una función así. Tendría que estar formada por un número finito de trozos monótonos. Un ejemplo de ello son las funciones escalonadas (son por ejemplo, no crecientes a trozos). Un ejemplo un poco más interesante sería el de la siguiente figura.

Monótona por trozos

Como te imaginarás, las funciones monótonas a trozos también son integrables.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es monótona a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Una vez más, la demostración usa la proposición de separación de la integral por intervalos. Pero nuevamente nos enfrentamos con una dificultad. Lo que hemos demostrado anteriormente es que si una función es monónona en un intervalo $[x_{k-1},x_k]$, entonces es integrable en dicho intervalo. ¿Pero si sólo tenemos monotonía en $(x_{k-1},x_k)$? Para atender esta dificultad, se tiene que hacer una adaptación similar a lo que hicimos en la demostración para funciones continuas a trozos. Los detalles quedan como parte de la tarea moral.

Más adelante…

En esta entrada analizamos funciones con una cantidad finita de discontinuidades. También hablamos de las funciones monótonas a trozos, que podrían tener una infinidad de discontinuidades, pero también ser integrables. En la siguiente entrada veremos qué hacer con la integrabilidad cuando tenemos una cantidad infinita de discontinuidades.

Tarea moral

  1. Calcula el valor de la integral de la función escalonada del servicio postal, con la partición dada.
  2. Integra la siguiente función: $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$
  1. Integra la siguiente función. Puedes usar fórmulas de integración que conozcas de cursos preuniversitarios, sin embargo, toma en cuenta que tu respuesta será un poco informal hasta que mostremos de dónde salen dichas fórmulas. $$ f(x)= \left\{ \begin{array}{lcc}             \sqrt x &   si  & 0 \leq x \leq 2 \\             \\ ln(x) &  si & 2 < x < 3 \\             \\ -\frac{x^2}{16} -x +5 &  si  & 3 \leq x \leq 4             \end{array}   \right. $$
  1. Demuestra por inducción la proposición de separación de la integral en intervalos que quedó pendiente en la sección de «Breve repaso de integrabilidad». Asegúrate de demostrar la ida y la vuelta.
  2. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones acotadas.
    • Muestra que si $f$ y $g$ son funciones escalonadas en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones escalonadas en $[a,b]$. Sugerencia. Usa como partición un refinamiento común a las particiones $P$ y $Q$ que muestran que $f$ y $g$ son escalonadas, respectivamente.
    • Muestra que si $f$ y $g$ son funciones continuas por trozos en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones continuas por trozos en $[a,b]$.
    • Si $f$ y $g$ son funciones monótonas por trozos en un intervalo $[a,b]$, ¿será que $f+g$ y $fg$ también lo son? ¿Bajo qué condiciones de la monotonía sí sucede esto?
  3. Da un ejemplo de una función que sea monótona por trozos, pero que no sea continua por trozos.
  4. Demuestra la proposición de que las funciones monónotas a trozos son integrables.

Entradas relacionadas

Cálculo Diferencial e Integral III: Puntos críticos de campos escalares

Por Alejandro Antonio Estrada Franco

Introducción

En las unidades anteriores hemos desarrollado varias herramientas de la teoría de diferenciabilidad que nos permiten estudiar tanto a los campos escalares, como a los campos vectoriales. Hemos platicado un poco de las aplicaciones que esta teoría puede tener. En esta última unidad, profundizamos un poco más en cómo dichas herramientas nos permitirán hacer un análisis geométrico y cuantitativo de las funciones. Es decir, a partir de ciertas propiedades analíticas, hallaremos algunas cualidades de su comportamiento geométrico. En esta entrada estudiaremos una pregunta muy natural: ¿cuándo una función diferenciable alcanza su máximo o su mínimo? Para ello, necesitaremos definir qué quiere decir que algo sea un punto crítico de una función. Esto incluirá a los puntos más altos, los más bajos, local y globalmente y ciertos «puntos de quiebre» que llamamos puntos silla.

Introducción al estudio de los puntos críticos

Si tenemos un campo escalar $f:\mathbb{R}^n\to \mathbb{R}$, en muchas aplicaciones nos interesa poder decir cuándo alcanza sus valores máximos o mínimos. Y a veces eso sólo nos importa en una vecindad pequeña. La siguiente definición hace ciertas precisiones.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}$ un campo escalar, y $\bar{a}\in S$.

  • Decimos que $f$ tiene un máximo absoluto (o máximo global) en $\bar{a}$ si $f(\bar{x})\leq f(\bar{a})$ para todo $\bar{x}\in S$. A $f(\bar{a})$ le llamamos el máximo absoluto (o máximo global) de $f$ en $S$.
  • Decimos que $f$ tiene un máximo relativo (o máximo local) en $\bar{a}$ si existe una bola abierta $B_{r}(\bar{a})$ tal que para todo $\bar{x}\in B_{r}(\bar{a})$ $f(\bar{x})\leq f(\bar{a})$.
  • Decimos que $f$ tiene un mínimo absoluto (o mínimo global) en $\bar{a}$ si $f(\bar{x})\geq f(\bar{a})$ para todo $\bar{x}\in S$. A $f(\bar{a})$ le llamamos el mínimo absoluto (o mínimo global) de $f$ en $S$.
  • Decimos que $f$ tiene un mínimo relativo (o mínimo local) en $\bar{a}$ si existe una bola abierta $B_{r}(\bar{a})$ tal que para todo $\bar{x}\in B_{r}(\bar{a})$ $f(\bar{x})\geq f(\bar{a})$.

En cualquiera de las situaciones anteriores, decimos que $f$ tiene un valor extremo (ya sea relativo o absoluto) en $\bar{a}$. Notemos que todo extremo absoluto en $S$ será extremo relativo al tomar una bola $B_{r}(\bar{a})$ que se quede contenida en $S$. Y de manera similar, todo extremo relativo se vuelve un extremo absoluto para la función restringida a la bola $B_{r}(\bar{a})$ que da la definición.

Usualmente, cuando no sabemos nada de una función $f$, puede ser muy difícil, si no imposible estudiar sus valores extremos. Sin embargo, la intuición que tenemos a partir de las funciones de una variable real es que deberíamos poder decir algo cuando la función que tenemos tiene cierta regularidad, por ejemplo, cuando es diferenciable. Por ejemplo, para funciones diferenciables $f:S\subseteq \mathbb{R}\to\mathbb{R}$ quizás recuerdes que si $f$ tiene un valor extremo en $\bar{a}\in S$, entonces $f'(\bar{a})=0$.

El siguiente teorema es el análogo en altas dimensiones de este resultado.

Teorema. Sea $f:S\subseteq \mathbb{R}^n\to \mathbb{R}$ un campo escalar. Supongamos que $f$ tiene un valor extremo en un punto interior $\bar{a}$ de $S$, y que $f$ es diferenciable en $\bar{a}$. Entonces el gradiente de $f$ se anula en $\bar{a}$, es decir, $$\triangledown f(\bar{a})=0.$$

Demostración. Demostraremos el resultado para cuando hay un máximo relativo en $\bar{a}$. El resto de los casos quedan como tarea moral. De la suposición, obtenemos que existe un $r>0$ tal que $f(\bar{x})\leq f(\bar{a})$ para todo $\bar{x}\in B_r(\bar{a})$. Escribamos $\bar{a}=(a_{1},\dots ,a_{n})$.

Para cada $i=1,\dots ,n$ tenemos:

\[ \frac{\partial f}{\partial x_{i}}(\bar{a})=\lim\limits_{\xi \to a_{i}}\frac{f(\xi \hat{e}_{i})-f(\bar{a})}{\xi -a_{i}}. \]

Además, ya que $f$ es diferenciable en $\bar{a}$ también se cumple

\[\lim\limits_{\xi \to a_{i}-}\frac{f(\xi e_{i})-f(a)}{\xi -a_{i}}=\lim\limits_{\xi \to a_{i}+}\frac{f(\xi e_i)-f(a)}{\xi -a_{i}}. \]

Dado que $f$ alcanza máximo en $\bar{a}$ tenemos que $f(\xi \hat{e}_{i})-f(\bar{a})\leq 0$. Para el límite por la izquierda tenemos $\xi-a_{i}\leq 0$, por lo tanto, en este caso

\[ \lim\limits_{\xi \to a_{i}-}\frac{f(\xi e_{i})-f(\bar{a})}{\xi -a_{i}}\geq 0.\]

Para el límite por la derecha tenemos $\xi-a_{i}\geq 0$, por lo cual

\[ \lim\limits_{\xi \to a_{i}+}\frac{f(\xi \hat{e}_{i})-f(\bar{a})}{\xi -a_{i}}\leq 0.\]

Pero la igualdad entre ambos límites dos dice entonces que

\[\frac{\partial f}{\partial x_{i}}(\bar{a}) =\lim\limits_{\xi \to a_{i}-}\frac{f(\xi \hat{e}_{i})-f(\bar{a})}{\xi -a_{i}}=0. \]

Por lo cual cada derivada parcial del campo vectorial es cero, y así el gradiente también lo es.

$\square$

Parece ser que es muy importante saber si para un campo vectorial su gradiente se anula, o no, en un punto. Por ello, introducimos dos nuevas definiciones.

Definición. Sea $f:S\subseteq \mathbb{R}^n \to \mathbb{R}$ un campo escalar diferenciable en un punto $\bar{a}$ en $S$. Diremos que $f$ tiene un punto estacionario en $\bar{a}$ si $\triangledown f(\bar{a})=0$.

Definición. Sea $f:S\subseteq \mathbb{R}^n \to \mathbb{R}$ un campo escalar y tomemos $\bar{a}$ en $S$. Diremos que $f$ tiene un punto crítico en $\bar{a}$ si o bien $f$ no es diferenciable en $\bar{a}$, o bien $f$ tiene un punto estacionario en $\bar{a}$.

Si $f$ tiene un valor extremo en $\bar{a}$ y no es diferenciable en $\bar{a}$, entonces tiene un punto crítico en $\bar{a}$. Si sí es diferenciable en $\bar{a}$ y $\bar{a}$ es un punto interior del dominio, por el teorema de arriba su gradiente se anula, así que tiene un punto estacionario y por lo tanto también un punto crítico en $\bar{a}$. La otra opción es que sea diferenciable en $\bar{a}$, pero que $\bar{a}$ no sea un punto interior del dominio.

Observación. Los valores extremos de $f$ se dan en los puntos críticos de $f$, o en puntos del dominio que no sean puntos interiores.

Esto nos da una receta para buscar valores extremos para un campo escalar. Los puntos candidatos a dar valores extremos son:

  1. Todos los puntos del dominio que no sean interiores.
  2. Aquellos puntos donde la función no sea diferenciable.
  3. Los puntos la función es diferenciable y el gradiente se anule.

Ya teniendo a estos candidatos, hay que tener cuidado, pues desafortunadamente no todos ellos serán puntos extremos. En la teoría que desarrollaremos a continuación, profundizaremos en el entendimiento de los puntos estacionarios y de los distintos comportamientos que las funciones de varias variables pueden tener.

Intuición geométrica

Para entender mejor qué quiere decir que el gradiente de un campo escalar se anuele, pensemos qué pasa en términos geomértricos en un caso particular, que podamos dibujar. Tomemos un campo escalar $f:\mathbb{R}^2\to \mathbb{R}$. La gráfica de la función $f$ es la superficie en $\mathbb{R}^{3}$ que se obtiene al variar los valores de $x,y$ en la expresión $(x,y,f(x,y))$.

Otra manera de pensar a esta gráfica es como un conjunto de nivel. Si definimos $F(x,y,z)=z-f(x,y)$, entonces la gráfica es precisamente el conjunto de nivel para $F$ en el valor $0$, pues precisamente $F(x,y,z)=0$ si y sólo si $z=f(x,y)$.

Si $f$ alcanza un extremo en $(a,b)$, entonces $\triangledown f(a,b)=0$ por lo cual $\triangledown F (a,b,f(a,b))=(0,0,1)$. Así, el gradiente es paralelo al eje $z$ y por lo tanto es un vector normal a la superficie $F(x,y,z)=0$. Esto lo podemos reinterpretar como que el plano tangente a la superficie citada en el punto $(a,b,f(a,b))$ es horizontal.

Puntos silla

Cuando la función es diferenciable y el gradiente se anula, en realida tenemos pocas situaciones que pueden ocurrir. Sin embargo, falta hablar de una de ellas. Vamos a introducirla mediante un ejemplo.

Ejemplo. Consideremos $f(x,y)=xy$. En este caso

$$\frac{\partial f}{\partial x}=y\hspace{0.5cm}\textup{y}\hspace{0.5cm}\frac{\partial f}{\partial y}=x.$$

Si $(x,y)=(0,0)$, entonces las parciales se anulan, así que el gradiente también. Por ello, $(0,0)$ es un punto estacionario (y por lo tanto también crítico). Pero veremos a continuación que $f(0,0)=0$ no es máximo relativo ni mínimo relativo.

Tomemos $r>0$ abitrario y $\varepsilon= r/\sqrt{8}$. El punto $(\varepsilon ,\varepsilon)\in B_{r}(0)$ pues $\sqrt{\varepsilon ^{2}+\varepsilon ^{2}}$ es igual a $\sqrt{r^{2}/8\hspace{0.1cm}+\hspace{0.1cm}r^{2}/8}=r/2<r$. Análogamente, tenemos que el punto $(\varepsilon,-\varepsilon)\in B_{r}(0)$. Sin embargo $f(\varepsilon,-\varepsilon)=-r^{2}/8<0$, por lo que $0$ no es un mínimo local, también $f(\varepsilon,\varepsilon)=r^{2}/8>0$, por lo que $0$ tampoco es máximo local. En la Figura 1 tenemos un bosquejo de esta gráfica.

Figura 1

$\triangle$

Los puntos como los de este ejemplo tienen un nombre especial que definimos a continuación.

Definición. Sea $f:S\subseteq \mathbb{R}^n\to\mathbb{R}$ un campo escalar y $\bar{a}$ un punto estacionario de $f$. Diremos que $\bar{a}$ es un punto silla si para todo $r>0$ existen $\bar{u},\bar{v}\in B_{r}(\bar{a})$ tales que $f(\bar{u})<f(\bar{a})$ y $f(\bar{v})>f(\bar{a})$.

Determinar la naturaleza de un punto estacionario

Cuando tenemos un punto estacionario $\bar{a}$ de una función $f:\mathbb{R}^n\to \mathbb{R}$, tenemos diferenciabilidad de $f$ en $\bar{a}$. Si tenemos que la función es de clase $C^2$ en ese punto, entonces tenemos todavía más. La intuición nos dice que probablemente podamos decir mucho mejor cómo se comporta $f$ cerca de $\bar{a}$ y con un poco de suerte entender si tiene algún valor extremo o punto silla ahí, y bajo qué circunstancias.

En efecto, podemos enunciar resultados de este estilo. Por la fórmula de Taylor tenemos que

$$f(\bar{a}+\bar{y})=f(\bar{a})+\triangledown f (\bar{a}) \cdot y + \frac{1}{2}[\bar{y}]^tH(\bar{a})[\bar{y}]+||\bar{y}||^{2}E_{2}(\bar{a},\bar{y}),$$

en donde el error $||\bar{y}||^{2}E_{2}(\bar{a},\bar{y})$ se va a cero conforme $||\bar{y}||\to 0$. Recuerda que aquí $H(\bar{a})$ es la matriz hessiana de $f$ en $\bar{a}$. Como $f:\mathbb{R}^n\to \mathbb{R}$, se tiene que $H(\bar{a})\in M_n(\mathbb{R})$.

Para un punto estacionario $\bar{a}$ se cumple que $\triangledown f(\bar{a})=0$, así que de lo anterior tenemos

\[ f(\bar{a}+\bar{y})-f(\bar{a})=\frac{1}{2}[\bar{y}]^tH(\bar{a})[\bar{y}]+||\bar{y}||^{2}E_{2}(\bar{a},\bar{y}).\]

De manera heurística, dado que $\lim\limits_{||\bar{y}||\to 0}||\bar{y}||^{2}E_{2}(\bar{a},\bar{y})=0$, estamos invitados a pensar que el signo de $f(\bar{a}+\bar{y})-f(\bar{a})$ es el mismo que el la expresión $[\bar{y}]^tH(\bar{a})[\bar{y}]$. Pero como hemos platicado anteriormente, esto es una forma cuadrática en la variable $\bar{y}$, y podemos saber si es siempre positiva, siempre negativa o una mezcla de ambas, estudiando a la matriz hessiana $H(\bar{a})$.

Esta matriz es simétrica y de entradas reales, así que por el teorema espectral es diagonalizable mediante una matriz ortogonal $P$. Tenemos entonces que $P^tAP$ es una matriz diagonal $D$. Sabemos también que las entradas de la diagonal de $D$ son los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$ contados con la multiplicidad que aparecen en el polinomio característico.

Teorema. Sea $X$ una matriz simétrica en $M_n(\mathbb{R})$. Consideremos la forma bilineal $\mathfrak{B}(\bar{v})=[\bar{v}]^tX[\bar{v}]$. Se cumple:

  1. $\mathfrak{B}(\bar{v})>0$ para todo $\bar{v}\neq \bar{0}$ si y sólo si todos los eigenvalores de $X$ son positivos.
  2. $\mathfrak{B}(\bar{v})<0$ para todo $\bar{v}\neq \bar{0}$ si y sólo si todos los eigenvalores de $X$ son negativos.

Demostración. Veamos la demostración del inciso 1.

$\Rightarrow )$ Por la discusión anterior, existe una matriz ortogonal $P$ tal que $P^tXP$ es diagonal, con entradas $\lambda_1,\ldots,\lambda_n$ que son los eigenvalores de $X$. Así, en alguna base ortonormal $\beta$ tenemos $$\mathfrak{B}(\bar{v})=\sum_{i=1}^{n}\lambda _{i}a_{i}^{2}$$ donde $\bar{a}=(a_{1},\dots ,a_{n})$ es el vector $\bar{v}$ en la base $\beta$. Si todos los eigenvalores son positivos, claramente $\mathfrak{B}(\bar{v})>0$, para todo $\bar{v}\neq \bar{0}$.

$\Leftarrow )$ Si $\mathfrak{B}(\bar{v})>0$ para todo $\bar{v}\neq \bar{0}$ podemos elegir $\bar{v}$ como el vector $e_k$ de la base $\beta$. Para esta elección de $\bar{v}$ tenemos $\mathfrak{B}(\hat{e_{k}})=\lambda _{k}$, de modo que para toda $k$, $\lambda _{k}>0$.

El inciso $2$ es análogo y deja como tarea moral su demostración.

$\square$

A las formas cuadráticas que cumplen el primer inciso ya las habíamos llamado positivas definidas. A las que cumplen el segundo inciso las llamaremos negativas definidas.

Combinando las ideas anteriores, podemos formalmente enunciar el teorema que nos habla de cómo son los puntos estacionarios en términos de los eigenvalores de la matriz hessiana.

Teorema. Consideremos un campo escalar $f:S\subseteq \mathbb{R}^n\to \mathbb{R}$ de clase $C^2$ en un cierto punto interior $\bar{a}\in S$. Supongamos que $\bar{a}$ es un punto estacionario.

  1. Si todos los eigenvalores de $H(\bar{a})$ son positivos, $f$ tiene un mínimo relativo en $\bar{a}$.
  2. Si todos los eigenvalores de $H(\bar{a})$ son negativos, $f$ tiene un máximo relativo en $\bar{a}$.
  3. Si $H(\bar{a})$ tiene por lo menos un eigenvalor positivo, y por lo menos un eigenvalor negativo, $f$ tiene punto silla en $\bar{a}$.

Antes de continuar, verifica que los tres puntos anteriores no cubren todos los casos posibles para los eigenvalores. ¿Qué casos nos faltan?

Demostración: Definamos la forma bilineal $\mathfrak{B}(\bar{v})=[\bar{v}]^tH(\bar{a})[\bar{v}]$ y usemos el teorema de Taylor para escribir

\[ \begin{equation}\label{eq:taylor}f(\bar{a}+\bar{v})-f(\bar{a})=\frac{1}{2}\mathfrak{B}(\bar{v})+||\bar{v}||^{2}E(\bar{a},\bar{v}) \end{equation} \]

con

\[ \begin{equation}\label{eq:error}\lim\limits_{\bar{v}\to \bar{0}}E(\bar{a},\bar{v})=0. \end{equation} \]

En primer lugar haremos el caso para los eigenvalores positivos. Sean $\lambda _{1},\dots ,\lambda_{n}$ los eigenvalores de $H(\bar{a})$. Sea $\lambda _{*}=\min\{ \lambda _{1},\dots ,\lambda _{n}\}$. Si $\varepsilon <\lambda_{*}$, para cada $i=1,\dots , n$ tenemos $\lambda _{i}-\varepsilon>0$. Además, los números $\lambda _{i}-\varepsilon$ son los eigenvalores de la matriz $H(\bar{a})-\varepsilon I$, la cual es simétrica porque $H(\bar{a})$ lo es. De acuerdo con nuestro teorema anterior la forma cuadrática $[\bar{v}]^t(H(\bar{a})-\varepsilon I)[\bar{v}]$ es definida positiva, y por lo tanto

$$[\bar{v}]^tH(\bar{a})[\bar{v}]>[\bar{v}]^t\varepsilon I [\bar{v}] = \varepsilon ||\bar{v}||^2.$$

Esto funciona para todo $\varepsilon <\lambda _{*}$. Tomando $\varepsilon =\frac{1}{2}\lambda _{*}$ obtenemos $\mathfrak{B}(\bar{v})>\frac{1}{2}||\bar{v}||^2$ para todo $\bar{v}\neq \bar{0}$. Por el límite de \eqref{eq:error} tenemos que existe $r>0$ tal que $|E(\bar{a},\bar{v})|<\frac{1}{4}\lambda _{*}$ para $0<||\bar{v}||<r$. En este caso se cumple

\begin{align*}0&\leq ||\bar{v}||^{2}|E(\bar{a},\bar{v})|\\ &<\frac{1}{4}\lambda _{*}||\bar{v}||^{2}\\ &<\frac{1}{2}\mathfrak{B}(\bar{v}),\end{align*}

Luego por la ecuación \eqref{eq:taylor} tenemos
\begin{align*}
f(\bar{a}+\bar{v})-f(\bar{a})&=\frac{1}{2}\mathfrak{B}(\bar{v})+||\bar{v}||^{2}E(\bar{a},\bar{v})\\
&\geq \frac{1}{2}\mathfrak{B}(\bar{v})-||\bar{v}||^{2}|E(\bar{a},\bar{v})|\\
&>0.
\end{align*}

Esto muestra que $f$ tiene un mínimo relativo en $\bar{a}$ para la vecindad $B_{r}(\bar{a})$.

Para probar la parte $2$ se usa exactamente el mismo proceder sólo que hay que considerar la función $-f$, lo cual quedará hacer como tarea moral.

Revisemos pues la parte del punto silla, la parte $3$. Consideremos $\lambda _{1}$ y $\lambda _{2}$ dos eigenvalores de $H(\bar{a})$ tales que $\lambda _1 <0$ y $\lambda _2 >0$. Pongamos $\lambda _{*}=\min\{ |\lambda _{1}|,|\lambda _{2}|\}$. Notemos que para todo $\varepsilon \in (-\lambda _{*},\lambda _{*})$ se tiene que $\lambda _{1}-\varepsilon$ y $\lambda _{2}-\varepsilon$ son números de signos opuestos y además eigenvalores de la matriz $H(\bar{a})-\varepsilon I$. Tomando vectores en dirección de los eigenvectores $\bar{v}_1$ y $\bar{v}_2$ correspondientes a $\lambda_1$ y $\lambda_2$ notamos que $[\bar{v}](H(\bar{a})-\varepsilon I)[\bar{v}]^{t}$ toma valores positivos y negativos en toda vecindad de $\bar{0}$. Finalmente escojamos $r>0$ de tal manera que $|E(\bar{a},\bar{v})|<\frac{1}{4}\varepsilon$ cuando $0<||\bar{v}||<r$. Usando las mismas desigualdades del la parte $1$, vemos que para $\bar{v}$ en la dirección de $\bar{v}_1$ la diferencia $f(\bar{a}+\bar{v})-f(\bar{a})$ es negativa y para $\bar{v}$ en la dirección de $\bar{v}_2$ es positiva. Así, $f$ tiene un punto silla en $\bar{a}$.

$\square$

Hay algunas situaciones en las que el teorema anterior no puede ser usado. Por ejemplo, cuando los eigenvalores de $H(\bar{a})$ son todos iguales a cero. En dicho caso, el teorema no funciona y no nos dice nada de si tenemos máximo, mínimo o punto silla, y de hecho cualquiera de esas cosas puede pasar.

Ejemplos de análisis de puntos críticos

Ejemplo. Tomemos el campo escalar $f(x,y)=x^{2}+(y-1)^{2}$ y veamos cómo identificar y clasificar sus puntos estacionarios. Lo primero por hacer es encontrar el gradiente, que está dado por $$\triangledown f(x,y)=(2x,2(y-1)).$$ El gradiente se anula cuando $2x=0$ y $2(y-1)=0$, lo cual pasa si y sólo si $x=0$ y $y=1$. Esto dice que sólo hay un punto estacionario. Para determinar su naturaleza, encontraremos la matriz hessiana en este punto, así como los eigenvalores que tiene. La matriz hessiana es

\[ H(\bar{v})=\begin{pmatrix} \frac{\partial ^{2}f}{\partial x^{2}}(\bar{v}) & \frac{\partial ^{2}f}{\partial y \partial x}(\bar{v}) \\ \frac{\partial ^{2}f}{\partial x \partial y}(\bar{v}) & \frac{\partial ^{2}f}{\partial y^{2}}(\bar{v}) \end{pmatrix}=\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.\]

Notemos que la matriz hessiana ya está diagonalizada y es la misma para todo $\bar{v}$. En particular, en $(0,1)$ sus valores propios son $2$ y $2$, que son positivos. Así, la matriz hessiana es positiva definida y por lo tanto tenemos un mínimo local en el punto $(0,1)$. Esto lo confirma visualmente la gráfica de la Figura 2.

$\triangle$

Figura 2

Ejemplo. Veamos cómo identificar y clasificar los puntos estacionarios del campo escalar $f(x,y)=x^{3}+y^{3}-3xy.$ Localicemos primero los puntos estacionarios. Para ello calculemos el gradiente $\triangledown f(x,y)=(3x^{2}-3y,3y^{2}-3x)$. Esto nos dice que los puntos estacionarios cumplen el sistema de ecuaciones

\[\left\{ \begin{matrix} 3x^2-3y=0\\ 3y^2-3x=0.\end{matrix} \right.\]

Puedes verificar que las únicas soluciones están dadas son los puntos $(0,0)$ y $(1,1)$ (Sugerencia. Multiplica la segunda ecuación por $x$ y suma ambas). La matriz hessiana es la siguiente:

\[ H(x,y)=\begin{pmatrix} 6x & -3 \\ -3 & 6y \end{pmatrix}.\]

En $(x,y)=(0,0)$ la matriz hessiana es $\begin{pmatrix} 0 & -3 \\ -3 & 0 \end{pmatrix}$. Para encontar sus eigenvalores calculamos el polinomio característico

\begin{align*} \det(H(0,0)-\lambda I)&=\begin{vmatrix} -\lambda & -3 \\ -3 & -\lambda \end{vmatrix} \\ &= \lambda ^{2}-9.\end{align*}

Las raíces del polinomio característico (y por lo tanto los eigenvalores) son $\lambda _{1}=3$ y $\lambda _{2}=-3$. Ya que tenemos valores propios de signos distintos tenemos un punto silla en $(0,0)$.

Para $(x,y)=(1,1)$ la cuenta correspondiente de polinomio característico es

\begin{align*} \det(H(1,1)-\lambda I)&=\begin{vmatrix} 6-\lambda & -3 \\ -3 & 6-\lambda\end{vmatrix}\\ &=(6-\lambda )^{2}-9.\end{align*}

Tras manipulaciones algebraicas, las raíces son $\lambda _{1}=9$, $\lambda _{2}=3$. Como ambas son positivas, en $(1,1)$ tenemos un mínimo.

Puedes confirmar visualmente todo lo que encontramos en la gráfica de esta función, la cual está en la Figura 3.

$\triangle$

Figura 3

A continuación se muestra otro problema que se puede resolver con lo que hemos platicado. Imaginemos que queremos aproximar a la función $x^2$ mediante una función lineal $ax+b$. ¿Cuál es la mejor forma de elegir $a,b$ para que las funciones queden «cerquita» en el intervalo $[0,1]$? Esa cercanía se puede medir de muchas formas, pero una es pidiendo que una integral se haga chiquita.

Ejemplo. Determinemos qué valores de las constantes $a,b\in \mathbb{R}$ minimizan la siguiente integral

\[ \int_{0}^{1}[ax+b-x^2]^2 dx.\]

Trabajemos sobre la integral.

\begin{align*} \int_{0}^{1}[ax+b-x^{2}]^{2}dx&=\int_{0}^{1}(2abx+(a^{2}-2b)x^{2}-2ax^{3}+x^{4}+b^{2})dx\\ &=\int_{0}^{1}2abx\hspace{0.1cm}dx+\int_{0}^{1}(a^{2}-2b)x^{2}dx-\int_{0}^{1}2ax^{3}dx+\int_{0}^{1}x^{4}dx+\int_{0}^{1}b^{2}dx\\ &=b^{2}+\frac{1}{3}a^{2}+ab-\frac{2}{3}b-\frac{1}{2}a+\frac{1}{5}. \end{align*}

Es decir, tenemos

\[ \int_{0}^{1}[ax+b-x^{2}]^{2}dx=b^{2}+\frac{1}{3}a^{2}+ab-\frac{2}{3}b-\frac{1}{2}a+\frac{1}{5}.\]

Ahora definamos $f(a,b)=b^{2}+\frac{1}{3}a^{2}+ab-\frac{2}{3}b-\frac{1}{2}a+\frac{1}{5}$; basándonos en la forma general de la ecuación cuadrática de dos variables podemos comprobar rápidamente que $f$ nos dibuja una elipse en cada una de sus curvas de nivel. Continuando con nuestra misión, tenemos que $\triangledown f(a,b)=(\frac{2}{3}a+b-\frac{1}{2},2b+a-\frac{2}{3})$. Al resolver el sistema
\[\left\{\begin{matrix}\frac{2}{3}a+b-\frac{1}{2}=0\\2b+a-\frac{2}{3}=0,\end{matrix}\right.\]

hay una única solución $a=1$ y $b=-\frac{1}{6}$. Puedes verificar que la matriz hessiana es la siguiente en todo punto.

\[ H(\bar{v})=\begin{pmatrix} \frac{2}{3} & 1 \\ 1 & 2 \end{pmatrix}.\]

Para determinar si tenemos un mínimo, calculamos el polinomio característico como sigue

\begin{align*} \det(H(\bar{v})-\lambda I)&=\begin{vmatrix} \frac{2}{3}-\lambda & 1 \\ 1 & 2-\lambda \end{vmatrix}\\ &=\left( \frac{2}{3}-\lambda \right)\left( 2-\lambda\right)-1\\ &=\lambda ^{2}-\frac{8}{3}\lambda + \frac{1}{3}.\end{align*}

Esta expresión se anula para $\lambda _{1}=\frac{4+\sqrt{13}}{3}$ y $\lambda_{2}=\frac{4-\sqrt{13}}{3}$. Ambos son números positivos, por lo que en el único punto estacionario de $f$ tenemos un mínimo. Así el punto en el cual la integral se minimiza es $(a,b)=(1,-\frac{1}{6})$. Concluimos que la mejor función lineal $ax+b$ que aproxima a la función $x^2$ en el intervalo $[0,1]$ con la distancia inducida por la integral dada es la función $x-\frac{1}{6}$.

En la Figura 3 puedes ver un fragmento de la gráfica de la función $f(a,b)$ que nos interesa.

Figura 3. Gráfica de la función $f(a,b)$.

$\triangle$

Mas adelante…

La siguiente será nuestra última entrada del curso y nos permitirá resolver problemas de optimización en los que las variables que nos dan tengan ciertas restricciones. Esto debe recordarnos al teorema de la función implícita. En efecto, para demostrar los resultados de la siguiente entrada se necesitará este importante teorema, así que es recomendable que lo repases y recuerdes cómo se usa.

Tarea moral

  1. Identifica y clasifica los puntos estacionarios de los siguientes campos escalares:
    • $f(x,y)=(x-y+1)^{2}$
    • $f(x,y)=(x^{2}+y^{2})e^{-(x^{2}+y^{2})}$
    • $f(x,y)=\sin(x)\cos(x)$.
  2. Determina si hay constantes $a,b\in \mathbb{R}$ tales que el valor de la integral \[\int_{0}^{1}[ax+b-f(x)]^{2}dx \] sea mínima para $f(x)=(x^{2}+1)^{-1}$. Esto en cierto sentido nos dice «cuál es la mejor aproximación lineal para $\frac{1}{x^2+1}$».
  3. Este problema habla de lo que se conoce como el método de los mínimos cuadrados. Consideremos $n$ puntos $(x_{i},y_{i})$ en $\mathbb{R}^2$, todos distintos. En general es imposible hallar una recta que pase por todos y cada uno de estos puntos; es decir, hallar una función $f(x)=ax+b$ tal que $f(x_{i})=y_{i}$ para cada $i$. Sin embargo, sí es posible encontrar una función lineal $f(x)=ax+b$ que minimice el error cuadrático total que está dado por \[ E(a,b)=\sum_{i=1}^{n}[f(x_{i})-y_{i}]^{2}.\] Determina los valores de $a$ y $b$ para que esto ocurra. Sugerencia. Trabaja con el campo escalar $E(a,b)$ recuerda que los puntos $(x_{i},y_{i})$ son constantes.
  4. Completa la demostración de que si una matriz $X$ tiene puros eigenvalores negativos, entonces es negativa definida.
  5. En el teorema de clasificación de puntos estacionarios, muestra que en efecto si la matriz hessiana es negativa definida, entonces el punto estacionario es un punto en donde la función tiene máximo local.

Entradas relacionadas

Cálculo Diferencial e Integral II: Propiedades de la integral definida

Por Moisés Morales Déciga

Introducción

En las entradas anteriores se dio la motivación de la construcción de la integral y la definición de la integral de Riemann. Para que cierta integral exista, necesitamos que el ínfimo de ciertas sumas superiores coincida con el supremo de ciertas sumas inferiores. Vimos algunas condiciones que garantizan que esto suceda, por ejemplo, que exista el límite de las sumas superiores e inferiores para las particiones homogéneas, y que dicho límite sea el mismo en ambos casos. Lo que haremos ahora es estudiar más propiedades de la integral.

Las propiedades que veremos nos permitirán concluir la existencia de ciertas integrales de manera sencilla y, a la vez, nos permitirán manipular algebraicamente a las integrales. En caso de necesitar un recordatorio de la definición de integral, te recomendamos consultar la entrada anterior.

Integrabilidad de familias de funciones especiales

Hay algunas propiedades de funciones que se estudian desde Cálculo I que implican la integrabilidad. A continuación presentamos un par de ejemplos.

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es acotada y monótona en $[a,b]$, entonces es Riemann integrable en $[a,b]$.

Demostración. Supondremos que $f$ es estrictamente creciente. Otras variantes de monotonía (no decreciente, no creciente, estrictamente decreciente) tienen una demostración similar, que puedes hacer por tu cuenta.

Tomemos la partición homogénea $P_n$ del intervalo $[a,b]$. Definiendo $$x_j=a+j\frac{b-a}{n}$$ para $j=0,\ldots,n$, se tiene que las celdas son $$[x_0,x_1],[x_1,x_2],\ldots,[x_{n-1},x_n].$$

Las celdas tienen todas longitud $\frac{b-a}{n}$ y como la función es estrictamente creciente, el mínimo se alcanza al inicio de cada celda. De esta manera, la suma inferior para esta partición es:

\begin{align*}
\underline{S}(f,P_n)=\frac{b-a}{n}\left(f(x_0)+\ldots+f(x_{n-1})\right).
\end{align*}

Similarmente, el máximo se alcanza al final de cada celda. Por ello, la suma superior para esta partición es

\begin{align*}
\overline{S}(f,P_n)=\frac{b-a}{n}\left(f(x_1)+\ldots+f(x_n)\right).
\end{align*}

Restando la suma inferior a la superior, obtenemos

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\left(\frac{b-a}{n}\left(f(x_1)+\ldots+f(x_n)\right)\right)-\left(\frac{b-a}{n}\left(f(x_0)+\ldots+f(x_{n-1})\right)\right)\\
&=\frac{b-a}{n}(f(x_n)-f(x_0))\\
&=\frac{(b-a)(f(b)-f(a))}{n}.
\end{align*}

De acuerdo a la condición de Riemann (enunciada en la entrada anterior), la función será integrable si logramos que esta diferencia sea tan pequeña como queramos. Tomemos entonces cualquier $\epsilon>0$ y $n$ un entero tan grande como para que $n>\frac{1}{\epsilon}(b-a)(f(b)-f(a))$. Para este $n$, se cumple que

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\frac{(b-a)(f(b)-f(a))}{n}<\epsilon,
\end{align*}

y por ello la función es integrable.

$\square$

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es continua en $[a,b]$, entonces es Riemann integrable en $[a,b]$.

Demostración. Como primera observación, como $f$ es continua en el intervalo cerrado y acotado $[a,b]$, entonces es acotada, de modo que sí podemos hablar de sus sumas superiores e inferiores.

La estrategia que usaremos para ver que es integrable será verificar nuevamente la condición de Riemann, es decir, que para cualquier $\epsilon > 0$, existe una suma superior y una inferior cuya diferencia es menor que $\epsilon$. La intuición es que con una partición suficientemente fina, el máximo y mínimo de $f$ son muy cercanos porque los puntos que los alcanzan están en una celda muy chiquita (y entonces son muy cercanos). Para poder hacer esto «globalmente» en todas las celdas, necesitaremos una propiedad un poco más fuerte que continuidad: continuidad uniforme (puedes seguir el enlace para recordar este contenido aquí en el blog). Pero ésta se tiene pues las funciones continuas en intervalos cerrados y acotados son uniformemente continuas.

Tomemos entonces $\epsilon >0$. Como mencionamos, $f$ es uniformemente continua y el intervalo $[a,b]$ es cerrado y acotado, entonces $f$ es uniformememente continua. Así, existe una $\delta>0$ tal que si $|x-y|<\delta$, entonces $|f(x)-f(y)|<\frac{\epsilon}{b-a}$. Tomemos $n$ tan grande como para que $\frac{b-a}{n}<\delta$. Tras hacer esto, en cada celda $i$ de la partición homogénea $P_n$ los valores $m_i$ y $M_i$ donde $f$ alcanza el mínimo y máximo respectivamente cumplen que $|M_i-m_i|\leq \frac{b-a}{n}<\delta$ y por lo tanto para cada $i$ se tiene $f(M_i)-f(m_i)=|f(M_i)-f(m_i)|<\frac{\epsilon}{b-a}$.

Ya tenemos los ingredientes para realizar la cuenta de sumas superiores e inferiores.

Por un lado,

$$\overline{S}(f,P_n)=\frac{b-a}{n}\left(f(M_1)+\ldots+f(M_n)\right).$$

Por otro,

$$\underline{S}(f,P_n)=\frac{b-a}{n}\left(f(m_1)+\ldots+f(m_n)\right),$$

así que

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\frac{b-a}{n}\sum_{i=1}^n \left(f(M_i)-f(m_i)\right)\\
&<\frac{b-a}{n}\sum_{i=1}^n \frac{\epsilon}{b-a}\\
&=\frac{b-a}{n}\left(n\frac{\epsilon}{b-a}\right)\\
&=\epsilon.
\end{align*}

Esto muestra que podemos acercar una partición superior tanto como queramos a una inferior. Por el criterio de la entrada anterior, la función $f$ es integrable en $[a,b]$.

$\square$

Separación de la integral en intervalos

Enunciemos una propiedad importante de la integral: puede partirse en intervalos.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sea $c$ cualquier valor entre $[a,b]$. Si la integral

$$\int \limits_{a}^{b} f(x) \ dx$$

existe, entonces las dos integrales

$$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$

también existen. Y viceversa, si estas dos integrales existen, entonces la primera también.

Cuando las tres integrales existen, se cumple además la siguiente igualdad:

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Demostración. Veamos primero que si la integral en todo $[a,b]$ existe, entonces las otras dos también. Trabajaremos usando la condición de Riemann. Sea $\epsilon>0$. Como $f$ es integrable en $[a,b]$, entonces existe una partición $P$ de $[a,b]$ tal que

$$\overline{S}(f,P)-\underline{S}(f,P)<\epsilon.$$

Podemos suponer que uno de los puntos de $P$ es el punto $c$, pues de no serlo, refinamos a $P$ incluyendo a $c$. Esto no aumenta la suma superior, ni disminuye la inferior, así que sigue cumpliendo la desigualdad anterior. Si $P=\{x_0,\ldots,x_n\}$, podemos entonces pensar que para alguna $k$ en $\{0\ldots,n\}$ se cumple que $x_k=c$, y entonces de esta partición de $[a,b]$ salen las particiones:

  • $P_1 = \{a=x_0, x_1, … , x_k=c\}$ de $[a,c]$ y
  • $P_2 = \{c={x_k}, x_{k+1}, … , x_n=b\}$ de $[c,b]$.

Como las celdas de $P$ son celdas de $P_1$ ó $P_2$, entonces las sumas superiores e inferiores cumplen:

\begin{align*}
\overline{S} (f,P_1) + \overline{S} (f,P_2) &= \overline{S} (f,P), \\
\underline{S} (f,P_1) + \underline{S} (f,P_2) &= \underline{S} (f,P) .\\
\end{align*}

Si se restan ambas sumas, se obtiene lo siguiente:

\begin{align*}
\left(\overline{S} (f,P_1) \ – \ \underline{S} (f,P_1)\right) + \left(\overline{S} (f,P_2) \ – \ \underline{S} (f,P_2)\right) = \overline{S} (f,P) \ – \ \underline{S} (f,P) < \epsilon.\\
\end{align*}

Ambos términos de la izquierda son positivos y su suma es menor que $\epsilon$, así que concluimos:

\begin{align*}
\overline{S} (f,P_1) \ – \ \underline{S} (f,P_1) &< \epsilon,\\
\overline{S} (f,P_2) \ – \ \underline{S} (f,P_2) &< \epsilon.\\
\end{align*}

De este modo, por el criterio de Riemann se tiene que $f$ es integrable en $[a,c]$ y en $[c,b]$.

Si la integrales en $[a,c]$ y $[c,b]$ existen, entonces puede hacerse una prueba similar: para cualquier $\epsilon$ habrá una partición $P$ de $[a,c]$ con diferencia de suma superior e inferior menor a $\epsilon/2$, y lo mismo para una partición $P’$ de $[c,b]$. Un argumento similar al de arriba ayudará a ver que $P\cup P’$ es una partición de $[a,b]$ que hace que la diferencia de la suma superior e inferior sea menor a $\epsilon$. Los detalles quedan para que los verifiques por tu cuenta.

Veamos ahora que cuando las integrales existen, entonces se cumple la igualdad

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Tomemos cualquier partición $P’$ de $[a,b]$. Tomemos el refinamiento $P=P’\cup \{c\}$ y escribamos $P=P_1\cup P_2$ como arriba. Usando que las integrales son ínfimos de sumas superiores (y por lo tanto son cotas inferiores), tenemos que:

\begin{align*}
\overline{S}(f,P’) & \geq \overline{S}(f,P)\\
&=\overline{S}(f,P_1) + \overline{S}(f,P_2)\\
&\geq \int_a^c f(x)\, dx + \int_c^b f(x) \,dx.
\end{align*}

Por definición, $\int \limits_{a}^{b} f(x) \ dx$ es el ínfimo de las sumas superiores sobre todas las particiones $P’$ de $[a,b]$ y entonces es la mayor de las cotas inferiores. Como arriba tenemos que $\int_a^c f(x)\, dx + \int_c^b f(x) \,dx$ es cota inferior para todas estas sumas superiores, entonces:

$$\int_a^b f(x)\, dx \geq \int_a^c f(x)\, dx + \int_c^b f(x) \,dx.$$

Así mismo, para cualesquiera particiones $P_1$ y $P_2$ de $[a,c]$ y $[c,b]$ respectivamente, tenemos que $P_1\cup P_2$ es partición de $[a,b]$ y entonces

$$\overline{S}(f,P_1) + \overline{S}(f,P_2) = \overline{S}(f,P_1\cup P_2) \geq \int_a^b f(x)\,dx,$$

de donde

$$\overline{S}(f,P_1) \geq \int_a^b f(x)\,dx \ – \ \overline{S}(f,P_2).$$

Así, para cualquier partición $P_2$ fija, hemos encontrado que $\int_a^b f(x)\,dx – \overline{S}(f,P_2)$ es cota inferior para todas las sumas superiores de particiones $P_1$ de $[a,c]$. De este modo, por ser la integral en $[a,c]$ la mayor de estas cotas inferiores, se tiene

$$\int_a^c f(x)\, dx \geq \int_a^b f(x)\,dx \ – \ \overline{S}(f,P_2)$$

para cualquier partición $P_2$ de $[c,b]$. Pero entonces

$$\overline{S}(f,P_2) \geq \int_a^b f(x)\,dx \ – \ \int_a^c f(x)\, dx, $$

se cumple para toda partición $P_2$ de $[b,c]$, de donde concluimos

$$\int_b^c f(x)\, dx \geq \int_a^b f(x)\,dx \ – \ \int_a^c f(x)\, dx.$$

Despejando, obtenemos la desigualdad

$$\int_a^b f(x)\, dx + \int_b^c f(x)\, dx \geq \int_a^b f(x).$$

Junto con la desigualdad que mostramos arriba, se obtiene la desigualdad deseada.

$\square$

Límites reales arbitrarios

Hasta ahora siempre hemos hablado de la existencia de la integral de una función en un intervalo $[a,b]$ con $a\leq b$. Cuando $a=b$, la integral que buscamos es en el intervalo $[a,a]$ y se puede mostrar que en este caso la integral siempre existe y es igual a cero, es decir, que $$\int_a^a f(x)\, dx = 0.$$

La siguiente definición nos dice qué hacer cuando en los límites de integración vamos de un número mayor a uno menor.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sean $a<b$ reales. Si la integral de $f$ en el intervalo $[a,b]$ existe, entonces definimos la integral de $f$ de $b$ a $a$ como sigue: $$\int_b^a f(x)\,dx= – \int_a^b f(x)\, dx.$$

Esta definición es compatible con todo lo que hemos platicado, y nos permite extender la identidad $$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$ de la proposición de la sección anterior a valores arbitrarios de $a,b,c$, sin importar en qué orden estén en la recta real (siempre y cuando las integrales existan, por supuesto). Por ejemplo, si $a>b>c$, entonces podemos proceder como sigue mediante lo que ya hemos demostrado y definido:

\begin{align*}
\int_a^b f(x)\, dx &= – \int_b^a f(x)\, dx \quad \text{Def. int. para $a>b$.}\\
&= – \left(\int_c^a f(x)\, dx \ – \ \int_c^b f(x)\, dx\right) \quad \text{Por prop. anterior pues $c<b<a$.}\\
&= – \int_c^a f(x)\, dx + \int_c^b f(x)\, dx \quad \text{Distribuir el $-$}\\
&= \int_a^c f(x)\, dx + \int_c^b f(x)\, dx \quad \text{Def. int. para $a>c$}.
\end{align*}

Aquí se ve como con un orden específico de $a,b,c$ se sigue cumpliendo la identidad buscada, aunque $c$ no quede entre $a$ y $b$ y no se cumpla que $a\leq b$. Siempre es posible hacer esto y te recomendamos pensar en cómo argumentar todos los casos posibles de $a,b,c$.

La intuición en áreas de que la integral $\int_b^a f(x)\, dx$ cambia de signo con respecto a $\int_a^b f(x)\, dx$ es que en una recorremos el área de izquierda a derecha y en la otra de derecha a izquierda. Entonces, «recorremos el área al revés» porque «graficamos hacia atrás». Por ejemplo, se tiene el intervalo $[5,1]$, la forma en que se recorrerá al momento de graficar sería del $5$ al $1$ y, si la función es positiva, la integral será negativa.

Linealidad de la integral

Tomemos dos funciones acotadas $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ y supongamos que son integrables en el intervalo $[a,b]$. Tomemos cualquier real arbitrario $\alpha$. A partir de esto, podemos construir la función $f+\alpha g$, que recordemos que su definición es que es una función de $[a,b]$ a $\mathbb{R}$ con regla de asignación $$(f+\alpha g)(x) = f(x) + \alpha g(x).$$

Si tomamos una partición $P$ de $[a,b]$, se puede verificar fácilmente que

\begin{align*}
\overline{S}(f+\alpha g, P)&=\overline{S}(f,P)+\alpha \overline{S}(g,P),\\
\underline{S}(f+\alpha g, P)&=\underline{S}(f,P)+\alpha \underline{S}(g,P).
\end{align*}

Restando ambas expresiones,

$$\overline{S}(f+\alpha g, P) \ – \ \underline {S}(f+\alpha g, P) = \left(\overline{S}(f,P) \ – \ \underline{S}(f,P)\right) + \alpha \left(\overline{S}(g,P) \ – \ \underline{S}(g,P)\right).$$

Intuitivamente (respaldados por el criterio de Riemann), el lado derecho puede ser tan pequeño como queramos pues $f$ y $g$ son integrables. Así que el lado izquierdo también. Esto muestra que $f+\alpha g$ también es integrable en $[a,b]$. Te recomendamos hacer una demostración formal.

Además, si $P_n$ es una sucesión de particiones en donde los tamaños de celda convergen a cero (y por lo tanto para las cuales las sumas superiores convergen a la integral para cada función de arriba), entonces:

\begin{align*}
\int_a^b (f+\alpha g)(x)\, dx &= \lim_{n\to \infty} \overline{S} (f+\alpha g, P_n)\\
&=\lim_{n\to \infty} \left(\overline{S}(f,P_n)+ \alpha\overline{S}(g,P_n)\right)\\
&=\lim_{n\to \infty} \overline{S}(f,P_n) + \alpha \lim_{n\to \infty} \overline{S}(g,P_n)\\
&=\int_a^b f(x)\, dx + \alpha \int_a^b g(x)\, dx.
\end{align*}

En resumen, hemos demostrado lo siguiente:

Teorema. La integral es lineal. Es decir, si $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ son funciones acotadas e integrables en $[a,b]$, entonces para cualquier real $\alpha$ también $f+\alpha g$ es integrable en $[a,b]$ y además se cumple $$\int_a^b (f+\alpha g)(x)\, dx = \int_a^b f(x)\, dx + \alpha \int_a^b g(x)\, dx.$$

Dos casos particulares de interés son los siguientes:

  • Si en el teorema anterior tomamos $\alpha=1$, entonces obtenemos que $\int_a^b (f+g)(x)=\int_a^b f(x)\, dx + \int_a^b g(x)\, dx$, es decir, la integral abre sumas.
  • Si en el teorema anterior tomamos $f$ como la función constante cero, entonces obtenemos que $\int_a^b \alpha g(x)\, dx = \alpha \int_a^b g(x)\, dx$, es decir la integral saca escalares.

La integral respeta desigualdades

Veamos que la integral, en cierto sentido, respeta desigualdades. Un primer paso que es muy sencillo de verificar es lo que sucede con la integral de funciones no negativas.

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es una función integrable en el intervalo $[a,b]$ y se cumple $f(x)\geq 0$ para todo $x\in [a,b]$, entonces $$\int_a^b f(x)\, dx \geq 0.$$

Demostración. Como $f(x)\geq 0$, entonces claramente para cualquier partición $P$ se cumple que $\overline{S}(f,P)\geq 0$, pues aparecen puros términos positivos en la suma superior. Así, $0$ es una cota inferior para las sumas superiores. Como la integral es la máxima de dichas cotas superiores, entonces $$\int_a^b f(x)\, dx \geq 0,$$ como queríamos.

$\square$

De este resultado y las propiedades que hemos mostrado, podemos deducir algo mucho más general.

Teorema. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones integrables en un intervalo $[a,b]$, dentro del cual también se cumple que $f(x)\leq g(x)$. Entonces, $$\int_a^b f(x)\, dx \leq \int_a^b g(x)\, dx.$$

Demostración. Como $f$ y $g$ son integrables en $[a,b]$, entonces la combinación lineal $g-f$ también lo es, y además $(g-f)(x)=g(x)-f(x)\geq 0$. Por la proposición anterior y la linealidad de la integral, tenemos entonces que: $$\int_a^b g(x)\, dx \ – \ \int_a^b f(x)\, dx = \int_a^b (g-f)(x)\, dx \geq 0.$$

De aquí, $$\int_a^b f(x)\, dx \leq \int_a^b g(x)\, dx,$$ como queríamos.

$\square$

Más adelante…

Todas las propiedades que hemos enunciado se utilizarán de aquí en adelante. Es importante que las tengas presentes. Son propiedades que nos permiten factorizar funciones para que al momento de integrar o que nos permiten partir una integral complicada en otras más sencillas con integración inmediata o ya conocida.

En la siguiente entrada enunciaremos y demostraremos el teorema del valor medio para la integral. Es un teorema muy relevante, pues será uno de los ingredientes en la demostración de otros teoremas importantes para el cálculo integral.

Tarea moral

  1. Utilizando las propiedades anteriores, resuelve las siguientes integrales.
    • $\int \limits_0^1 7(4+3x^2) ~dx.$
    • $\int \limits_2^0 \frac{1}{4}(32x-3x^2+6) ~dx.$
  2. Termina con detalle todas las demostraciones de la entrada que hayan quedado pendientes.
  3. Usndo las propiedades de esta entrada, demuestra que la integral $\int_{-10}^{10} x^7-x^5+3x^3+27x\, dx$ existe y determina su valor. Sugerencia. Muestra que la función dentro de la integral es continua y cumple $f(x)=-f(x)$. Usa varias de las propiedades de esta entrada.
  4. Demuestra la siguiente igualdad:
    $$ \int \limits_{a}^{b} \alpha \ f(x) \ dx \ + \int \limits_{a}^{b} \beta\ g(x) \ dx \ = \ \int \limits_{a}^{b} \alpha f(x) \ + \beta g(x) \ dx .$$
  5. Sean $a\leq b\leq c\leq d$ números reales. Sea $f:\mathbb{R}\to \mathbb{R}$ una función integrable en $[a,d]$. Demuestra que todas las integrales $$\int_a^c f(x)\, dx, \int_b^d f(x)\, dx, \int_a^d f(x)\,dx, \int_b^c f(x)\,dx$$
    existen y muestra que satisfacen la siguiente identidad:
    $$\int_a^c f(x)\, dx + \int_b^d f(x)\, dx = \int_a^d f(x)\,dx + \int_b^c f(x)\,dx.$$
  6. Sean $a<b$ reales. Demuestra que si la función $f:\mathbb{R}\to \mathbb{R}$ es continua en $[a,b]$, se cumple que $f(x)\geq 0$ para $x\in [a,b]$ y además existe por lo menos un punto $c$ tal que $f(c)>0$, entonces $\int_a^b f(x)\, dx >0$. Como sugerencia, demuestra que existe todo un intervalo (aunque sea muy chiquito) donde la función es positiva, y usa otras propiedades que hemos mostrado. Luego, encuentra un contraejemplo para esta afirmación en donde $f$ no sea continua.

Entradas relacionadas

Cálculo Diferencial e Integral II: Teorema del valor medio para la integral

Por Moisés Morales Déciga

Introducción

En una entrada anterior, presentamos un ejemplo de integración por punto medio que sirve como introducción al tema del teorema del valor medio para la integral. En dicho ejemplo, aproximamos la integral mediante sumas de áreas de rectángulos cuyas bases eran todas iguales, y cuya altura estaba dada por la evaluación de una función en el punto medio de cada intervalo.

Esta manera de aproximar una integral usando algún punto arbitrario dentro de cada intervalo de una partición, y haciendo la suma de Riemann correspondiente, será el punto de partida para entender primero a la integral como un promedio, y luego para llevar ese entendimiento más allá y enunciar el teorema del valor medio para la integral. Lo que nos dirá este teorema es que cuando una integral de una función continua exista, entonces dicha integral siempre puede calcularse como la longitud del intervalo de integración, por la evaluación de la función en algún punto del intervalo.

A continuación formalizamos estas ideas.

Función promedio e intuición del teorema del valor medio

Quizás recuerdes la siguiente definición de tu educación básica.

Definición. Sean $z_1,\ldots,z_n$ números reales. Su promedio o media aritmética es el número

$$\frac{z_1 + z_2 + … + z_n}{n}.$$

De manera similar, si tomamos $x_1,\ldots,x_n$ números en un cierto intervalo $[a,b]$ y $f:[a,b]\to \mathbb{R}$, entonces podemos considerar a los valores $f(x_1),\ldots,f(x_n)$ y obtener su promedio:

$$\frac{f(x_1) + f(x_2) + … + f(x_n)}{n} .$$

A esto le llamamos el valor promedio de la función en $x_1,\ldots,x_n$.

Pensemos que tomamos una partición en $n$ partes del intervalo $[a,b]$. La longitud de cada celda sería $\Delta x_i = (b-a)/n$. Si tomamos a los puntos $x_1,\ldots,x_n$, uno en cada celda de dicha partición, entonces tendríamos que

\begin{align*}
\frac{f(x_1) + f(x_2) + … + f(x_n)}{n}&=\frac{b-a}{b-a} \sum_{i=1} ^n \frac{f(x_i)}{n}\\
&=\frac{1}{b-a} \sum_{i=1}^n f(x_i) \Delta x_i.
\end{align*}

A la derecha nos queda una suma de Riemann. Si la función fuera integrable en $[a,b]$, dicha suma convergería a $\frac{1}{b-a}\int_a^b f(x)\, dx$ conforme $n\to \infty$ (como recordatorio, revisa la entrada de definición de la Integral). Y el lado izquierdo, conforme $n$ crece, se vuelve el promedio de más y más puntos distribuidos homogéneamente en $[a,b]$. De aquí sale la siguiente intuición: «la integral entre $b-a$ es el valor promedio de la función en todo el intervalo».

Esta intuición es buena y conviene formalizarla con un nombre apropiado.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada e integrable en un intervalo $[a,b]$, con $a<b$ reales. Definimos el promedio de $f$ en $[a,b]$ como el número $$\frac{1}{b-a}\int_a^b f(x)\, dx.$$

Observa que podemos poner a esta expresión como un cociente de integrales:

$$\frac{1}{b-a} \int \limits_{a}^{b} f(x) \ dx = \frac{ \int \limits_{a}^{b} f(x) \ dx }{ \int \limits_{a}^{b} 1 \ dx }.$$

Teorema del valor medio para la integral

El teorema del valor medio establece una relación muy importante entre una función continua y promedio en cierto intervalo $[a,b]$.

Teorema. Sea $f:\mathbb{R}\to \mathbb{R}$ una función que es continua en el intervalo $[a,b]$, con $a\leq b$ reales. Entonces, siempre existe $\xi\in[a,b]$ tal que

$$ \int \limits_{a}^{b} f(x) dx = f(\xi)(b-a).$$

Si $b>a$, podemos dividir entre $b-a$ y esto quiere decir que siempre podemos encontrar un valor $\xi\in [a,b]$ tal que $f(\xi)$ es igual al promedio de $f$ en $[a,b]$.

Demostración. Si $a=b$, entonces no hay nada que hacer, pues en ambos lados de la igualdad tenemos cero. Así, sean $a<b$ números reales y $f:\mathbb{R}\to \mathbb{R}$ función continua dentro del intervalo $[a,b]$.

Las funciones continuas tienen valor máximo y mínimo en intervalos cerrados y acotados. Así, existen $x_0$ y $y_0$ en $[a,b]$ tales que $f(x_0) = m$ es el mínimo de la función en el intervalo y, $f(y_0) = M$ es el máximo de la función en el intervalo. Como las funciones constantes son integrables y la integral respeta desigualdades, tenemos que:

\begin{align*}
m(b \ – \ a) &= f(x_0) (b \ – \ a)\\
&=\int_a^b f(x_0)\, dx\\
&\leq \int_a^b f(x)\, dx\\
&\leq \int_a^b f(y_0)\, dx\\
&=f(y_0) (b-a)\\
&=M (b-a).
\end{align*}

Nos importa recuperar de esta cadena de desigualdades que $$m(b-a)\leq \int_a^b f(x)\, dx \leq M(b-a),$$ y por lo tanto $$m\leq \frac{1}{b-a} \int_a^b f(x)\, dx \leq M.$$

De esta manera, $\frac{1}{b-a} \int_a^b f(x)$ es un valor entre $f(x_0)$ y $f(y_0)$. Pero por el teorema del valor intermedio, si una función continua toma dos valores, entonces toma cualquier valor entre ellos. Así, existe $\xi$ entre $x_0$ y $y_0$ tal que $$f(\xi)=\frac{1}{b-a} \int_a^b f(x)\, dx.$$

Multiplicando por $b-a$, obtenemos la igualdad deseada.

$ \square$

Para entender un poco mejor el teorema del valor medio para la integral, veamos un ejemplo.

Ejemplo. Veamos el teorema del valor medio en acción para la función $f(x)=x$ en el intervalo $[3,4]$.

Ya habíamos encontrado el valor de esta integral en la entrada «Definición de la Integral Definida». Dicho valor fue $\frac{7}{2}=3.5$.

Lo que nos diría el teorema del valor medio es que podemos encontrar un punto $\xi \in[3,4]$ tal que Sustituyendo en la expresión encontrada por el teorema, se tiene lo siguiente.

$$f(\xi)(4 \ – \ 3) = \int \limits_{3}^{4} f(x) dx=3.5,$$

es decir, tal que $f(\xi)=3.5$. Y en efecto, dicho punto es justamente $3.5$, pues $f(3.5)=3.5$. Notemos que, tal como se quería, tenemos que $3.5\in [3,4]$. Por lo tanto, el punto $\xi = 3.5 $ dentro del intervalo $[3,4]$ es tal que al evaluarlo en la función, da por resultado el promedio de $f$ en $[3,4]$.

$\triangle$

Teorema del valor medio generalizado para la integral

Hay otra versión del teorema del valor medio que generaliza la noción de promedio. Quizás en tu educación básica cursaste una materia en donde el $30\%$ de tu calificación eran tareas, el $20\%$ era participaciones y el $50\%$ el examen. En este caso, si sacaste $x,y,z$ en las tareas, participaciones y examen respectivamente, entonces tu calificación final era $0.3 x + 0.2 y + 0.5 z$. Este tipo de promedios en donde distintos números tienen distinto valor quedan reflejados en la siguiente definición.

Definición. Sean $z_1,\ldots,z_n$ números reales y $p_1,\ldots,p_n$ números positivos. La media aritmética ponderada con dichos pesos es el número real $$\frac{p_1z_1+p_2z_2+\ldots+p_nz_n}{p_1+p_2+\ldots+p_n}.$$

El promedio se recupera eligiendo todos los pesos $p_i$ iguales a $1$, es decir, dando la misma ponderación para todos los valores que tenemos dentro del conjunto, independientemente del valor que hayan tenido. Las medias aritméticas son importantes pues aparecen en las aplicaciones. Por ejemplo, en física podemos pensar que los $p_i$ son pesos de partículas localizadas en los puntos $z_i$. En este caso la media aritmética ponderada representará el centro de gravedad de dichos objetos.

Estas ideas pueden llevarse al contexto continuo. Se pueden pensar en las ideas del teorema del valor medio, pero donde ahora en cada punto ponderaremos de acuerdo a una función peso. Esto hará que ahora distintos puntos tengan distinta preferencia, y que a su vez ya no se tenga una media aritmética, sino una media aritmética ponderada.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función integrable en $[a,b]$ y sea $p:\mathbb{R}\to \mathbb{R}$ una función integrable en $[a,b]$ y no negativa, con integral positiva. Definimos el promedio ponderado de $f$ como el número

$$\frac{\int_a^b f(x) p(x) \, dx}{\int_a^b p(x)\, dx}.$$

Se puede demostrar el siguiente teorema, que generaliza al teorema del valor medio para la integral.

Teorema. Sea $f:\mathbb{R}\to \mathbb{R}$ una función continua en $[a,b]$ y sea $p:\mathbb{R}\to \mathbb{R}$ una función continua en $[a,b]$ y no negativa, con integral positiva. Entonces existe un valor $\xi\in [a,b]$ tal que:

$$\int \limits_{a}^{b} f(x) \ p(x) \ dx = f(\xi) \ \int \limits_{a}^{b} p(x) \ dx .$$

Observación. Si $p(x)$ es la función constante $1$, recuperamos el teorema del valor medio para la integral.

Ya tienes todas las herramientas para probar esta generalización. ¡Te espera en los problemas!

Más adelante…

A partir de la definición de la integral mediante sumas se obtienen teoremas y propiedades que nos permiten simplificar el cálculo de la integral y tener herramientas para resolver problemas mediante diferentes métodos.

Este teorema nos permite calcular la integral a partir del punto medio del intervalo, simplificando el proceso ya que no es necesario determinar el ínfimo o el supremo de cada partición.

Un poco después veremos algunas aplicaciones de este teorema. Será de suma importancia cuando enunciemos y mostremos los teoremas fundamentales del cálculo.

Tarea moral

  1. Encuentra el valor promedio la función dada, en el intervalo dado. Luego, encuentra un valor $\xi$ en el intervalo dado tal que $f(\xi)$ sea la integral que encontraste.
    • $f(x)=1 + x^2$ en $[-1,2]$.
    • $f(x)=\sqrt x$ en el intervalo $[0,4]$.
    • $f(x)=1+2x-x^2$ en el intervalo $[-2,2]$.
  2. Determina el valor promedio ponderado de las siguientes funciones, usando la función ponderación dada.
    • $f(x)=1+x^2$ en $[-1,2]$, con función ponderación $p(x)=x+1$.
    • $f(x)=4x^2 – 2x$ en $[1,4]$, con función ponderación $p(x)=3$.
    • $f(x)=(x-3)^2$ en en $[2,5]$, con función ponderación $p(x)=x-2$.
  3. Demuestra el teorema del valor medio generalizado para la integral.
  4. El teorema del valor medio es falso en general si la función no es continua. Considera la siguiente función $$f(x)=\begin{cases} 0 & \text{si $x\in [0,1]$}\\ 1 & \text{si $x\in[1,3].$}\end{cases}$$
    • Demuestra que esta función es integrable en $[0,3]$.
    • Encuentra explícitamente el valor de esa integral mediante la definición.
    • Muestra que no existe ningún $\xi\in [0,3]$ tal que $f(\xi)=\frac{1}{3-0} \int_a^b f(x)\, dx.$
  5. Sea $f:\mathbb{R}\to\mathbb{R}$ una función continua y tal que $f(x)\geq 3$ para todo $x$ en cierto intervalo $[a,b]$. Demuestra que si el promedio de $f$ en $[a,b]$ es $3$, entonces $f(x)=3$ para todo $x\in [a,b]$. ¿Fue importante que el número fuera $3$? Enuncia y demuestra una generalización.

Entradas relacionadas

Cálculo Diferencial e Integral II: Definición de la integral definida

Por Moisés Morales Déciga

Introducción

En la entrada anterior se introdujo el problema de calcular el área que se encuentra en una región delimitada por ciertas líneas verticales, el eje $x$ y la gráfica de una función. Hablamos de cómo aproximar esta área cuando la función es «bien portada», pero aún no hemos dicho a qué se refiere esto. En esta entrada haremos una formalización de este concepto mediante la definición de integral definida.

La intuición que puedes tener a lo largo de la entrada es que para poder hablar de que una función sea integrable en cierto intervalo, intuitivamente necesitamos que las sumas de Riemann convergan a un valor conforme hacemos las celdas tender a cero en longitud. Esto diría que sin importar cómo hagamos la partición, las sumas de Riemann deben converger a un mismo valor conforme la partición se hace más y más fina. En particular, necesitaremos que las sumas superiores e inferiores cumplan esto. Como en ellas entendemos bien qué pasa con los refinamientos, entonces nos conviene más dar la definición en términos de ellas. Es lo más conveniente y, en particular, implica lo anterior.

Integral definida de Riemann

La definición clave que estudiaremos es la siguiente.

Definición. Sean $f:\mathbb{R}\to \mathbb{R}$ una funcion acotada y $a\leq b$ reales. Sea $\mathbf{P}$ el conjunto de las particiones de $[a,b]$. Definimos

\begin{align*}
\underline{S}(f) & = \sup \lbrace \underline{S(f,P)} \ | P \in \mathbf{P} \rbrace\\
\overline{S}(f) &= \inf \lbrace \overline{S(f,P)} \ | P \in \mathbf{P} \rbrace,
\end{align*}

es decir al supremo de las sumas inferiores y al ínfimo de las sumas superiores sobre todas las particiones posibles de $[a,b]$. Diremos que existe la integral definida de Riemann para $f$ en el intervalo $[a,b]$ si

$$ \underline{S(f)} = \overline{S(f)}.$$

En este caso, a este valor en común lo denotamos por $$\int \limits_{a}^{b} f(x) dx.$$

En otras palabras, para que $f$ sea integrable, necesitamos que el ínfimo de las sumas superiores sea igual al supremo de las sumas inferiores. A veces también decimos que $f$ es Riemann integrable en $[a,b]$ o, si el contexto es claro, simplemente que es integrable.

No todas las funciones son Riemann integrables. Hacia el final de esta unidad daremos ejemplos de funciones que no lo son. Sin embargo, por ahora nos enfocaremos en ver algunos ejemplos que sí son Riemann integrables y probar propiedades de la integral definida en los casos en los que sí exista.

Ejemplo de integral definida

Veamos un ejemplo sencillo de cómo se verifica la definición de integral definida.

Ejemplo. Tomemos la función $f:[0,1]\to \mathbb{R}$ dada por $f(x)=x$. Veamos que dicha función es integrable en el intervalo $[0,1]$. Para ello, demos la partición $P_n$ homogénea del intervalo $[0,1]$ en celdas de longitud $1/n$, con $n$ un entero positivo. Si hacemos esto, las celdas de la partición son

$$[0,1/n],[1/n,2/n],\ldots[(n-1)/n,1].$$

Los supremos de los valores de $f$ en dicho intervalo son

$$1/n, 2/n, \ldots, 1,$$

y los ínfimos son

$$0,1/n, \ldots, (n-1)/n.$$

De este modo, para esta partición la suma superior sería

\begin{align*}
\overline{S} (f,P_n) &= \frac{1}{n}\left(\frac{1}{n}+\frac{2}{n}+\ldots+\frac{n}{n}\right)\\
&=\frac{1}{n^2}(1+2+\ldots+n)\\
&=\frac{n(n+1)}{2n^2}\\
&=\frac{1}{2}+\frac{1}{2n}.
\end{align*}

y la suma inferior sería

\begin{align*}
\underline{S} (f,P_n) &= \frac{1}{n}\left(\frac{0}{n}+\frac{2}{n}+\ldots+\frac{n-1}{n}\right)\\
&=\frac{1}{n^2}(0+1+2+\ldots+(n-1))\\
&=\frac{(n-1)n}{2n^2}\\
&=\frac{1}{2}-\frac{1}{2n}.
\end{align*}

La sucesión de números $\frac{1}{2}+\frac{1}{2n}$ se acerca tanto como queramos a $\frac{1}{2}$ por arriba. Como el ínfimo $\overline{S}(f)$ que estamos buscando es cota inferior de todas las sumas inferiores, en particular es de estas que vienen de particiones homogéneas. Así, $\overline{S}(f)\leq \frac{1}{2}$. Pero además, por una proposición de la entrada anterior sabemos que cualquier suma inferior es cota inferior de todas las sumas inferiores. Como $\overline{S}(f)$ es la mayor cota inferior, tenemos que $\overline{S}(f)\geq \frac{1}{2}-\frac{1}{2n}$ para todo $n$, y entonces $\overline{S}(f)\geq \frac{1}{2}$. Todo esto nos permite concluir que $\overline{S}(f)=\frac{1}{2}$.

De manera totalmente análoga (que te sugerimos argumentar cuidadosamente), se tiene que $\underline{S}(f)=\frac{1}{2}$. Concluimos entonces que $f$ es integrable en $[0,1]$ y que $$\int_0^1 f(x)\, dx = \frac{1}{2}.$$

$\triangle$

Aunque este ejemplo tuvo un intervalo y una función muy sencillas, se volvió algo elaborado justificar la parte de los ínfimos y supremos. Es por ello que nos conviene enunciar y demostrar algunos resultados sobre funciones integrables que nos permitirán determinar la integrabilidad con más comodidad.

Integral definida mediante particiones homogéneas y la condición de Riemann

Lo primero que haremos es demostrar que para que una función sea integrable, nos basta estudiar a las particiones homogéneas.

Teorema. Sean $f:\mathbb{R}\to \mathbb{R}$ una funcion acotada y $a\leq b$ reales. Sea $P_n$ la partición homogéneas del intervalo $[a,b]$ en $n$ partes. Supongamos que se da la siguiente igualdad de límites:

$$\lim_{n\to \infty} \overline{S}(f,P_n) = \lim_{n\to \infty} \underline{S}(f,P_n).$$

Entonces, la integral existe y es igual a ese límite en común.

Demostración. $\Leftarrow)$ La demostración sigue argumentos muy parecidos al ejercicio que presentamos como ejemplo arriba. Supongamos que los límites para las particiones homogéneas existen y son iguales a $L$. Estudiemos $\overline{S}(f)$. Por ser ínfimo de todas las sumas superiores, tendríamos en particular para las particiones homogéneas que $$\overline{S}(f)\leq \overline{S}(f,P_n),$$

para todo entero positivo $n$. Haciendo tender $n$ a infinito, obtenemos $\overline{S}(f) \leq L$. Por otro lado, sabemos que cualquier suma inferior es cota inferior de cualquier suma superior, en particular, cada $\underline{S}(f,P_n)$ es una de estas cotas inferiores. Como $\overline{S}(f)$ es la mayor de las cotas inferiores, tendríamos que $$\overline{S}(f)\geq \underline{S}(f,P_n).$$

Haciendo tender $n$ a infinito, obtenemos $\overline{S}(f)\geq L$. Así, $\overline{S}(f)=L$. Un argumento análogo demuestra que $\underline{S}(f)=L$, y por lo tanto la función es integrable en $[a,b]$.

$\square$

Un siguiente resultado importante es la condición de Riemann, que nos dice que para que una función sea integrable, nos basta encontrar una partición en donde la suma superior y la inferior estén tan cerca como querramos. A esto se le conoce como la condición de Riemann.

Teorema. Sean $f:\mathbb{R}\to \mathbb{R}$ una funcion acotada y $a\leq b$ reales. Se tiene que $f$ es integrable en $[a,b]$ si y sólo si para todo $\epsilon >0$ existe una partición $P_\epsilon$ tal que:

$$\overline{S}(f,P_\epsilon) \ – \ \underline{S}(f,P_\epsilon) < \epsilon .$$

Demostración. $\Rightarrow )$ Sea $f$ integrable. Debemos mostrar que para cada $\epsilon>0$ existe una partición $P_\epsilon$ tal que $$\overline{S}(f,P_\epsilon) \ – \ \underline{S}(f,P_\epsilon) < \epsilon.$$

Para ello, tomemos $\epsilon^*=\epsilon/2$. Como $\overline{S}(f)$ es ínfimo de las sumas superiores, entonces $\overline{S}(f)+\epsilon^\ast$ ya no es cota inferior para dichas sumas superiores, por lo que existe una partición $P$ tal que $\overline{S}(f,P) < \overline{S}(f)+\epsilon^*$. Así mismo, existe una partición $P’$ tal que $\underline{S}(f,P’) > \underline{S}-\epsilon^*$. Si $P_\epsilon$ es un refinamiento mutuo de $P$ y $P’$, tendríamos entonces que

\begin{align*}
\overline{S}(f,P_\epsilon)&<\overline{S}(f,P)<\overline{S}(f)+\epsilon^*\\
\underline{S}(f,P_\epsilon)&>\underline{S}(f,Q)>\underline{S}(f)-\epsilon^*.
\end{align*}

Multiplicando la segunda igualdad por $-1$ y sumando ambas, obtenemos entonces que

\begin{align*}
\overline{S}(f,P_\epsilon) \ – \ \underline{S}(f,P_\epsilon) &< \overline{S}(f) + \epsilon^* \ – \ \underline{S}(f) + \epsilon^* \\
&= 2 \epsilon^* \\
&= \epsilon .
\end{align*}

Aquí usamos que $\overline{S}(f)=\underline{S}(f)$ por ser $f$ integrable.

$\Leftarrow)$ Supongamos ahora que para todo $\epsilon$ se puede encontrar la partición $P_\epsilon$ que satisface $\overline{S}(f,P_\epsilon) \ – \ \underline{S}(f,P_\epsilon) < \epsilon$. Veremos que a partir de esto se puede probar que $ \overline{S}(f) = \underline{S}(f) .$

Por ser $\overline{S}(f)$ el ínfimo de todas las sumas superiores, se tiene que

$$\overline{S}(f,P_\epsilon) > \overline{S}(f) .$$

$$ \underline{S}(f,P_\epsilon) < \underline{S}(f) \Longrightarrow – \underline{S}(f,P_\epsilon) > – \underline{S}(f) .$$

$$\Longrightarrow \epsilon > \overline{S}(f,P_\epsilon) \ – \ \underline{S}(f,P_\epsilon) > \overline{S}(f) \ – \ \underline{S}(f) .$$

Y $\epsilon$ es tan pequeño como lo queramos, por lo tanto.

$$ \overline{S}(f) = \underline{S}(f) .$$

$\square$

Ejemplos de integral definida con los resultados que probamos

Veamos algunos ejemplos de cómo utilizar los resultados que acabamos de mostrar para demostrar que ciertas integrales definidas existen, y para encontrar su valor.

Ejemplo. Calculemos la integral de la función $f(x)=x$ en el intervalo $[3,4]$

Usaremos la técnica de los límites de las particiones homogéneas. Estudiaremos con detalle el caso de las sumas superiores y dejaremos el de las inferiores como ejercicio. Si la partición $P_n$ del intervalo $[a,b]$ es homogénea y en $n$ partes, las celdas tienen longitud $\frac{b-a}{n}$ y entonces son:

$$\left[a,a+\frac{b-a}{n}\right], \left[a+\frac{b-a}{n}, a+2\frac{b-a}{n}\right], \ldots, \left[a+(n-1)\frac{b-a}{n},b\right].$$

La función $f(x)=x$ es creciente, y entonces los máximos se alcanzan al final de cada intervalo. Así, para el intervalo $[3,4]$ tenemos:

\begin{align*}
\overline{S}(f,P_n)&=\sum_{i=1}^{n} f \left( 3+i \cdot \frac{4-1}{n} \right) \frac{4-3}{n}\\
&=\sum_{i=1}^{n} \left(3+ \frac{i}{n}\right) \frac{1}{n}\\
&=\sum_{i=1}^{n} \left(\frac{3}{n}+ \frac{i}{n^2}\right)\\
&=\sum_{i=1}^{n} \left(\frac{3}{n}\right) + \sum_{i=1}^{n} \left(\frac{i}{n^2}\right)\\
&=\frac{3}{n} \cdot n + \frac{1}{n^2} \sum_{i=1}^n i\\
&=3 + \frac{n(n+1)}{2n^2} \\
&=3 + \frac{1}{2} + \frac{1}{2n}\\
&=\frac{7}{2}+\frac{1}{2n}.
\end{align*}

De este modo,

$$\lim_{n\to\infty} \overline{S}(f,P_n) = \lim_{n\to\infty} \left(\frac{7}{2} + \frac{1}{2n}\right) = \frac{7}{2}.$$

Por tu cuenta, revisa que que también se cumple lo siguiente

$$\lim_{n\to\infty} \underline{S}(f,P_n) = \frac{7}{2}.$$

Así, por la proposición que mostarmos arriba, tenemos que la integral en el intervalo $[3,4]$ existe y por lo tanto:

$$ \int \limits_{3}^{4} x \, dx = \frac{7}{2}.$$

$\triangle$

Ejemplo. Ahora calculemos la integral de la función $f(x)=-x^2 + 3$ en el intervalo $[1,3]$ . Al hacer una figura, obtenemos la siguiente gráfica.

Observa que en este caso tenemos 2 áreas: del eje $x$ y otra por debajo del eje $x$. Todo lo que hemos hecho funciona tanto para funciones positivas, como negativas. Pero obtendremos algo interesante de la conclusión de este problema.

Para ver que la integral existe, usaremos nuevamente la técnica de las particiones homogéneas. Ahora haremos las sumas inferiores. Como la función es decreciente, los valores más chicos aparecen al final de cada intervalo. Tenemos entonces que:

\begin{align*}
\underline{S}(f,P)&=\sum_{i=1}^{n} \left( – \ \left( 1+i\cdot \left(\frac{3-1}{n}\right) \right)^2+3 \right) \left(\frac{3-1}{n} \right) \\
&=\sum_{i=1}^{n} \left(- \ \left(1+i\cdot \left(\frac{2}{n}\right)\right)^2+3\right) \left(\frac{2}{n}\right)\\
&=\sum_{i=1}^{n} \left( – \ \left(1+ \frac{4i}{n} + \frac{4 i^2}{n^2}\right)+3\right) \left(\frac{2}{n}\right)\\
&=\sum_{i=1}^{n} \left(\frac{ 4}{n} – \frac{8i} {n^2} – \frac{8 i^2}{n^3}\right)\\
&=\frac{4}{n} \sum_{i=1}^{n} – \frac{8}{n^2} \sum_{i=1}^{n} i – \frac{8}{n^3}\sum_{i=1}^{n} i^2\\
&=\frac{4}{n} \cdot n – \frac{8}{n^2} \frac{n(n+1)}{2} – \frac{8}{n^3} \frac{n(n+1)(2n+1)}{6} \\
&=4 \ – \ \frac{8n^2}{2n^2} \ – \ \frac{8n}{2n^2} \ – \ \frac{8 \cdot 2n^3}{6n^3} \ – \ \frac{8 \cdot 3n^2}{6n^3} \ – \ \frac{8n}{6n^3} \\
&= – \ \frac{8}{3} \ – \ \frac{8n}{2n^2} \ – \ \frac{8 \cdot 3n^2}{6n^3} \ – \ \frac{8n}{6n^3} .
\end{align*}

Así, $$\lim_{n\to\infty} \underline{S}(f,P)=-\frac{8}{3}.$$

Se puede mostrar que el límite de las sumas superiores para las particiones homogéneas también es $-\frac{8}{3}$ (verifícalo), así que la integral buscada tiene este valor. De esta forma,

$$ \int \limits_{1}^{3} -x^2 +3 \, dx = – 8/3 .$$

$\triangle$

¿Áreas negativas?

Se comentó que la integral se utiliza para el cálculo de áreas bajo la curva, entonces, ¿Por qué el resultado del ejemplo anterior es negativo? ¿Hay áreas negativas? Intuitivamente, no debería haber áreas negativas. Sin embargo, el procedimiento que usamos para definir a la integral definida sí nos puede dar números negativos. Puedes pensarlo como sigue: el área que estamos calculando va del eje $x$ a la gráfica de la función $f$. Si esa gráfica está por debajo, entonces estámos yendo en dirección negativa. En el último ejemplo hay tanto una región por encima del eje $x$, como una por debajo. El número que nos salió es la diferencia de ambas áreas: el área por arriba del eje $x$, menos el área por debajo del eje $x$. Como el resultado que obtuvimos fue negativo, entonces el área por debajo del eje $x$ era mayor en magnitud.

Esta es una propiedad un poco antintuitiva, pero es importante preservarla. El cálculo de áreas es sólo una de las aplicaciones que tiene la integral. En otras aplicaciones, es importante que la integral mida qué tanto estuvimos por encima del eje $x$ y qué tanto estuvimos por debajo.

¿Y si queremos realmente entender la suma de las dos áreas de la figura y no la resta? En ese caso, tendremos que hacer una figura para entender cómo hacer las cuentas. Si hay área que está por debajo del eje $x$, deberemos agregar un signo $-$ para contarla correctamente como área positiva. Pero entonces tendremos que partir nuestro intervalo de integración en varios intervalos de acuerdo a cuándo la gráfica de $f$ cruza al eje $x$.

Con esto en mente, retomemos el ejemplo anterior.

Ejemplo. Encontremos el área en valor absoluto que genera la función $f(x)=-x^2 + 3$ en el intervalo $[1,3]$.

Lo primeo que haremos es obtener el punto donde la función cruza al eje $x$. Para ello, se requiere que $-x^2+3=0$, que en dicho intervalo sucede en $x=\sqrt{3}$.

Una vez encontrado el punto raíz o la raíz de la función, ahora podemos partir el área absoluta que nos interesa en dos intervalos: el $[1,\sqrt{3}]$ y el $[\sqrt{3},3]$.

Pensando en que queremos calcular el área absoluta, necesitamos dividir la formula que se planteó anteriormente en los intervalos correspondientes, y en el intervalo $[\sqrt{3},3]$ será necesario agregar un signo menos para que el área que se calcula como negativa, ahora se cuente de manera positiva. De esta manera, tendríamos:

$$ F_1^3 = \int \limits_{1}^{\sqrt 3} -x^2 +3 \, dx \ – \ \int \limits_{\sqrt 3}^{3} -x^2 +3 \, dx .$$

Ahora queda replicar el proceso que vimos en la suma anterior con estos 2 nuevos intervalos y juntarlos considerando el cambio de signo. Desarrollando los cálculos, se encuentra que el área generada por la función es de:

$$F_1^ 3= 4 \sqrt 3 \ – \ \frac{8}{3}.$$

$\triangle$

Nota. En este ejemplo partimos el intervalo en dos subintervalos, pero el intervalo puede quedar partido tantas veces como la función $f$ lo requiera, de acuerdo a la cantidad de veces que se cruza el eje $x$.

Más adelante…

En esta entrada dimos la definición formal de que una función sea integrable en cierto intervalo. O mejor dicho, que sea Riemann integrable. En cursos más avanzados de matemáticas se definen y estudian otras nociones de integrabilidad, pero por ahora esta es la que nos interesa. Para que la integral de Riemann exista, necesitamos que coindidan el ínfimo de las sumas superiores y el supremo de las sumas inferiores de la función dada. En ese caso, el valor de la integral es ese valor en común.

Ya dada la definición, dimos algunos resultados que nos ayudarán a determinar cuándo una función es integrable. En siguientes entradas daremos más propiedades que nos ayudarán entender mejor la integrabilidad y la integral. Varias entradas despuésse hablará de las integrales indefinidas y del teorema fundamental del cálculo, que daran pie a numerosas técnicas de integración.

Lo último que hicimos en esta entrada es notar que hay casos en donde el valor de la integral que se encuentra es negativo. Esto contradice un poco nuestra intuición de que la integral es un área. Sin embargo, ya platicamos qué hacer en este caso si queremos realmente el «área positiva». Seguiremos explorando esta idea de integrales negativas un poco más adelante. Por ahora, lo que puedes hacer es identificar los intervalos en los que la función tiene determinado signo.

Tarea moral

  1. Completa las cuentas que quedaron pendientes en cada uno de los ejercicios.
  2. Expresa la siguiente expresión como una integral en el intervalo $[0,\pi]$. $$\lim_{n \rightarrow \infty} \sum_{i=1}^n (x_i^3 + x_i ~ sin (x_i)) \triangle x .$$
  3. Encuentra el área delimitada por la curva $f(x)=x^2 +2 $ y el eje $x$ en el intervalo $[1,4]$.

4. Encuentra el valor del área delimitada por la gráfica de la función$f(x)= x^3-6x$ en el intervalo $[0,3]$, que es la zona sombreada. Realiza las cuentas tanto con áreas absolutas, tanto con áreas con signo.

5. Encuentra el área de la función $f(x)=\sqrt {1-x^2}$ en el intervalo $[0,1]$.

Entradas relacionadas