Archivo de la etiqueta: multiplicación escalar

Álgebra Lineal I: Combinaciones lineales

Por Julio Sampietro

Introducción

En esta entrada presentamos el concepto de combinaciones lineales en espacios vectoriales que será fundamental para nuestro estudio. De cierta manera (que se verá más claramente cuando hablemos de bases en espacios vectoriales arbitrarios) captura un aspecto de la base canónica de $F^n$: Todo vector lo podemos escribir como $x_1 e_1+\dots+x_n e_n$, lo que con nuestro lenguaje será una combinación lineal de los vectores $e_i$.

También hablamos del concepto de espacio generado. De manera intuitiva, el espacio generado por un conjunto de vectores es el mínimo subespacio que los tiene (y que a la vez tiene a todas las combinaciones lineales de ellos). Geométricamente, los espacios generados describen muchos de los objetos conocidos como rectas y planos. De manera algebraica, este concepto nos servirá mucho en lo que sigue del curso.

Definición de combinaciones lineales

Sea $V$ un espacio vectorial sobre un campo $F$, y sean $v_1, \dots, v_n$ vectores en $V$. Por definición, $V$ contiene a todos los vectores de la forma $c_1 v_1+\dots +c_n v_n$ con $c_1, \dots, c_n \in F$. La colección de los vectores de este estilo es importante y le damos una definición formal:

Definición. Sean $v_1, \dots, v_n$ vectores en un espacio vectorial $V$ sobre $F$.

  1. Un vector $v$ es una combinación lineal de los vectores $v_1, \dots, v_n$ si existen escalares $c_1,\dots, c_n\in F$ tales que
    \begin{align*}
    v= c_1 v_1 +c_2 v_2+\dots +c_n v_n.
    \end{align*}
  2. El espacio generado (que a veces abreviaremos como el generado) por $v_1, \dots, v_n$ es el subconjunto de $V$ de todas las combinaciones lineales de $v_1,\dots, v_n$, y lo denotamos por $\text{span}(v_1, \dots, v_n)$.

Ejemplo.

  1. La matriz $A=\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$ es una combinación lineal de las matrices $B= \begin{pmatrix} 10 & 0 \\ 5 & 0\end{pmatrix}$ y $C=\begin{pmatrix} 0 & 1 \\ 0 & \frac{1}{2}\end{pmatrix}$ pues $A=\frac{1}{5} B + 2 C$. Así, $A$ está en el generado por $B$ y $C$.
  2. El generado $\text{span}(v)$ de un único vector en $\mathbb{R}^n$ consta de puras copias re-escaladas de $v$ (también nos referimos a estos vectores como múltiplos escalares de $v$). Usando la interpretación geométrica de vectores en $\mathbb{R}^2$ o $\mathbb{R}^3$, si $v\neq 0$ entonces $\text{span}(v)$ representa una recta por el origen en la dirección de $v$.
  3. Si $e_1=(1,0,0)$ y $e_2=(0,1,0)$, entonces
    \begin{align*}
    x e_1+ y e_2=(x,y,0).
    \end{align*}
    Como $x$ y $y$ fueron arbitrarios, podemos concluir que $\text{span}(e_1,e_2)$ consta de todos los vectores en $\mathbb{R}^3$ cuya tercer entrada es cero. Esto es el plano $xy$. En general, si $v_1, v_2$ son dos vectores no colineales en $\mathbb{R}^3$ entonces su espacio generado es el único plano por el origen que los contiene.
  4. El polinomio $3x^{10}+7$ del espacio vectorial $\mathbb{R}_{10}[x]$ no puede ser escrito como combinación lineal de los polinomios $x^{10}+x^2+1$, $x^7+3x+1$, $7x^3$. Para demostrar esto, debemos probar que no existen reales $a,b,c$ tales que $$3x^{10}+7=a(x^{10}+x^2+1)+b(x^7+3x+1)+7cx^3.$$
    Procedamos por contradicción. Si acaso esto fuera posible, desarrollando el producto de la derecha y observando el coeficiente de $x^{10}$, necesitamos que $a$ sea igual a $3$. Pero entonces a la derecha va a quedar un término $3x^2$ que no se puede cancelar con ninguno otro de los sumandos, sin importar el valor de $b$ o $c$. Igualando términos cuadráticos, tendríamos entonces $0=3x^2$, lo cual es una contradicción.

$\triangle$

Problemas prácticos de combinaciones lineales

La definición de que un vector sea combinación de otros es existencial. Para mostrar que sí es combinación lineal, basta encontrar algunos coeficientes. Para mostrar que no es combinación lineal, hay que argumental por qué ninguna de las combinaciones lineales de los vectores es igual al vector buscado.

Problema 1. Muestra que el vector $(1,1,1)$ de $\mathbb{R}^3$ no se puede expresar como combinación lineal de los vectores

\begin{align*}
v_1= (1,0,0), \hspace{2mm} v_2=(0,1,0)\text{ y } v_3=(1,1,0).
\end{align*}

Solución. Una combinación lineal arbitraria de $v_1, v_2, v_3$ es de la forma

\begin{align*}
x_1 v_1 +x_2 v_2 + x_3 v_3 = (x_1 + x_3, x_2 + x_3, 0)
\end{align*}

para $x_1,x_2,x_3$ reales. Así, las combinaciones lineales de $v_1,v_2,v_2$ siempre tienen a $0$ como tercera coordenada. De esta forma, ninguna de ellas puede ser igual a $(1,1,1)$.

$\square$

Más generalmente, consideramos el siguiente problema práctico: dada una familia de vectores $v_1, v_2, \dots, v_k$ en $F^n$ y un vector $v\in F^n$, decide si $v$ es una combinación lineal de $v_1, \dots, v_k$. En otras palabras, si $v\in \text{span}(v_1, \dots, v_k)$.

Para resolver este problema, consideramos la matriz de tamaño $n\times k$ cuyas columnas son $v_1, \dots, v_k$. Decir que $v\in \text{span}(v_1, \dots, v_k)$ es lo mismo que encontrar escalares $x_1, \dots, x_k\in F$ tales que $v= x_1 v_1 +\dots +x_k v_k$. De manera equivalente, si tomamos $X=(x_1,\ldots,x_k)$, queremos la existencia de una solución al sistema $AX=v$.

Esto es muy útil. Como tenemos una manera práctica de decidir si este sistema es consistente (por reducción gaussiana de la matriz aumentada $(A\vert v)$), tenemos una manera práctica de resolver el problema de si un vector es combinación lineal de otros. Por supuesto, esto también nos da una solución concreta al problema, es decir, no sólo decide la existencia de la combinación lineal, sino que además da una cuando existe.

Problema 2. Sean $v_1=(1,0,1,2), v_2=(3,4,2,1)$ y $v_3=(5,8,3,0)$ vectores en el espacio vectorial $\mathbb{R}^4$. ¿Está el vector $v=(1,0,0,0)$ en el generado de $v_1,v_2$ y $v_3$? ¿El vector $w=(4,4,3,3)$?

Solución. Aplicamos el método que describimos en el párrafo anterior. Es decir, tomemos la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 3 & 5\\ 0 & 4 & 8\\ 1 & 2 & 3\\ 2 & 1 & 0\end{pmatrix}.
\end{align*}

Queremos ver si el sistema $AX=v$ es consistente. Haciendo reducción gaussiana a mano, o bien usando una calculadora de forma escalonada reducida (por ejemplo, la de eMathHelp), obtenemos que la forma escalonada reducida de la matriz aumentada $(A\vert v)$ es

\begin{align*}
(A\vert v)\sim \begin{pmatrix} 1 & 0 & -1 & 0\\ 0 & 1 &2 & 0\\ 0 & 0 & 0 &1 \\ 0 & 0 & 0 &0\end{pmatrix}.
\end{align*}

Viendo el tercer renglón, notamos que tiene pivote en la última columna. Deducimos que el sistema no es consistente, así que $v\notin \text{span}(v_1, v_2, v_3)$.

Procedemos de manera similar para el vector $w$. Esta vez tenemos

\begin{align*}
(A\vert w)\sim \begin{pmatrix} 1 & 0 & -1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 &0\end{pmatrix},
\end{align*}

lo que muestra que el sistema es consistente (pues ninguna fila tiene su pivote en la última columna), por lo tanto $w\in \text{span}(v_1, v_2, v_3)$. Si queremos encontrar una combinación lineal explícita tenemos que resolver el sistema

\begin{align*}
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2\\ 0 & 0 &0 \\ 0 & 0 & 0\end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1\\ 0 \\ 0\end{pmatrix}.
\end{align*}

Tenemos que ninguna fila tiene su pivote en la columna $3$, así que $x_3$ es variable libre. Las variables $x_1$ y $x_2$ son pivote. Esto nos da como solución $x_1= x_3+1$ y $x_2=1-2x_3$. Entonces podemos escribir

\begin{align*}
w= (1+x_3) v_1 + (1-2x_3) v_2+ x_3v_3
\end{align*}

y esto es válido para cualquier elección de $x_3$. Podemos, por ejemplo, escoger $x_3=0$ y obtener $w=v_1 + v_2$.

$\triangle$

Por supuesto, en el problema anterior pudimos haber encontrado la expresión $w=v_1+v_2$ explorando el problema o por casualidad. Esto sería suficiente para mostrar que $w$ es combinación lineal. Pero la ventaja del método sistemático que mostramos es que no se corre el riesgo de no encontrar la solución a simple vista. De me manera definitiva nos dice si hay o no hay solución, y cuando sí hay, encuentra una.

Una caracterización del espacio generado

Probamos el siguiente resultado, que explica la importancia del concepto de espacio generado. En particular, la proposición muestra que el espacio generado es un subespacio. Si te parece un poco confusa la demostración, puede ser de ayuda leer antes la observación que le sigue.

Proposición. Sea $V$ un espacio vectorial sobre un campo $F$ y $v_1, v_2, \dots, v_n \in V$. Entonces

  1. $\text{span}(v_1, v_2, \dots, v_n)$ es la intersección de todos los subespacios vectoriales de $V$ que contienen a todos los vectores $v_1, \dots, v_n$.
  2. $\text{span}(v_1, v_2, \dots, v_n)$ es el subespacio más chico (en contención) de $V$ que contiene a $v_1,\dots, v_n$.

Demostración. Como la intersección arbitraria de subespacios es un subespacio, la parte $1$ implica la parte $2$. Probemos entonces la parte $1$.

Primero demostremos que $\text{span}(v_1, v_2,\dots, v_n)$ está contenido en todo subespacio $W$ de $V$ que tiene a $v_1, \dots, v_n$. En otras palabras, tenemos que ver que cualquier subespacio $W$ que tenga a $v_1,\ldots,v_n$ tiene a todas las combinaciones lineales de ellos. Esto se sigue de que $W$, por ser subespacio, es cerrado bajo productos por escalar y bajo sumas. Así, si tomamos escalares $\alpha_1,\ldots,\alpha_n$ tenemos que cada uno de $\alpha_1 v_1, \ldots, \alpha_n v_n$ está en $W$ y por lo tanto la combinación lineal (que es la suma de todos estos), también está en $W$.

La afirmación anterior implica que $\text{span}(v_1, \dots, v_n)$ está contenido en la intersección de todos los espacios que tienen a $v_1,\ldots, v_n$, pues está contenido en cada uno de ellos.

Ahora, queremos ver ‘la otra contención’, es decir, que $\text{span}(v_1,\ldots,v_n)$ contiene a la intersección de todos los espacios que tienen a $v_1,\ldots,v_n$. Para esto veremos primero que $\text{span}(v_1, \dots, v_n)$ es un subespacio vectorial. Sean $x,y\in \text{span}(v_1, \dots, v_n)$ y $c\in F$ un escalar. Como $x$ y $y$ son, por definición, combinaciones lineales de $v_1, \dots, v_n$, podemos escribir $x=a_1 v_1+\dots +a_n v_n$ para algunos escalares $a_i$ y $y=b_1 v_1+\dots + b_n v_n$ para unos escalares $b_i$. Así

\begin{align*}
x+cy= (a_1+cb_1) v_1 + \dots + (a_n +c b_n) v_n
\end{align*}

también es una combinación lineal de $v_1, \dots, v_n$ y por tanto un elemento del espacio generado. Se sigue que $\text{span}(v_1,\dots, v_n)$ es uno de los subespacios que tienen a $v_1, \dots, v_n$. Así, este generado «aparece» en la intersección que hacemos de subespacios que tienen a estos vectores, y como la intersección de una familia de conjuntos está contenida en cada uno de esos conjuntos, concluimos que $\text{span}(v_1, \dots, v_n)$ contiene a dicha inteesección.

Argumentemos ahora la segunda parte de la proposición. Se usa el mismo argumento que arriba. Si $W$ es cualquier subespacio que contiene a $v_1, \dots, v_n$, entonces «aparece» en la intersección y por tanto $\text{span}(v_1, \dots, v_n)$ está contenido en $W$. Es decir, es más chico (en contención) que cualquier otro subespacio que contenga a estos vectores.

$\square$

Observación. Ya que la demostración previa puede resultar un poco confusa, presentamos una versión un poco más relajada de la idea que se usó. Sea $\lbrace W_i\mid i\in I\rbrace$ la familia de todos los subespacios de $V$ que contienen a $v_1, \dots, v_n$.

En el primer párrafo, probamos que

\begin{align*}
\text{span}(v_1,\dots, v_n)\subseteq W_i
\end{align*}

para todo $i\in I$. Luego $\text{span}(v_1, \dots, v_n)\subseteq \bigcap_{i\in I} W_i$.

En el segundo párrafo, probamos que $Span(v_1,\dots, v_n)$ es un subespacio que contiene a $v_1, \dots, v_n$. Es decir, entra en nuestra familia $\lbrace W_i\mid i\in I\rbrace$, es uno de los $W_i$, digamos $W_j$. Entonces

\begin{align*}
\text{span}(v_1, \dots, v_n)= W_j \supseteq \bigcap_{i\in I} W_i.
\end{align*}

En ese momento ya tenemos la primer igualdad: $\text{span}(v_1,\ldots,v_n)=\bigcap_{i\in I} W_i.$

Ahora, la segunda conclusión de la proposición se sigue de esto con una observación más: Si $W’$ es un subespacio que contiene a $v_1, \dots, v_n$ entonces también entra en nuestra familia de los $W_i$’s, es decir es $W_{p}$ para algún $p\in I$. Ahora usando el inciso $1$, tenemos que

\begin{align*}
\text{span}(v_1, \dots, v_n)= \bigcap_{i\in I} W_i \subseteq W_p=W’.
\end{align*}

Esto concluye la demostración.

Más adelante…

El concepto de combinación lineal es la piedra angular para definir varios otros conceptos importantes en espacios vectoriales. Es un primer paso para definir a los conjuntos de vectores generadores y a los conjuntos de vectores linealmente independientes. Una vez que hayamos desarrollado ambos conceptos, podremos hablar de bases de un espacio vectorial, y con ello hablar de la dimensión de un espacio vectorial.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Se puede expresar al vector $(1,3,0,5)$ como combinación lineal de $(0,1,0,3)$, $(0,-1,2,0)$ y $(2, 0,-1,-6)$? Si sí, encuentra una o más combinaciones lineales que den el vector $(1,3,0,5)$
  2. ¿Se puede expresar al polinomio $1+x^2 +3x^3 -x^4 +x^5$ como combinación lineal de los siguientes polinomios
    \begin{align*}
    x^2-3x^4,\\
    1+x^2-x^5,\\
    2x+x^4,\\
    2+x^2,\\
    5x+5x^2-x^5?
    \end{align*}
  3. Sea $P$ un plano en $\mathbb{R}^3$ por el origen y $L$ una recta de $\mathbb{R}^3$ por el origen y con dirección dada por un vector $v\neq 0$. Demuestra que la intersección de $L$ con $P$ es una recta si y sólo si existen dos vectores en $P$ tal que su suma sea $v$.
  4. Encuentra el conjunto generado por los vectores del espacio vectorial indicado
    • Las matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}$ y $\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}$ del espacio $M_{2}$.
    • Los vectores $(1,-1,0)$ y $(1,0,-1)$ del espacio $\mathbb{R}^3$.
    • Los polinomios $1$, $x$, $x^2$ y $x^3$ del espacio $\mathbb{R}[x]$.
  5. Sea $V$ un espacio vectorial. Si $v_1, \dots, v_n, x$ son vectores en un espacio vectorial $V$, ¿será cierto siempre que $\text{span}(v_1, \dots, v_n)\subseteq \text{span}(v_1, \dots, v_n, x)$? De ser así, ¿esta contención siempre es estricta? Demuestra tu respuesta o da un contraejemplo.
  6. Sean $v_1,\ldots, v_n$ y $x$ vectores en un espacio vectorial $V$. Supongamos que $v_n$ está en $\text{span}(v_1,\ldots,v_{n-1},x)$. Muestra que $$\text{span}(v_1,\ldots,v_{n-1},x)=\text{span}(v_1,\ldots,v_{n-1},v_n).$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Espacios vectoriales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la primer unidad de este curso de álgebra lineal estudiamos a profundidad al conjunto $F^n$ con sus operaciones de suma y multiplicación por escalar. Luego, hablamos de las matrices en $M_{m,n}(F)$ y vimos cómo pensarlas como transformaciones lineales. Les dimos una operación de producto que en términos de transformaciones lineales se puede pensar como la composición. Luego, hablamos de la forma escalonada reducida de una matriz y cómo llevar cualquier matriz a esta forma usando reducción gaussiana. Esto nos permitió resolver sistemas de ecuaciones lineales homogéneos y no homogeneos, así como encontrar inversas de matrices. Las habilidades desarrolladas en la primer parte del curso serán de mucha utilidad para la segunda, en donde hablaremos de espacios vectoriales.

En esta entrada definiremos el concepto de espacio vectorial y vectores. Para hacer esto, tomaremos como motivación el espacio $F^n$, que ya conocemos bien. Sin embargo, hay muchos otros ejemplos de objetos matemáticos que satisfacen la definición que daremos. Hablaremos de algunos de ellos.

En el transcurso de la unidad también hablaremos de otros conceptos básicos, incluido el de subespacio. Hablaremos de conjuntos linealmente independientes, de generadores y de bases. Esto nos llevará a establecer una teoría de la dimensión de un espacio vectorial. Las bases son de fundamental importancia pues en el caso de dimensión finita, nos permitirán pensar a cualquier espacio vectorial «como si fuera $F^n$ «. Más adelante precisaremos en qué sentido es esto.

Después, veremos cómo pasar de un espacio vectorial a otro mediante transformaciones lineales. Veremos que las transformaciones entre espacios vectoriales de dimensión finita las podemos pensar prácticamente como matrices, siempre y cuando hayamos elegido una base para cada espacio involucrado. Para ver que estamos haciendo todo bien, debemos verificar que hay una forma sencilla de cambiar esta matriz si usamos una base distinta, y por ello estudiaremos a las matrices de cambio de base.

Esta fuerte relación que existe entre transformaciones lineales y y matrices nos permitirá llevar información de un contexto a otro. Además, nos permitirá definir el concepto de rango para una matriz (y transformación vectorial). Hasta ahora, sólo hemos distinguido entre matrices invertibles y no invertibles. Las matrices invertibles corresponden a transformaciones lineales que «guardan toda la información». El concepto de rango nos permitirá entender de manera más precisa cuánta información guardan las transformaciones lineales no invertibles.

Recordando a $F^n$

Antes de definir el concepto de espacio vectorial en toda su generalidad, recordemos algunas de las cosas que suceden con $F^n$. De hecho, puedes pensar en algo mucho más concreto como $\mathbb{R}^4$.

Como recordatorio, comenzamos tomando un campo $F$ y dijimos que, para fines prácticos, podemos pensar que se trata de $\mathbb{R}$ y $\mathbb{C}$. A los elementos de $F$ les llamamos escalares.

Luego, consideramos todas las $n$-adas de elementos de $F$ y a cada una de ellas le llamamos un vector. A $F^n$ le pusimos una operación de suma, que tomaba dos vectores en $F^n$ y nos daba otro. Además, le pusimos una operación de producto por escalar, la cual tomaba un escalar en $F$ y un vector en $F^n$ y nos daba como resultado un vector. Para hacer estas operaciones procedíamos entrada a entrada.

Sin embargo, hay varias propiedades que demostramos para la suma y producto por escalar, para las cuales ya no es necesario hablar de las entradas de los vectores. Mostramos que todo lo siguiente pasa:

  1. (Asociatividad de la suma) Para cualesquiera vectores $u,v,w$ en $F^n$ se cumple que $(u+v)+w=u+(v+w)$.
  2. (Conmutatividad de la suma) Para cualesquiera vectores $u,v$ en $F^n$ se cumple que $u+v=v+u$.
  3. (Identidad para la suma) Existe un vector $0$ en $F^n$ tal que $u+0=u=0+u$.
  4. (Inversos para la suma) Para cualquier vector $u$ en $F^n$ existe un vector $v$ en $F^n$ tal que $u+v=0=v+u$.
  5. (Distributividad para la suma escalar) Para cualesquiera escalares $a,b$ en $F$ y cualquier vector $v$ en $F^n$ se cumple que $(a+b)v=av+bv$.
  6. (Distributividad para la suma vectorial) Para cualquier escalar $a$ en $F$ y cualesquiera vectores $v,w$ en $F^n$ se cumple que $a(v+w)=av+aw$.
  7. (Identidad de producto escalar) Para la identidad multiplicativa $1$ del campo $F$ y cualquier vector $v$ en $F^n$ se cumple que $1v=v$.
  8. (Compatibilidad de producto escalar) Para cualesquiera dos escalares $a,b$ en $F$ y cualquier vector $v$ en $F^n$ se cumple que $(ab)v=a(bv)$.

Los primeros cuatro puntos son equivalentes a decir que la operación suma en $F^n$ es un grupo conmutativo. Resulta que hay varios objetos matemáticos que satisfacen todas estas ocho propiedades o axiomas de espacio vectorial, y cuando esto pasa hay muchas consecuencias útiles que podemos deducir. La esencia del álgebra lineal precisamente consiste en deducir todo lo posible en estructuras que tienen las ocho propiedades anteriores. Estas estructuras son tan especiales, que tienen su propio nombre: espacio vectorial.

Definición de espacio vectorial

Estamos listos para la definición crucial del curso.

Definición. Sea $F$ un campo. Un espacio vectorial sobre el campo $F$ es un conjunto $V$ con operaciones de suma y producto por escalar, que denotaremos por \begin{align*}
+:& V\times V \to V \quad \text{y}\\
\cdot:& F\times V \to V,
\end{align*}

para las cuales se cumplen las ocho propiedades de la sección anterior. En otras palabras:

  • El conjunto $V$ es un grupo conmutativo con la suma.
  • Se tiene asociatividad para la suma escalar y la suma vectorial
  • Se tiene identidad y compatibilidad de la mulltiplicación escalar.

A los elementos de $F$ les llamamos escalares. A los elementos de $F^n$ les llamamos vectores. Para hacer restas, las definimos como $u-v=u+(-v)$, donde $-v$ es el inverso aditivo de $v$ con la suma vectorial. Usualmente omitiremos el signo de producto escalar, así que escribiremos $av$ en vez de $a\cdot v$ para $a$ escalar y $v$ vector.

La definición da la impresión de que hay que verificar muchas cosas. De manera estricta, esto es cierto. Sin embargo, de manera intuitiva hay que pensar que a grandes rasgos los espacios vectoriales son estructuras en donde podemos sumar elementos entre sí y multiplicar vectores por escalares (externos) sin que sea muy complicado.

Como ya mencionamos, el conjunto $F^n$ con las operaciones de suma y multiplicación por escalar que se hacen entrada por entrada es un espacio vectorial sobre $F$. En lo que resta de la entrada, hablaremos de otros ejemplos de espacios vectoriales que nos encontraremos frecuentemente.

Espacios vectoriales de matrices

Otros ejemplos de espacios vectoriales con los que ya nos encontramos son los espacios de matrices. Dado un campo $F$ y enteros positivos $m$ y $n$, el conjunto de matrices en $M_{m,n}(F)$ es un espacio vectorial en donde la suma se hace entrada a entrada y la multiplicación escalar también.

¿Qué es lo que tenemos que hacer para mostrar que en efecto esto es un espacio vectorial? Se tendrían que verificar las 8 condiciones en la definición de espacio vectorial. Esto lo hicimos desde la primer entrada del curso, en el primer teorema de la sección «Operaciones de vectores y matrices». Vuelve a leer ese teorema y verifica que en efecto se enuncian todas las propiedades necesarias.

Aquí hay que tener cuidado entonces con los términos que se usan. Si estamos hablando del espacio vectorial $F^n$, las matrices no forman parte de él, y las matrices no son vectores. Sin embargo, si estamos hablando del espacio vectorial $M_{m,n}(F)$, entonces las matrices son sus elementos, y en este contexto las matrices sí serían vectores.

Ejemplo. Sea $\mathbb{F}_2$ el campo con $2$ elementos. Consideremos $M_{2}(\mathbb{F}_2)$. Este es un espacio vectorial. Tiene $16$ vectores de la forma $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, en donde cada entrada es $0$ o $1$. La suma y la multiplicación por escalar se hacen entrada a entrada y con las reglas de $\mathbb{F}_2$. Por ejemplo, tenemos $$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$\triangle$

Espacios vectoriales de funciones

Ahora veremos algunos ejemplos de espacios vectoriales cuyos elementos son funciones. Esto puede parecer algo abstracto, pero en unos momentos veremos algunos ejemplos concretos que nos pueden ayudar a entender mejor.

Sea $F$ un campo y consideremos cualquier conjunto $X$. Consideremos el conjunto $V$ de todas las posibles funciones de $X$ a $F$. A este conjunto queremos ponerle operaciones de suma y de multiplicación por escalar.

Para definir la suma, tomemos dos funciones que van de $X$ a $F$, digamos $f:X\to F$ y $g:X\to F$. Definiremos a la función $f+g$ como la función que a cada $x$ en $X$ lo manda a $f(x)+g(x)$. Aquí estamos usando la suma del campo $F$. En símbolos, $(f+g):X\to F$ tiene regla de asignación $$(f+g)(x)=f(x)+g(x).$$

Para definir el producto por escalar, tomamos una función $f:X\to F$ y un escalar $c$ en el campo $F$. La función $cf$ será la función $cf:X\to F$ con regla de asignación $$(cf)(x)=cf(x)$$ para todo $x$ en $X$.

Resulta que el conjunto $V$ de funciones de $X$ a $F$ con estas operaciones de suma y producto, es un espacio vectorial. Podemos probar, por ejemplo, la asociatividad de la suma. Para ello, la primer cosa que necesitamos mostrar es la asociatividad de la suma. Es decir, que si tenemos $f:X\to F$, $g:X\to F$ y $h:X\to F$, entonces $$(f+g)+h = f+ (g+h).$$

Esta es una igualdad de funciones. Para que sea cierta, tenemos que verificarla en todo el dominio, así que debemos mostrar que para todo $x$ en $X$ tenemos que $$((f+g)+h)(x)=(f+(g+h))(x).$$

Para demostrar esto, usemos la definición de suma de funciones y la asociatividad de la suma del campo $F$. Con ello, podemos realizar la siguiente cadena de igualdades:

\begin{align*}
((f+g)+h)(x)&=(f+g)(x)+h(x)\\
&=(f(x)+g(x)) + h(x) \\
&=f(x) + (g(x)+h(x)) \\
&=f(x) + (g+h)(x)\\
&=(f+(g+h))(x).
\end{align*}

Así, la suma en $V$ es asociativa. El resto de las propiedades se pueden demostrar con la misma receta:

  • Se enuncia la igualdad de funciones que se quiere mostrar.
  • Para que dicha igualdad sea cierta, se tiene que dar en cada elemento del dominio, así que se evalúa en cierta $x$.
  • Se prueba la igualdad usando las definiciones de suma y producto por escalar, y las propiedades de campo de $F$.

Ejemplo. El ejemplo anterior es muy abstracto, pues $X$ puede ser cualquier cosa. Sin embargo, hay muchos espacios de funciones con los cuales se trabaja constantemente. Por ejemplo, si el campo es el conjunto $\mathbb{R}$ de reales y $X$ es el intervalo $[0,1]$, entonces simplemente estamos hablando de las funciones que van de $[0,1]$ a los reales.

Si tomamos $f:[0,1]\to \mathbb{R}$ y $g:[0,1]\to \mathbb{R}$ dadas por \begin{align*}f(x)&= \sin x – \cos x\\ g(x) &= \cos x + x^2,\end{align*} entonces su suma simplemente es la función $f+g:[0,1]\to \mathbb{R}$ definida por $(f+g)(x)=\sin x + x^2$. Si tomamos, por ejemplo, el escalar $2$, entonces la función $2f:[0,1]\to \mathbb{R}$ no es nada más que aquella dada por
$$(2f)(x)= 2\sin x – 2\cos x.$$

Así como usamos el intervalo $[0,1]$, pudimos también haber usado al intervalo $[-2,2)$, al $(-5,\infty]$, o a cualquier otro.

$\triangle$

Espacios vectoriales de polinomios

Otro ejemplo de espacios vectoriales que nos encontraremos frecuentemente son los espacios de polinomios. Si no recuerdas con precisión cómo se construyen los polinomios y sus operaciones, te recomendamos repasar este tema con material disponible aquí en el blog.

Dado un campo $F$ y un entero positivo $n$ usaremos $F[x]$ para referirnos a todos los polinomios con coeficientes en $F$ y usaremos $F_n[x]$ para referirnos a aquellos polinomios con coeficientes en $F$ y grado a lo más $n$. Aunque el polinomio cero no tiene grado, también lo incluiremos en $F_n[x]$.

Ejemplo. Si $F$ es $\mathbb{C}$, el campo de los números complejos, entonces todos los siguientes son polinomios en $\mathbb{C}[x]$: \begin{align*}p(x)&=(2+i)x^6 + (1+i),\\ q(x)&=3x^2+2x+1,\\ r(x)&=5x^7+(1-3i)x^5-1.\end{align*}

Tanto $p(x)$ como $q(x)$ están en $\mathbb{C}_6[x]$, pues su grado es a lo más $6$. Sin embargo, $r(x)$ no está en $\mathbb{C}_6[x]$ pues su grado es $7$.

El polinomio $q(x)$ también es un elemento de $\mathbb{R}[x]$, pues tiene coeficientes reales. Pero no es un elemento de $\mathbb{R}_1[x]$ pues su grado es demasiado grande.

$\triangle$

Recuerda que para sumar polinomios se tienen que sumar los coeficientes de grados correspondientes. Al hacer multiplicación por escalar se tienen que multiplicar cada uno de los coeficientes. De esta forma, si $f(x)=x^2+1$ y $g(x)=x^3+\frac{x^2}{2}-3x-1$, entonces $$(f+g)(x)=x^3+\frac{3x^2}{2}-3x,$$ y $$(6g)(x)=6x^3+3x^2-18x-6.$$

Resulta que $F[x]$ con la suma de polinomios y con el producto escalar es un espacio vectorial. Puedes verificar cada uno de los axiomas por tu cuenta.

Observa que la suma de dos polinomios de grado a lo más $n$ tiene grado a lo más $n$, pues no se introducen términos con grado mayor que $n$. Del mismo modo, si tenemos un polinomio con grado a lo más $n$ y lo multiplicamos por un escalar, entonces su grado no aumenta. De esta forma, podemos pensar a estas operaciones como sigue:
\begin{align*}
+:& F_n[x] \times F_n[x] \to F_n[x]\\
\cdot: & F\times F_n[x] \to F_n[x].
\end{align*}

De esta forma, $F_n[x]$ con la suma de polinomios y producto escalar de polinomios también es un espacio vectorial.

Más adelante…

Ya dimos la definición de espacio vectorial y vimos varios ejemplos. Dentro de algunas entradas veremos como conseguir muchos más espacios vectoriales.

En el último ejemplo pasa algo curioso: el espacio $F_n[x]$ es un subconjunto del espacio $F[x]$ y además es un espacio vectorial con las mismas operaciones que $F[x]$. Este es un fenómeno muy importante en álgebra lineal. Decimos que $F_n[x]$ es un subespacio de $F[x]$. En la siguiente entrada definiremos en general qué es un subespacio de un espacio vectorial y veremos algunas propiedades que tienen los subespacios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • A partir de los axiomas de espacio vectorial, muestra lo siguiente para un espacio vectorial $V$:
    • La identidad de la suma vectorial es única, es decir, que si existe otro elemento $e$ en $V$ tal que $u+e=u=e+u$ para todo $u$ en $V$, entonces $e=0$.
    • Que si $0$ es la identidad aditiva del campo $F$ y $v$ es cualquier vector en $V$, entonces $0v$ es la identidad de la suma vectorial. En símbolos, $0v=0$, donde el primer $0$ es el de $F$ y el segundo el de $V$.
    • Se vale la regla de cancelación para la suma vectorial, es decir, que si $u,v,w$ son vectores en $V$ y $u+v=u+w$, entonces $v=w$.
    • Se vale la regla de cancelación para el producto escalar, es decir, que si $a$ es un escalar no cero del campo $F$ y $u,v$ son vectores de $V$ para los cuales $au=av$, entonces $u=v$.
    • Que el inverso aditivo de un vector $v$ para la suma vectorial en $V$ es precisamente $(-1)v$, es decir, el resultado de hacer la multiplicación escalar de $v$ con el inverso aditivo del $1$ del campo $F$.
  • Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Sean $u$, $v$ y $w$ vectores en $V$. Justifica la siguiente igualdad enunciando de manera explícita todos los axiomas de espacio vectorial que uses $$u+5v-3w+2u-8v= -3(w+v-u).$$
  • Termina de demostrar que en efecto los espacios de funciones con la suma y producto escalar que dimos son espacios de funciones.
  • Enlista todos los polinomios de $(\mathbb{F}_2)_3[x]$. A continuación hay algunos: $$0, x+1, x^2+x, x^3+1.$$ Para cada uno de ellos, encuentra quien es su inverso aditivo para la suma vectorial de $(\mathbb{F}_2)_3[x]$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Introducción al curso, vectores y matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

Esta es la primer entrada correspondiente a las notas del curso Álgebra Lineal I. En esta serie de entradas, cubriremos todo el temario correspondiente al plan de estudios de la materia en la Facultad de Ciencias de la UNAM. Las notas están basadas fuertemente en el libro Essential Lineal Algebra with Applications de Titu Andreescu.

El curso se trata, muy a grandes rasgos, de definir espacios vectoriales y estudiar muchas de sus propiedades. Un espacio vectorial con el que tal vez estés familiarizado es $\mathbb{R}^n$, donde sus elementos son vectores con $n$ entradas. En él se pueden hacer sumas entrada a entrada, por ejemplo, si $n=3$ una suma sería

\begin{align*}
(5,-1,2)+(1,4,9)=(6,3,11).
\end{align*}

También se puede multiplicar un vector por un número real, haciéndolo entrada a entrada, por ejemplo,

\begin{align*}
3(1,5,-2,6)=(3,15,-6,18).
\end{align*}

El álgebra lineal estudia espacios vectoriales más generales que simplemente $\mathbb{R}^n$. Como veremos más adelante, hay muchos objetos matemáticos en los que se puede definir una suma y un producto escalar. Algunos ejemplos son los polinomios, ciertas familias de funciones y sucesiones. La ventaja de estudiar estos espacios desde el punto de vista del álgebra lineal es que todas las propiedades que probemos «en general», se valdrán para todos y cada uno de estos ejemplos.

Lo que haremos en la primer unidad del curso es entender muy a profundidad a $F^n$, una generalización de $\mathbb{R}^n$ en la que usamos un campo arbitrario $F$. También, entenderemos a las matrices en $M_{m,n}(F)$, que son arreglos rectangulares con entradas en $F$. La unidad culmina con estudiar sistemas de ecuaciones lineales y el método de reducción Gaussiana.

Más adelante veremos que estudiar estos conceptos primero es muy buena idea pues los espacios vectoriales más generales tienen muchas de las propiedades de $F^n$, y podemos entender a ciertas transformaciones entre ellos al entender a $M_{m,n}(F)$.

Breve comentario sobre campos

En este curso no nos enfocaremos en estudiar a profundidad las propiedades que tienen los campos como estructuras algebraicas. De manera pragmática, pensaremos que un campo $F$ consiste de elementos que se pueden sumar y multiplicar bajo propiedades bonitas:

  • La suma y el producto son asociativas, conmutativas, tienen neutro (que llamaremos $0$ y $1$ respectivamente y tienen inversos (i.e. se vale «restar» y «dividir»)
  • La suma y producto satisfacen la regla distributiva

De hecho, de manera muy práctica, únicamente usaremos a los campos $\mathbb{Q}$ de racionales, $\mathbb{R}$ de reales, $\mathbb{C}$ de complejos y $\mathbb{F}_2$, el campo de dos elementos $0$ y $1$. Este último sólo lo usaremos para observar que hay algunas sutilezas cuando usamos campos con una cantidad finita de elementos.

Para todos estos campos, supondremos que sabes cómo se suman y multiplican elementos. Si necesitas dar un repaso a estos temas, puedes echarle un ojo a las entradas del curso Álgebra Superior II, que también están aquí en el blog.

Nociones iniciales de álgebra lineal: escalares, vectores y matrices

Quizás te has encontrado con vectores y matrices en otros cursos. Por ejemplo, en geometría analítica es usual identificar a un vector $(x,y)$ con un punto en el plano cartesiano, o bien con una «flecha» que va del origen a ese punto. En álgebra lineal nos olvidaremos de esta interpretación por mucho tiempo. Será hasta unidades posteriores que tocaremos el tema de geometría de espacios vectoriales. Por el momento, sólo nos importan los vectores desde el punto de vista algebraico.

Tomemos un campo $F$. A los elementos de $F$ les llamaremos escalares. Para un entero positivo $n$, un vector $X$ en $F^n$ consiste de un arreglo de $n$ entradas $a_1,a_2,\ldots,a_n$ que pueden estar dispuestas en un vector fila $$X=(a_1, a_2,\ldots, a_n),$$ o bien un vector columna $$X=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}.$$

Para $i=1,\ldots,n$, a $a_i$ le llamamos la $i$-ésima coordenada o $i$-ésima entrada de $X$.

Como vectores, puedes pensar que el vector fila y el vector columna correspondientes son el mismo. Abajo veremos en qué sentido tenemos que pensarlos como diferentes. Aunque como vectores sean los mismos, los vectores columna tienen varias ventajas conceptuales en álgebra lineal.

Ejemplo 1. El vector $$X=\left(\frac{1}{2}, -1, \frac{2}{3}, 4\right).$$ tiene cuatro entradas, y todas ellas son números racionales. Por lo tanto, es un vector en $\mathbb{Q}^4$. Su primer entrada es $\frac{1}{2}$. Está escrito como vector fila, pero podríamos escribirlo también como vector columna: $$\begin{pmatrix} \frac{1}{2} \\ -1 \\ \frac{2}{3} \\ 4 \end{pmatrix}.$$

El vector $$Y=\left(\pi, \frac{3}{4}, 5, 6, \sqrt{2}\right)$$ es un vector fila en $\mathbb{R}^5$, pero no en $\mathbb{Q}^5$, pues no todas sus entradas son racionales. A $Y$ también lo podemos pensar como un vector en $\mathbb{C}$.

$\triangle$

Una matriz en $M_{m,n}(F)$ es un arreglo rectangular de elementos en $F$ dispuestos en $m$ filas y $n$ columnas como sigue:

$$A=\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n}\\
\vdots & & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{pmatrix}.$$

Al escalar $a_{ij}$ le llamamos la entrada $(i,j)$ de $A$.

Para cada $i=1,\ldots,m$, definimos a la $i$-ésima fila de $A$ como el vector fila $$L_i=(a_{i1},a_{i2},\ldots,a_{in}),$$ y para cada $j=1,2,\ldots,n$ definimos a la $j$-ésima columna de $A$ como el vector columna $$C_j=\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj}\end{pmatrix}.$$

Veamos algunas aclaraciones de notación. Cuando $m=n$, las matrices en $M_{m,n}(F)$ tienen la misma cantidad de filas que de columnas. En este caso simplemente usamos la notación $M_{n}(F)$ para ahorrarnos una letra, y si una matriz está en $M_{n}(F)$, le llamamos una matriz cuadrada. También, en ocasiones expresamos a una matriz en forma compacta diciendo cuántas filas y columnas tiene y usando la notación $A=[a_{ij}]$.

Ejemplo 2. Consideremos la matriz $A$ en $M_3(\mathbb{R})$ dada por $A=[a_{ij}]=[i+2j]$. Si queremos poner a $A$ de manera explícita, simplemente usamos la fórmula en cada una de sus entradas:

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2 & 1+2\cdot 3\\
2+2\cdot 1 & 2+2\cdot 2 & 2+2\cdot 3\\
3+2\cdot 1 & 3+2\cdot 2 & 3+2\cdot 3\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 & 7\\
4 & 6 & 8\\
5 & 7 & 9\\
\end{pmatrix}
\end{align*}

Esta es una matriz cuadrada. Sin embargo, la matriz $B$ en $M_{3,2}(\mathbb{R})$ con la misma regla $B=[b_{ij}]=[i+2j]$ no es una matriz cuadrada pues es

\begin{align*}
B=\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2\\
2+2\cdot 1 & 2+2\cdot 2\\
3+2\cdot 1 & 3+2\cdot 2\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 \\
4 & 6 \\
5 & 7 \\
\end{pmatrix},
\end{align*}

la cual es una matriz con $3$ filas y $2$ columnas.

$\triangle$

Cualquier vector fila en $F^n$ lo podemos pensar como una matriz en $M_{1n}(F)$ y cualquier vector columna en $F^n$ lo podemos pensar como una matriz en $M_{n1}(F)$. En este sentido estos dos vectores sí serían distintos. Usualmente será claro si se necesita o no hacer la distinción.

Para que dos vectores o dos matrices sean iguales, tienen que serlo coordenada a coordenada.

Vectores y matrices especiales

Al vector en $F^n$ con todas sus entradas iguales al cero del campo $F$ le llamamos el vector cero y lo denotamos con $0$. El contexto nos ayuda a decidir si estamos hablando del escalar cero (el neutro aditivo del campo $F$) o del vector cero.

De manera similar, a la matriz en $M_{m,n}$ con todas sus entradas iguales al cero del campo $F$ le llamamos la matriz cero y la denotamos con $O_{m,n}$. Si $m=n$, la llamamos simplemente $O_n$.

Otra matriz especial que nos encontraremos frecuentemente es la matriz identidad. Para cada $n$, es la matriz $I_n$ en $M_n(F)$ tal que cada entrada de la forma $a_{ii}$ es igual a uno (el neutro multiplicativo de $F$) y el resto de sus entradas son iguales a $0$.

Cuando estamos trabajando en $M_n(F)$, es decir, con matrices cuadradas, hay otras familias de matrices que nos encontraremos frecuentemente. Una matriz $A=[a_{ij}]$ en $M_{n}(F)$:

  • Es diagonal si cuando $i\neq j$, entonces $a_{ij}=0$.
  • Es triangular superior si cuando $i>j$, entonces $a_{ij}=0$.
  • Y es triangular inferior si cuando $i<j$ entonces $a_{ij}=0$.

A las entradas de la forma $a_{ii}$ se les conoce como las entradas de la diagonal principal de la matriz. En otras palabras, $A$ es diagonal cuando sus únicas entradas no cero están en la diagonal principal. Es triangular superior cuando sus entradas por debajo de la diagonal principal son iguales a cero. Y de manera similar, es triangular inferior cuando sus entradas por encima de la diagonal principal son iguales a cero.

Ejemplo. La matriz $O_{3,2}$ de $M_{3,2}(\mathbb{Q})$ es la siguiente

$$O_{3,2}=\begin{pmatrix}
0 & 0 \\ 0& 0 \\ 0 & 0 \\
\end{pmatrix}$$

La matriz $I_4$ de $M_{4}(F)$ es la siguiente

$$I_4=\begin{pmatrix}
1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

Esta matriz identidad es diagonal, triangular superior y triangular inferior. Una matriz diagonal distinta a la identidad podría ser la siguiente matriz en $M_3(\mathbb{Q})$:

$$\begin{pmatrix}
1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \\
\end{pmatrix}.$$

Una matriz que es triangular superior, pero que no es diagonal (ni triangular inferior), podría ser la siguiente matriz en $M_4(\mathbb{R})$:

$$\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 0\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

$\triangle$

Operaciones de vectores y matrices

Si tenemos dos matrices $A=[a_{ij}]$ y $B=[b_{ij}]$ en $M_{m,n}(F)$, entonces podemos definir a la matriz suma $A+B$ como la matriz cuyas entradas son $[a_{ij}+b_{ij}]$, es decir, se realiza la suma (del campo $F$) entrada por entrada.

Ejemplo 1. Si queremos sumar a las matrices $A$ y $B$ en $M_{4}(\mathbb{R})$ dadas por $$A=\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 2\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

y $$B=\begin{pmatrix}
1 & 1 & -1 & -3\\ 0 & 1 & 1 & -2\\ 0& 0 & 1 & 1\\ 0 & 0 & 0 & 1
\end{pmatrix},$$

entonces hacemos la suma entrada por entrada para obtener:

$$A+B=\begin{pmatrix}
2 & 1+\sqrt{2} & 1 & -3+\sqrt{5}\\ 0 & 2 & 1+\sqrt{3} & 0\\ 0 & 0 & 2 & 1+\sqrt{2}\\ 0 & 0 & 0 & 2
\end{pmatrix}.$$

$\triangle$

Es muy importante que las dos matrices tengan la misma cantidad de filas y renglones. Insistiendo: si no coinciden la cantidad de filas o de columnas, entonces las matrices no se pueden sumar.

Si tenemos una matriz $A=[a_{ij}]$ en $M_{m,n}(F)$ y un escalar $c$ en $F$, podemos definir el producto escalar de $A$ por $c$ como la matriz $cA=[ca_{ij}]$, es decir, aquella que se obtiene al multiplicar cada una de las entradas de $A$ por el escalar $c$ (usando la multiplicación del campo $F$).

Ejemplo 2. Al tomar la siguiente matriz en $M_{2}(\mathbb{C})$ $$A=\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$ y el escalar $i$ en $\mathbb{C}$, se tiene que $$iA=\begin{pmatrix} i\cdot 1 &i\cdot i \\ i\cdot (-i) & i\cdot 1\end{pmatrix} = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}.$$

$\triangle$

Dada una matriz $A$, a la matriz $(-1)A$ le llamamos simplemente $-A$, y definimos $A-B:=A+(-B)$.

Como todo vector en $F^n$ se puede pensar como una matriz, estas operaciones también se pueden definir para vectores para obtener la suma de vectores y el producto escalar en vectores.

En álgebra lineal frecuentemente hablaremos de escalares, vectores y matrices simultáneamente. Cada que veas una una variable es importante que te preguntes de cuál de estos tipos de objeto es. También, cada que veas una operación (por ejemplo, una suma), es importante preguntarte si es una suma de escalares, vectores o matrices.

Muchas de las buenas propiedades de las operaciones de suma y producto en el campo $F$ también se cumplen para estas definiciones de suma y producto escalar de vectores y matrices.

Teorema. Sean $A,B,C$ matrices en $M_{m,n}(F)$ y $\alpha,\beta,\gamma$ escalares en $F$. Entonces la suma de matrices:

  • Es asociativa: $(A+B)+C = A+(B+C)$
  • Es conmutativa: $A+B=B+A$
  • Tiene neutro: $A+O_{m,n}=A=O_{m,n}+A$
  • Tiene inversos: $A+(-A)=O_{m,n}=(-A)+A$

Además,

  • La suma de escalares y el producto escalar se distribuyen: $(\alpha+\beta)A=\alpha A + \beta A$
  • La suma de matrices y el producto escalar se distribuyen: $\alpha(A+B)=\alpha A + \alpha B$
  • El producto escalar es homogéneo: $\alpha(\beta A) = (\alpha \beta) A$
  • El $1$ es neutral para el producto escalar: $1A = A$

Un teorema análogo se vale al cambiar matrices por vectores. La demostración de este teorema se sigue directamente de las propiedades del campo $F$. La notación de entradas nos ayuda mucha a escribir una demostración sin tener que escribir demasiadas entradas una por una. Veamos, como ejemplo, la demostración de la primera propiedad.

Demostración. Tomemos matrices $A=[a_{ij}]$, $B=[b_{ij}]$ y $C=[c_{ij}]$ en $M_{m,n}(F)$. Para mostrar que $$(A+B)+C=A+(B+C),$$ tenemos que mostrar que la entrada $(i,j)$ del lado izquierdo es igual a la entrada $(i,j)$ del lado derecho para cada $i=1,\ldots,m$ y $j=1,\ldots,n$.

Por definición de suma, $A+B=[a_{ij}]+[b_{ij}]=[a_{ij}+b_{ij}]$. Por ello, y de nuevo por definicón de suma, $$(A+B)+C=[(a_{ij}+b_{ij})+c_{ij}].$$ De manera similar, $$A+(B+C)=[a_{ij}+(b_{ij}+c_{ij})].$$

Pero en $F$ la suma es asociativa, de modo que $$(a_{ij}+b_{ij})+c_{ij}=a_{ij}+(b_{ij}+c_{ij}).$$

Con esto hemos demostrado que $(A+B)+C$ y $A+(B+C)$ son iguales entrada a entrada, y por lo tanto son iguales como matrices.

$\square$

La receta para demostrar el resto de las propiedades es la misma:

  1. Usar la definición de suma o producto por escalares para saber cómo es la entrada $(i,j)$ del lado izquierdo y del lado derecho.
  2. Usar las propiedades del campo $F$ para concluir que las entradas son iguales.
  3. Concluir que las matrices son iguales.

Para practicar las definiciones y esta técnica, la demostración del resto de las propiedades queda como tarea moral. A partir de ahora usaremos todas estas propiedades frecuentemente, así que es importante que las tengas en cuenta.

Base canónica de vectores y matrices

Cuando estamos trabajando en $F^n$, al vector $e_i$ tal que su $i$-ésima entrada es $1$ y el resto son $0$ lo llamamos el $i$-ésimo vector de la base canónica. Al conjunto de vectores $\{e_1,\ldots,e_n\}$ le llamamos la base canónica de $F^n$.

De manera similar, cuando estamos trabajando en $M_{m,n}(F)$, para cada $i=1,\ldots,m$ y $j=1,\ldots,n$, la matriz $E_{ij}$ tal que su entrada $(i,j)$ es $1$ y todas las otras entradas son cero se le conoce como la matriz $(i,j)$ de la base canónica. Al conjunto de todas estas matrices $E_{ij}$ le llamamos la base canónica de $M_{m,n}(F)$.

Ejemplo 1. El vector $e_2$ de $F^3$ es $(0,1,0)$. Ten cuidado, pues este es distinto al vector $e_2$ de $F^5$, que es $(0,1,0,0,0)$.

La matriz $E_{12}$ de $M_{2,3}(\mathbb{R})$ es $$\begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

$\triangle$

Más adelante veremos el concepto de base en general, cuando hablemos de espacios vectoriales. Por el momento, la intuición para álgebra lineal es que una base es un conjunto que nos ayuda a generar elementos que nos interesan mediante sumas y productos escalares. Los siguientes resultados dan una intuición inicial de este fenómeno.

Teorema. Todo vector $X$ en $F^n$ se puede escribir de manera única de la forma $$X=x_1e_1+x_2e_2+\ldots+x_ne_n,$$ en donde $x_1,\ldots,x_n$ son escalares en $F$ y $\{e_1,\ldots,e_n\}$ es la base canónica.

Demostración. Si $X$ es un vector en $F^n$, entonces es de la forma $X=(x_1,x_2,\ldots,x_n)$. Afirmamos que las coordenadas de $X$ son los $x_i$ buscados.

En efecto, tomemos una $i=1,\ldots,n$. Como $e_i$ tiene $1$ en la $i$-ésima entrada y $0$ en el resto, entonces $x_ie_i$ es el vector con $x_i$ en la $i$-ésima entrada y $0$ en el resto. De esta forma, sumando entrada a entrada, tenemos

\begin{align*}
x_1e_1+x_2e_2+\ldots+x_ne_n&=\begin{pmatrix} x_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \begin{pmatrix} 0\\ 0 \\ 0 \\ \vdots \\ x_n \end{pmatrix}\\
&=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X.
\end{align*}

Esto muestra la existencia.

Para demostrar la unicidad, un argumento análogo muestra que si tenemos otros escalares $y_1,\ldots,y_n$ que cumplan, entonces:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X=y_1e_1+\ldots+y_ne_n=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix},$$

de modo que $x_i=y_i$ para todo $i=1,\ldots,n$.

$\square$

Tenemos un resultado análogo para matrices.

Teorema. Toda matriz $A$ en $M_{m,n}(F)$ se puede escribir de manera única de la forma $$A=\sum_{i=1}^m \sum_{j=1}^n x_{ij} E_{ij},$$ en donde para $i=1,\ldots,m$ y $j=1,\ldots,n$, se tiene que $x_{ij}$ son escalares en $F$ y $E_{ij}$ son las matrices de la base canónica.

La demostración es muy similar a la del teorema anterior y como práctica queda como tarea moral.

Ejemplo 2. La matriz $$A=\begin{pmatrix} 2 & 0\\ 0 & -1 \\ 3 & 5 \end{pmatrix}$$ en $M_{3,2}(\mathbb{C})$ se expresa de manera única en términos de la base canónica como $$A=2E_{11}-1E_{22}+3E_{31}+5E_{32}.$$

$\square$

Más adelante…

En esta entrada dimos una breve introducción al álgebra lineal. Ya definimos la suma y el producto escalar para vectores y matrices. En la siguiente entrada hablaremos de otro producto que sucede en álgebra lineal: la de una matriz en $M_{m,n}(F)$ por un vector en $F^n$. Veremos que esta multiplicación nos permite pensar a una matriz $A$ como una función $\varphi_A:F^n\to F^m$ con ciertas propiedades especiales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Explica por qué no puedes sumar la matriz $I_5$ con la matriz $O_4$.
  • Muestra que la suma de dos matrices diagonales es diagonal. Haz lo mismo para matrices triangulares superiores y para matrices triangulares inferiores.
  • Termina de demostrar el teorema de propiedades de las operaciones de suma y producto escalar.
  • Explica por qué si una matriz es simultáneamente triangular superior y triangular inferior, entonces es diagonal.
  • Expresa a la siguiente matriz como combinación lineal de matrices de la base canónica:
    $$\begin{pmatrix}
    2 & \frac{1}{2} & 0 & 1\\
    3 & -3 & 3 & -3\\
    7 & -8 & -1 & 0
    \end{pmatrix}.$$
  • Demuestra el teorema de representación de matrices en términos de la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM».