Archivo de la etiqueta: enteros

Álgebra Superior II: Números primos y sus propiedades

Por Ana Ofelia Negrete Fernández

Introducción

En esta entrada hablaremos de los protagonistas de entre los números enteros: los números primos. Es difícil poder enunciar en palabras sencillas la importancia que tienen este tipo de números, así que haremos un recorrido que incluye lo siguiente. Comenzaremos dando la definición de qué es un número primo, y haremos algunas aclaraciones conceptuales. Luego, enunciaremos propiedades de divisibilidad que cumplen los números primos y que son muy únicas a ellos. Esto nos ayudará a entender un poco de las razones por las cuales son especiales.

Finalmente, dejaremos preparado el terreno para poder hablar de dos resultados fundamentales sobre los números primos en la próxima entrada: el teorema fundamental de la aritmética y la infinidad del conjunto de números primos. El primer resultado nos permitirá pensar a los números primos como los átomos de los números enteros, ya que a partir de multiplicarlos se obtendrá cualquier entero, sea éste primo o compuesto.

Definición de números primos

La definición con la que trabajaremos es la siguiente.

Definición. Un entero número entero $p$ es primo si y sólo si es positivo y tiene exactamente cuatro divisores: $1, \enspace -1, \enspace z \enspace \text{y } -z \text{.}$

De la definición hay algunos números que inmediatamente debemos descartar por no ser números primos. Por ejemplo, el $1$ no es un número primo pues tiene como divisores únicamente al $-1$ y al $1$, que son dos divisores, y no exactamente cuatro, como pide la definición. Del mismo modo, $-1$ tampoco es número primo pues tiene sólo dos divisores también y, para rematar, es negativo, lo cual no se vale.

Del mismo modo, concluimos que el $0$ no es número primo. Su problema es que tiene demasiados divisores. Cualquier número entero divide al $0$, así que tiene mucho más que cuatro divisores. Veamos nuestro primer ejemplo de un número que sí es primo.

Proposición. El entero $2$ es primo.

Demostración. Lo primero por notar es que $2$ es positivo. Supongamos que $x \in \mathbb{Z}$ divide a $2$. Por cómo se comparan en tamaños un número con un divisor, obtenemos que $|d|\leq 2$. Esto nos deja $5$ posibilidades para $d$: $-2,-1,0,1,2$. El $0$ nunca es divisor y se puede ver que cada uno de los otros cuatro números sí lo son. Así, el $2$ tiene exactamente cuatro divisores, que son $1$, $2$, $-1$ y $-2$. Concluimos entonces que $2$ es un número primo.

$\square$

Si bien el $-2$ también tiene exactamente esos mismos $4$ divisores, a $-2$ no le llamamos número primo porque es negativo. Recuerda que por definición sólo los números positivos pueden ser primos.

En la duda, si no sabemos si un número es primo, siempre podemos regresar a la definición.

Proposición. El entero $57$ no es primo.

Demostración. Notamos que $1$, $3$, $19$ y $57$ son todos ellos divisores de $57$, así como sus negativos. Por ello, el número $57$ tiene ocho divisores, y por lo tanto no es primo.

$\square$

Otras formas de pensar a los números primos

La definición de primos que dimos está en términos de la cantidad de divisores en total que se deben tener. Sin embargo, hay por lo menos otras dos formas de escribir esto mismo.

Proposición. Son equivalentes las siguientes tres afirmaciones para un número entero $p$:

  • El número $p$ es primo de acuerdo a nuestra definición de tener exactamente $4$ divisores.
  • El número $p$ es positivo y tiene exactamente $2$ divisores positivos.
  • El número $p$ es positivo y en cualquier forma de escribir $p=ab$ con $a$ y $b$ enteros positivos, sucede forzosamente que $a=1$ ó $b=1$.

Demostración. Los primeros dos puntos son equivalentes entre sí pues si $d$ es un divisor de $p$, entonces $-d$ también. Así, por cada divisor positivo hay uno negativo y viceversa. De hecho, los dos divisores positivos son, explícitamente, $1$ y $p$.

Si $p$ es primo con respecto a esta segunda definición, entonces el tercer inciso es claro, pues escribir $p=ab$ justo nos dice que $a|p$, de donde $a=1$ ó $a=p$, pues son sus únicos dos posibles divisores. Si $a=1$, tenemos lo que queremos. Y si $a=p$, entonces para que se de $p=ab$, debemos tener $b=1$, como queremos.

Finalmente, a partir del tercer inciso también se puede demostrar el segundo. Supongamos que $p$ cumple con el tercer inciso y supongamos que $d$ es divisor. ESto nos permite escribir $p=dr$ con $r$ algún entero. Por el tercer inciso, debemos tener $d=1$, o bien $r=1$, y entonces $d=p$, tal como nos pide el segundo inciso.

$\square$

Quizás no se ve tanto la ventaja entre distinguir entre las primeras dos versiones de la proposición anterior. De hecho, se parecen mucho. Sin embargo, sí vale la pena pensar en la tercera como algo diferente: nos dice que hay sólamente dos maneras de escribir a un primo como producto de números positivos. Esto nos ayuda, por ejemplo, a darnos cuenta rápidamente que un número no es primo aunque no tengamos todos sus divisores.

Ejemplo. El número $105$ no es primo pues se puede escribir como $5\cdot 21$. En esta expresión ninguno de los dos números es igual a $1$. Así, concluimos que $105$ no es primo.

$\square$

Propiedades de divisibilidad de los números primos

En el caso de los números primos, los máximos comunes divisores son asunto de todo o nada. Esto está escrito más formalmente en la siguiente definición.

Proposición. Sea $p$ un número primo y $a$ un entero. Si $p$ divide a $a$, tenemos $(a,p)=p$. Y si no, tenemos $(a,p)=1$.

Demostración. Sabemos que $(a,p)|p$ y que $(a,p)$ no es negativo. Así, $(a,p)$ debe ser uno de los dos divisores de $p$: $1$ ó $p$. Si $p$ divide a $a$, entonces $(a,p)=p$ pues $p$ es divisor común tanto de $p$ como de $a$. Pero si $p$ no divide a $a$, entonces a $(a,p)$ no le queda más que ser igual a $1$.

$\square$

La proposición anterior nos lleva a un lema de divisibilidad que nos resultará útil cuando enunciemos y probemos el teorema fundamental de la aritmética.

Proposición. Sea $p$ un número primo y $a,b$ números enteros. Si $p|ab$, entonces $p|a$ ó $p|b$.

Demostración. Si $p|a$, entonces ya terminamos. Si no, por la proposición anterior tenemos que $(p,a)=1$. Pero entonces por una propiedad anterior de divisibilidad con primos relativos obtenemos que $p|b$, como queríamos.

$\square$

Para la proposición anterior resultó crucial que $p$ fuera un número primo. Por ejemplo, tenemos que $9|180=15\cdot 12$, pero no es cierto ni que $9|15$, ni que $9|12$.

Más adelante…

En la siguiente entrada veremos dos teoremas importantes relacionados con los números primos: el teorema fundamental de la aritmética y el teorema de que existe una infinidad de primos.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Encuentra todos los números primos de $1$ a $20$.
  2. Sea $n$ un número entero que no sea un número primo, ni el negativo de un número primo. Demuestra $n$ que se puede expresar de la forma $ab$ con $a$ y $b$ enteros (positivos o negativos) de por lo menos ocho formas distintas.
  3. Sea $p>2$ un número tal que ninguno de los números $2,\ldots,\left\lfloor \sqrt{p}\right \rfloor$ lo divide. Muestra que $p$ es un número primo.
  4. Sea $n$ un número entero y $p$ un primo. Muestra que si $p|n^2$, entonces $p|n$. De hecho, muestra que en general, para un entero $k\geq 1$ se cumple que $p|n^k$ si y sólo si $p|n$.
  5. Sea $p$ un número primo. ¿Cuántos divisores tiene el número $p^{10}$? ¿Cuántos son positivos y cuántos negativos?

Entradas relacionadas

Álgebra Superior II: Mínimo Común Múltiplo

Por Ana Ofelia Negrete Fernández

Introducción

En la entrada anterior hablamos del máximo común divisor, para lo cual lo definimos en términos de ideales. Luego vimos que cumplía las propiedades que esperábamos. Es el turno de hacer lo mismo con el mínimo común múltiplo.

Recordando lo que nos enseñaron en la educación básica, el mínimo común múltiplo de dos enteros $a$ y $b$ tenía que ser simultáneamente múltiplo de ambos y, a la vez, tenía que ser lo más pequeño posible. Siendo un poco más precisos, tenía que ser un múltiplo positivo.

Como ejemplo, tomemos $a = 6$, $b = 8$. Una manera muy sencilla de encontrar un múltiplo en común es multiplicando ambos: $6\cdot 8 = 48$. Pero este no es el múltiplo más pequeño. Para poder encontrar aquel que sí sea el más pequeño, podemos enlistar los múltiplos de cada uno de estos números:

  • Múltiplos de $6$: $6,12,18,24,30,36, \ldots$
  • Múltiplos de $8$: $8, 16, 24, 32, 40, \ldots$

Notamos que el número más pequeño que está en ambas listas es el $24$. En educación básica había otras maneras de obtener esto sin hacer las listas anteriores, por ejemplo, mediante la siguiente tabla, en donde «vamos encontrando divisores en común, o bien de cada número».

862
432
232
133
1
El mínimo común múltiplo de 8 y 6 es $2^3\cdot 3 = 24.$

Lo que haremos será un poco distinto. Nuestra definición se basará nuevamente en el concepto de ideales. Veremos cómo hacer esto y cómo regresar al terreno familiar de mínimo común múltiplo que ya conocemos.

Mínimo Común Múltiplo

En la entrada de ideales en $\mathbb{Z}$ demostramos que la intersección de cualesquiera dos ideales es un ideal. También vimos que cualquier ideal era generado por algún entero no negativo. Esto nos lleva a la siguiente definición.

Definición. Sean $a$ y $b$ números enteros. Definimos a su mínimo común múltiplo como al entero no negativo $k$ tal que $a\mathbb{Z} \cap b\mathbb{Z} = k \mathbb{Z}$. En símbolos, nos referimos al mínimo común múltiplo de $a$ y $b$ como $\text{mcm}(a,b)$, o bien simplemente como $[a,b]$.

Ejemplo. Retomemos el ejemplo de la introducción. Si queremos calcular, por definición, al mínimo común múltiplo de los enteros $6$ y $8$, debemos considerar a los ideales $6\mathbb{Z}$ y $8\mathbb{Z}$, que respectivamente son:

$$6 \mathbb{Z} = \{\ldots, -12, -6, 0, 6, 12 ,18, 24, \ldots \}$$

$$8 \mathbb{Z}= \{\ldots, -16, -8, 0 ,8, 16, 24, 32, \ldots \}$$

Si hacemos la intersección de ambos ideales, notemos que obtenemos lo siguiente:

$$6 \mathbb{Z} \cap 8 \mathbb{Z} = \{\ldots, -24, 0, 24, 48, 72, \ldots\},$$

que es el ideal generado por el $24$. Así, tenemos, por definición, que el mínimo común múltiplo de $6$ y $8$ es igual a $24$.

$\square$

Propiedad fundamental del Mínimo Común Múltiplo

Lo que nos gustaría hacer ahora es demostrar que el mínimo común múltiplo que obtuvimos de nuestra definición es, en efecto, el número que cumple con las propiedades que esperamos. Escribimos esto en la siguiente proposición.

Proposición. Sean $a$ y $b$ números enteros. Se cumple que:

  • $a\mid [a,b]$ y $b\mid [a,b]$
  • Si $a\mid m$ y $b\mid m$, entonces $[a,b]\mid m$.

Demostración. La primera parte es sencilla. Como $[a,b]$ genera a $a\mathbb{Z} \cap b \mathbb{Z}$, en particular está en este conjunto. Como $[a,b]\in a\mathbb{Z}$, entonces $a|[a,b]$ y como $[a,b]\in b\mathbb{Z}$, entonces $b|[a,b]$.

Para la segunda parte, si $a\mid m$ y $b\mid m$, entonces $m\in a\mathbb{Z}$ y $m\in b\mathbb{Z}$, pero entonces $m\in a\mathbb{Z} \cap b\mathbb{Z} = [a,b]\mathbb{Z}$. De este modo, $[a,b]|m$.

$\square$

Así, el primer punto dice que $[a,b]$ es en efecto un múltiplo en común. El segundo punto es el que dice que «es el mínimo», pues a partir de la divisibilidad ahí escrita se deduce que $|[a,b]|\leq |m|$. Si pedimos que $m$ sea positivo, tenemos entonces que, en efecto, $[a,b]\leq m$. En resumen.

Corolario. Sean $a$ y $b$ enteros y $m$ un entero positivo múltiplo tanto de $a$ como de $b$. Entonces $m\geq [a,b]$.

Otra propiedad del Mínimo Común Múltiplo

Tanto el mínimo común múltiplo, como el máximo común divisor, tienen muchas propiedades que se pueden demostrar. Hay dos caminos que usualmente funcionan: o bien usar la definición a partir de ideales, o bien usar las propiedades fundamentales de cada uno de los conceptos. Veamos algunos ejemplos para el mínimo común múltiplo.

La siguiente propiedad dice que ahora mostraremos que el mínimo común múltiplo «saca constantes» en cierto sentido. Veremos una demostración usando ideales.

Proposición. Sea $k$ un entero positivo, y $b,c$ enteros cualesquiera. Se cumple que $ [kb, kc] = k[b,c]. $

Demostración. Por definición, $[kb,kc]$ es el entero no negativo que genera al ideal $(kb)\mathbb{Z} \cap (kc)\mathbb{Z}$. Nos gustaría ver que dicho entero es $k[b,c]$, en otras palabras, hay que verificar la siguiente igualdad de conjuntos:

$$(kb)\mathbb{Z} \cap (kc)\mathbb{Z} = k[b,c]\mathbb{Z}.$$

Veamos que el lado izquierdo está contenido en el derecho. Tomemos un entero $m$ del lado izquierdo. Como es múltiplo de $kb$, lo podemos escribir como $m=kbr$ para $r \in \mathbb{Z}$. Como es múltiplo de $kc$, lo podemos escribir como $m=kcs$ para $s\in \mathbb{Z}$. Tenemos entonces $kbr=m=kcs$, de donde $br=cs$ (usando $k>0$). Así, $n=br=cs$ es simultánteamente múltiplo de $b$ y $c$, así que debe ser múltiplo de $[b,c]$, digamos $n=t[b,c]$. De este modo, tenemos que $m=kbr=kn=kt[b,c]$. Esto muestra que $m$ está en $k[b,c]\mathbb{Z}$.

Ahora veamos que el lado derecho está contenido en el izquierdo. Un entero $m$ en $k[b,c]\mathbb{Z}$ es de la forma $m=k[b,c]t$ para $t$ un entero. Como $[b,c]$ es múltiplo de $b$ y $c$, podemos escribir $[b,c]=rb$ y $[b,c]=sc$ para algunos enteros $r$ y $s$. Tenemos entonces que

$$m=k[b,c]t=krbt=(kb)(rt),$$

lo cual muestra que $m$ está en $(kb)\mathbb{Z}$ y que

$$m=k[b,c]t=ksct=(kc)(st),$$

lo cual muestra que $m$ está en $(kc)\mathbb{Z}$. Esto muestra que $m$ está en la intersección buscada.

$\square$

Mínimo común múltiplo y primos relativos

Cuando dos números positivos son primos relativos, es sencillo encontrar su mínimo común múltiplo: simplemente se multiplican. De hecho, esto es una caracterización para los números primos relativos.

Proposición. Sean $a$ y $b$ dos números enteros positivos. Se tiene que $(a,b)=1$ si y sólo si $[a,b]=ab$.

Demostración. Supongamos primero que $(a,b)=1$. Tenemos que $a|[a,b]$ y que $b|[a,b]$ Por una propiedad de primos relativos de la entrada anterior, podemos deducir que $ab|[a,b]$. A la vez, sabemos que $[a,b]$ divide a cualquier múltiplo en común de $a$ y $b$, en particular, a $ab$, así, $[a,b]|ab$. Por cómo interactúa la divisibilidad con los valores absolutos, obtenemos entonces que $[a,b]=|[a,b]|=ab$, como queríamos.

Ahora supongamos que $[a,b]=ab$. Tomemos un número $d$ que divida tanto a $a$ como a $b$. Veremos que ese número debe ser $1$ ó $-1$. Escribamos $a=dr$ y $b=ds$. Tomemos el número $n=drs$. Notemos que $n=as=br$, así que $n$ es un múltiplo común de $a$ y $b$. Por ello, debe ser múltiplo del mínimo común múltiplo de ambos, que estamos suponiendo que es $ab$. Así, existe un entero $k$ con $drs=kab$ y por lo tanto $$drs=kab=kdrds.$$ De aquí deducimos que $1=kd$, por lo que $d$ debe de dividir a $1$ y por lo tanto es $1$ ó $-1$, como queríamos.

$\square$

En realidad esta proposición tiene una versión más general. Siempre se cumple, para cualesquiera dos enteros $a$ y $b$, que $|ab|=[a,b]\cdot (a,b)$. Este es un problema clásico que estudiaremos más adelante.

Más adelante…

El mínimo común múltiplo y el máximo común divisor son dos conceptos que se utilizan mucho en la teoría de números enteros. En estas últimas dos entradas hemos platicado un poco acerca de ellos. Más adelante veremos que estas mismas nociones se pueden generalizar para otras estructuras algebraicas, como la de los polinomios.

Por ahora continuaremos estudiando teoría de la divisibiliad dentro de los números enteros. Es el momento de introducir otro de los conceptos estelares: el de números primos.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Encuentra el mínimo común múltiplo de los números $24$ y $36$. Luego, encuentra su máximo común divisor.
  2. Demuestra que, para $a,b\in \mathbb{Z}$ se cumple: $[a,b] = [-a,b] = [a,-b] = [-a, -b].$
  3. Sean $a$ y $b$ enteros positivos. Muestra que $[a^2,b^2]=[a,b]^2$ y que, en general, para un entero $k\geq 1$ se cumple que $[a^n,b^n]=[a,b]^n$.
  4. ¿Cómo definirías el mínimo común múltiplo de tres números? ¿Y el máximo común divisor de tres números?
  5. Sean $a$, $b$, $c$ enteros. ¿Cómo están relacionados entre sí $[a,c]$, $[b,c]$ y $[a+b,c]$? ¿Será alguno de ellos la suma de los otros dos? Demuéstralo o da un contraejemplo.

Entradas relacionadas

Álgebra Superior II: Máximo Común Divisor

Por Ana Ofelia Negrete Fernández

Introducción

La entrada anterior fue un poco técnica y habló acerca de ideales en los números enteros. Podemos apoyarnos de los ideales para construir otras nociones conocidas de la teoría de números enteros. En esta entrada hablaremos de una de ellas: la de máximo común divisor.

Quizás recuerdes la idea general del máximo común divisor a partir de lo que aprendiste en la educación básica. Por ejemplo, si tenemos a los números $14$ y $35$,y queremos encontrar su máximo común divisor, lo que se hacía es escribir los divisores de ambos:

  • Divisores de $14$: $1,2,7,14$.
  • Divisores de $35$: $1,5,7,35$.

Ya teniendo ambas listas, se elige número más grande que estén en ambas: el $7$.

Con lo que platicaremos en esta entrada vamos a recuperar esta misma noción, sin embargo lo haremos desde un punto de vista un poco más teórico, el cual nos permitirá entender más aspectos de divisibilidad de los máximos comunes divisores.

Definición de máximo común divisor

Recordemos, que en la entrada pasada vimos cómo encontrar al «ideal más pequeño» que tuviera a dos números $a$ y $b$ enteros dados.

Proposición. Si $a$ y $b$ son enteros, entonces:

  • El conjunto $M=\{ra+sb:r,s\in \mathbb{Z}\}$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$.
  • Si $I$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$, entonces $M\subseteq I$.

Como $M$ es el ideal más pequeño que tiene a $a$ y a $b$, le llamamos el ideal generado por $a$ y $b$, y lo escribimos como $\langle a,b\rangle$.

Además, en la entrada anterior también vimos que cualquier ideal de $\mathbb{Z}$ forzosamente es de la forma $k\mathbb{Z}$ para algún entero no negativo $k$, es decir, que consiste justo de los múltiplos de algún entero no negativo $k$. Esto nos permite plantear la siguiente definición.

Definición. Si $a$ y $b$ son enteros, definimos a su máximo común divisor como el entero no negativo $k$ tal que $$k\mathbb{Z}=\langle a,b\rangle.$$ A este número $k$ a veces se le denota por $\text{MCD}(a,b)$, o bien simplemente $(a,b)$.

Esta es una definición muy distinta de la que nos dan en la educación básica, sin embargo, pronto recuperaremos las propiedades familiares: veremos que en efecto es un divisor de $a$, es un divisor de $b$, y que de entre los divisores en común, es el más grande de ellos. Antes de pasar a las propiedades, veamos un ejemplo.

Ejemplo. Tomemos a los enteros $6$ y $14$. ¿Qué ideal $I$ generan? Es decir, ¿quién es $\langle 6,8\rangle$? Bueno, dicho ideal $I$ debe tener a $6$ y $14$, así que por cerradura de la resta tiene también a $14-6-8$, y similarmente debe tener a $8-6=2$. Pero recordemos que los ideales también son cerrados bajo producto por cualquier entero, así que al estar $2$ en $I$, debe pasar que todos los números pares están en $I$. Y en efecto, los números pares son un ideal de $\mathbb{Z}$ que tienen a $6$ y $14$. Con esto acabamos de demostrar que $\langle 6,14 \rangle = 2\mathbb{Z}$. De este modo, por definición, el máximo común divisor de $6$ y $14$ es igual a $2$.

$\square$

Propiedades del máximo común divisor

En esta sección veremos dos propiedades muy importantes del máximo común divisor. Por un lado, veremos que siempre se puede escribir «como combinación» de los números originales, en un sentido muy específico. Por otro lado, recuperaremos las «propiedades usuales» que queremos que se cumplan por lo que aprendimos en educación básica.

Proposición. Sean $a$ y $b$ números enteros. Entonces, existen enteros $r$ y $s$ tales que $$(a,b)=ra+sb.$$

Demostración. Por definición, $(a,b)$ es el entero tal que $\langle a,b \rangle =(a,b)\mathbb{Z}$, en particular, $(a,b)$ está en $\langle a,b\rangle$. Pero también ya sabemos que $$\langle a,b \rangle = \{ra+sb:r,s\in \mathbb{Z}\}.$$ Como $(a,b)$ está en $\langle a,b \rangle$, entonces se puede escribir de la forma de los elementos del conjunto de la derecha también, es decir, existen enteros $r$ y $s$ tales que $$(a,b)=ra+sb.$$

$\square$

Como estamos poniendo a $(a,b)$ de la forma $ra+sb$, en donde los coeficientes de $a$ y $b$ son los números enteros $r$ y $s$, decimos que $(a,b)$ se puede escribir como una combinación lineal entera de $a$ y $b$. La proposición anterior nos demuestra la existencia de dicha combinación lineal, sin embargo no nos dice exactamente cómo encontrarla. Más adelante veremos el algoritmo de Euclides, el cual nos da una forma práctica de encontrar al máximo común divisor de dos números como combinación lineal de ellos.

Veamos ahora el resultado que nos dice que, en efecto, el máximo común divisor divide a cada número, y que es «el más grande» que hace esto.

Proposición. Sean $a$ y $b$ números enteros. Entonces, se cumple lo siguiente:

  • $(a,b)|a$ y $(a,b)|b$.
  • Si $d$ es algún otro número tal que $d|a$ y $d|b$, entonces $d|(a,b)$.

Demostración. Notemos que $a\in \langle a, b\rangle$, y que por definición $\langle a,b \rangle = (a,b) \mathbb{Z}$. De este modo, $a$ es múltiplo de $(a,b)$. Análogamente, $b$ es múltiplo de $(a,b)$. Esto muestra el primer inciso.

Ahora supongamos que $d$ es otro número tal que $d|a$ y $d|b$. Por la proposición anterior, existen enteros $r$ y $s$ tales que $(a,b)=ra+sb$. Como $d|a$, entonces $d|ra$. Como $d|b$, entonces $d|sb$. Así, $d|ra+sb=(a,b)$, como queríamos.

$\square$

La proposición anterior sí dice que el máximo común divisor divide a ambos, sin embargo no es totalmente directo por qué es el «máximo» en tamaño. La segunda parte habla más bien de una divisibilidad. Pero esto se traduce rápidamente a una desigualdad con la ayuda de las propiedades de la divisibilidad. Observa que si $d$ es un número tal que $d|a$ y $d|b$, entonces $d|(a,b)$. Tenemos entonces que $|d|\leq |(a,b)|$. Pero $(a,b)$ siempre es no negativo por definición, así que $|d|\leq (a,b)$. En resumen, tenemos el siguiente resultado.

Corolario. Si $a$ y $b$ son enteros y $d$ es un entero tal que $d|a$ y $d|b$, entonces $|d|\leq (a,b)$.

Números primos relativos (de máximo común divisor igual a uno)

Una situación muy especial en la teoría de los números ocurre cuando el máximo común divisor de dos números es igual a $1$.

Definición. Decimos que dos números enteros $a$ y $b$ son primos relativos si su máximo común divisor es igual a $1$. En símbolos, son primos relativos si $(m,n)=1$.

Por lo que hemos discutido hasta ahora, algunas de las consecuencias de que dos números $a$ y $b$ sean primos relativos son las siguientes:

  • Si $d$ es un número que divide a $a$ y a $b$, entonces $|d|\leq (a,b)=1$, es decir, $d=1$ o $d=-1$. De este modo, los únicos divisores que tienen en común son el $1$ y el $-1$.
  • El ideal generado por $a$ y $b$ es $1\cdot \mathbb{Z} = \mathbb{Z}$, es decir, consiste de todos los enteros.
  • Por esa misma razón, se tiene que $\{ra+sb: r,s \in \mathbb{Z}\}=\mathbb{Z}$, en otras palabras, cualquier entero es combinación lineal entera de $a$ y de $b$.
  • En particular, el $1$ es combinación lineal entera de $a$ y de $b$, es decir, existen enteros $r,s$ tales que $ra+sb=1$.

Estas consecuencias son prácticamente inmediatas de la definición, y es recomendable que intentes deducirlas por tu cuenta.

Veamos algunas otras propiedades que relacionan a los números primos relativos, con divisibilidad de algunas expresiones.

Proposición. Sean $a,b,c$ números enteros . Si $a\mid bc$ y $(a,b) = 1$, entonces $a\mid c.$

Demostración. Como $a$ divide a $bc$, existe $x \in \mathbb{Z}$ tal que $ax = bc$. Como $a$ y $b$ son primos relativos, sabemos que existen enteros $r$ y $s$ tales que $1 = ra+sb$. Multipliquemos esta última igualdad por $c$. Tenemos entonces que:
$$ c = rac + sbc = rac+ sax = a (rc+sx).$$

De aquí obtenemos la divisibilidad $a\mid c$ que buscábamos.

$\square$

En la proposición anterior es crucial la hipótesis de que $a$ y $b$ sean primos relativos. Por ejemplo, $7|28=14\cdot 2$, pero no pasa que $7|2$. Es decir, usualmente si dividimos a un producto, no se cumple que dividamos a cualquiera de sus factores.

A continuación tenemos otro resultado con un estilo similar.

Proposición. Sean $a,b,c \in \mathbb{Z}.$ Si $a\mid c$, $b\mid c$ y $(a,b) =1,$ entonces $ab \mid c$.

Demostración. Ya que $a,b$ son primos relativos, existen $m,n \in \mathbb{Z}$ tales que $1=am + bn $. Multipliquemos dicha ecuación por $c$: $$c=cam + cbn.$$

Como $a\mid c$ y $b\mid c$, existen $q,r \in \mathbb{Z}$ tales que $aq = c$ y $br = c$. Sustituyendo esto en la ecuación anterior, obtenemos que: $$c=cam + cbn = bram + aqbn = ab(rm+qn).$$

Esta igualdad justo nos dice que $ab\mid c$, como queríamos.

$\square$

Intenta encontrar un contraejemplo cuando no se cumple la hipótesis de que $a$ y $b$ son números primos relativos.

Más adelante…

Dejaremos el estudio del máximo común divisor hasta aquí por el momento. En la siguiente entrada hablaremos de un concepto muy cercano: el de mínimo común múltiplo. Así como en el caso de esta entrada, introduciremos la noción a partir de un contexto de ideales, para luego ver ejemplos y algunas propiedades clave.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Demuestra todas las consecuencias de ser primos relativos de la lista enunciada en la entrada.
  2. Prueba que dos enteros consecutivos siempre son primos relativos. Usa esto para demostrar que siempre que se eligen $51$ números distintos entre $1$ y $100$, forzosamente debes tener dos de ellos que sean primos relativos.
  3. Sea $m$ un entero positivo. Demuestra que $(a,b)=1$ si y sólo si $(a^m, b^m) =1.$
  4. De acuerdo a la entrada, al tomar dos números $a$ y $b$ podemos encontrar enteros $r$ y $s$ tales que $(a,b)=ra+sb$. Demuestra que siempre sucede que $(r,s)=1$.
  5. Encuentra el máximo común divisor de $91$ y $70$ e intenta escribirlo como combinación lineal entera de ellos.

Entradas relacionadas

Álgebra Superior II: Ideales en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada pasada hablamos del concepto de divisibilidad en los números enteros. Enunciamos y demostramos varias de sus propiedades. La noción de divisibilidad da lugar a muchos otros conceptos importantes dentro de la teoría de los números enteros, como el máximo común divisor, el mínimo común múltiplo y los números primos. Así mismo, la noción de divisibilidad está fuertemente ligada con los ideales en los enteros.

En esta entrada hablaremos de este último concepto a detalle. Es una entrada un poco técnica, pero nos ayudará para asentar las bases necesarias para poder hablar de los máximos comunes divisores y los mínimos comunes múltiplos con comodidad un poco más adelante.

Ideales en los enteros y una equivalencia

Los ideales son ciertas estructuras importantes en matemáticas. En el caso particular de los números enteros, tenemos la siguiente definición

Definición. Un ideal de $\mathbb{Z}$ es un subconjunto $I$ de $\mathbb{Z}$ que cumple las siguientes dos propiedades:

  • No es vacío.
  • Es cerrado bajo restas, es decir, si $a$ y $b$ están en $I$, entonces $a-b$ también.

Veamos un ejemplo sencillo. Diremos que un número entero es par si es múltiplo de $2$ y que es impar si no es múltiplo de dos.

Ejemplo. El conjunto de todos los números pares son un ideal de $\mathbb{Z}$. Este conjunto claramente no es vacío, pues adentro de él está, por ejemplo, el $2$. Además, si tenemos que dos números $a$ y $b$ son pares, entonces por definición podemos encontrar enteros $k$ y $l$ tales que $a=2k$ y $b=2l$, de modo que $$a-b=2k-2l=2(k-l),$$ lo cual nos dice que $a-b$ también es par.

$\square$

Como veremos un poco más adelante, el ejemplo anterior se puede generalizar. Antes de ver esto, veremos una caracterización un poco distinta de lo que significa ser un ideal.

Proposición. Un subconjunto $I$ de $\mathbb{Z}$ es un ideal si y sólo si cumple las siguientes tres propiedaes:

  • No es vacío.
  • Es cerrado bajo sumas, es decir, si $a$ y $b$ están en $I$, entonces $a+b$ también.
  • Es absorbente, es decir, si $a$ está en $I$ y $b$ está en $\mathbb{Z}$, entonces $ab$ también está en $I$.

Demostración. Primero veremos que si $I$ es un ideal, entonces cumple las tres propiedades anteriores. Luego veremos que si $I$ cumple las tres propiedades anteriores, entonces es un idea.

Supongamos que $I$ es un ideal. Por definición, no es vacío, que es lo primero que queríamos ver. Veamos ahora que es cerrado bajo sumas. Supongamos que $a$ y $b$ están en $I$. Como $I$ es cerrado bajo restas y $b-b=0$, obtenemos que $b$ está en $I$. Usando nuevamente que $b$ es cerrado bajo restas para $0$ y $b$, obtenemos que $0-b=-b$ también está en $I$. Usando una última vez la cerradura de la resta, obtenemos ahora que $a+b=a-(-b)$ está en $I$, como queríamos.

La tercera propiedad la demostraremos primero para los $b\geq 0$ por inducción. Si $b=0$, debemos ver que $0\cdot a=0$ está en $I$. Esto es cierto pues en el párrafo anterior ya vimos por qué $0$ está en $I$. Supongamos ahora que para cierta $b$ fija se tiene que $ab$ está en $I$. Por la cerradura de la suma obtenemos que $$ab+a=ab+a\cdot 1=a(b+1)$$ también está en $I$, como queríamos. Aquí usamos que $1$ es identidad multiplicativa, la distributividad, la hipótesis inductiva y la cerradura de la suma.

Nos falta ver qué pasa con los $b<0$. Sin embargo, si $b<0$, tenemos que $a(-b)$ sí está en $I$ (pues $-b>0$). Así, por la cerradura de la resta tenemos que $0-a(-b)=ab$ está en $I$.

Apenas llevamos la mitad de la demostración, pues vimos que la definición de ideal implica las tres propiedades que se mencionan. Pero el regreso es más sencillo. Supongamos que un conjunto $I$ cumple las tres propiedades mencionadas. Como cumple la primera, entonces no es vacío. Ahora vemos que es cerrado bajo restas. Tomemos $a$ y $b$ en $I$. Como cumple la segunda propiedad, tenemos que $(-1)b=-b$ está en $I$. Como cumple la cerradura de la suma, tenemos que $a+(-b)=a-b$ está en $I$. Así, $I$ es cerrado bajo restas.

$\square$

La ventaja del resultado anterior es que nos permitirá pensar a los ideales de una o de otra forma, de acuerdo a lo que sea más conveniente para nuestros fines más adelante.

Clasificación de ideales

Veamos la generalización de nuestro ejemplo de números pares e impares.

Definición. Sea $n$ un entero. Al conjunto de todos los múltiplos de $n$ lo denotaremos por $n\mathbb{Z}$ y lo llamaremos el conjunto de los múltiplos de $n$, es decir:

$n\mathbb{Z}=\{nm: m\in \mathbb{Z}\}.$

Proposición. Si $n$ es cualquier entero, entonces $n\mathbb{Z}$ es un ideal de $\mathbb{Z}$.

Demostración. Claramente $n\mathbb{Z}$ no es vacío pues, por ejemplo, $0=0\cdot n$ está en $n\mathbb{Z}$. La demostración de la cerradura de la resta se sigue de un corolario de la entrada anterior. Si $a,b$ están en $n\mathbb{Z}$, entonces ambos son divisibles entre $n$, así que su resta $a-b$ también. Así, $a-b$ está en $n\mathbb{Z}$.

$\square$

El ejemplo anterior de hecho da todos los posibles ideales que existen en $\mathbb{Z}$. El siguiente teorema enuncia esto con precisión.

Teorema. Un conjunto $I$ de $\mathbb{Z}$ es un ideal si y sólo si existe un entero no negativo $n$ tal que $I=n\mathbb{Z}$.

Demostración. Tomemos $I$ un ideal de $\mathbb{Z}$. Existe la posibilidad de que $I=\{0\}$, pues en efecto este es un ideal: es no vacío (pues tiene a $0$) y es cerrado bajo restas (pues sólo hay que verificar que $0-0=0$ está en I). Si este es el caso, entonces $I=0\mathbb{Z}$, como queríamos. Así, a partir de ahora supondremos que $I$ no es este conjunto. Veremos que $I$ tiene por lo menos un elemento positivo.

Sea $a\in I$ cualquier elemento que no sea $0$. Si $a$ es positivo, entonces ya lo logramos. Si $a$ es negativo, entonces notamos que $0=a-a$ está en $I$, y que entonces $-a=0-a$ está en $I$. Pero entonces $-a$ es un número positivo en $I$.

Debido a esto, por el principio del buen orden podemos tomar al menor entero positivo $n$ que está en $I$. Afirmamos que $I=n\mathbb{Z}$. Por la caracterización de ideales que dimos en la sección anterior, todos los múltiplos de $n$ están en $I$, así que $I\supseteq n\mathbb{Z}$.

Veamos que $I\subseteq n\mathbb{Z}$ procediendo por contradicción. Supongamos que este no es el caso, y que entonces existe un $m\in I$ que no sea múltiplo de $n$. Por el algoritmo de la división, podemos escribir $m=qn+r$ con $0<r<n$. Como $m$ está en $I$ y $qn$ está en $I$, tendríamos entonces que $m-qn=r$ está en $I$. ¡Pero esto es una contradicción! Tendríamos que $r$ está en $I$ y que $0<r<n$, lo cual contradice que $n$ era el menor entero positivo en $I$ que tomamos con el principio del buen orden. Esta contradicción sólo puede evitarse si $m$ es múltiplo de $n$, como queríamos.

$\square$

Un teorema como el anterior se conoce como un teorema de clasificación pues nos está diciendo cómo son todas las posibles estructuras que definimos a partir de un criterio fácil de enunciar.

Ideal generado por dos elementos

Dado un conjunto de números enteros $S$, podríamos preguntarnos por el ideal más chiquito que contenga a $S$. Un ejemplo sencillo es tomar $S$ con sólo un elemento, digamos $S=\{n\}$. En este caso, es fácil convencerse de que el ideal más pequeño que contiene a $S$ es precisamente $n\mathbb{Z}$ (ve los problemas de la tarea moral).

Un caso un poco más interesante es, ¿qué sucede si tenemos dos elementos?

Ejemplo. ¿Cuál será el menor ideal posible $I$ que tiene a los números $13$ y $9$? Empecemos a jugar un poco con la propiedad de la cerradura de la resta. Como $13$ y $9$ están, entonces también está $4=13-9$. Como $9$ y $4$ están, entonces también está $5=9-4$. Así mismo, debe estar $1=5-4$. Pero aquí ya llegamos a algo especial: que el $1$ está. Recordemos los ideales también cumplen que una vez que está un número, están todos sus múltiplos. Así, $1\mathbb{Z}$ está contenido en $I$. Pero entonces $I=1\mathbb{Z}=\mathbb{Z}$.

$\square$

No siempre obtenemos $\mathbb{Z}$ como respuesta. Para un ejemplo en donde se obtiene $2\mathbb{Z}$, ve los problemas de la tarea moral. En la siguiente entrada hablaremos con más detalle de la respuesta, pero por el momento probaremos lo siguiente.

Proposición. Si $a$ y $b$ son enteros, entonces:

  • El conjunto $M=\{ra+sb: r,s\in \mathbb{Z}\}$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$.
  • Si $I$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$, entonces $M\subseteq I$.

En otras palabras, «$M$ es el ideal más pequeño (en contención) que tiene a $a$ y a $b$».

Demostración. Veamos primero que $M$ en efecto es un ideal. Para ello, notemos que no es vacío pues, por ejemplo, $0=0\cdot a+0\cdot b$ está en $M$. Además, es cerrado bajo restas pues si tenemos dos elementos en $M$, son de la forma $ra+sb$ y $ka+lb$, y su resta es $$(ra+sb)-(ka+lb)=(r-k)a+(s-l)b,$$ que vuelve a estar en $M$ pues $r-k$ y $s-l$ son enteros. Además, $a=1\cdot a+ 0\cdot b$, lo que muestra que $a$ está en $M$ y $b=0\cdot a + 1 \cdot b$, lo que muestra que $b$ está en $M$ también. Con esto demostramos el primer punto.

Para el segundo punto, supongamos que $a$ está en $I$ y que $b$ está en $I$ también. Como $I$ es idea, tiene a todos los múltiplos de $a$ y los de $b$, es decir, a todos los números de la forma $ra$ y $sb$. Como es ideal, también es cerrado bajo sumas, así que tiene todas las formas de números de este estilo. En particular, tiene a todos los números de la forma $ra+sb$ (variando $r$ y $s$), es decir, a todos los elementos de $I$, como queríamos.

$\square$

Quizás notaste algo raro. El conjunto $M$ es un ideal, pero se ve un poco distinto de los que obtuvimos con nuestra caracterización de la sección anterior. Parece más bien que «está hecho por dos enteros» en vez de estar hecho sólo por uno. Esto no es problema. Nuestra caracterización nos dice que debe existir un entero $d$ tal que $M=d\mathbb{Z}$. Esto nos llevará en la siguiente entrada a estudiar el máximo común divisor.

Intersección de ideales

Los ideales de $\mathbb{Z}$ son subconjuntos, así que podemos aplicarles operaciones de conjuntos. ¿Qué sucede si intersectamos dos ideales? La siguiente operación nos dice que

Proposición. Si $I$ y $J$ son ideales de $\mathbb{Z}$, entonces $I\cap J$ también.

Demostración. La demostración es sencilla. Como $I$ y $J$ son ideales, se puede ver que ambos tienen al $0$, y que por lo tanto su intersección también. Ahora veamos que $I\cap J$ es cerrada bajo restas. Si $a$ y $b$ están en $I\cap J$, entonces $a$ y $b$ están en $I$. Como $I$ es cerrado bajo restas, $a-b$ está en $I$. Análogamente, está en $J$. Así, $a-b$ está en $I\cap J$, como queríamos.

$\square$

Este resultado motivará nuestro estudio del mínimo común múltiplo un poco más adelante.

Más adelante…

Esta fue una entrada un poco técnica, pero ahora ya conocemos a los ideales en los enteros, algunas de sus propiedades y hasta los caraterizamos. La idea de tomar el ideal generado por dos elementos nos llevará a estudiar en la siguiente entrada el concepto de máximo común divisor. Y luego, la idea de intersectar ideales nos llevará en un par de entradas a explorar la noción de mínimo conún múltiplo

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Imagina que sabes que un ideal tiene al número $6$. Esto forza a que también tenga a $6-6=0$. Así, esto forza a que también tenga el $0-6=-6$. Sigue así sucesivamente, jugando con todas las nuevas restas que deben quedarse dentro del ideal. ¿Cuál es el menor ideal que puede tener al $6$?
  2. Repite lo anterior, pero ahora suponiendo que tu ideal tiene a los números $10$ y $12$. ¿Qué números puedes obtener si repetidamente puedes hacer restas? ¿Quién sería el menor ideal que tiene a ambos números?
  3. Sean $I_1,\ldots,I_k$ ideales de $\mathbb{N}$. Demuestra que $I_1\cap I_2 \cap \ldots \cap I_k$ también es un idea. Como sugerencia, usa inducción.
  4. Toma a los ideales $6\mathbb{Z}$ y $8\mathbb{Z}$. Por el resultado de la entrada, tenemos que su intersección $A$ también es un ideal. Intenta averiguar y demostrar quién es el $k$ tal que $A=k\mathbb{Z}$.
  5. ¿Es cierto que la unión de dos ideales siempre es un ideal? Si es falso, encuentra contraejemplos. Si es verdadero, da una demostración. Si es muy fácil, ¿puedes decir exactamente para qué enteros $m$ y $n$ sucede que $m\mathbb{Z}\cup n\mathbb{Z}$ es un ideal?

Entradas relacionadas

Álgebra Superior II: Divisibilidad en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos del algoritmo de la división. Dados dos números enteros $a$ y $b$, con $b\neq 0$, nos permite poner de manera única a $a$ de la forma $a=qb+r$, en donde $q$ y $r$ son enteros, y además $0\leq r < |b|$. En otras palabras, nos permite poner a un número como «copias de otro», más un residuo «chiquito». En esta entrada hablaremos de la divisibilidad en los enteros.

La divisibilidad se da cuando pasa una situación especial en el algoritmo de la división: cuando el residuo obtenido es igual a cero. Es decir, cuando podemos escribir $a=qb$. Cuando esto sucede, diremos que $b$ divide a $a$, o bien que $a$ es múltiplo de $b$. En esta entrada daremos una definición formal que contemple este caso y estudiaremos varias de sus propiedades.

Definición de divisibilidad

La noción fundamental que estudiaremos en esta entrada es la de divisibilidad. La definición crucial es la siguiente.

Definición. Sean $m$ y $n$ enteros. Diremos que $m$ divide a $n$ si existe un entero $k$ tal que $n=km$. En notación, escribiremos $m|n$. También diremos que $n$ es un múltiplo de $m$, o bien que $n$ es divisible entre $m$.

Ejemplo. El número $35$ es divisible entre $5$ pues podemos encontrar un entero $k$ tal que $35=k\cdot 5$. Concretamente, podemos escribir $35=7\cdot 5$. Así mismo, este número también es divisible entre $-7$ pues podemos encontrar un entero $k$ tal que $35=k\cdot (-7)$, en concreto, podemos escribir $35=(-5)(-7)$.

Por otro lado, el $35$ no es múltiplo de $8$. ¿Cómo sabemos esto? Al hacer el algoritmo de la división obtenemos que $35=4\cdot 8 + 3$. Como esta es la única forma de escribir a $35$ como un múltiplo de $8$ más un residuo entre $0$ y $7$, entonces es imposible escribirlo como un múltiplo de $8$ más residuo $0$. En otras palabras, no es múltiplo de $8$.

$\square$

Propiedades básicas de divisibilidad

La siguiente proposición habla de algunas de las propiedades básicas de la divisibilidad. Las enunciaremos y daremos sus demostraciones para poner en práctica nuestra definición de divisibilidad.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Los enteros $1$ y $-1$ dividen a cualquier otro entero.
  • El entero $0$ es divisible por cualquier entero.
  • Es reflexiva, es decir para cualquier entero $n$ se tiene que $n|n$.
  • Es transitiva, es decir si $l,m,n$ son enteros tales que $l|m$ y $m|n$, entonces $l|n$.

Demostración. A continuación demostramos la demostración, inciso por inciso.

  • Recordemos que si $n$ es un entero, entonces $n=n\cdot 1$. Esto nos dice que $1$ divide a $n$. Además, por las propiedades de las operaciones en los números enteros tenemos lo siguiente:
    \begin{align*}
    n&=n\cdot 1\\
    &=n\cdot ((-1)\cdot (-1))\\
    &=(n\cdot (-1))\cdot (-1)\\
    &=(-n)\cdot (-1).
    \end{align*}
    Aquí estamos usando que $(-1)(-1)=1$, la asociatividad del producto en los números enteros y que $(-1)n=-n$. En resumen, obtenemos que $n=(-n)(-1)$, lo cual nos dice que $-1|n$.
  • Aquí notamos que para cualquier entero $n$ tenemos que $0=0\cdot n$. Así, $n|0$.
  • Anteriormente usamos que $n=n\cdot 1$ para concluir $1|n$. Así mismo, al usar $n=1\cdot n$ obtenemos que $n|n$.
  • Veamos la transitividad. Supongamos que $l,m,n$ son enteros tales que $l|m$ y $m|n$. Por definición de divisibilidad podemos encontrar enteros $q$ y $r$ tales que $m=ql$ y $n=rm$. Substituyendo el valor de $m$ de la primera igualdad en la segunda y usando asociatividad obtenemos que: $$n=rm=r(ql)=(rq)l.$$ Esto precisamente nos dice que $l|n$.

$\square$

Divisibilidad y operaciones en los enteros

La divisibilidad se comporta bien con las operaciones en los números enteros. En la siguiente proposición encontramos algunas de las propiedades que vuelven esto un poco más preciso.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Para enteros $l,m,n$, si $l|m$ y $l|n$, entonces $l|m+n$.
  • Para enteros $l,m,n$, si $l|m$, entonces $l|mn$.
  • Para enteros $l$, $a$, $b$, $c$, $d$ se cumple que si $l|m$ y $l|n$, entonces $l|am+bn$.

Demostración. Daremos la demostración inciso por inciso:

  • Como $l|m$ y $l|n$, por definición existen enteros $r$ y $s$ tales que $m=rl$ y $n=sl$. Al hacer la suma y usar la distributividad del producto sobre la suma obtenemos que $$m+n=rl+sl=(r+s)l.$$ Esto por definición está diciendo que $l$ divide a $m+n$.
  • Aquí podemos utilizar una propiedad anterior. Tenemos que $mn=nm$, por lo cual $mn$ es divisible entre $m$. Es decir, tenemos $l|m$ y $m|mn$. Así, por la transitividad de la divisibilidad, que ya probamos anteriormente, tenemos que $l|mn$.
  • Este inciso es consecuencia de los dos anteriores y, de hecho, ya no tenemos que usar la definición. Por el segundo inciso, como $l|m$, entonces $l|am$. Así mismo, como $l|n$, entonces $l|bn$. Finalmente, por el primer inciso, como $l|am$ y $l|bn$, entonces $l|am+bn$.

$\square$

Observa que si ponemos $a=1$ y $b=-1$ en la última propiedad obtenemos el siguiente corolario: si $l|m$ y $l|n$, entonces $l|m-n$.

Divisibilidad y orden en los enteros

Hay una tercera clase de propiedades que cumple la noción de divisibilidad: aquellas relacionadas con el orden en los enteros. Veamos esto.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Si $m$ y $n$ son enteros distintos de cero tales que $m|n$, entonces $|m|\leq |n|$.
  • Si $m$ y $n$ son enteros positivos tales que $m|n$, entonces $m\leq n$.
  • Si $m$ y $n$ son enteros tales que $m|n$ y $n|m$, entonces $|m|=|n|$.

Demostración. Demostraremos la primera afirmación a detalle, pues a partir de ella salen las otras dos de manera prácticamente inmediata.

Tomemos dos enteros $m$ y $n$ tales que $m|n$. Por definición de divisibilidad, tenemos que existe un entero $k$ tal que $n=km$. Al tomar valor absoluto de esta expresión, obtenemos que $|n|=|km|$. Por propiedades del valor absoluto, tenemos que $|km|=|k||m|$. Como $n$ es distinto de cero, entonces $k$ también es distinto de cero, así que $|k|\geq 1$. De esta manera, tenemos la siguiente cadena de igualdades y desigualdades: $$|n|=|km|=|k||m|\geq 1\cdot |m| = |m|.$$

Esto es lo que queríamos demostrar.

Para el segundo inciso, como $m$ y $n$ son positivos, entonces entran en el caso del primer inciso. Además, por ser positivos tenemos $|m|=m$ y $|n|=n$. De este modo, por el primer inciso tenemos $m\leq n$.

En el tercer inciso primero tenemos que descartar algunos casos. Si $m=0$, entonces la divisibilidad $0|n$ nos dice que $n=k\cdot 0$ para alguna $k$ entera, pero entonces $n=0$ también, y entonces se cumple $|m|=0=|n|$. El caso $n=0$ es análogo. Ya descartados estos casos, podemos suponer que $m$ y $n$ son distintos de cero. Por el primer inciso tendríamos entonces $|m|\leq |n|$ y $|m|\geq |n|$. Así, $|m|=|n|$, como queríamos.

$\square$

Un ejemplo que usa varias propiedades de divisibilidad

¿Por qué es bueno recordar y saber cuándo usar propiedades de la divisibilidad? Porque nos permite simplificar ciertos problemas y resolverlos más fácilmente. Veamos un ejemplo.

Problema. Encuentra todos los divisores del número $12$.

Solución. Supongamos que $d$ es un divisor de $12$. Tenemos entonces que $|d|\leq |12|=12$, así, $d$ es un número entre $-12$ y $12$. Fuera de este rango no pueden existir divisores de $12$.

Por reflexividad tenemos que $12|12$. Por la propiedad de $1$ y $-1$ tenemos que $1|12$ y $-1|12$. Es fácil ver $12=2\cdot 6$ y $12=3\cdot 4$, así que $2$, $3$, $4$ y $6$ son todos ellos divisores de $12$. Los negativos de estos números también serán divisores entonces pues, por ejemplo, como $12=3\cdot 4$, también tenemos $12=(-3)(-4)$.

De este modo, hasta ahora hemos visto que $-12,-6,-4,-3,-2,-1,1,2,3,4,6,12$ son todos ellos divisores de $12$.

El $5$ claramente no es, pues al hacer el algoritmo de la división obtenemos $12=2\cdot 5 +2$, con residuo $2$. Entonces el $-5$ tampoco puede ser divisor.

Podríamos hacer lo mismo con $7,8,9,10,11$. Pero una forma fácil de ver que ninguno de ellos va a funcionar es que si intentáramos escribir $12=7k$, por ejemplo, se tiene que $k$ no puede ser $1$ (pues $12\neq 7$) y si ponemos $k\geq 2$ entonces el producto es al menos $14$, que ya se pasa de $12$. Así, ni estos números, ni $-7,-8,-9,-10,-11$ son divisores de $12$.

$\square$

Más adelante…

La noción de divisibilidad da pie a varios otros conceptos en la teoría de números enteros. Dentro de algunas entradas hablaremos de dos conceptos importantes: el de máximo común divisor y mínimo común múltiplo en los enteros. Sin embargo, antes de hacer esto tomaremos una pequeña desviación para hablar de un concepto un poco abstracto pero bastante útil: los ideales.

Tarea moral

  1. Encuentra todos los divisores del número $24$ (tanto los positivos, como los negativos) y verifica que en efecto cumplen con la definición dada en esta entrada.
  2. Encuentra contraejemplos para las siguientes afirmaciones:
    1. Si $l$, $m$ y $n$ son enteros tales que $l|m$ y $n|m$, entonces $l+n|m$.
    2. Si $l,m,n$ son enteros tales que $l|mn$, entonces o bien $l|m$ o bien $l|n$.
  3. Demuestra las siguientes dos propiedades de la noción de divisibilidad:
    1. Si $m$ y $n$ son enteros positivos tales que $m|n$ y $n|m$, entonces $m=n$.
    2. Si $m$ es divisor de $n$ con $n=km$, entonces $k$ también es divisor de $n$.
  4. Sean $m$ y $n$ enteros. Demuestra que $m$ divide a $n$ si y sólo si $m^2$ divide a $n^2$.
  5. Sea $n$ un entero positivo, $m$ un entero, $a_1,\ldots,a_n$ enteros y $b_1,\ldots,b_n$ enteros. Demuestra que si $m|b_i$ para todo $i=1,\ldots,n$, entonces $m| \sum_{i=1}^n a_ib_i$.

Entradas relacionadas