Álgebra Lineal I: Subespacios vectoriales

Introducción

En la entrada anterior dimos la definición de espacio vectorial y vimos varios ejemplos de espacios vectoriales. Ahora hablaremos de subespacios vectoriales o simplemente, subespacios. A grandes rasgos, podemos pensar a un subespacio como un subconjunto de un espacio vectorial V que también es un espacio vectorial con las mismas operaciones de V.

Definición de subespacios vectoriales y primeras consecuencias

Definición. Sea V un espacio vectorial sobre un campo F. Un subespacio vectorial de V, o simplemente un subespacio de V, es un subconjunto no vacío W de V cerrado bajo las operaciones de suma vectorial y multiplicación escalar de V. En otras palabras, W es un subespacio de V si se cumplen las siguientes dos propiedades:

  1. (Cerradura de la suma vectorial) Para cualesquiera u y v elementos de W, se cumple que u+v está en W.
  2. (Cerradura de la multiplicación por escalar) Para cualquier escalar c en F y vector v en W se cumple que cv está en W.

En la entrada anterior ya vimos un ejemplo. Si tenemos un campo F y nos fijamos el espacio vectorial F[x] de polinomios, entonces para cualquier entero n el subconjunto F_n[x] de F[x] de polinomios de grado a lo más n es cerrado bajo la suma de polinomios y bajo el producto escalar. De esta forma, F_n[x] es un subespacio de F[x]. Más abajo veremos muchos ejemplos de subespacios, pero primero nos enfocaremos en algunas consecuencias de la definición.

Observación. Se cumple todo lo siguiente:

  1. Si W es un subespacio de un espacio vectorial V, entonces W debe tener al vector 0 de V (es decir, la identidad aditiva de la suma vectorial). Esto se debe a que W es no vacío, así que tiene por lo menos un elemento v. Si tomamos al 0 de F y usamos la propiedad (2) de subespacio con 0 y v obtenemos que 0v=0 está en W.
  2. Si W es un subespacio de un espacio vectorial V y v está en W, entonces -v también. Esto se debe a que por la propiedad (2) de subespacio tenemos que (-1)v=-v está en W.
  3. Si V es un espacio vectorial sobre F y W es un subespacio de V, entonces W también es un espacio vectorial sobre F con las mismas operaciones que V. Por un lado, el neutro e inversos aditivos existen por los dos incisos anteriores. Para el resto de las propiedades, se usa que se cumplen para elementos de V y por lo tanto también para los de W (pues es un subconjunto).
  4. Si W_1 y W_2 son dos subespacios de un espacio vectorial V, entonces la intersección W_1\cap W_2 también lo es.

\square

La primera propiedad nos puede ayudar en algunas ocasiones (no siempre) a darnos cuenta rápidamente si un subconjunto no es subespacio vectorial: si no tiene al vector 0, entonces no es subespacio.

La tercera propiedad tiene una consecuencia práctica muy importante: para mostrar que algo es un espacio vectorial, basta con mostrar que es un subespacio de algo que ya sabemos que es un espacio vectorial.

Problema. Muestra que \mathcal{C}[0,1], el conjunto de funciones continuas de [0,1] a \mathbb{R}, es un espacio vectorial sobre \mathbb{R} con las operaciones de suma de funciones y multiplicación por escalar.

Solución. En la entrada anterior vimos que el conjunto V de funciones de [0,1] a los reales es un espacio vectorial sobre \mathbb{R} con las operaciones de suma de funciones y multiplicación escalar. El conjunto \mathcal{C}[0,1] es un subconjunto de V.

Por argumentos de cálculo, la suma de dos funciones continuas es una función continua. Así mismo, al multiplicar una función continua por un real obtenemos de nuevo una función continua. De esta forma, \mathcal{C}[0,1] es un subespacio de V.

Por la observación (3) de la discusión previa, obtenemos que \mathcal{C}[0,1] es un espacio vectorial sobre \mathbb{R} con las operaciones de suma de funciones y multiplicación por escalar.

\square

Definiciones alternativas de subespacios vectoriales

Algunos textos manejan definiciones ligeramente distintas a la que nosotros dimos. Sin embargo, todas ellas son equivalentes.

Proposición. Sea V un espacio vectorial sobre el campo F y W un subconjunto de V. Los siguientes enunciados son equivalentes.

  1. W es un subespacio de V de acuerdo a nuestra definición.
  2. Para cualesquiera vectores u y v en W y escalares a y b en F, se tiene que au+bv está en W.
  3. Para cualesquiera vectores u y v en W y cualquier escalar c en F se tiene que cu+v está en W.

Demostración. (1) implica (2). Supongamos que W es un subespacio de V. Tomemos vectores u,v en W y escalares a,b en F. Como W es cerrado bajo producto escalar, se tiene que au está en W. De manera similar, bv está en W. Como W es cerrado bajo sumas, se tiene que au+bv está en W.

(2) implica (3). Supontamos que W satisface (2) y tomemos u,v en W y cualquier escalar c en F. Tomando a=c y b=1 en (2), tenemos que cu+1v=cu+v está en W.

(3) implica (1). Supongamos que W satisface (3). Hay que ver que W es cerrado bajo sumas y producto escalar. Si tomamos u y v en W y al escalar c=1 de F, por (3) obtenemos que cu+v=1u+v=u+v está en W, lo cual muestra la cerradura de la suma. Si tomamos cualquier escalar c y al vector w=0, entonces por (3) se tiene que cu+w=cu+0=cu está en W. Esto muestra la cerradura bajo producto escalar.

\square

La consecuencia práctica de la proposición anterior es que basta verificar (2) o (3) para garantizar que W es un subespacio.

Problema. Considera V el espacio vectorial de matrices en M_n(F). Muestra que el subconjunto W de matrices simétricas forman un subespacio de V.

Solución. Lo demostraremos probando el punto (3) de la proposición. Sea c un escalar en F y sean A y B matrices en W, es decir, tales que ^tA=A y ^tB = B. Debemos mostrar que cA+B está en W, es decir, que ^t(cA+B)=cA+B. Usando propiedades de la transpuesta y la hipótesis sobre A y B tenemos que:

    \[^t(cA+B) = c \ ^tA+ \ ^tB = cA + B.\]

Con esto termina la demostración.

\square

Más ejemplos de subespacios vectoriales

A continuación presentamos más ejemplos de subespacios vectoriales. En cada ejemplo damos un espacio vectorial y un subconjunto W. Para cada uno de los casos, piensa por qué la suma de dos elementos de W es de nuevo un elemento de W y por qué el producto de un escalar por un elemento de W es un elemento de W. También puedes usar la última proposición para probar ambas cosas simultáneamente.

  • Si tomamos M_2(\mathbb{R}), el subconjunto W de matrices que cumplen que la suma de entradas en su diagonal principal es igual a 0 es un subespacio.
  • En el espacio vectorial F^4, el subconjunto W de vectores cuya primera y tercer entrada son iguales a 0 forman un subespacio.
  • Las funciones acotadas del intervalo [-3, 3] a \mathbb{R} forman un subconjunto W que es un subespacio de las funciones del intervalo [-3,3] a \mathbb{R}.
  • El subconjunto W de vectores (x,y,z) de \mathbb{R}^3 tales que

        \[\begin{cases}x+y+z &= 0\\ x+ 2y + 3z &= 0 \end{cases}\]

    es un subespacio de \mathbb{R}^3.
  • Si tomamos W=\mathbb{R}_3[x], entonces este es un subespacio de \mathbb{R}_4[x].
  • Si tomamos W=\mathbb{R}_4[x], entonces este es un subespacio de \mathbb{R}_5[x].
  • El subconjunto W de funciones diferenciables de [0,10] a \mathbb{R} tales que su derivada evaluada en 7 es igual a 0 es un subespacio del espacio de funciones continuas de [0,10] a \mathbb{R}.
  • Las matrices triangulares superiores de M_n(F) forman un subespacio W del espacio M_n(F). Las matrices triangulares inferiores también. Como la intersección de estos subespacios es el conjunto de matrices diagonales, obtenemos que las matrices diagonales también son un subespacio (aunque claro, esto también se puede probar directamente de la definición).

Ejemplos de subconjuntos que no son subespacios vectoriales

Aunque ya vimos muchos ejemplos de subespacios, resulta que en realidad es un poco raro que un subconjunto de un espacio vectorial sea un subespacio. Los ejemplos de subconjuntos que no son subespacios vectoriales abundan. Veamos algunos y qué tipo de cosas pueden salir mal.

  • El subconjunto W=\{(x,y,z): x^2+y^2+z^2=1\} no es un subespacio de \mathbb{R}^3. Podemos dar el siguiente argumento: ya demostramos que un subespacio debe tener al vector cero. En este caso, W debería tener a (0,0,0) para ser subespacio. Pero 0^2+0^2+0^2=0\neq 1. Así, (0,0,0) no está en W y por lo tanto W no es subespacio.
  • Alternativamente, en el ejemplo anterior podemos ver que (1,0,0) está en W, pero 2(1,0,0)=(2,0,0) no.
  • El subconjunto W=\{(0,0), (1,2), (-1,2)\} de \mathbb{R}^2 no es un subespacio, pues (1,2) está en W. Tomando u=(1,2) y v=(1,2), vemos que W no es cerrado bajo sumas pues (1,2)+(1,2)=(2,4) no está en W.
  • Las matrices del subconjunto GL_n(F) de M_n(F), es decir, las matrices invertibles, no conforman un subespacio. Por un lado, ya vimos que el neutro aditivo de la suma debe estar en un subespacio, pero la matriz O_n no es invertible, así que no está en GL_n(F).
  • El subconjunto W de funciones f:[-3,3]\to \mathbb{R} diferenciables tales que su derivada en 0 es igual a 2 no es un subespacio de las funciones continuas de [-3,3] a \mathbb{R}. Hay muchas formas de verlo. Podemos darnos cuenta que f(x)=x^2+2x es una de las funciones en W pues f'(x)=2x+2 y f'(0)=2. Sin embargo, 3f no está en W.
  • El subconjunto W de polinomios de \mathbb{R}[x] con coeficientes no negativos no es un subespacio de \mathbb{R}[x]. El polinomio 0 sí está en W y la suma de cualesquiera dos elementos de W está en W. Sin embargo, falla la multiplicación escalar pues x está en W, pero (-1)x=-x no.
  • La unión del eje X, el eje Y y el eje Z de \mathbb{R}^3 es un subconjunto W de \mathbb{R}^3 que no es un subespacio. Cualquier producto escalar queda dentro de W, pero la suma no es cerrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Demuestra que los siguientes conjuntos W son subespacios del espacio vectorial indicado.
    • El subconjunto W de vectores (w,x,y,z) de \mathbb{C}^4 tales que w+x+y+z=0.
    • La colección W de funciones continuas f:[0,1]\to \mathbb{R} tales que \int_0^1 f(x) \, dx = 0 es un subespacio del espacio de funciones de [0,1] a \mathbb{R}.
    • W=\left\{\begin{pmatrix} a+b & b\\ -b & c+b \end{pmatrix}: a,b,c \in \mathbb{R} \right\} es un subespacio de las matrices en M_2(\mathbb{R}).
  • Demuestra que los siguientes conjuntos W no son subespacios del espacio vectorial indicado.
    • El subconjunto W de vectores (x,y) de \mathbb{R}^2 tales que xy\geq 0 no es un subespacio de \mathbb{R}^2.
    • El subconjunto W de matrices en M_{3,2}(F) cuyo producto de todas las entradas es igual a 0 no es un subespacio de M_{3,2}
    • Cuando W es un subconjunto finito y con al menos dos polinomios con coeficientes complejos y de grado a lo más 3, es imposible que sea un subespacio de \mathbb{C}_3[x].
  • Sea V un espacio vectorial y n un entero positivo. Demuestra que si W_1, W_2, \ldots, W_n son subespacios de V, entonces la intersección

        \[W_1 \cap W_2 \cap \ldots \cap W_n\]

    también lo es.
  • Escribe por completo la demostración de que cualquier subespacio de un espacio vectorial es también un espacio vectorial con las mismas operaciones.
  • Demuestra que si V es un espacio vectorial, W es un subespacio de V y U es un subespacio de W, entonces U es un subespacio de V.

Más adelante…

En esta entrada definimos el concepto de subespacio de un espacio vectorial. En la siguiente hablaremos de algunas operaciones que se les puede hacer a los subespacios vectoriales para “combinarlos” y obtener más subespacios. Una operación muy imporante es la de suma de subespacios, que puede tener dos o más sumandos. La operación de suma de subespacios es particularmente especial cuando los subespacios están en posición de suma directa. Para irte dando una idea de qué quiere decir esto, dos subespacios están en posición de suma directa si su único elemento en común es el vector 0. El caso general de más subespacios se enuncia de forma distinta y también lo veremos en la siguiente entrada.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.