Archivo de la etiqueta: mínimo

Álgebra Superior II: Algoritmo de la división en los enteros

Introducción

Gracias a todo lo trabajado con anterioridad y en particular a la entrada anterior de inmersión de los naturales en los enteros, ya podemos pensar al conjunto de enteros como el conjunto $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$. Además, dentro de esta estructura tenemos operaciones de suma, resta y producto. Sin embargo, aún no tenemos una operación de «división». Hay dos caminos que podemos seguir. Uno es algo parecido a lo que hicimos para tener una operación de resta: podemos construir ciertas clases de equivalencia sobre parejas de enteros, definir operaciones, orden, etcétera. Esto es lo que se hace para construir el conjunto $\mathbb{Q}$ de números racionales, del cual hablaremos más adelante. Otro camino es quedarnos en $\mathbb{Z}$ e intentar decir todo lo que podamos, aunque no tengamos una operación de división. Eso es lo que haremos ahora.

Por ejemplo, si tenemos los números $-20$ y $5$, entonces sí «podemos hacer la división» de manera exacta. Dicho de otra forma, sí existe un entero $k$ tal que $-20=5k$. Ese entero es $k=-4$. Sin embargo, si tenemos los números $20$ y $3$ no podemos hacer la división, en el sentido de que no existe un entero $k$ tal que $20=3k$. Sin embargo, sí podemos lograr que $3k$ quede muy cerca de $20$. Por ejemplo, podemos escribir $20=3\cdot 6 + 2$, es decir, el $20$ se queda únicamente a dos unidades de tres veces un entero.

En esta entrada hablaremos del algoritmo de la división. Lo que nos dice es que dados dos enteros $a$ y $b$, siempre sucederá que $a$ puede ser escrito como $b$ veces un entero, más un residuo «pequeño» en términos de $b$. También nos dice que esta forma de escribir a $a$ será única.

La intuición del algoritmo de la división

Lo que nos permite hacer el algoritmo de la división es saber «cuántas veces cabe un entero en otro». En general, vamos a poder escribir $a=qb+r$ y esto querrá decir que «$b$ cabe $q$ veces en $a$ y sobran $r$». Lo que nos gustaría es hacer esto de manera que sobre lo menos posible.

Un ejemplo sencillo sería el siguiente. Tomemos $a=7$ y $b=2$. Si nos preguntáramos: ¿cuántos equipos de $2$ personas se necesitan para repartir a $7$ personas?, una posible respuesta sería: podemos formar $2$ equipos de dos personas cada uno y dejar fuera a $3$ personas. Esto se escribiría como $7=2\cdot 2 + 3$. Sin embargo, una mejor respuesta (y la que deja a menos personas fuera) es la siguiente: podemos formar $3$ equipos de dos personas cada uno, y dejar a alguien fuera. Esto corresponde algebraicamente a la igualdad $7=3\cdot 2 + 1$. Esta forma de escribir al $7$ es mejor pues el residuo es más pequeño.

Hay algunos casos que suenan un poco raros. Por ejemplo, tomemos $a = 2$, $b = 3$. Podría parecer que la división de $2$ entre $3$ da cero pues «el $3$ el mayor que el $2$ y no hay modo de que $3$ quepa en $2$». Esto es cierto: $3$ cabe cero veces en $2$. Pero hay un residuo que no se ha mencionado, que en este caso es $2$. La forma de escribir esto algebraicamente será $2=3\cdot 0 + 2$. Aquí el $0$ quiere decir que «el $3$ cabe cero veces en el $2$» y el $2$ de la derecha quiere decir que «sobran $2$». Si lo pensamos como equipos, no nos alcanzaría para crear ni un sólo equipo de $3$ personas teniendo sólo $2$.

Otro caso extraño es cuando tenemos números negativos. Por ejemplo, si $a=-7$ y $b=3$ entonces la forma en la que queremos expresar a $a$ es como sigue: $-7=(-3)\cdot 3 + 2$. Lo hacemos de esta manera pues siempre querremos que el residuo que queda sea positivo. Y de entre los residuos que se pueden obtener, lo mejor es que sobren únicamente $2$.

Resulta que la cantidad que sobra siempre se puede garantizar que sea «chica». Si estamos repartiendo $a$ en cachos de tamaño $b$, siempre podremos garantizar que lo que sobra esté entre $0$ y $|b|-1$. En símbolos, el algoritmo de la división dice que dados $a, b \in \mathbb{Z}$, con $b\neq 0$, es posible encontrar $q$ y $r$ únicos, tales que $a = bq + r,$ con $0 \leq r < |b|$. A $q$ se le llama el cociente y a $r$ le llamamos el residuo.

Que no espante el valor absoluto que se le añade a la $b$. Aún no hemos definido qué es, pero lo explicaremos un poco más abajo. Sin embargo, antes de enunciar y demostrar el teorema daremos un ejemplo con números un poco más grandes y su intuición numérica.

Otro ejemplo para entender el algoritmo de la división en $\mathbb{Z}$

Comencemos planteando el problema para $a=3531$ y $b=8$. Es decir, queremos encontrar $q$ y $r$ enteros tales que $3531 = 8q + r$, donde además $0 \leq r < 8$. Ya que $r$ debe ser un número muy pequeño entre $0$ y $8$, podemos ir dando valores a $r$ hasta que $3531-r$ se pueda escribir como $8$ veces un entero.

Si $r = 0$, habríamos de verificar si $3531$ se puede escribir como $8$ veces un entero. Nuestra intuición nos dice que esto no debería poderse, pues $3531$ es un número impar, pero $8$ veces un entero siempre será un número par.

Si $r = 1$, entonces querríamos ver si $8q = 3530$. Pero esto tampoco se puede pues con $q=441$ tenemos $8q=3528<3530$ y con $q=442$ tenemos $8q=3536>3530$ y entonces ya se pasa. Si $r = 2$, buscaríamos si $8q = 3529$, pero de nuevo este es un número impar.

Finalmente, si $r = 3$, entonces queremos ver si se puede lograr $3528= 8q$. Esto sí se puede: se toma $q=441$. Así, hemos logrado determinar que con $q = 441$, $r = 3$ se cumple que $3531 = 8q + r$, con lo que terminamos el problema.

Geométricamente, esto significa que $3531$, en la recta de los números enteros, estará situado entre números que sean $8$ veces un entero, a saber, $8\cdot 441$ y $8\cdot 442$:

$$ \ldots < 8\cdot 441 < 3531 < 8\cdot 442 < \ldots \text{.}$$

Más precisamente, como $3531$ es un entero positivo, el problema consistió en encontrar el entero que sea $8$ veces un entero más cercano por la izquierda y añadir $3$ unidades. Esto también lo podemos enunciar como que «$3531$ está a $3$ unidades a la derecha de un número que es $8$ veces un entero»:

$$ 8\cdot 441 < 8\cdot 441 + 1 < 8\cdot 441 +2 < 3531 < 8\cdot 441 +4 < 8\cdot 441 +5 < 8\cdot 441 +6 < 8\cdot 441 +7 < 8\cdot 442 \text{.}$$

En realidad esto funciona sin importar los valores de $a$ y $b$. Dado un entero $b$, podemos poner los enteros de la forma $mb$ en la recta numérica y siempre podremos situar al entero $a$ entre dos de ellos:

$$qb \leq a < (q+1)b, \qquad q\in \mathbb{Z}.$$

Si $b>0$, los múltiplos de $b$ en la recta numérica se verían así:

$$\ldots -4b, -3b, -2b, -b, 0, b, 2b, 3b, 4b, \ldots $$

De este modo, $q$ sería el mayor múltiplo de $b$ más cercano a $a$, sin excederse de $a$.

Enunciado y demostración del algoritmo de la división en $\mathbb{Z}$

Para poder enunciar el algoritmo de la división sin importar el signo de $a$ y $b$, debemos introducir un símbolo adicional.

Definición. Si $b \in \mathbb{Z}$, definimos el valor absoluto de $b$, denotado por $|b|$, como sigue: $$|b| = \left\lbrace \begin{matrix} b & \text{si $b\geq 0$}\\ -b & \text{si $ b < 0$} \end{matrix}\right.$$

En el algoritmo de la división nos darán dos números enteros $a$ y $b$. Para la restricción $0 \leq r \leq |b|$, sucederá que, no importa si $b$ sea un número positivo o negativo, nosotros nos fijaremos en el número siempre positivo que resulta de aplicarle valor absoluto a $b$. El resultado dice lo siguiente.

Teorema. Sean $a$ y $b$ en $\mathbb{Z}$ con $b\neq 0$. Entonces existen únicos enteros $q$ y $r$ enteros únicos tales que $$ a = qb + r$$ y $0 \leq r < |b|$.

Para la demostración del algoritmo de la división, necesitaremos el principio del buen orden. Como recordatorio, dice que todo subconjunto no vacío de $\mathbb{N}$ tiene un elemento mínimo.

Demostración. Primero hay que demostrar que siempre existen $q$ y $r$ enteros que satisfacen las condiciones que queremos. Vamos a suponer que $b>0$. El caso $b<0$ es muy parecido y quedará como tarea moral.

Lo que haremos es considerar al conjunto $S$ de todos los elementos de la forma $a-tb$ en donde $t$ es un entero, y tales que sean mayores o iguales a cero. Primero veremos que $S$ en efecto es un conjunto no vacío.

  • Si $a\geq 0$, tomamos $t=0$ y obtenemos la expresión $a-tb=a\geq 0$.
  • Si $a<0$, tomamos $t=a$ y obtenemos $a-tb=a-ab=a(1-b)$. Como $b>0$, entonces $b\geq 1$ y por lo tanto $(1-b)\leq 0$. Como $a<0$, obtenemos $a(1-b)\geq 0$, como queríamos.

Como $S$ es un conjunto no vacío de naturales, debe tener un elemento mínimo, al que le llamaremos $r$. Como $r$ está en $S$, obtenemos que $r=a-qb$ para algún entero $q$. Esto es un buen primer paso, pues nos muestra que $a=qb+r$. Sin embargo, todavía nos falta demostrar la importante desigualdad $0\leq r < |b|$. Como $b>0$, debemos mostrar $0\leq r < b$. Como $r$ está en $S$, obtenemos de manera inmediata que $r\geq 0$.

Sólo nos falta mostrar que $r<b$. Supongamos, con el fin de encontrar una contradicción, que $r\geq b$. Si este fuera el caso, sucedería que $r-b\geq 0$ además tendríamos la siguiente cadena de igualdades: $$r-b=a-tb-b=a-(t+1)b.$$

Esto lo que nos diría es que $r-b$ también está en $S$. ¡Pero eso es una contradicción!. Por construcción, $r$ era el menor elemento de $S$ y $r-b$ es un número menor que $r$ y que también está en $S$. Esta contradicción salió de suponer que $r\geq b$, así que en realidad debe pasar $r<b$, como queríamos.

Con esto queda demostrada la existencia de los enteros $q$ y $r$, tales que $a = bq + r$, con $0 \leq r < b$. Falta ver la unicidad. Supongamos que existen $q’$ y $r’$ enteros que también cumplen $$a = bq’ + r’$$ con $0\leq r’ < b$.

Demostramos primero que $r = r’$. Al hacer la resta $r-r’$ por un lado notamos que como mucho, puede valer $(b-1)-0=b-1$, lo cual pasa cuando $r=b-1$ y $r’=0$. Así mismo, por lo menos debe valer $0-(b-1)=-b+1$, lo cual sucede cuando $r=0$ y $r’=b-1$. Pero esta resta también se puede escribir de la siguiente manera: $$r-r’=(a-qb)-(a-q’b)=(q’-q)b.$

El único número de la forma $bk$ en $\{-b+1,-b+2,\ldots,0,\ldots,b-2,b-2\}$ es el entero $0$, pues justo no alcanza para llegar a $b$ ni a $-b$. De esta forma, $r-r’=0$, es decir $r=r’$. Y de aquí, obtenemos que $(q’-q)b=r-r’=0$. Como $b\neq 0$, obtenemos $q’-q=0$ y por lo tanto $q’=q$. Esto termina la demostración de la unicidad.

$\square$

Quizás el uso del principio del buen orden de la impresión de que la demostración anterior es «muy sofisiticada». En realidad, esto no es así. Simplemente es la forma en la que se formaliza una idea muy intuitiva: si el residuo queda mayor a $b$, entonces todavía le podemos «transferir» un sumando $b$ de $r$ a $qb$. El principio del buen orden simplemente nos garantiza que en algún momento este proceso de «transferir» sumandos $b$ debe de concluir.

Tarea moral

  1. Encuentra $q$ y $r$ enteros tales que $-1873 = 31q + r$ y $0\leq r < 31$.
  2. Demuestra las siguientes propiedades de la función valor absoluto de $\mathbb{Z}$:
    • $|a|\geq 0$ para cualquier entero $a$.
    • $|ab|=|a||b|$ para cualesquiera enteros $a$ y $b$.
    • $|a+b|\leq |a|+|b|$ para cualesquiera enteros $a$ y $b$.
  3. En general, ¿cómo se calcula $q$, para $a<0$? ¿y para $b<0$? Completa los detalles de la demostración del algoritmo de la división para cuando $b<0$.
  4. Encuentra un número que al dividirse entre $2$ deje residuo $1$, que al dividirse entre $3$ deje residuo $2$ y que al dividirse entre $4$ deje residuo $3$.
  5. Demuestra que cualquier entero se puede escribir de la forma $3q+r$ en donde $r$ es $-1$, $0$ ó $1$.

Más adelante…

Cuando aplicamos el algoritmo de la división nos puede pasar un caso muy especial: que $r$ sea igual a cero. En otras palabras, en este caso podemos escribir $a=qb$ y por lo tanto $b$ cabe en $a$ «de manera exacta». Este caso es muy interesante y amerita un profundo estudio. Cuando esto sucede, decimos que $a$ es múltiplo de $b$, o bien que $b$ divide a $a$. En la siguiente entrada estudiaremos con más detalle la relación de divisibilidad en $\mathbb{Z}$. Un poco más adelante hablaremos de los ideales de $\mathbb{Z}$, que son un tipo de subconjuntos fuertemente relacionados con la noción de divisibilidad.

Entradas relacionadas

Cálculo Diferencial e Integral I: Cota superior e inferior de un conjunto.

Introducción

Ahora comenzaremos a ver un tema un tanto diferente a los vistos en la entrada anterior. Primero veremos los conceptos de máximo y mínimo de un conjunto, después las definiciones formales para cota superior e inferior, y terminaremos revisando algunos ejemplos donde las aplicaremos.

Máximo y mínimo de un conjunto

Definición: Sean $A,B \subseteq \r$ no vacíos. Decimos que:

  • $A$ tiene elemento máximo $\Leftrightarrow \exists a_{0} \in A$ tal que $\forall a \in A$ se cumple que: $a \leq a_{0}$
  • $B$ tiene elemento minímo $\Leftrightarrow \exists b_{0} \in B$ tal que $\forall b \in B$ se cumple que: $b_{0} \leq b$

Para darnos una idea más clara de estas definiciones veamos los siguientes ejemplos:

$$C=(0,1]$$

  1. No tiene mínimo.
  2. Tiene máximo y es 1.

Para probar estas afirmaciones haremos uso de las definiciones anteriores:
Demostración 1 (por contradicción): Supondremos que existe un elemento $c_{0} \in C$ tal que $\forall c \in A$ cumple que $c_{0} \leq c$. Por lo que se sigue que: $0<c_{0}<1$.
Observemos que $\frac{c_{0}}{2} \in C$ ya que $0<\frac{c_{0}}{2}<c_{0}$
$$\Rightarrow c_{0}\leq \frac{c_{0}}{2}<c_{0} \contradiccion$$
Lo cuál es una contradicción.

Demostración 2: Veamos que al reescribir al conjunto C tenemos:
$$C=\left\{ c\in \r|0<c \leq 1 \right \}$$
Por lo que $1\in C$ y se cumple que $\forall c\in C, c\leq 1$.

$\square$

Observación:

  • El elemento máximo de un conjunto es único.
  • El elemento mínimo de un conjunto es único.

Cota superior e inferior de un conjunto

Definición: Sea $A \subseteq \r$. Decimos que un número $M \in \r$ es:

  • Cota superior $\Leftrightarrow \forall a \in A$ se cumple que: $a\leq M$.
  • Cota inferior $\Leftrightarrow \forall a \in A$ se cumple que: $a\geq M$.

Observación: Si hay una cota superior $M \Rightarrow \forall a \in A$ ocurre que: $$ a \leq M < M+1<M+2<M+3 \ldots$$ Es decir, hay una infinidad de cotas superiores de $A$.

Ejemplo

Consideremos al conjunto:
$$E=(0,2]$$
Vemos que para todo $x\in E$ ocurre que $-2<0<x$
$$\therefore -2 \leq x$$
Por lo que podemos concluir que $-2$ es cota inferior de $E$.

Y además tenemos que $\forall x \in E$ se cumple $ x \leq 2$
$\therefore 2$ es cota superior de $E$.

Conjuntos acotados

Definición: Consideremos $A, B \subseteq \r$. Decimos que:

  • $A$ es acotado superiormente $\Leftrightarrow \exists M\in \r$ tal que $\forall a \in A$, $a \leq M$.
  • $B$ es acotado inferiormente $\Leftrightarrow \exists m\in \r$ tal que $\forall b \in B$, $m \leq b$.
  • $A$ es acotado $\Leftrightarrow \exists m,M \in \r$ tal que $\forall a \in A$: $m \leq a \leq M$.
  • $A$ es acotado $\Leftrightarrow \exists M \in \r$ tal que $\forall a \in A$: $|a| \leq M$.

Lema: Para cualesquiera $A,B \subseteq \r$. Si $A\subseteq B$ y $B$ es acotado entonces $A$ es acotado.

Demostración: Como tenemos que $B$ es acotado existe $M>0$ tal que para todo $b\in B$:
$$|b|\leq M$$
CASO 1 $A\neq\emptyset$: Como $A \subseteq B$ entonces para todo $a \in A$ existe $b \in B$ tal que $a=b$.
$\therefore a \in A, a=b \Rightarrow |a|=|b|\leq M$$
CASO 2 $A= \emptyset$: Sabemos que $A =\emptyset\subseteq B$ por lo que se sigue $A$ es acotado por vacuidad.

$\square$

Ejemplo

Si tenemos: $$A= \left\{\frac{1}{n}: n\in \mathbb{N} \right\}$$

Observamos que:

  • $A$ es acotado superiormente ya que para todo $n\in \mathbb{N}$:
    $$1<n \Leftrightarrow \frac{1}{n} \leq 1$$
    $\therefore 1$ es cota superior de $A$.
  • $A$ tiene elemento máximo. Tenemos que $\forall n\in \mathbb{N}: \frac{1}{n} \leq 1$
    Así para $n=1$ ocurre que $\frac{1}{1} \leq 1$.
    $\therefore 1$ es máximo de $A$.
  • El conjunto de cotas superiores de $A$ esta dado por:
    $$[1, \infty)$$
    tiene elemento mínimo y es 1. Esto nos indica que existe una mínima cota superior.
  • $A$ es acotado inferiormente. Vemos que para todo $n\in \mathbb{N}, \frac{1}{n} > 0$ por lo que $0 \notin A$. Concluimos así que $\forall a\in A, 0 \leq \frac{1}{n}$.
    $\therefore 0$ es cota inferior de $A$
  • El conjunto de cotas inferiores de $A$ esta dado por:
    $$(- \infty, 0]$$
    tiene elemento máximo y es 0. Esto nos indica que existe una máxima cota inferior.
  • $A$ no tiene elemento mínimo. Si suponemos que existe un elemento $a_{0} \in A$ tal que $\forall n\in \mathbb{N}, a_{0} \leq \frac{1}{n}$. Tenemos que $a_{0}$ sería de la forma
    $a_{0} = \frac{1}{n_{0}} > 0$
    $\Rightarrow 0< \frac{1}{2n_{0}}<\frac{1}{n_{0}}$ con $\frac{1}{2n_{0}} \in A$.
    De lo anterior vemos que $a_{0}$ no es mínimo $\Rightarrow \frac{1}{n_{0}}\leq\frac{1}{2n_{0}} \contradiccion$

$\square$

Tarea moral

  • Demuestra que:
    • El elemento máximo de un conjunto es único.
    • El elemento mínimo de un conjunto es único.
  • Prueba que son equivalentes las definiciones para $A$ acotado:
    $\exists m,M \in \r$ tal que $\forall a \in A$: $m \leq a \leq M \Leftrightarrow \exists M \in \r$ tal que $\forall a \in A$: $|a| \leq M$.
  • Para el conjunto $D=(-\infty, 1)$ demuestra que se cumplen las siguientes afirmaciones:
    • D no tiene elemento mínimo
    • D no tiene elemento máximo
    • D es acotado superiormente
    • D no tiene cotas inferiores

Más adelante

Ahora que ya hemos revisado los conceptos de máximo, mínimo y cotas superiores e inferiores de un conjunto en $\r$ tenemos los antecedentes necesarios para comenzar a hablar de supremos e ínfimos.

Entradas relacionadas

Seminario de Resolución de Problemas: El teorema del valor extremo

Introducción

En una entrada anterior, acerca de funciones continuas, mencionamos dos teoremas fundamentales que estas funciones satisfacen: el teorema del valor intermedio y el teorema del valor extremo. Ya hablamos acerca del teorema del valor intermedio en una entrada anterior. El objetivo de esta entrada es mencionar aplicaciones del teorema del valor extremo.

Como recordatorio, el teorema del valor extremo o teorema de los valores extremos nos dice que si una función $f(x)$ es continua en un intervalo cerrado $[a, b]$, entonces existen valores $c$ y $d$ en $[a, b]$ tales que $f(c) \leq f(x) \leq f(d)$ para toda $x$ en el intervalo $[a, b]$.

En otras palabras, lo que nos dice el teorema es que si una función es continua en un intervalo cerrado, tenemos que la función debe alcanzar un valor máximo y un valor mínimo dentro del intervalo.

Dos teoremas para funciones derivables

Aprovecharemos para mencionar dos teoremas importantes que se ocuparán más adelante. Las demostraciones de dichos teoremas tienen que ver con la aplicación del teorema del valor extremo, estos teoremas son el teorema de Rolle y el teorema del valor medio (no confundir con el teorema del valor intermedio).

Teorema de Rolle. Sean $a<b$ reales y $f:[a,b]\to\mathbb{R}$ una función continua en el intervalo $[a, b]$ y derivable en $(a, b)$. Se tiene que si $f(a)=f(b)$, entonces existe $c$ en $(a, b)$ tal que $f^\prime(c)=0$.

Sugerencia pre-demostración. Por el teorema del valor extremo, la función debe alcanzar un máximo y un mínimo en el intervalo. Divide en casos de acuerdo a dónde están estos valores, si en los extremos o no.

Demostración: Como $f(x)$ es una función continua en $[a, b]$, por el teorema del valor extremo tenemos que $f(x)$ alcanza un valor máximo y un valor mínimo en el intervalo $[a, b]$. Tenemos entonces los siguientes casos.

  • Caso i: Si el valor máximo y mínimo se encuentran en los extremos del intervalo, tenemos que la función $f(x)$ tiene que ser constante dado que $f(a)=f(b)$. y se tiene que $f^\prime(c)=0$ para todo $c$ en $[a, b]$.
  • Caso ii: Si el valor mínimo o máximo no están en los extremos. Sean $c_1$ y $c_2$ en $(a, b)$, los valores en los que la función alcanza su mínimo y máximo respectivamente. Alguno de estos no está en los extremos. Como $f(x)$ es derivable en $(a, b)$, tenemos que también va a ser derivable en alguno de los puntos $c_1$ y $c_2$, teniendo que $f^\prime(c_1)=0$ o $f^\prime(c_2)=0$, así que basta con tomar $c=c_1$ o $c=c_2$.

$\square$

Teorema del valor medio. Sean $a<b$ reales y $f:[a,b]\to\mathbb{R}$ una función continua en $[a, b]$ y diferenciable en $(a, b)$. Entonces existe un número $c$ en $(a, b)$ tal que

$\frac{f(b)-f(a)}{b-a}=f^\prime(c)$.

Demostración: Consideremos la siguiente función auxiliar:

$g(x)=(f(b)-f(a))x-(b-a)f(x)$

Tenemos que $g(x)$ es continua en $[a, b]$ y además es derivable en $(a,b)$. La derivada de $g(x)$ está dada por

$g^\prime(x)=f(b)-f(a)-(b-a)f^\prime(x)$

Como $g(x)$ es continua en $[a, b]$, tenemos que por el teorema del valor extremo, la función alcanza un máximo y un mínimo en el intervalo $[a, b]$. Haciendo las cuentas, $g(a)=g(b)$, de modo que si el máximo y mínimo ocurren en los extremos, entonces $g$ es constante y toda $c\in (a,b)$ satisface $g'(c)=0$

En otro caso, sea $c\in(a, b)$ el valor en donde $g(x)$ alcanza su mínimo o su máximo. Tenemos que $g^\prime(c)=0$.

Así, como $g^\prime(c)=f(b)-f(a)-(b-a)f^\prime(c)$, tenemos que:

$0=f(b)-f(a)-(b-a)f^\prime(c)$

$(b-a)f^\prime(c)=f(b)-f(a)$

$f^\prime(c)=\frac{f(b)-f(a)}{b-a}$

$\square$

Alternativamente, en la función anterior pudimos haber aplicado el teorema de Rolle directamente a la función $g$. En las siguientes entradas veremos aplicaciones de estos resultados a problemas concretos.

Aplicación del teorema del valor extremo a un problema

Problema. Se tiene un circulo de radio $r$, y una tangente $L$ que pasa por un punto $P$ de la circunferencia. De un punto cualquiera $R$ en la circunferencia se traza una paralela a $L$ que corta a la circunferencia en $Q$. Determina el área máxima que puede tener el triángulo $PQR$.

Sugerencia pre-solución. Antes que nada, haz una figura. Usa el teorema del valor extremo para asegurar la existencia del valor máximo. Para ello, necesitarás construir una función continua cuyo valor sea el área buscada. Puedes usar argumentos de simetría para conjeturar cuándo se alcanza el valor máximo.

Solución. Hacemos el siguiente diagrama para entender mejor el problema.

Diagrama del enunciado del problema

Fijémonos que las condiciones de la altura y la base del triángulo $PQR$ se pueden describir mediante la siguiente figura:

Condiciones para la altura y base del triángulo

Notemos que la altura del triángulo está dada por $r+h$, donde $h$ puede variar entre $-r$ y $r$. Este dibujo también nos es de ayuda para determinar el valor de la base. Por el teorema de Pitágoras y sabiendo que la distancia del centro $C$ a los puntos $R$ y $Q$ es igual a $r$, tenemos que la base del triángulo es igual a $2\sqrt{r^2-h^2}$.

Así, el área del triángulo está dada por $(\sqrt{r^2-h^2})(r+h)$, pero como $h$ varía, nos conviene ver el área en función de $h$.

$A(h)=\sqrt{r^2-h^2}(r+h),$

La función $A(h)$ es una función continua en el intervalo $[-r, r]$.

Notemos que cuando $h$ toma los valores de $-r$ y $r$, el valor del área es nulo, es decir que en estos valores alcanza el mínimo, lo cual quiere decir que por el teorema del valor extremo, el valor máximo lo alcanza en algún valor en $(-r, r)$.

Si derivamos la función $A(h)$, tenemos

$A^\prime(h)=\frac{r^2-rh-2h^2}{\sqrt{r^2-h^2}}.$

Como sabemos que hay un máximo en el intervalo $(-r, r)$ y la derivada en este punto máximo debe ser igual a cero, hacemos $A^\prime(h)=0$.

Así,

$\frac{r^2-rh-2h^2}{\sqrt{r^2-h^2}}=0.$

Resolviendo la ecuación tenemos que

$h=\frac{r}{2}.$

Así, el área máxima del triángulo $PQR$ es $$A=\sqrt{r^2-\left(\frac{r}{2}\right)^2}\left(r+\frac{r}{2}\right)=\frac{3\sqrt{3}r^2}{4}.$$

$\square$

Más ejemplos

Se pueden encontrar más problemas de aplicación del teorema del vaalor extremo en la Sección 6.4 del libro Problem Solving through Problems de Loren Larson.

Casos extremos

HeuristicasEn los problemas de matemáticas tenemos objetos con propiedades. De entre los objetos con una propiedad, a veces es bueno elegir uno en especial para verificar nuestras conjeturas. En otras ocasiones, estos objetos extremos tienen propiedades que los hacen cumplir lo que pide el problema.

En estos videos veremos ejemplos en los cuales la existencia (¡o no existencia!) de objetos extremos o especiales nos permite resolver problemas.

Ir a los videos…