Archivo de la etiqueta: suma

Álgebra Lineal I: Algunas aclaraciones sobre las formas lineales

Introducción

Uno de los momentos del curso de Álgebra Lineal I en el que se da un brinco de abstracción es cuando se introduce el espacio dual. En ese momento, empiezan a aparecer objetos que tratamos simultáneamente como funciones y como vectores: las formas lineales. De reprente puede volverse muy difícil trasladar incluso conceptos muy (como el de suma vectorial, o el de indepencia lineal) a este contexto. En esta entrada intentaremos dejar esto mucho más claro.

Igualdad de funciones

Para hablar del dual de un espacio vectorial $V$ sobre un campo $F$, necesitamos hablar de las funciones $l:V\to F$. Antes de cualquier cosa, debemos de ponernos de acuerdo en algo crucial. ¿Cuándo dos funciones son iguales?

Definición. Dos funciones $f:A\to B$ y $g:C\to D$ son iguales si y sólo si pasan las siguientes tres cosas:

  • $A=C$, es decir, tienen el mismo dominio.
  • $B=D$, es decir, tienen el mismo codominio
  • $f(a)=g(a)$ para todo $a\in A$, es decir, tienen la misma regla de asignación.

Los dos primeros puntos son importantes. El tercer punto es crucial, y justo es lo que nos permitirá trabajar y decir cosas acerca de las funciones. Implica dos cosas:

  • Que si queremos demostrar la igualdad de dos funciones, en parte necesitamos demostrar que se da la igualdad de las evaluaciones para todos los elementos del conjunto.
  • Que si ya nos dan la igualdad de las funciones, entonces nos están dando muchísima información, pues nos están diciendo la igualdad de todas las evaluaciones posibles.

Veamos algunos ejemplos.

Ejemplo. Tomemos las funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las reglas de asignación $f(x,y)=2x+3y$ y $g(x,y)=6x-y$. ¿Son iguales? Los primeros dos puntos en la definición de igualdad se cumplen, pues tienen el mismo dominio y codominio. Entonces, debemos estudiar si tienen la misma regla de asignación.

Al evaluar en $(1,1)$ obtenemos que $f(1,1)=2+3=5$ y que $g(1,1)=6-1=5$. Al evaluar en $(2,2)$ obtenemos que $f(2,2)=4+6=10$ y que $g(2,2)=12-2=10$. Hasta aquí parecería que todo va bien, pero dos ejemplos no son suficientes para garantizar que $f=g$. Necesitaríamos la igualdad en todos los valores del dominio, es decir, en todas las parejas $(x,y)$.

Al evaluar en $(2,0)$ obtenemos que $f(2,0)=4+0=4$ y que $g(2,0)=12-0=12$. Los valores de las funciones fueron distintos, así que las funciones son distintas.

$\square$

Ejemplo. Imagina que $A$ y $B$ son dos números tales que las dos funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las siguientes reglas de asignación son iguales:

\begin{align*}
f(x,y)&=2x-5y+A\\
g(x,y)&=Bx-5y+3.
\end{align*}

¿Cuáles tendrían que ser los valores de $A$ y $B$? Por supuesto, una exploración «a simple vista» sugiere que tendríamos que poner $B=2$ y $A=3$. Pero, ¿cómo vemos formalmente esto? ¿Cómo nos aseguramos de que sea la única posibilidad? Lo que tenemos que hacer es usar nuestra definición de igualdad de funciones. Para ello, podemos utilizar los valores $(x,y)$ que nosotros queremos pues la igualdad de funciones garantiza la igualdad en todas las evaluaciones. Así, podemos ponernos creativos y proponer $(3,5)$ para obtener que:

\begin{align*}
f(3,5)&=6-25+A=-19+A\\
g(3,5)&=3B-25+3=3B-22.
\end{align*}

Como las funciones son iguales, debe pasar que $f(3,5)=g(3,5)$, por lo que $-19+A=3B-22$. ¿Esto es suficiente para saber quién es $A$ y $B$? Todavía no, aún hay muchas posibiliades. Propongamos entonces otro valor de $(x,y)$ para evaluar. Veamos qué sucede con $(-2,1)$. Obtenemos:

\begin{align*}
f(-2,1)&=-4-5+A=-9+A\\
g(-2,1)&=-2B-5+3=-2B-2.
\end{align*}

Ahora tenemos más información de $A$ y $B$. Sabemos que $-9+A=-2B-2$. Reordenando ambas cosas que hemos obtenido hasta ahora, tenemos el siguiente sistema de ecuaciones:

\begin{align*}
A-3B=-3\\
A+2B=7.
\end{align*}

Restando la primera de la segunda obtenemos $5B=10$, de donde $B=2$. Sustituyendo en la segunda obtenemos $A+4=7$, de donde $A=3$, justo como queríamos.

$\square$

En el ejemplo anterior pudimos haber sido más astutos y evitarnos el sistema de ecuaciones. Recordemos que la igualdad $f(x,y)=g(x,y)$ se tiene para todas todas las parejas $(x,y)$, así que nos conviene usar parejas que 1) Sean sencillas de usar y 2) Nos den suficiente información.

Ejemplo. En el ejemplo anterior hicimos un par de sustituciones que finalmente sí nos llevaron a los valores que queríamos. Pero hay «mejores» sustituciones. Si hubiéramos usado la pareja $(0,0)$ obtendríamos inmediatemente $A$ pues: $$A=0-0+A=f(0,0)=g(0,0)=0-0+3=3,$$ de donde $A=3$. Ya sabiendo $A$, pudimos usar la pareja $(1,0)$ para obtener $$B+3=B-0+3=g(1,0)=2-0+3=5.$$ De aquí se obtene nuevamente $B=2$.

$\square$

Veamos un último ejemplo, en el que es imposible encontrar un valor fijo que haga que dos funciones que nos dan sean iguales.

Ejemplo. Veamos que es imposible encontrar un número real $A$ para el cual las dos funciones $f:\mathbb{R}^2\to\mathbb{R}$ y $g:\mathbb{R}^2\to \mathbb{R}$ con las siguientes reglas de asignación sean iguales:

\begin{align*}
f(x,y)&=x^2+Ay^2\\
g(x,y)&=Axy.
\end{align*}

Imaginemos, de momento, que esto sí es posible. Entonces, tendríamos la igualdad de funciones y por lo tanto tendríamos la igualdad para todas las evaluaciones. Evaluando en $(1,0)$ obtendríamos que $$0=A\cdot 1 \cdot 0 = g(1,0)=f(1,0)=1^2+A\cdot 0^2=1.$$ Esto nos lleva a la contradicción $0=1$, lo cual muestra que ningún valor de $A$ podría funcionar.

$\square$

La forma lineal cero

Otra noción básica, pero que es importante de entender, es la noción de la forma lineal cero.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $0$ el neutro aditivo del campo $F$. La forma lineal cero es la función $L_0:V\to F$ que manda a cualquier vector $v$ de $V$ a $0$, es decir, cuya regla de asignación es $L_0(v)=0$ para todo $v$ en $V$.

En álgebra lineal rápidamente nos queremos deshacer de notación estorbosa, pues muchas cosas son claras a partir del contexto. Pero esto tiene el problema de introducir amgüedades que pueden ser confusas para alguien que apenas está comenzando a estudiar la materia. Lo que prácticamente siempre se hace es que a la forma lineal cero le llamamos simplemente $0$, y dejamos que el contexto nos diga si nos estamos refiriendo al neutro aditivo de $F$, o a la forma lineal cero $L_0$.

En esta entrada intentaremos apegarnos a llamar a la forma lineal cero siempre como $L_0$, pero toma en cuenta que muy probablemente más adelante te la encuentres simplemente como un $0$. Combinemos esta noción con la de igualdad.

Ejemplo. ¿Cómo tienen que ser los valores de $A$, $B$ y $C$ para que la función $l:\mathbb{R}^3\to \mathbb{R}$ con la siguiente regla de asignación sea igual a la forma lineal cero $L_0$? $$f(x,y,z)=(A+1)x+(B+C)y+(A-C)z$$

Debemos aprovechar la definición de igualdad de funciones: sabemos que la igualdad se da para las ternas que nosotros queramos. Evaluando en $(1,0,0)$ obtenemos $$A+1 = f(1,0,0)=L_0(1,0,0)=0.$$

Aquí a la derecha estamos usando que la forma lineal cero siempre es igual a cero. De manera similar, evaluendo en $(0,1,0)$ y $(0,0,1)$ respectivamente obtenemos que \begin{align*}B+C&=f(0,1,0)=L_0(0,0,0)=0\\A-C&=f(0,0,1)=L_0(0,0,0)=0.\end{align*}

Ya tenemos información suficiente para encontrar $A$, $B$ y $C$. De la primer ecuación que obtuvimos, se tiene $A=-1$. De la tercera se tiene $C=A=-1$ y de la segunda se tiene $B=-C=1$.

Pero, ¡momento! Estos valores de $A$, $B$, $C$ funcionan para las tres ternas que dimos. ¿Funcionarán para cualquier otra terna? Si elebimos $A=-1$, $B=1$ y $C=-1$ entonces tendríamos $$f(x,y,z)=0\cdot x + 0\cdot y + 0\cdot z.$$ En efecto, sin importar qué valores de $(x,y,z)$ pongamos, la expresión anterior dará cero. Así, se daría la igualdad de reglas de correspondencia entre $f$ y $L_0$ y como tienen el mismo dominio y codominio concluiríamos que $f=L_0$.

$\square$

Suma y producto escalar de formas lineales

Otro aspecto que puede causar confusión es la suma de funciones y el producto escalar. En la duda, siempre hay que regresar a la definición. Enunciaremos los conceptos para formas lineales. Pero en realidad podemos definir la suma de funciones de manera similar siempre que el codominio sea un lugar en donde «se puede sumar». Similarmente, podríamos definir el producto escalar de un elemento con una función siempre que sepamos cómo multiplicar a ese elemento con cada elemento del codominio.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sean $l:V\to F$ y $m:V\to F$ formas lineales. Definimos la suma de $l$ con $m$, a la cual denotaremos por $l+m$, como la función $l+m:V\to F$ con la siguiente regla de asignación:$$(l+m)(v)=l(v)+m(v),$$ para cualquier $v$ en $V$.

De nuevo nos estamos enfrentando a un posible problema de ambigüedad de símbolos: por un lado estamos usando $+$ para referirnos a la suma en el campo $F$ y por otro lado para referirnos a la suma de funciones que acabamos de definir.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $l:V\to F$ una forma lineal y sea $r$ un elemento de $F$. Definimos el producto escalar de $r$ con $F$, al cual denotaremos por $r\cdot l$ como la función $r\cdot l:V\to F$ con la siguiente regla de asignación:$$(r\cdot l)(v)=r\cdot (l(v))$$ para cualquier $v$ en $V$.

Así, estamos usando tanto la suma en $F$ como el producto en $F$ para definir una nueva suma de funciones y un nuevo producto entre un real y una función. En el caso del producto escaler, como con muchos otros productos, usualmente quitamos el punto central y ponemos $rl$ en vez de $r\cdot l$.

Ejemplo. Tomemos las funciones $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3\to \mathbb{R}$ con las siguientes reglas de asignación:

\begin{align*}
f(x,y,z)&=2x-y+z\\
g(x,y,z)&=3x+y-5z.
\end{align*}

Mostraremos que la función $3f+(-2)g$ es igual a la función $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z)=-5y+13z$. Lo haremos con todo el detalle posible. Primero, notamos que las dos funciones tienen dominio $\mathbb{R}^3$ y codominio $\mathbb{R}$ así que nos podemos enfocar en la regla de asignación. Debemos ver que ambas coinciden para todas las ternas $(x,y,z)$ en $\mathbb{R}^3$. Tomemos entonces una de estas ternas $(x,y,z)$.

Por definición de producto escalar de funciones, tenemos que $$(3f)(x,y,z)=3(f(x,y,z))=3(2x-y+z)=6x-3y+3z.$$. Aquí estamos usando la distributividad en los reales. Por definición de producto escalar de funciones, tenemos que $$ ((-2)g)(x,y,z)=(-2)(g(x,y,z))=(-2)(3x+y-5z)=-6x-2y+10z.$$ Una vez más estamos usando distributividad. Luego, por definición de suma de funciones obtenemos que

\begin{align*}
(3f+(-2)g)(x,y,z)&=(3f)(x,y,z)+(-2g)(x,y,z)\\
&= (6x-3y+3z)+(-6x-2y+10z)\\
& = -5y+13z\\
&= h(x,y,z).
\end{align*}

$\square$

Usualmente tomamos atajos para seguir simplificando la notación. Por ello, típicamente a veces vemos escrito todo lo anterior simplemente como: $$3(2x-y+z)-2(2x+y-5z)=-5y+13z.$$ De hecho esto es muy práctico, pues se puede mostrar que las funciones «sí podemos operarlas como si fueran expresiones en $x$, $y$, $z$ y usáramos las reglas usuales». Así, podemos «trabajar simbólicamente» y concluir rápidamente que $$(x+y)+(3x+2z)-3(x+y-z)$$ en verdad tiene la misma regla de asignación que $-2y+5z$.

Ahora sí, ¿quién es el espacio dual?

Si tenemos un espacio vectorial $V$ sobre un campo $F$ podemos construirnos otro espacio vectorial con otro conjunto base y otras operaciones que no son las del espacio original. Una forma de hacer esto es construir el espacio dual, al que llamaremos $V^\ast$. Los elementos de $V^\ast$ son las formas lineales de $V$, es decir, funciones lineales con dominio $V$ y codominio $F$. Debemos acostumbrarnos a pensar simultáneamente a un elemento de $V^\ast$ tanto como un vector (de $V^\ast$) como una función (de $V$ a $F$).

Para verdaderamente pensar a $V^\ast$ como un espacio vectorial, debemos establecer algunas cosas especiales:

  • La suma vectorial de $V^\ast$ será la suma de funciones que platicamos en la sección anterior.
  • El producto escalar vectorial de $V^\ast$ será el producto escalar que platicamos en la sección anterior.
  • El neutro aditivo vectorial de $V^\ast$ será la forma lineal $L_0$, y se puede verificar que en efecto $l+L_0=l$ para cualquier forma lineal $l$.

Por supuesto, típicamente a la suma vectorial le llamaremos simplemente «suma» y al producto escalar vectorial simplemente «producto escalar». Aquí estamos haciendo énfasis en lo de «vectorial» sólo para darnos cuenta de que nuestras operaciones de funciones se transformaron en operaciones para el espacio vectorial que estamos definiendo.

El espacio dual cumple muchas propiedades bonitas, pero ahorita no nos enfocaremos en enunciarlas y demostrarlas. Esto se puede encontrar en la página del curso de Álgebra Lineal I en el blog. Lo que sí haremos es irnos a los básicos y entender cómo se verían algunas definiciones básicas de álgebra lineal en términos de lo que hemos discutido hasta ahora.

Combinaciones lineales de formas lineales

Para hablar de las nociones de álgebra lineal para formas lineales, hay que pensarlas como vectores y como funciones. ¿Qué sería una combinación lineal de las formas lineales $l_1,\ldots,l_r$ del espacio vectorial, digamos, $\mathbb{R}^n$. Debemos tomar elementos $\alpha_1,\ldots,\alpha_r$ en $\mathbb{R}$ y construir la función $\ell=\alpha_1l_1+\ldots+\alpha_rl_r$. Aquí estamos usando la suma vectorial y el producto escalar vectorial que quedamos que serían la suma como funciones y el producto escalar como funciones. Así, obtenemos un elemento $\ell$ que por un lado es un vector del espacio dual, y por otro es una función $\ell:\mathbb{R}^n\to \mathbb{R}$. ¿Cuál es la regla de asignación? Es precisamente la dada por las definiciones de suma y producto escalar para funciones. Para ser muy precisos, se puede mostrar inductivamente que su regla de asignación es:

\begin{align*}
(\alpha_1l_1+&\ldots+\alpha_rl_r)(x_1,\ldots,x_n)=\\
&\alpha_1(l_1(x_1,\ldots,x_n))+\ldots+\alpha_r(l_r(x_1,\ldots,x_n)).
\end{align*}

Entendiendo esto, ahora sí podemos preguntarnos si una forma lineal es combinación lineal de otras.

Ejemplo. La forma lineal $h:\mathbb{R}^2\to\mathbb{R}$ con regla de asignación $h(x,y)=2x-y$ es combinación lineal de las formas lineales $f(x,y):\mathbb{R}^2\to\mathbb{R}$ y $g(x,y):\mathbb{R}^2\to\mathbb{R}$ con reglas de asignación

\begin{align*}
f(x,y)&=x+y\\
g(x,y)&=x-y.
\end{align*}

En efecto, tenemos que es igual a la combinación lineal $\frac{1}{2}f + \frac{3}{2} g$, pues su regla de asignación es:

$$\left(\frac{1}{2}f + \frac{3}{2} g\right)(x,y)=\left(\frac{x+y}{2}\right)+\left(\frac{3x-3y}{2}\right)=2x-y,$$

que es justo la regla de asignación de $h$. Así, $h=\frac{1}{2}f+\frac{3}{2}g$.

$\square$

Independencia lineal de formas lineales

Veamos un ejemplo más de cómo entender nociones de álgebra lineal cuando hablamos de formas lineales (o funciones en general). ¿Cómo sería el concepto de independencia lineal para formas lineales $l_1,\ldots,l_r$? A partir de una combinación lineal de ellas igualada a la forma lineal cero $L_0$, debemos mostrar que todos los coeficientes son iguales a cero. Es decir, a partir de $$\alpha_1l_1+\ldots+\alpha_rl_r=L_0,$$ debemos mostrar que $\alpha_1=\ldots=\alpha_r=0.$$ Usualmente el truco en estas situaciones es que ya nos están dando una igualdad de funciones. Entonces, podemos evaluar en los valores que nosotros queramos de ambos lados de la igualdad pues funciones iguales tienen todas sus evaluaciones iguales. Esto se parece a los ejemplos de la sección de igualdad de funciones.

Ejemplo. Vamos a demostrar que las formas lineales de $\mathbb{R}^4$ dadas por $f(w,x,y,z)=4w+2x+z$, $g(w,x,y,z)=4w+2z+y$, $h(w,x,y,z)=4w+2y+x$, $k(w,x,y,z)=w+x+y+z$ son linealmente independientes. Tomemos una combinación lineal de ellas igualda a cero (¡recordemos que en este espacio vectorial el cero es la forma lineal $L_0$!):

$$Af+Bg+Ch+Dk=L_0.$$

Debemos demostrar que $A=B=C=D=0$. ¿Cómo hacemos esto? Lo que haremos es evaluar: pondremos valores convenientes de $(w,x,y,z)$ en la igualdad anterior para obtener información de $A$, $B$, $C$, $D$. Poniendo $(1,0,0,0)$ obtenemos que:

\begin{align*}
0&=L_0(1,0,0,0)\\
&= (Af+Bg+Ch+Dk)\\
&=Af(1,0,0,0)+ Bg(1,0,0,0) +Ch(1,0,0,0) +Dk(1,0,0,0) \\
&=4A + 4B + 4C + D.
\end{align*}

Así, $4A+4B+4C+D=0$. Usando esta ecuación y las evaluaciones $(0,1,0,0)$, $(0,0,1,0)$ y $(0,0,0,1)$, obtenemos todo lo siguiente:

\begin{align*}
4A+4B+4C+D&=0\\
2A+C+D&=0\\
B+2C+D&=0\\
A+2B+D&=0.
\end{align*}

De aquí se puede mostrar (como puedes verificar como ejercicio) que la única solución posible es $A=B=C=D=0$. De este modo, las formas lineales $f,g,h,k$ son linealmente independientes.

$\square$

Más adelante

Esta es más una entrada auxiliar que una entrada que forma parte del flujo de la teoría principal. Sin embargo, espero que te haya servido para dejar más claros los conceptos de cuándo tenemos formas lineales iguales, cómo se operan, cuándo varias formas lineales son linealmente independientes, etc.

Tarea moral…

  1. Verifica que para cualquier forma lineal $l:\mathbb{R}^n\to \mathbb{R}$ y la forma lineal cero $L_0:\mathbb{R}^n\to\mathbb{R}$ en efecto se tiene que $l+L_0=l$. Usa las definiciones de la forma lineal cero, de la igualdad de funciones y de la suma de funciones.
  2. Verifica que $V^\ast$ con las operaciones de suma, producto escalar y el neutro aditivo que dimos en efecto es un espacio vectorial. ¿Cómo tendrían que ser los inversos aditivos?
  3. Considera las formas lineales $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3 \to \mathbb{R}$ dadas por $f(x,y,z)=x+3y+z$ y $g(x,y,z)=-x+5y-z$.
    1. Demuestra que es imposible encontrar reales $A$ y $B$ ambos distintos de cero tales que $Af+Bg$ sea la forma lineal cero.
    2. Encuentra reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z) = -x + 21 – z$.
    3. Demuestra que es imposible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $j:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $j(x,y,z)= -2x + 4y -3z$.
    4. ¿Será posible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $k:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $k(x,y,z)=5x+5y+5z$?
  4. Para cada uno de los siguientes casos, determina si las formas lineales son linealmente independientes:
    1. $f(x,y)=5x+3y$, $g(x,y)=x-3y$.
    2. $f(x,y,z)=5x+2y-z$, $g(x,y,z)=z$, $h(x,y,z)=x-y-z$.
    3. $f(w,x,y,z)=w+y$, $g(w,x,y,z)=3x-2z$, $h(w,x,y,z)=x+y+z$, $k=(w,x,y,z)=w+2x-3z$.
  5. Considera el espacio vectorial de polinomios con coeficientes reales $\mathbb{R}[x]$. Considera la función $\text{ev}_k:\mathbb{R}[x]\to \mathbb{R}$ que a cada polinomio lo manda a su evaluación en $k$, es decir, con regla de asignación $\text{ev}_k(p)=p(k)$.
    1. Demuestra que cualquier $\text{ev}_k$ es una forma lineal.
    2. Sean $k_1,\ldots,k_r$ reales distintos. Muestra que $\text{ev}_{k_1},\ldots,\text{ev}_{k_r}$ son formas lineales linealmente independientes.

Entradas relacionadas

Cálculo Diferencial e Integral I: Suma, producto, cociente y composición de funciones

Introducción

Ya que hemos visto el concepto de función, en esta entrada veremos como están definidas las operaciones de suma, producto y cociente. De igual modo definiremos la composición entre un par de funciones. Para dejar más claras dichas operaciones daremos ejemplos.

Operaciones de funciones

Definición (operaciones): Sean $f: D_{f}\subseteq \r \rightarrow \r$, $\quad g: D_{g}\subseteq \r \rightarrow \r$. Definimos las siguientes operaciones cómo:

  • $f+g: D_{f} \cap D_{g} \subseteq \r \rightarrow \r$
    $$(f+g)(x)= f(x)+g(x)$$
  • $\alpha f: D_{f}\subseteq \r \rightarrow \r \quad$ y $\quad \alpha \in \r$
    $$(\alpha f)(x)= \alpha f(x)$$
  • $fg: D_{f} \cap D_{g} \subseteq \r \rightarrow \r$
    $$(fg)(x)= f(x)g(x)$$
  • $\begin{multline*} \frac{f}{g}: D_{f/g} \subseteq \r \rightarrow \r \end{multline*}$
    \begin{equation*}
    \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
    \end{equation*}
    donde $D_{f/g}=D_{f} \cap (D_{g} – \left\{x \in D_{g}: g(x)=0 \right\})$

Notación: Cuando escribamos $f-g$ hacemos referencia a:
$$f-g=f+ (-g)$$

Ejemplos

Consideremos a las siguientes funciones:
\begin{align*}
f: \r – \left\{-1\right\} &\rightarrow \r & g: \r &\rightarrow \r & h: \r &\rightarrow \r^{+}
\end{align*}
\begin{align*}
f(x)&= \frac{1}{x+1}& g(x)&= x^{3}+3 & h(x)&=x^{2}+2x+1
\end{align*}
Notación: Usamos $\r^{+}$ para referirnos al conjunto de los números reales positivos.

Realizaremos las siguientes operaciones entre ellas para ejemplificar lo visto anteriormente:

  • $$(f+g)(x)= f(x)+g(x)= \frac{1}{x+1} + x^{3}+3$$
    con $D_{f+g}=D_{f} \cap D_{g}= \r \cap (\r- \left\{-1\right\})= \r- \left\{-1\right\}$
  • $$(fg)(x)= f(x)g(x)=\left(\frac{1}{x+1}\right)(x^{3}+3)=\frac{x^{3}+3}{x+1}$$
    con $D_{fg}=D_{f} \cap D_{g}= \r \cap (\r- \left\{-1\right\})= \r- \left\{-1\right\}$
  • Si $\alpha = – 4$:
    $$(\alpha g)(x)= \alpha g(x)= -4(x^{3}+3)=-4x^{3}-12$$
    con $D_{\alpha g}= D_{g}= \r$
  • $$\left(\frac{g}{h}\right)(x)=\frac{g(x)}{h(x)}=\frac{x^{3}+3}{x^{2}+2x+1}$$
    como $D_{g/h}=D_{g} \cap (D_{h} – \left\{x \in D_{h}: h(x)=0 \right\})$
    Observemos que $x^{2}+2x+1 = (x+1)^{2}$ por lo que $(x+1)^{2}=0$ cuando $x=-1$.
    Así el dominio sería:
    $$D_{g/h}=\r \cap (\r- \left\{-1 \right\})= \r – \left\{-1\right\}$$
  • $$(h-g)(x)=h(x)-g(x)=x^{2}+2x+1-(x^{3}+3)=x^{2}+2x+1-x^{3}-3$$
    con $D_{h-g}= D_{h} \cap D_{g}= \r \cap \r= \r$

Composición de funciones

Definición (composición): Consideremos a las funciones $g: A \rightarrow B$ y $f: B \rightarrow C$ definimos a la composición de $f$ en $g$ como:

$$f \circ g: A \rightarrow C$$
$$f \circ g(x)= f(g(x))$$
observamos así que $g(x) \in B$.
En el siguiente diagrama podemos ver más claramente cómo funciona la composición $f \circ g$:

PASO 1

Primero tomamos $x \in A$ a la cuál le aplicamos la función $g$ para así obtener $g(x) \in B$.

PASO 2

Ahora tomamos a $g(x) \in B$ para aplicarle la función $f$ y finalmente obtener $f(g(x)) \in C$.

DIAGRAMA PARA $f \circ g$

Así la composición de $f \circ g$ se vería cómo en el diagrama anterior.

Observación: La composición no es conmutativa, es decir, ocurre que:
$$f \circ g \neq g \circ f$$

Ejemplos

Retomando las funciones:
\begin{align*}
f(x)&= \frac{1}{x+1}& g(x)&= x^{3}+3 & h(x)&=x^{2}+2x+1
\end{align*}

Realicemos las siguientes composiciones de funciones para tener más claro cómo funciona lo antes explicado:

  • Ejemplo 1:
    \begin{align*}
    (g \circ f)(x)&= g(f(x))\\
    &= g\left(\frac{1}{x+1} \right)\\
    &= \left( \frac{1}{x+1} \right)^{3} +3\\
    &= \frac{1}{(x+1)^{3}}+3
    \end{align*}
    Así la tenemos que la composición obtenida es:
    \begin{equation*}
    (g \circ f)(x)=\frac{1}{(x+1)^{3}}+3
    \end{equation*}
  • Ejemplo 2:
    \begin{align*}
    (f \circ h)(x)&= f(h(x))\\
    &= f((x^{2}+2x+1))\\
    &= \frac{1}{(x^{2}+2x+1)+1}\\
    &=\frac{1}{x^{2}+2x+2}
    \end{align*}
    Por lo que la composición quedaría como:
    \begin{equation*}
    (f \circ h)(x) = \frac{1}{x^{2}+2x+2}
    \end{equation*}

Tarea moral

  • Si tenemos a las funciones $f : \r \rightarrow \r$ y $g : \r \rightarrow \r^{+}$ definidas como siguen:
    $$ f(x) = x-8$$
    $$g(x)= x^{4}$$
    Realiza las siguientes operaciones:
    • $f + g$
    • $f – g$
    • $fg$
    • $\frac{g}{f}$
    • $g \circ f$
  • Da una función $f$ y una función $g$ que ejemplifiquen que la composición no es conmutativa:
    $$f \circ g \neq g \circ f$$
  • Demuestra que la composición es asociativa, es decir,
    $$f\circ (g \circ h)= (f\circ g) \circ h$$

Más adelante

Ahora que ya hemos definido las operaciones entre funciones y la composición, en la siguiente entrada veremos que características debe cumplir una función para poder decir si es inyectiva, sobreyectiva o biyectiva. De igual manera veremos el concepto de función inversa donde haremos uso de la composición de funciones y algunas condiciones.

Entradas relacionadas

Álgebra Superior II: Algoritmo de la división en los enteros

Introducción

Gracias a todo lo trabajado con anterioridad y en particular a la entrada anterior de inmersión de los naturales en los enteros, ya podemos pensar al conjunto de enteros como el conjunto $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$. Además, dentro de esta estructura tenemos operaciones de suma, resta y producto. Sin embargo, aún no tenemos una operación de «división». Hay dos caminos que podemos seguir. Uno es algo parecido a lo que hicimos para tener una operación de resta: podemos construir ciertas clases de equivalencia sobre parejas de enteros, definir operaciones, orden, etcétera. Esto es lo que se hace para construir el conjunto $\mathbb{Q}$ de números racionales, del cual hablaremos más adelante. Otro camino es quedarnos en $\mathbb{Z}$ e intentar decir todo lo que podamos, aunque no tengamos una operación de división. Eso es lo que haremos ahora.

Por ejemplo, si tenemos los números $-20$ y $5$, entonces sí «podemos hacer la división» de manera exacta. Dicho de otra forma, sí existe un entero $k$ tal que $-20=5k$. Ese entero es $k=-4$. Sin embargo, si tenemos los números $20$ y $3$ no podemos hacer la división, en el sentido de que no existe un entero $k$ tal que $20=3k$. Sin embargo, sí podemos lograr que $3k$ quede muy cerca de $20$. Por ejemplo, podemos escribir $20=3\cdot 6 + 2$, es decir, el $20$ se queda únicamente a dos unidades de tres veces un entero.

En esta entrada hablaremos del algoritmo de la división. Lo que nos dice es que dados dos enteros $a$ y $b$, siempre sucederá que $a$ puede ser escrito como $b$ veces un entero, más un residuo «pequeño» en términos de $b$. También nos dice que esta forma de escribir a $a$ será única.

La intuición del algoritmo de la división

Lo que nos permite hacer el algoritmo de la división es saber «cuántas veces cabe un entero en otro». En general, vamos a poder escribir $a=qb+r$ y esto querrá decir que «$b$ cabe $q$ veces en $a$ y sobran $r$». Lo que nos gustaría es hacer esto de manera que sobre lo menos posible.

Un ejemplo sencillo sería el siguiente. Tomemos $a=7$ y $b=2$. Si nos preguntáramos: ¿cuántos equipos de $2$ personas se necesitan para repartir a $7$ personas?, una posible respuesta sería: podemos formar $2$ equipos de dos personas cada uno y dejar fuera a $3$ personas. Esto se escribiría como $7=2\cdot 2 + 3$. Sin embargo, una mejor respuesta (y la que deja a menos personas fuera) es la siguiente: podemos formar $3$ equipos de dos personas cada uno, y dejar a alguien fuera. Esto corresponde algebraicamente a la igualdad $7=3\cdot 2 + 1$. Esta forma de escribir al $7$ es mejor pues el residuo es más pequeño.

Hay algunos casos que suenan un poco raros. Por ejemplo, tomemos $a = 2$, $b = 3$. Podría parecer que la división de $2$ entre $3$ da cero pues «el $3$ el mayor que el $2$ y no hay modo de que $3$ quepa en $2$». Esto es cierto: $3$ cabe cero veces en $2$. Pero hay un residuo que no se ha mencionado, que en este caso es $2$. La forma de escribir esto algebraicamente será $2=3\cdot 0 + 2$. Aquí el $0$ quiere decir que «el $3$ cabe cero veces en el $2$» y el $2$ de la derecha quiere decir que «sobran $2$». Si lo pensamos como equipos, no nos alcanzaría para crear ni un sólo equipo de $3$ personas teniendo sólo $2$.

Otro caso extraño es cuando tenemos números negativos. Por ejemplo, si $a=-7$ y $b=3$ entonces la forma en la que queremos expresar a $a$ es como sigue: $-7=(-3)\cdot 3 + 2$. Lo hacemos de esta manera pues siempre querremos que el residuo que queda sea positivo. Y de entre los residuos que se pueden obtener, lo mejor es que sobren únicamente $2$.

Resulta que la cantidad que sobra siempre se puede garantizar que sea «chica». Si estamos repartiendo $a$ en cachos de tamaño $b$, siempre podremos garantizar que lo que sobra esté entre $0$ y $|b|-1$. En símbolos, el algoritmo de la división dice que dados $a, b \in \mathbb{Z}$, con $b\neq 0$, es posible encontrar $q$ y $r$ únicos, tales que $a = bq + r,$ con $0 \leq r < |b|$. A $q$ se le llama el cociente y a $r$ le llamamos el residuo.

Que no espante el valor absoluto que se le añade a la $b$. Aún no hemos definido qué es, pero lo explicaremos un poco más abajo. Sin embargo, antes de enunciar y demostrar el teorema daremos un ejemplo con números un poco más grandes y su intuición numérica.

Otro ejemplo para entender el algoritmo de la división en $\mathbb{Z}$

Comencemos planteando el problema para $a=3531$ y $b=8$. Es decir, queremos encontrar $q$ y $r$ enteros tales que $3531 = 8q + r$, donde además $0 \leq r < 8$. Ya que $r$ debe ser un número muy pequeño entre $0$ y $8$, podemos ir dando valores a $r$ hasta que $3531-r$ se pueda escribir como $8$ veces un entero.

Si $r = 0$, habríamos de verificar si $3531$ se puede escribir como $8$ veces un entero. Nuestra intuición nos dice que esto no debería poderse, pues $3531$ es un número impar, pero $8$ veces un entero siempre será un número par.

Si $r = 1$, entonces querríamos ver si $8q = 3530$. Pero esto tampoco se puede pues con $q=441$ tenemos $8q=3528<3530$ y con $q=442$ tenemos $8q=3536>3530$ y entonces ya se pasa. Si $r = 2$, buscaríamos si $8q = 3529$, pero de nuevo este es un número impar.

Finalmente, si $r = 3$, entonces queremos ver si se puede lograr $3528= 8q$. Esto sí se puede: se toma $q=441$. Así, hemos logrado determinar que con $q = 441$, $r = 3$ se cumple que $3531 = 8q + r$, con lo que terminamos el problema.

Geométricamente, esto significa que $3531$, en la recta de los números enteros, estará situado entre números que sean $8$ veces un entero, a saber, $8\cdot 441$ y $8\cdot 442$:

$$ \ldots < 8\cdot 441 < 3531 < 8\cdot 442 < \ldots \text{.}$$

Más precisamente, como $3531$ es un entero positivo, el problema consistió en encontrar el entero que sea $8$ veces un entero más cercano por la izquierda y añadir $3$ unidades. Esto también lo podemos enunciar como que «$3531$ está a $3$ unidades a la derecha de un número que es $8$ veces un entero»:

$$ 8\cdot 441 < 8\cdot 441 + 1 < 8\cdot 441 +2 < 3531 < 8\cdot 441 +4 < 8\cdot 441 +5 < 8\cdot 441 +6 < 8\cdot 441 +7 < 8\cdot 442 \text{.}$$

En realidad esto funciona sin importar los valores de $a$ y $b$. Dado un entero $b$, podemos poner los enteros de la forma $mb$ en la recta numérica y siempre podremos situar al entero $a$ entre dos de ellos:

$$qb \leq a < (q+1)b, \qquad q\in \mathbb{Z}.$$

Si $b>0$, los múltiplos de $b$ en la recta numérica se verían así:

$$\ldots -4b, -3b, -2b, -b, 0, b, 2b, 3b, 4b, \ldots $$

De este modo, $q$ sería el mayor múltiplo de $b$ más cercano a $a$, sin excederse de $a$.

Enunciado y demostración del algoritmo de la división en $\mathbb{Z}$

Para poder enunciar el algoritmo de la división sin importar el signo de $a$ y $b$, debemos introducir un símbolo adicional.

Definición. Si $b \in \mathbb{Z}$, definimos el valor absoluto de $b$, denotado por $|b|$, como sigue: $$|b| = \left\lbrace \begin{matrix} b & \text{si $b\geq 0$}\\ -b & \text{si $ b < 0$} \end{matrix}\right.$$

En el algoritmo de la división nos darán dos números enteros $a$ y $b$. Para la restricción $0 \leq r \leq |b|$, sucederá que, no importa si $b$ sea un número positivo o negativo, nosotros nos fijaremos en el número siempre positivo que resulta de aplicarle valor absoluto a $b$. El resultado dice lo siguiente.

Teorema. Sean $a$ y $b$ en $\mathbb{Z}$ con $b\neq 0$. Entonces existen únicos enteros $q$ y $r$ enteros únicos tales que $$ a = qb + r$$ y $0 \leq r < |b|$.

Para la demostración del algoritmo de la división, necesitaremos el principio del buen orden. Como recordatorio, dice que todo subconjunto no vacío de $\mathbb{N}$ tiene un elemento mínimo.

Demostración. Primero hay que demostrar que siempre existen $q$ y $r$ enteros que satisfacen las condiciones que queremos. Vamos a suponer que $b>0$. El caso $b<0$ es muy parecido y quedará como tarea moral.

Lo que haremos es considerar al conjunto $S$ de todos los elementos de la forma $a-tb$ en donde $t$ es un entero, y tales que sean mayores o iguales a cero. Primero veremos que $S$ en efecto es un conjunto no vacío.

  • Si $a\geq 0$, tomamos $t=0$ y obtenemos la expresión $a-tb=a\geq 0$.
  • Si $a<0$, tomamos $t=a$ y obtenemos $a-tb=a-ab=a(1-b)$. Como $b>0$, entonces $b\geq 1$ y por lo tanto $(1-b)\leq 0$. Como $a<0$, obtenemos $a(1-b)\geq 0$, como queríamos.

Como $S$ es un conjunto no vacío de naturales, debe tener un elemento mínimo, al que le llamaremos $r$. Como $r$ está en $S$, obtenemos que $r=a-qb$ para algún entero $q$. Esto es un buen primer paso, pues nos muestra que $a=qb+r$. Sin embargo, todavía nos falta demostrar la importante desigualdad $0\leq r < |b|$. Como $b>0$, debemos mostrar $0\leq r < b$. Como $r$ está en $S$, obtenemos de manera inmediata que $r\geq 0$.

Sólo nos falta mostrar que $r<b$. Supongamos, con el fin de encontrar una contradicción, que $r\geq b$. Si este fuera el caso, sucedería que $r-b\geq 0$ además tendríamos la siguiente cadena de igualdades: $$r-b=a-tb-b=a-(t+1)b.$$

Esto lo que nos diría es que $r-b$ también está en $S$. ¡Pero eso es una contradicción!. Por construcción, $r$ era el menor elemento de $S$ y $r-b$ es un número menor que $r$ y que también está en $S$. Esta contradicción salió de suponer que $r\geq b$, así que en realidad debe pasar $r<b$, como queríamos.

Con esto queda demostrada la existencia de los enteros $q$ y $r$, tales que $a = bq + r$, con $0 \leq r < b$. Falta ver la unicidad. Supongamos que existen $q’$ y $r’$ enteros que también cumplen $$a = bq’ + r’$$ con $0\leq r’ < b$.

Demostramos primero que $r = r’$. Al hacer la resta $r-r’$ por un lado notamos que como mucho, puede valer $(b-1)-0=b-1$, lo cual pasa cuando $r=b-1$ y $r’=0$. Así mismo, por lo menos debe valer $0-(b-1)=-b+1$, lo cual sucede cuando $r=0$ y $r’=b-1$. Pero esta resta también se puede escribir de la siguiente manera: $$r-r’=(a-qb)-(a-q’b)=(q’-q)b.$

El único número de la forma $bk$ en $\{-b+1,-b+2,\ldots,0,\ldots,b-2,b-2\}$ es el entero $0$, pues justo no alcanza para llegar a $b$ ni a $-b$. De esta forma, $r-r’=0$, es decir $r=r’$. Y de aquí, obtenemos que $(q’-q)b=r-r’=0$. Como $b\neq 0$, obtenemos $q’-q=0$ y por lo tanto $q’=q$. Esto termina la demostración de la unicidad.

$\square$

Quizás el uso del principio del buen orden de la impresión de que la demostración anterior es «muy sofisiticada». En realidad, esto no es así. Simplemente es la forma en la que se formaliza una idea muy intuitiva: si el residuo queda mayor a $b$, entonces todavía le podemos «transferir» un sumando $b$ de $r$ a $qb$. El principio del buen orden simplemente nos garantiza que en algún momento este proceso de «transferir» sumandos $b$ debe de concluir.

Tarea moral

  1. Encuentra $q$ y $r$ enteros tales que $-1873 = 31q + r$ y $0\leq r < 31$.
  2. Demuestra las siguientes propiedades de la función valor absoluto de $\mathbb{Z}$:
    • $|a|\geq 0$ para cualquier entero $a$.
    • $|ab|=|a||b|$ para cualesquiera enteros $a$ y $b$.
    • $|a+b|\leq |a|+|b|$ para cualesquiera enteros $a$ y $b$.
  3. En general, ¿cómo se calcula $q$, para $a<0$? ¿y para $b<0$? Completa los detalles de la demostración del algoritmo de la división para cuando $b<0$.
  4. Encuentra un número que al dividirse entre $2$ deje residuo $1$, que al dividirse entre $3$ deje residuo $2$ y que al dividirse entre $4$ deje residuo $3$.
  5. Demuestra que cualquier entero se puede escribir de la forma $3q+r$ en donde $r$ es $-1$, $0$ ó $1$.

Más adelante…

Cuando aplicamos el algoritmo de la división nos puede pasar un caso muy especial: que $r$ sea igual a cero. En otras palabras, en este caso podemos escribir $a=qb$ y por lo tanto $b$ cabe en $a$ «de manera exacta». Este caso es muy interesante y amerita un profundo estudio. Cuando esto sucede, decimos que $a$ es múltiplo de $b$, o bien que $b$ divide a $a$. En la siguiente entrada estudiaremos con más detalle la relación de divisibilidad en $\mathbb{Z}$. Un poco más adelante hablaremos de los ideales de $\mathbb{Z}$, que son un tipo de subconjuntos fuertemente relacionados con la noción de divisibilidad.

Entradas relacionadas

Álgebra Superior II: Inmersión de $\mathbb{N}$ en $\mathbb{Z}$

Introducción

Desde la educación básica pensamos al conjunto de los números enteros como aquél que está conformado por los naturales, sus negativos y el cero: $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \} .$$ Sin embargo, para poder fundamentar nuestra construcción, hasta ahora tenemos que el conjunto $\mathbb{Z}$ consiste por definición de ciertas clases de equivalencia de una relación en $\mathbb{N}\times \mathbb{N}$. ¡Observa que ni siquiera $\mathbb{N}$ es un subconjunto de $\mathbb{Z}$ a partir de esta definición! ¿Cómo le hacemos para que estos dos puntos de vista coincidan?

En esta entrada veremos dos cosas muy importantes que nos permitirán unificar ambas ideas. Lo primero que haremos es ver que, en efecto, podemos pensar que $\mathbb{N}$ «es un subconjunto» de $\mathbb{Z}$. Esto lo ponemos entre comillas pues en realidad lo que demostraremos es que hay una copia de $\mathbb{N}$ dentro de $\mathbb{Z}$, con toda la estructura que tenía $\mathbb{N}$ originalmente: sus operaciones, sus identidades, su orden.

Después de esto, nos enfocaremos en ver que $\mathbb{Z}$ consiste exactamente de esta copia y de sus inversos aditivos. Así, habremos formalizado que $\mathbb{Z}$ consiste exactamente de los naturales, sus inversos aditivos y ningún otro elemento.

Inmersión de los naturales en los enteros

En la entrada anterior hablamos acerca del orden en $\mathbb{Z}$. Para ello hablamos del conjunto de enteros positivos $P$. También definimos las relaciones $<$ y $\leq$. En un sentido bastante formal, los enteros mayores o iguales a cero son exactamente los números naturales. La manera en la que enunciamos este resultado es la siguiente.

Teorema. Existe una función biyectiva $\gamma:\mathbb{N}\to P\cup \{\overline{(0,0)}\}$ que preserva las operaciones de suma, producto, el inverso aditivo, el inverso multiplicativo y el orden. Esta función está dada por $\gamma(n)=\overline{(n,0)}$.

Una vez que demostremos esto, la imagen $\gamma(\mathbb{N})$ será exactamente la «copia» de los naturales que vive en los enteros y que precisamente tiene todas las propiedades algebraicas de los naturales que nos interesaban.

Para hacer la demostración de este teorema, probaremos el resultado poco a poco, a través de varios lemas.

Lema 1. La función $\gamma$ está bien definida y es biyectiva.

Demostración. La función $\gamma$ está bien definida pues las clases del estilo $\overline{(n,0)}$ siempre están en $P\cup \{\overline{(0,0)}\}$: si $n=0$, entonces obtenemos la clase $\overline{(0,0)}$ y si $n\neq 0$, entonces $n>0$, lo cual justifica que $\overline{(n,0)}$ es un entero positivo, es decir, en $P$.

Veamos que la función $\gamma$ es biyectiva. Para ver que es inyectiva tomamos dos naturales $m$ y $n$ tales que $\gamma(m)=\gamma(n)$, es decir, tales que $\overline{(m,0)}=\overline{(n,0)}$. Esto quiere decir que $m+0=n+0$, pero entonces $m=n$. Para ver que es suprayectiva, ya sabemos que tomemos una clase $\overline{(a,b)}$ en $P\cup \{\overline{(0,0)}\}$. Por lo visto en la entrada anterior, esto nos dice que $a\geq b$, pero entonces existe un natural $k$ tal que $a=b+k$, de modo que $a+0=b+k$ y por lo tanto $\overline{(a,b)}=\overline{(k,0)}$. Con esto concluimos que $$\gamma(k)=\overline{(k,0)}=\overline{(a,b)}.$$

$\square$

Observa que, sin embargo, no sucede que $\gamma(\mathbb{N})$ sea todo $\mathbb{Z}$. Es decir, hay enteros diferentes de las clases $\overline{(n,0)}$, por ejemplo, el $\overline{(0,1)}$. Se puede verificar que la imagen de $\gamma$ cubre a los enteros no negativos y sólo a esos.

Regresando al enunciado del teorema, lo que veremos ahora es que $\gamma$ respeta las operaciones de suma y producto, así como sus respectivas identidades.

Lema 2. Para cualesquiera naturales $m$ y $n$ se cumple que $$\gamma(m)+\gamma(n)=\gamma(m+n)$$ y que $$\gamma(m)\gamma(n)=\gamma(mn).$$ Además, $\gamma(0)$ es la identidad aditiva en $\mathbb{Z}$ y $\gamma(1)$ es la identidad multiplicativa en $\mathbb{Z}$.

Demostración. Basta usar la definición de $\gamma$ y de la suma en $\mathbb{Z}$:
\begin{align*}
\gamma (m)+\gamma(n)&=\overline{(m,0)}+\overline{(n,0)}\\
&= \overline{(m+n,0)}\\
&=\gamma{m+n}.
\end{align*}

De modo similar, para el producto usamos la definición de $\gamma$ y la del producto en $\mathbb{Z}$:

\begin{align*}
\gamma (m)\gamma(n)&=\overline{(m,0)}\overline{(n,0)}\\
&= \overline{(mn+0\cdot 0,m\cdot 0 + 0 \cdot n)}\\
&= \overline{(mn,0)}\\
&=\gamma{mn}.
\end{align*}

La parte de las identidades es sencilla de hacer y queda como tarea moral.

$\square$

Ya vimos que $\gamma$ respeta las operaciones. Ahora veamos que también respeta el orden.

Lema 3. Para cualesquiera naturales $m$ y $n$, sucede que $m < n$ si y sólo si $\gamma(m) < \gamma(n)$.

Demostración. Por definición de $\gamma$, tenemos que $\gamma(m)<\gamma(n)$ si y sólo si $\overline{(m,0)}<\overline{(n,0)}$. En la entrada anterior vimos que esto sucede si y sólo si en $\mathbb{N}$ tenemos que $m+0<n+0$. Pero esto es justo $m<n$.

$\square $

Los lemas 1, 2 y 3 conforman la demostración del teorema de esta sección.

Caracterización de los enteros

En vista del teorema de la sección anterior, dentro de $\mathbb{Z}$ hay metida una copia de $\mathbb{N}$. ¿Cuáles son los otros elementos de $\mathbb{Z}$? ¿Hay muchos más enteros que eso? La respuesta es que no. Para acabar de tener a todos los elementos de $\mathbb{Z}$ basta con tomar esta copia de los enteros y considerar a sus inversos aditivos.

Proposición. Para cualquier entero $\overline{(a,b)}$, tenemos que sucede una y exactamente una de las afirmaciones siguientes:

  • $\overline{(a,b)}=\overline{(0,0)}$.
  • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
  • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.

Demostración. Por el principio de tricotomía en $\mathbb{N}$, sabemos que se cumple una y exactamente una de las afirmaciones siguientes:

  • $a=b$
  • $a>b$
  • $a<b$

Si pasa la primera, entonces $\overline{(a,b)}=\overline{(0,0)}$. Si pasa la segunda, es porque existe un natural $n\neq 0$ tal que $a=b+n$, pero entonces $a+0=b+n$ y así $\overline{(a,b)}=\overline{(n,0)}$. Si pasa la tercera, es porque existe un natural $n,0$ tal que $a+n=b=b+0$, y entonces $\overline{(a,b)}=\overline{(0,n)}$.

De esta manera, se ve que siempre se cumple al menos una de las afirmaciones del enunciado. Ver que se cumple a lo más una es sencillo y queda como tarea moral.

$\square$

Siguiendo la demostración anterior con cuidado, nos damos cuenta que los casos corresponden precisamente al entero cero, a los positivos y a los negativos. La proposición anterior es una manera de ilustrar, en particular, que hay que hay el mismo número de números naturales positivos como números enteros negativos: a cada uno de ellos le podemos asociar (de manera biyectiva), un natural. Otra forma de dar esta biyección es mandar el entero positivo $\overline{(n,0)}$ al entero negativo $\overline{(0,n)}$, que es precisamente su inverso aditivo.

Re-etiquetando a los enteros

Estamos listos para abandonar la notación de parejas y clases de equivalencia. En vista de los resultados anteriores, cualquier entero positivo $\overline{(a,b)}$ es el mismo que un entero de la forma $\overline{(n,0)}$. Y los enteros de esta forma justo conforman una copia de $\mathbb{N}$ con toda la estructura algebraica que nos interesa. Así, ya nunca más tenemos que llamar a $\overline{(a,b)}$ con este nombre: basta simplemente llamarlo $n$.

Si tenemos un entero de la forma $\overline{(a,b)}$ con $a=b$, entonces simplemente lo llamaremos $0$. Y finalmente, si el entero $\overline{(a,b)}$ es negativo, podemos escribirlo de la forma $\overline{(0,n)}$ y en vista de lo anterior simplemente lo llamaremos $-n$. Todo esto funciona bien, porque también sabemos que justo $\overline{(n,0)}$ y $\overline{(0,n)}$ son inversos aditivos entre sí.

Pero, ¿cómo sabremos si al usar el símbolo $1$ nos estamos refiriendo al natural $\{\emptyset\}$ o al entero $\overline{(\{\emptyset\},\emptyset)}$? En realidad ya no es relevante, pues tenemos la total garantía de que los enteros no negativos se comportan exactamente como $\mathbb{N}$.

De esta manera, $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \}$$ y además tenemos la total garantía de que los enteros no negativos se comportan exactamente como los naturales.

Tarea moral

  1. Muestra que en efecto no existe ningún natural $m$ tal que $\gamma(m)=\overline{(0,1)}$.
  2. Verifica que $\gamma(0)$ es la identidad aditiva de $\mathbb{Z}$ y $\gamma(1)$ es su identidad multiplicativa.
  3. Explica por qué para un entero $\overline{(a,b)}$ no puede suceder más de una de las siguientes afirmaciones:
    • $\overline{(a,b)}=\overline{(0,0)}$.
    • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
    • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.
  4. La función $\gamma$ no es una biyección entre $\mathbb{N}$ y $\mathbb{Z}$. Pero sí existen biyecciones entre estos dos conjuntos. Construye una y demuestra que en efecto es una biyección.
  5. Da una biyección que muestre que el conjunto de los enteros no negativos pares, $\{0, 2, 4, 6, \ldots\}$ y el conjunto de los enteros no negativos positivos, $\{ 0, 1, 2, 3, \ldots \}$ tienen la misma cardinalidad. ¿Será posible construir la biyección de modo que se preserve la operación de suma? ¿Será posible construirla de modo que se preserve la operación de producto?

Más adelante

Después de liberar la gran carga que teníamos de usar la notación de parejas y de relaciones de equivalencia, ahora ya podemos usar a los enteros tal y como los conocíamos desde educación básica: como el cero, los enteros que no son cero, y sus negativos. Además, gracias a todo lo que demostramos, ya podemos utilizar las propiedades de la suma, el producto y el orden con la confianza de que están bien fundamentadas.

Lo que sigue es estudiar con más profundidad al conjunto $\mathbb{Z}$. Aunque no haya propiamente «divisiones exactas» en este conjunto, sí podemos preguntarnos qué sucede cuando dividimos un entero por otro, y cuánto queda. Esto lleva a las nociones de divisibilidad y residuos, que a su vez llevan a áreas muy interesantes de las matemáticas como el álgebra moderna y la teoría de números.

Entradas relacionadas

Álgebra Superior II: El orden en los enteros

Introducción

En las entradas anteriores introdujimos al conjunto de los números enteros, así como sus operaciones de suma y producto. Lo que haremos ahora es ver cómo ordenar a los elementos en $\mathbb{Z}$. Lo haremos de una forma similar a la que hicimos lo de las operaciones: usando las nociones que ya teníamos definidas en $\mathbb{N}$.

Como recordatorio, en $\mathbb{N}$ dijimos que $a<b$ cuando $a\subseteq b$. De esta noción de «menor que» dimos la noción de «menor o igual que», diciendo que $a\leq b$ cuando ya sea que $a<b$ o bien $a=b$. Vimos que esta relación $\leq$ define un orden parcial en $\mathbb{N}$ que además es tricotómico. Quizás los resultados más importantes para trabajar con esta noción de desigualdad fue ponerla en términos de suma de elementos en $\mathbb{N}$:

  • En $\mathbb{N}$ se cumple que $a<b$ si y sólo si existe un natural $k>0$ tal que $a+k=b$.
  • En $\mathbb{N}$ se cumple que $a\leq b$ si y sólo si existe un natural $k$ tal que $a+k=b$.

Con esto en mente, veamos ahora cómo construir un orden en $\mathbb{Z}$. Antes de hacer eso, conviene primero pensar en números positivos, negativos y el cero.

Los positivos, los negativos y el cero en $\mathbb{Z}$

Ya sabemos que la identidad aditiva en $\mathbb{Z}$ es la clase $\overline{(0,0)}$, que también se puede pensar como la clase $\overline{(a,a)}$ para cualquier $a$ en $\mathbb{N}$. Si tenemos cualquier otra clase $\overline{(a,b)}$, por tricotomía del orden en $\mathbb{N}$ nos quedan sólo otras dos opciones: o bien $a<b$, o bien $b<a$. Esto nos ayudará a definir la noción de positividad y negatividad.

Definición. Sea $\overline{(a,b)}$ un entero. Diremos que ${(a,b)}$ es:

  • Cero si $a=b$,
  • Positivo si $a>b$ y
  • Negativo si $a<b$.

Una vez más, por la tricotomía del orden en $\mathbb{N}$, siempre sucede exactamente una de las posibilidades anteriores. Es importante ver que esta definición está bien hecha, es decir, que no depende de la clase de equivalencia que se eligió. Por ejemplo, si $\overline{(a,b)}$ es positivo, sucede que $a>b$. Si tomamos $(c,d)$ tal que $(a,b)\sim (c,d)$, nos gustaría ver que también sucede $c>d$. Esto se debe a que $a+d=b+c$. Si tuviéramos $c\leq d$, entonces nos pasaría que $a+d>b+c$ y tendríamos una contradicción. Así, por tricotomía debe pasar $c>d$. El caso de la negatividad se verifica de manera análoga.

Recuerda que el inverso aditivo de un entero $\overline{(a,b)}$ es el entero $-\overline{(a,b)}=\overline{(b,a)}$. Así, si $\overline{(a,b)}$ es positivo, entonces su inverso aditivo es negativo y viceversa.

Definición. Usaremos la letra $P$ para referirnos al conjunto de todos los enteros positivos. Usaremos $-P$ para referirnos al conjunto de todos los enteros negativos.

¿Cómo se comportan estas definiciones con las operaciones que ya tenemos en $\mathbb{Z}$? Ahora tenemos todo lo necesario para poder formalizar oraciones como «negativo por negativo es positivo», o «positivo más positivo es positivo.

Proposición. En $\mathbb{Z}$ se cumple todo lo siguiente:

  • Si $\overline{(a,b)}$ y $\overline{(c,d)}$ están en $P$, entonces su suma está en $P$ y su producto también.
  • Si $\overline{(a,b)}$ y $\overline{(c,d)}$ están en $-P$, entonces su suma está en $-P$ y su producto está en $P$.

Demostración. Todas estas afirmaciones se traducen a proposiciones que debemos demostrar en $\mathbb{N}$. En el caso de la primera, debemos ver que si $a>b$ y $c>d$, entonces $a+c>b+d$ y que $ac+bd>ad+bc$. Lo primero es sencillo, pues sale de la compatibilidad de $>$ con la suma de $\mathbb{N}$. Demostremos entonces que $ac+bd>ad+bc$.

Como $a>b$, existe un natural $k>0$ tal que $a=b+k$. Como $c>d$, existe un natural $l>0$ tal que $c=d+l$. Haciendo estas substituciones de $a$ y $c$ en $ac+bd>ad+bc$, obtenemos la siguiente cadena de desigualdades que son equivalentes a lo que debemos demostrar:

\begin{align*}
ac+bd&>ad+bc\\
(b+k)(d+l)+bd&>(b+k)d+b(d+l)\\
bd+bl+kd+kl+bd&>bd+kd+bd+bl.
\end{align*}

La última de estas desigualdades se cumple pues a la izquierda tenemos todos los sumandos que del lado derecho, y además el sumando $kl$ que como $k>0$ y $l>0$, entonces cumple $kl>0$.

Las demostraciones para cuando los elementos son negativos quedan como tarea moral.

$\square$

Al conjunto de enteros positivos también se le conoce en ocasiones como $\mathbb{Z}^+$, y al de enteros positivos también se le conoce como $\mathbb{Z}^-$.

El orden en $\mathbb{Z}$

Estamos listos para definir el orden en $\mathbb{Z}$. Aprovecharemos que ya podemos restar para poner la definición de orden en términos de esta operación.

Definición. Para $\overline{(a,b)}$ y $\overline{(c,d)}$ elementos en $\mathbb{Z}$ diremos que $\overline{(c,d)}<\overline{(a,b)}$ si $\overline{(a,b)}-\overline{(c,d)}$ es un entero positivo.

En realidad la expresión $\overline{(a,b)}-\overline{(c,d)}$ es simplemente $\overline{(a+c,b+d)}$, así que otra forma de escribir la condición de la definición es simplemente pedir que $a+c>b+d$. Como siempre sucede que o bien $a+c>b+d$, o que $a+c<b+d$, o que $a+c=b+d$ (y sólo una de ellas), entonces de manera inmediata obtenemos la tricotomía en $\mathbb{Z}$.

Proposición. Para $\overline{(a,b)}$ y $\overline{(c,d)}$ elementos en $\mathbb{Z}$ siempre sucede exactamente alguna de las siguientes:

  • $\overline{(a,b)}<\overline{(c,d)}$
  • $\overline{(c,d)}<\overline{(a,b)}$
  • $\overline{(a,b)}=\overline{(c,d)}$

Como en el caso de los naturales, a partir de la definición de «menor estricto» es sencillo obtener la noción de «menor o igual».

Definición. Para $\overline{(a,b)}$ y $\overline{(c,d)}$ elementos en $\mathbb{Z}$ diremos que $\overline{(c,d)}\leq \overline{(a,b)}$ si o bien $\overline{(a,b)}-\overline{(c,d)}$ es un entero positivo, o bien $\overline{(a,b)}=\overline{(c,d)}$.

Lo anterior es equivalente a pedir que $a+c\geq b+d$.

Proposición. La relación $\leq$ es un orden parcial en $\mathbb{Z}$.

Demostración. Es inmediato que esta relación $\leq$ es reflexiva, pues $\overline{(a,b)}\leq \overline{(a,b)}$ se obtiene de manera inmediata de la segunda parte de la definición.

Para ver que es antisimétrica, si tuviéramos $\overline{(c,d)}\leq \overline{(a,b)}$ y $\overline{(a,b)}\leq \overline{(c,d)}$, entonces tendríamos las desigualdades $a+c\geq b+d$ y $b+d\geq a+c$, que por la antisimetría en $\mathbb{N}$ implican que $a+c=b+d$, que justo es $\overline{(a,b)}=\overline{(c,d)}$.

Finalmente, para ver que $\leq$ es una relación transitiva, comenzamos con enteros $\overline{(a,b)}, \overline{(c,d)}, \overline{(e,f)}$ tales que $\overline{(e,f)}\leq \overline{(c,d)}$ y $\overline{(c,d)}\leq \overline{(a,b)}$.

De la primer desigualdad obtenemos $c+f\geq e+d$ y de la segunda obtenemos que $a+d\geq b+c$. Sumando ambas desigualdades, obtenemos que $c+f+a+d\geq b+c+e+d$. De aquí podemos deducir que $a+f\geq b+e$. Esto precisamente nos dice que $\overline{(e,f)}\leq \overline{(a,b)}$, como queríamos.

$\square$

Las dos proposiciones anteriores se pueden resumir en el siguiente enunciado.

Teorema. La relación $\leq$ es un orden total en $\mathbb{Z}$.

Compatibilidad del orden con las operaciones en $\mathbb{Z}$

Lo último que nos queda por mencionar es cómo se comporta la relación $\leq$ en $\mathbb{Z}$ con sus operaciones de suma y producto. A continuación mencionamos algunas de las propiedades que se cumplen, aunque hay varias cosas más que se pueden demostrar.

Proposición. En $\mathbb{Z}$ se cumple lo siguiente:

  • Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}\leq \overline{(g,h)}$, entonces $$\overline{(a,b)}+\overline{(e,f)}\leq \overline{(c,d)}+\overline{(g,h)}.$$
  • Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}$ es positivo, entonces $$\overline{(a,b)}\overline{(e,f)}\leq \overline{(c,d)}\overline{(e,f)}.$$
  • Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}$ es negativo, entonces $$\overline{(c,d)}\overline{(e,f)}\leq \overline{(a,b)}\overline{(e,f)}$$

Demostración.

  • Las hipótesis se pueden escribir como $a+d\leq b+c$ y $e+h\leq f+g$. Sumando ambas y asociando de un modo que nos convenga, obtenemos que $(a+e)+(d+h)\leq (b+f)+(c+g)$. Esto lo que nos dice es que $\overline{(a+e,b+f)}\leq $\overline{(c+g,d+h)}$, que es precisamente lo que queríamos demostrar.
  • Por la hipótesis, tenemos que $\overline{(c,d)}-\overline{(a,b)}$ es positivo y que $\overline{(e,f)}$ también. Por lo que ya vimos antes, el producto de estos dos enteros debe ser entonces positivo. Por distributividad, este producto es $\overline{(c,d)}\overline{(e,f)}-\overline{(a,b)}\overline{(e,f)}$. Así, $\overline{(a,b)}\overline{(e,f)}\leq \overline{(c,d)}\overline{(e,f)},$ como queríamos.
  • Por la hipótesis, tenemos que $\overline{(c,d)}-\overline{(a,b)}$ es positivo y que $\overline{(e,f)}$ es negativo. Entonces $\overline{(f,e)}=-\overline{(e,f)}$ es positivo. Por lo que ya vimos antes, el producto de estos dos enteros debe ser entonces positivo. Por distributividad, este producto es $\overline{(c,d)}\overline{(f,e)}-\overline{(a,b)}\overline{(f,e)}$. Esta expresión se puede escribir de manera alternativa como $\overline{(a,b)}\overline{(e,f)}-\overline{(c,d)}\overline{(e,f)}$. Como es positiva, obtenemos justo lo que queríamos.

$\square$

En los ejercicios de la tarea moral explorarás más propiedades de la relación $\leq$ y cómo interactúa con las operaciones en $\mathbb{Z}$.

Tarea moral

  1. Completa las demostraciones de las nociones de positivo, negativo y orden en $\mathbb{Z}$ están bien definidas.
  2. Demuestra que la suma de dos enteros negativos es un entero negativo y que su producto es un entero positivo. Haz una demostración que funcione en general, pero luego verifícalo «a mano» para los enteros $\overline{(3,7)}$ y $\overline{(9,11)}$.
  3. En la entrada dimos la definición formal de $<$ y de $\leq$ en $\mathbb{Z}$, pero aún no hemos definido ni usado los símbolos $>$ y $\geq$ en $\mathbb{Z}$. Formaliza una definición para ellos. Demuestra que $\geq$ también es un orden total en $\mathbb{Z}$.
  4. Demuestra que en $\mathbb{Z}$, si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}$ es negativo, entonces $$\overline{(a,b)}\overline{(e,f)}\geq \overline{(c,d)}\overline{(e,f)}.$$
  5. Determina si la siguiente propiedad del producto y el orden en $\mathbb{Z}$ siempre es verdadera, o bien si hay ocasiones en las que falla: «Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}\leq \overline{(g,h)}$, entonces $$\overline{(a,b)}\overline{(e,f)}\leq \overline{(c,d)}\overline{(g,h)}.»

Más adelante

Ya tenemos todo lo que necesitamos en los enteros: su definición, sus operaciones y su noción de orden. Sin embargo, aún tenemos una gran dificultad: es muy difícil escribirlos. Cada que queremos referirnos a un entero, debemos usar la clase de equivalencia de una pareja de naturales. Nos gustaría que los enteros fueran algo mucho más intuitivo: los naturales y sus negativos. Lo que haremos en la siguiente entrada es ver cómo formalizar esta idea para que podamos, finalmente, abandonar la notación de parejas de naturales y relaciones de equivalencia. Esto será bastante útil para después entrar en muchas otras propiedades que nos interesan de los enteros como la noción de divisibilidad y otras propiedades aritméticas.

Entradas relacionadas