Archivo del Autor: Gabriela Hernández Aguilar

Teoría de los Conjuntos I: Teorema de Cantor-Schröder-Bernstein 

Por Gabriela Hernández Aguilar

Introducción

En esta entrada probaremos que dados dos conjuntos $A$ y $B$, tales que $A\preceq B$ y $B\preceq A$, entonces $A\sim B$. Si bien este resultado es muy intuitivo, matemáticamente hay algunas complicaciones. Las hipótesis nos dan funciones inyectivas de $A$ en $B$ y de $B$ en $A$. Pero necesitamos una única función de $A$ en $B$ que sea biyectiva. ¿Cómo garantizamos la existencia de la segunda a partir de las primeras?

Lema del punto fijo

Primero demostraremos un lema sobre la existencia de un punto fijo, el cual será de utilidad en la demostración del teorema de Cantor-Schröder-Bernstein. Este lema nos dice que dada una función de $\mathcal{P}(X)$ en sí mismo con cierta propiedad de monotonía, ésta cumple que debe fijar a algún elemento de $\mathcal{P}(X)$. Veamos la definición de monotonía que necesitamos.

Definición. Sea $f:\mathcal{P}(X)\to \mathcal{P}(X)$. Diremos que $f$ es una función monótona si siempre que $A\subseteq A’\subseteq X$, se cumple que $f(A)\subseteq f(A’)$. Es decir, se preserva la contención bajo $f$.

Ejemplo.

Sea $X=\set{\emptyset, \set{\emptyset}}$ y sea $f=\set{(\emptyset,\emptyset), (\set{\emptyset}, \set{\emptyset}), (\set{\set{\emptyset}}, \emptyset), (\set{\emptyset, \set{\emptyset}},\set{\emptyset})}$. Consideremos $A=\emptyset$ y $A’=\set{\emptyset}$. Tenemos que $f(A)=\emptyset$ y $f(A’)=\set{\emptyset}$, de modo que $f(A)\subseteq f(A’)$. Para cualquier otra elección de $A$ y $A’$ con $A\subseteq A’$ también se puede verificar que $f(A)\subseteq f(A’)$. Por ello, decimos que $f$ es monótona.

$\square$

Lema. Sea $\varphi:\mathcal{P}(X)\to \mathcal{P}(X)$ función monótona. Entonces existe $E\subseteq X$ tal que $\varphi(E)=E$, es decir, $\varphi$ deja fijo a algún elemento de $\mathcal{P}(X)$.

Demostración:

Sea $\varphi:\mathcal{P}(X)\to \mathcal{P}(X)$ función monótona y sea $\mathcal{L}=\set{A\in \mathcal{P}(X): \varphi(A)\subseteq A}$.

Veremos que $\mathcal{L}\not= \emptyset$. Para ello, probaremos que $X\in \mathcal{L}$. Para empezar, $X\in \mathcal{P}(X)$ pues para cualquier conjunto $X$, $X\subseteq X$. Además, se tiene que $\varphi(X)\in \mathcal{P}(X)$, por lo que $\varphi(X)\subseteq X$.

Como $\mathcal{L}$ no es vacío, podemos considerar $E=\bigcap \mathcal{L}$. Veremos que $\varphi(E)=E$, lo cual mostaremos viendo la doble contención.

$\subseteq$) Sea $K\in \mathcal{L}$. Tenemos que $E\subseteq K$. Como $\varphi$ es monotona, entonces $\varphi(E)\subseteq \varphi(K)$. Además, como $K\in \mathcal{L}$ se tiene que $\varphi(K)\subseteq K$ y por transitividad de la contención se tiene que $\varphi(E)\subseteq K$. Como esto sucede para cualquier $K\in \mathcal{L}$, se cumple entonces $\varphi(E)\subseteq E$.

$\supseteq$) Dado que $\varphi(E)\subseteq E$ y $\varphi$ es monótona se tiene que $\varphi(\varphi(E))\subseteq \varphi(E)$. Por ello, $\varphi(E)\in \mathcal{L}$ y por lo tanto, $E\subseteq \varphi(E)$.

Por lo tanto, $\varphi(E)=E$.

$\square$

Teorema de Cantor-Schröder-Bernstein1

Antes de demostrar el teorema de Cantor-Schröder-Bernstein, enunciemos los siguientes recordatorios que usaremos en la demostración:

Recordatorio 1. Si $f:X\to Y$ es una función y se tiene $Z\subseteq Z’\subseteq X$, entonces $f[Z]\subseteq f[Z’]$.

Recordatorio 2. Sean $A,B\subseteq X$. Si $A\subseteq B$, entonces $X\setminus B\subseteq X\setminus A$.

Teorema (Cantor-Schröder-Bernstein). Si $A\preceq B$ y $B\preceq A$, entonces $A\sim B$.

Demostración:

Supongamos que $A\preceq B$ y $B\preceq A$, esto es, existe $f:A\to B$ inyectiva y existe $g:B\to A$ inyectiva.

Sea $\varphi:\mathcal{P}(A)\to \mathcal{P}(A)$ dada por $\varphi(X)=A\setminus g[B\setminus f[X]]$. Veamos que $\varphi$ es monótona.

Sean $X,X’\in \mathcal{P}(A)$ tales que $X\subseteq X’$, por el recordatorio $1$, tenemos que $f[X]\subseteq f[X´]$, luego por el recordatorio 2 tenemos que $B\setminus f[X’]\subseteq B\setminus f[X]$. Luego, por el recordatorio 1 $g[B\setminus f[X’]]\subseteq g[B\setminus f[X]]$. Finalmente, por el recordatorio $2$ se tiene que $A\setminus g[B\setminus f[X]]\subseteq A\setminus g[B\setminus f[X’]]$. Por lo tanto, $\varphi(X)\subseteq \varphi(X’)$ y así, $\varphi$ es monótona.

Luego, por el lema del punto fijo tenemos que existe $E\in \mathcal{P}(X)$ tal que $\varphi(E)=E$. De este modo:

\begin{align*}
E&= \varphi(E)\\
\text{entonces} \ E&= A\setminus g[B\setminus f[E]]\\
\text{entonces}\ A\setminus E&= g[B\setminus f[E]]
\end{align*}

Consideremos $g_1=g\upharpoonright: B\setminus f[E]\to g[B\setminus f[E]]$. Dado que $g$ es inyectiva, entonces $g_1$ es biyectiva y por lo tanto, $g_1^{-1}$ es función.

Definimos $h:A\to B$ como:

$h(x)= \left\{ \begin{array}{lcc}
             f(x) &   si  & x\in E \\
             \\ g_1^{-1}(x) &  si & x\in A\setminus E= g[B\setminus f[E]]
             \end{array}
   \right. $

Veamos que $h$ es biyectiva.

Primero veamos que $h$ es inyectiva. Sean $x,x’\in A$ tales que $x\not=x’$, veamos que $h(x)\not= h(x’)$.

Caso 1: Si $x, x’\in E$, entonces $h(x)=f(x)\not= f(x’)=h(x’)$ pues $f$ es inyectiva.

Caso 2: Si $x, x’\in A\setminus E$, entonces $h(x)=g_1^{-1}(x)\not=g_1^{-1}(x’)=h(x)$ pues $g_1^{-1}$ es inyectiva.

Caso 3: Si $x\in E$ y $x’\in A\setminus E$, entonces $h(x)=f(x)\in f[E]$ y $h(x’)=g_1^{-1}(x’)\in B\setminus f[E]$, por lo que $h(x)\not= h(x’)$.

Por lo tanto, $h$ es inyectiva.

Ahora, veamos que $h$ es suprayectiva. Consideremos $B$ como $B= (B\setminus f[E])\cup f[E]$.

Sea $y\in B$, entonces $y\in B\setminus f[E]$ o $y\in f[E]$.

Caso 1: Si $y\in B\setminus f[E]$, entonces $g(y)\in g[B\setminus g[E]]$, por lo que $h(g(y))= g_1^{-1}(g(y))= y$.

Caso 2: Si $y\in f[E]$ existe $e\in E$ tal que $f(e)=y$. Así, $h(e)=f(e)=y$.

Por lo tanto, $h$ es suprayectiva.

Concluimos que $h$ es biyectiva y así, $A\sim B$.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta entrada:

  1. Definamos al conjunto de números pares como $P=\set{2k:\ k\in \mathbb{N}}$. En la entrada anterior ya vimos que $P\sim \mathbb{N}$. Da una demostración alternativa a esto usando el teorema de Cantor-Schröder-Bernstein.
  2. Resuelve los siguientes incisos.
    • Muestra la función $f:\mathbb{N}\to \mathbb{N}\times \mathbb{N}$ dada por $f(x)=(x,1)$ es inyectiva, pero no suprayectiva.
    • Muestra que la función $g:\mathbb{N}\times \mathbb{N}\to \mathbb{N}$ dada por $g(a,b)=2^a3^b$ es inyectiva, pero no suprayectiva.
    • ¿Qué dice entonces el teorema de Cantor-Schröder-Bernstein sobre $\mathbb{N}$ y $\mathbb{N}\times \mathbb{N}$?
    • ¿Es sencillo dar una función biyectiva explícita $h:\mathbb{N}\to \mathbb{N}\times \mathbb{N}$?

Más adelante…

En la siguiente entrada definiremos qué es un conjunto finito y hablaremos un poco acerca de lo que entenderemos por cardinal de un conjunto. Daremos los primeros pasos para hablar de conjuntos infinitos. Ya platicamos un poco que intuitivamente $\mathbb{N}$ debe serlo, pero tenemos que probarlo formalmente. Un poco más adelante, veremos que hay conjuntos infinitos que no tienen la misma cardinalidad. Así, nos interesará ver que pasa con las cardinalidades de estos conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

  1. Puedes consultar una demostración diferente del teorema de Cantor-Schröder-Bernstein en el siguiente libro: K. Hrbacek, T. Jech, Introduction to Set Theory, Third Edition, Marcel Dekker Inc., 1999, p. 66-68.
    Y una segunda demostración diferente en: J.A. Amor Montaño, Teoría de conjuntos para estudiantes de ciencias, Segunda edición, Coordinación de Servicios Editoriales, Facultad de Ciencias UNAM, 2005, p. 79-80 ↩︎

Teoría de los Conjuntos I: Buenos órdenes para cualquier conjunto

Por Gabriela Hernández Aguilar

Introducción

En esta entrada usaremos lo que aprendimos en la entrada anterior sobre el lema de Zorn para demostrar que cualquier conjunto no vacío puede ser bien ordenado.

Ordenando buenos órdenes de subconjuntos

En esta entrada demostraremos que cualquier conjunto no vacío $X$ tiene un buen orden. Si $a\in X$, entonces $(a,a)$ es un buen orden para $\{a\}\subseteq X$, así que podemos darle un buen orden a un elemento de $X$. La intuición de nuestra prueba es que podemos ir «agrandando» un buen orden para «pocos elementos» de $X$ hasta llegar a ordenar todo $X$. Sin embargo, no podemos hacer esto paso a paso. Tendremos que hacerlo de golpe usando el lema de Zorn. Para ello, daremos una noción de cuándo «un buen orden ordena más elementos de $X$ que otro y lo extiende». Nuestro resultado se obtendrá aplicando el lema de Zorn a esta noción. Comencemos con formalizarla.

Lema. Sea $X$ un conjunto y $\mathcal{B}$ la familia de todos los pares ordenados $(A,R)$ donde $A$ es un subconjunto de $X$ y $R$ es un buen orden para $A$. Definimos en $\mathcal{B}$ la relación $\leq$ como sigue: dados $(A,R),(B,R’)\in\mathcal{B}$ diremos que $(A,R)\leq(B,R’)$ si y sólo si $A\subseteq B$, $R\subseteq R’$ y para todo $x\in A$ y $y\in B\setminus A$ se cumple que $(x,y)\in R’$. Entonces, $\leq$ es una relación de orden parcial en $\mathcal{B}$.

Demostración.

Verifiquemos primero la reflexividad. Sea $(A,R)\in\mathcal{B}$. Luego, $A\subseteq A$, $R\subseteq R$ y, por vacuidad, para todo $x\in A$ y $y\in A\setminus A$ se tiene que $(x,y)\in R$, lo que muestra que $(A,R)\leq(A,R)$. Por tanto, $\leq$ es una relación reflexiva.

Verifiquemos ahora la antisimetría. Si $(A,R)\leq (B,R’)$ y $(B,R’)\leq(A,R)$, entonces, como consecuencia de la definición de $\leq$ tenemos que $A\subseteq B$, $R\subseteq R’$ y para todo $x\in A$ y $y\in B\setminus A$ se tiene que $(x,y)\in R’$; pero también, $B\subseteq A$, $R’\subseteq R$ y para todo $x\in B$ y $y\in A\setminus B$ se tiene que $(x,y)\in R$. En particular tenemos que $A\subseteq B$, $B\subseteq A$, $R\subseteq R’$ y $R’\subseteq R$, lo cual implica que $A=B$ y $R=R’$. Por tanto, $(A,R)=(B,R’)$, lo que muestra que $\leq$ es antisimétrica.

Por último mostraremos que la relación $\leq$ es transitiva. Sean $(A,R_0),(B,R_1),(C,R_2)\in\mathcal{B}$ elementos tales que $(A,R_0)\leq(B,R_1)$ y $(B,R_1)\leq(C,R_2)$. Luego, por definición de la relación $\leq$ tenemos que, $A\subseteq B$, $R_0\subseteq R_1$ y para todo $x\in A$ y $y\in B\setminus A$ se cumple que $(x,y)\in R_1$; asimismo, $B\subseteq C$, $R_1\subseteq R_2$ y para todo $x\in B$ y $y\in C\setminus B$ se cumple que $(x,y)\in R_2$. Así, como $A\subseteq B$ y $B\subseteq C$, entonces $A\subseteq C$ y, también, como $R_0\subseteq R_1$ y $R_1\subseteq R_2$, entonces $R_0\subseteq R_2$. Ahora, sean $x\in A$ y $y\in C\setminus A$ cualesquiera elementos. Si $y\in B$, entonces $x\in A$ y $y\in B\setminus A$, por lo que $(x,y)\in R_1$ y, por ende, $(x,y)\in R_2$. Si $y\notin B$, entonces $y\in C\setminus B$ y dado que $x\in A\subseteq B$, entonces $(x,y)\in R_2$. En cualquier caso $(x,y)\in R_2$, lo que demuestra que $(A,R_1)\leq(C,R_2)$.

Por lo tanto $\leq$ es una relación de orden en $\mathcal{B}$.

$\square$

Ya tenemos el conjunto parcialmente ordenado $(\mathcal{B},\leq)$ al que queremos aplicar el lema de Zorn. Pero tenemos que verificar una hipótesis importante: que cada cadena tiene cota superior. Esto lo hacemos en el siguiente lema.

Lema. Sea $X$ un conjunto y $\mathcal{B}$ y $\leq$ definidos como en el lema anterior. Entonces, en $(\mathcal{B}, \leq)$ toda cadena tiene una cota superior.

Demostración.

Sea $\mathcal{C}$ una cadena en $\mathcal{B}$. Definamos $f:\mathcal{C}\to\mathcal{P}(X)$ como sigue: si $(A,R)\in\mathcal{C}$, con $A\subseteq X$ y $R$ un buen orden en $A$, entonces $f((A,R))=A$. Ahora, notemos que si $A\subseteq X$ y $R$ es un buen orden en $A$, entonces $R\subseteq A\times A\subseteq X\times X$, es decir, $R$ es también una relación en $X$. Teniendo en cuenta esto definamos $g:\mathcal{C}\to\mathcal{P}(X\times X)$ como sigue: si $(A,R)\in\mathcal{C}$, con $A\subseteq X$ y $R$ un buen orden en $A$, entonces $g((A,R))=R$. Sean $Y_1:=f[\mathcal{C}]$ y $Y_2:=g[\mathcal{C}]$ y definamos $\mathcal{A}=\bigcup Y_1$ y $\mathcal{R}=\bigcup Y_2$.

Lo que haremos será probar que $\mathcal{A}$ es un subconjunto de $X$ y que $\mathcal{R}$ es un buen orden para $\mathcal{A}$, con lo cual tendríamos que $(\mathcal{A},\mathcal{R})\in\mathcal{B}$.

Primero, como $f((A,R))=A\subseteq X$ para cualquier $(A,R)\in\mathcal{C}$, entonces $Y_1=f[\mathcal{C}]$ es una familia de subconjuntos de $X$ y, por tanto, $\mathcal{A}=\bigcup Y_1$ es un subconjunto de $X$. Ahora, veamos que $\mathcal{R}$ es un buen orden en $\mathcal{A}$.

Lo primero que tenemos que mostrar es que $\mathcal{R}$ es efectivamente una relación en $\mathcal{A}$, es decir, que $\mathcal{R}$ es un subconjunto de $\mathcal{A}\times\mathcal{A}$. Sea $u\in\mathcal{R}$ un elemento arbitrario. Luego, $u\in g((A,R))=R$ para algún $(A,R)\in\mathcal{C}$. Dado que $u\in R$ y $R\subseteq A\times A$, entonces $u\in A\times A$. Además, como $(A,R)\in\mathcal{C}$, entonces $A=f((A,R))\in f[\mathcal{C}]$ y, en consecuencia, $A\subseteq\bigcup f[\mathcal{C}]=\mathcal{A}$, por lo que $A\times A\subseteq\mathcal{A}\times\mathcal{A}$. De este modo, como $u\in A\times A$ se sigue que $u\in\mathcal{A}\times\mathcal{A}$. Esto demuestra que $\mathcal{R}\subseteq\mathcal{A}\times\mathcal{A}$, es decir, $\mathcal{R}$ es una relación en $\mathcal{A}$.

Ahora veamos que $\mathcal{R}$ es una relación de orden en $\mathcal{A}$.

Sea $x\in\mathcal{A}$. Luego, $x\in f((A,R))=A$ para algún $(A,R)\in\mathcal{C}$. Como $R$ es un buen orden en $A$, entonces $(x,x)\in R$ y, dado que $R\subseteq\mathcal{R}$, se sigue que $(x,x)\in\mathcal{R}$. Esto prueba que $\mathcal{R}$ es una relación reflexiva.

Ahora, sean $x,y\in\mathcal{A}$ elementos tales que $(x,y)\in\mathcal{R}$ y $(y,x)\in\mathcal{R}$. Luego, $(x,y)\in g((A,R))=R$ y $(y,x)=g((B,R’))=R’$ para algunos $(A,R),(B,R’)\in\mathcal{C}$. Dado que $\mathcal{C}$ es una cadena, entonces $(A,R)\leq(B,R’)$ o $(B,R’)\leq(A,R)$, lo cual implica que $R\subseteq R’$ o $R’\subseteq R$. De modo que $(x,y),(y,x)\in R$ o $(x,y),(y,x)\in R’$. En cualquier caso podemos concluir que $x=y$ ya que tanto $R$ como $R’$ son relaciones de orden. Esto prueba que $\mathcal{R}$ es una relación antisimétrica.

Supongamos que $x,y,z\in\mathcal{A}$ son cualesquiera elementos tales que $(x,y),(y,z)\in\mathcal{R}$. Luego, $(x,y)\in g((A,R))=R$ y $(y,z)\in g((B,R’))=R’$ para algunos $(A,R),(B,R’)\in\mathcal{C}$. Ahora, como $\mathcal{C}$ es una cadena, entonces $(A,R)\leq(B,R’)$ o $(B,R’)\leq(A,R)$, por lo que $R\subseteq R’$ o $R’\subseteq R$. Así, $(x,y),(y,z)\in R$ o $(x,y),(y,z)\in R’$ y, por tanto, $(x,z)\in R$ o $(x,z)\in R’$ pues tanto $R$ como $R’$ son relaciones de orden. En cualquier caso $(x,z)\in\mathcal{R}$, ya que $R,R’\subseteq\mathcal{R}$. Esto prueba que $\mathcal{R}$ es una relación transitiva.

Por lo tanto, $\mathcal{R}$ es una relación de orden en $\mathcal{A}$.

Resta probar que $\mathcal{R}$ es un buen orden en $\mathcal{A}$. Sea pues $D\subseteq\mathcal{A}$ un conjunto no vacío. Luego, como $D\subseteq\mathcal{A}$ y $D\not=\emptyset$, entonces $D\cap f((A,R))=D\cap A\not=\emptyset$ para algún $(A,R)\in\mathcal{C}$. Luego, como $D\cap A\subseteq A$ no vacío, entonces existe el mínimo de $D\cap A$ con respecto a la relación $R$, ya que $R$ es un buen orden en $A$, es decir, existe $a_0\in D\cap A$ tal que $(a_0,x)\in R$ para todo $x\in D\cap A$. Veamos que $a_0$ es el mínimo de $D$ con respecto a la relación $\mathcal{R}$. Sea $x\in D$ cualquier elemento. Si $x\in A$, entonces $(a_0,x)\in R\subseteq\mathcal{R}$. Si ahora $x\notin A$, entonces, como $D\subseteq\mathcal{A}$, existe $(B,R’)\in\mathcal{C}\setminus\set{(A,R)}$ tal que $x\in f((B,R’))=B$. Luego, como $\mathcal{C}$ es una cadena se tiene que $(A,R)\leq(B,R’)$ o $(B,R’)\leq(A,R)$, sin embargo, no puede ocurrir que $(B,R’)\leq(A,R)$ pues de ser así tendríamos que $B\subseteq A$ y, por ende, $x\in A$ lo cual asumimos no ocurre. Así pues, necesariamente, $(A,R)\leq(B,R’)$ y, por consiguiente, $A\subseteq B$, $R\subseteq R’$ y para cualesquiera $a\in A$ y $b\in B\setminus A$ se tiene $(a,b)\in R’$. Debido a que $a_0\in A$ y $x\in B\setminus A$, entonces $(a_0,x)\in R’\subseteq\mathcal{R}$. Por lo tanto, para todo $x\in D$, $(a_0,x)\in\mathcal{R}$, lo que demuestra que $a_0$ es el mínimo de $D$ en la relación $\mathcal{R}$. Consecuentemente, $\mathcal{R}$ es un buen orden para $\mathcal{A}$.

Los argumentos anteriores nos permiten concluir que $(\mathcal{A},\mathcal{R})\in\mathcal{B}$, pues $\mathcal{A}\subseteq X$ y $\mathcal{R}$ es un buen orden para $\mathcal{A}$. Ahora, $(\mathcal{A},\mathcal{R})$ es una cota superior para $\mathcal{C}$. En efecto, si $(A,R)\in\mathcal{C}$ es cualquier elemento, entonces $A=f((A,R))\subseteq\bigcup f[\mathcal{C}]=\mathcal{A}$ y $R=g((A,R))\subseteq\bigcup g[\mathcal{C}]=\mathcal{R}$. Por último, si $x\in A$ y $y\in\mathcal{A}\setminus A$, entonces $y\in f((B,R’))=B$ para algún $(B,R’)\in\mathcal{C}$, pero dado que $\mathcal{C}$ es una cadena, entonces $(A,R)\leq(B,R’)$ o $(B,R’)\leq(A,R)$. Sin embargo, no puede ocurrir que $(B,R’)\leq(A,R)$ pues en ese caso tendríamos, en particular, que $B\subseteq A$ y por ende $y\in A$, lo que contradice la elección de $y$. Así que necesariamente, $(A,R)\leq(B,R’)$. Por consiguiente, $A\subseteq B$, $R\subseteq R’$ y para cualquier $a\in A$ y $b\in B\setminus A$, se tiene que $(a,b)\in R’$. En consecuencia, $(x,y)\in R’$ y como $R’\subseteq\mathcal{R}$, entonces $(x,y)\in\mathcal{R}$.

Por lo tanto, $A\subseteq\mathcal{A}$, $R\subseteq\mathcal{R}$ y para cualesquiera $x\in A$ y $y\in\mathcal{A}\setminus A$, $(x,y)\in\mathcal{R}$, es decir, $(A,R)\leq(\mathcal{A},\mathcal{R})$. Esto demuestra que $(\mathcal{A},\mathcal{R})$ es una cota superior para $\mathcal{C}$.

$\square$

El teorema del buen orden

Ya con los ingredientes anteriores, podemos enfocarnos en el resultado principal de esta entrada.

Teorema. (teorema del buen orden). Todo conjunto no vacío puede ser bien ordenado.

Demostración.

Sea $X$ un conjunto no vacío. Sea $\mathcal{B}$ el conjunto de todos los pares ordenados $(A,R)$ tales que $A\subseteq X$ y $R$ es un buen orden para $A$. Por uno de los lemas anteriores tenemos que $(\mathcal{B},\leq)$ es un conjunto ordenado, donde $\leq$ es la relación definida como $(A,R)\leq(B,R’)$ si y sólo si $A\subseteq B$, $R\subseteq R’$ y para todo $x\in A$ y $y\in B\setminus A$, $(x,y)\in R’$.

Antes de continuar veamos que $\mathcal{B}$ es no vacío. Como $X\not=\emptyset$, entonces existe $a\in X$. Luego, $R=\set{(a,a)}$ es un buen orden para $\set{a}$. Por tanto, $(\set{a},\set{(a,a)})\in\mathcal{B}$ y así $\mathcal{B}$ es no vacío.

Ahora, por el último lema probado, toda cadena en $\mathcal{B}$ está acotada superiormente y, como $\mathcal{B}$ es no vacío, podemos aplicar el lema de Kuratowski-Zorn y concluir que $\mathcal{B}$ tiene un elemento maximal. Sea $(A,R)$ elemento maximal de $\mathcal{B}$. Lo que probaremos es que $A=X$.

Si $X\not=A$, entonces existe $x\in X\setminus A$. Luego, definiendo $B=A\cup\set{x}$ y $R’=R\cup\set{(a,x):a\in A}\cup\set{(x,x)}$ tenemos que $R’$ es un buen orden para $B$. En efecto, primero probaremos que $R’$ es una relación de orden en $B$.

Si $u\in R’$, entonces $u\in R$ o $u\in\set{(a,x):a\in A}$ o $u=(x,x)$. Luego, como $A\subseteq B$ y $R\subseteq A\times A$, entonces $u\in A\times A\subseteq B\times B$ o $u=(a,x)\in A\times B\subseteq B\times B$ para algún $a\in A$ o $u=(x,x)\in B\times B$. En cualquier caso $u\in B\times B$ y, por tanto, $R’\subseteq B\times B$, lo que muestra que $R’$ es una relación en $B$.

Ahora, si $b\in B$, entonces $b\in A$ o $b=x$. Si $b\in A$, entonces $(b,b)\in R$ por ser $R$ una relación de orden en $A$ y, por tanto, $(b,b)\in R’$ pues $R\subseteq R’$. Si $b=x$, entonces $(b,b)\in R’$, por definición de $R’$. En cualquier caso se cumple que $(b,b)\in R’$, lo que muestra que $R’$ es una relación reflexiva.

Por otro lado, si $c,b\in B$ son tales que $(c,b)\in R’$ y $(b,c)\in R’$, entonces tenemos algunos casos:

Caso 1. $(c,b)\in R$ y $(b,c)\in R$. Luego, por ser $R$ una relación de orden se cumple que $R$ es antisimétrica, por lo que $c=b$.

Caso 2. $(c,b)\in R$ y $(b,c)\in\set{(a,x):a\in A}$. Luego, $(b,c)=(a,x)$ para algún $a\in A$ y, como $(c,b)\in R\subseteq A\times A$, entonces $(c,b)=(a_1,a_2)$ para algunos $a_1,a_2\in A$. De lo anterior se sigue que $c=a_1\in A$ pero también que $c=x\notin A$ y esto es una contradicción. Así el caso 2 no puede ocurrir.

Caso 3. $(c,b)\in R$ y $(b,c)\in\set{(x,x)}$. Este caso tampoco puede darse por las razones dadas en el caso 2.

Caso 4. $(c,b)\in\set{(a,x):a\in A}$ y $(b,c)\in\set{(a,x):a\in A}$. Luego, $(c,b)=(a_1,x)$ y $(b,c)=(a_2,x)$ para algunos $a_1,a_2\in A$. De esto se sigue que $c=a_1\in A$ y $c=x\notin A$ lo cual es una contradicción. Por lo tanto, el caso 5 tampoco pede darse.

Caso 5. $(c,b)\in\set{(a,x):a\in A}$ y $(b,c)\in\set{(x,x)}$. Luego, $(c,b)=(a_1,x)$ para algún $a_1\in A$ y $(c,b)=(x,x)$, por lo que $c=a_1\in A$ y $c=x\notin A$ lo cual es una contradicción. Por tanto, el caso 5 tampoco puede darse.

Caso 6. $(c,b)\in\set{(x,x)}$ y $(b,c)\in\set{(x,x)}$. En este caso se tiene que $b=x=c$.

Los 6 casos anteriores son las únicas posibilidades y, por tanto, concluimos que $b=c$. Esto muestra que $R’$ es una relación antisimétrica.

Ahora, sean $b,c,d\in B$ tales que $(b,c)\in R’$ y $(c,d)\in R’$. Luego, tenemos los siguientes casos:

Caso 1. $(b,c),(c,d)\in R$. En este caso se sigue que $(b,d)\in R\subseteq R’$ pues $R$ es transitiva.

Caso 2. $(b,c)\in R$ y $(c,d)\in\set{(a,x):a\in A}$. Luego, como $(b,c)\in R\subseteq A\times A$, entonces $b\in A$ y, por tanto, $(b,x)\in R’$. Ahora, como $(c,d)\in\set{(a,x):a\in A}$, entonces $d=x$ y, por tanto, $(b,d)\in R’$.

Caso 3. $(b,c)\in R$ y $(c,d)\in\set{(x,x)}$. Así como en el caso 2 se sigue que $(b,d)\in R’$.

Caso 4. $(b,c),(c,d)\in\set{(a,x):a\in A}$. En este caso se sigue que $c=d=x$ y, por tanto, $(b,c)=(b,d)\in R’$.

Caso 5. $(b,c)\in\set{(a,x):a\in A}$ y $(c,d)\in\set{(x,x)}$. Así como en el caso 3 se sigue que $c=d=x$ y, por tanto, que $(b,d)\in R’$.

Caso 6. $(b,c),(c,d)\in\set{(x,x)}$. Se sigue inmediatamente que $b=c=d=x$ y, por tanto, $(b,d)\in R’$.

Estos son los únicos casos posibles, pues no pueden ocurrir los siguientes casos:

Caso i. $(c,d)\in R$ y $(b,c)\in\set{(a,x):a\in A}$. En este caso se tendría que $c=x$ y que $c\in A$, lo cual no ocurre por la elección de $x$.

Caso ii. $(c,d)\in R$ y $(b,c)\in\set{(x,x)}$. Lo mismo que en el caso i.

Caso iii. $(c,d)\in\set{(a,x):a\in A}$ y $(b,c)\in\set{(x,x)}$. Lo mismo que en los casos i y ii.

En los únicos casos posibles se concluye que $(b,d)\in R’$, lo que muestra que $R’$ es una relación transitiva.

Por lo tanto $R’$ es una relación de orden en $B$. Ahora, sea $D\subseteq B$ no vacío. Si $D\cap A\not=\emptyset$, entonces $D\cap A$ tiene un elemento mínimo en $A$ respecto a la relación de orden $R$, es decir, existe $a_0\in D\cap A$ tal que $(a_0,a)\in R$ para todo $a\in D\cap A$. Luego, si $d\in D$ es cualquier elemento, entonces $d\in A$ o $d=x$. Si $d\in A$, entonces $(a_0,d)\in R\subseteq R’$ y, si $d=x$, entonces $(a_0,d)\in R’$ por definición de $R’$. Lo que demuestra que $a_0$ es el mínimo de $D$ con respecto a la relación de orden $R’$. Si ahora $D\cap A=\emptyset$, entonces, necesariamente, $D=\set{x}$ y, ciertamente, $D$ tiene mínimo, el cual es $x$. Por lo tanto, cualquier subconjunto no vacío de $B$ tiene elemento mínimo con respecto a la relación $R’$. Lo que muestra que $R’$ es un buen orden para $B$.

Luego, $(B,R’)\in\mathcal{B}$. Dado que $A\subseteq B$, $R\subseteq R’$ y para cualquier $a\in A$ y $b\in B\setminus A=\set{x}$ se tiene que $(a,b)\in R’$, se sigue que $(A,R)\leq(B,R’)$ y, sin embargo, $(A,R)\not=(B,R’)$, lo cual contradice la maximalidad de $(A,R)$ en $\mathcal{B}$.

Concluimos entonces que $A=X$ y, por tanto, $R$ es un buen orden para $X$. Por lo tanto, $X$ puede ser bien ordenado.

$\square$

Para culminar esta entrada, mostraremos que el teorema del buen orden implica el axioma de elección. La idea intuitiva es sencilla. Para un conjunto $X$, ¿cuál elemento elegimos de cada subconjunto no vacío de $X$? Pues damos un buen orden a $X$ y para cada subconjunto no vacío elegimos el mínimo.

Teorema. El teorema del buen orden implica el axioma de elección.

Demostración.

Sea $X$ un conjunto no vacío. Luego, por el teorema del buen orden, existe una relación $R$ en $X$ que es un buen orden en $X$. Definamos $e:\mathcal{P}(X)\setminus\set{\emptyset}\to X$ por medio de $e(B)=\min_R(B)$, donde $\min_R(B)$ denota al elemento mínimo del subconjunto no vacío $B$ de $A$ con respecto a la relación $R$. Dado que, por definición, el mínimo de un conjunto pertenece a dicho conjunto, concluimos que $e(B)\in B$ para todo $B\in\mathcal{P}(X)\setminus\set{\emptyset}$. Esto demuestra que $X$ tiene una función de elección.

$\square$

Resumen de últimas equivalencias

Podemos resumir la serie de resultados probados en esta entrada y la anterior mediante el siguiente teorema.

Teorema. Son equivalentes los siguientes resultados

  1. El axioma de elección.
  2. El lema de Tukey-Teichmüller.
  3. Principio maximal de Hausdorff.
  4. El lema de Kuratowski-Zorn.
  5. El teorema del buen orden.

Con esto damos por termnado esl estudio de algunas de las equivalencias más importantes del axioma de elección.

Tarea moral

  1. Sea $(X,\leq)$ un conjunto parcialmente ordenado en el que cualquier cadena tiene una cota superior. Muestra que para cada $a\in X$ existe un elemento $\leq-$maximal $x\in X$ tal que $a\leq x$.
  2. Sea $(L,\leq)$ un conjunto linealmente ordenado. Prueba que existe un conjunto $W\subseteq L$ tal que $\leq$ es un buen orden para $W$ y tal que para cada $x\in L$ existe $y\in W$ tal que $x\leq y$.
  3. Sea $X$ cualquier conjunto infinito. Prueba que $X$ puede ser bien ordenado de tal forma que $X$ no tenga máximo. Prueba también que $X$ puede ser bien ordenado de tal forma que tenga un máximo.

Más adelante…

En la siguiente y última entrada veremos una aplicación del axioma de elección relevante en álgebra lineal.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Bases para cualquier espacio vectorial

Por Gabriela Hernández Aguilar

Introducción

Lo que haremos en esta última entrada es utilizar el axioma de elección para probar un resultado muy conocido en álgebra lineal: que todo espacio vectorial tiene una base. Para comprender algunos de los términos que utilizaremos en esta sección puedes consultar el curso de Álgebra Lineal I disponible aquí en el blog.

Recordatorio de definiciones

Daremos un breve recordatorio sobre qué quiere decir que un subconjunto arbitrario (finito o no) de un espacio vectorial sea generador, linealmente independiente o base.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$ y $S\subseteq V$. Decimos que $S$ es generador si para cualquier $v\in V$ existe una cantidad finita de vectores $v_1,\ldots,v_n$ en $V$ y de escalares $\alpha_1,\ldots,\alpha_n$ en $F$ tales que $$v=\alpha_1v_1+\ldots+\alpha_nv_n.$$

Definición. Sea $V$ un espacio vectorial sobre un campo $F$ y $L\subseteq V$. Decimos que $L$ es linealmente independiente si para cualquier elección finita de vectores distintos $v_1,\ldots,v_n$ en $L$ y escalares $\alpha_1,\ldots,\alpha_n$, la igualdad $$0=\alpha_1v_1+\ldots+\alpha_nv_n$$ implica que $\alpha_1=\ldots=\alpha_n=0$.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$ y $B\subseteq V$. Decimos que $B$ es una base de $V$ si $B$ es generador y linealmente independiente.

Todo espacio vectorial tiene una base

Demostraremos el siguiente resultado

Teorema. Todo espacio vectorial tiene una base.

Demostración.

Sea $V$ un espacio vectorial sobre un campo $F$. Lo que queremos mostrar es que existe un subconjunto $B$ de $V$ que genera a $B$ y que es linealmente independiente.

Si $V=\set{0}$, entonces $\emptyset$ es una base para $V$. Supongamos ahora que $V$ tiene al menos dos vectores distintos. Sea $\mathcal{F}=\set{L\subseteq V:L\ \textnormal{es un conjunto linealmente independiente}}$. Notemos que $\mathcal{F}$ es no vacío. En efecto, sea $v\in V$ un elemento distinto del vector cero. Luego, $\set{v}$ es linealmente independiente, por lo que $\set{v}\in\mathcal{F}$.

Lo que haremos ahora es probar que $\mathcal{F}$ es una familia de conjuntos de carácter finito. Sea $L$ un conjunto tal que $L\in\mathcal{F}$. Luego, $L$ es linealmente independiente y, por tanto, cualquier subconjunto de $L$ es linealmente independiente, en particular todos los subconjuntos finitos de $L$ son linealmente independientes. En consecuencia, cualquier subconjunto finito de $L$ pertence a $\mathcal{F}$.

Ahora, sea $L$ un conjunto tal que todo subconjunto finito de $L$ pertenece a $\mathcal{F}$. Para cualquier elección de vectores distintos $v_1,\ldots,v_n$ tenemos entonces que $\{v_1,\ldots,v_n\}$ es linealmente independiente. Pero entonces cualquier elección de escalares $\alpha_1,\ldots,\alpha_n$ tales que $$0=\alpha_1v_1+\ldots+\alpha_nv_n$$ cumple que $\alpha_1=\ldots=\alpha_n=0$. Concluimos entonces que $L$ es linealmente independiente. Por tanto, $L\in\mathcal{F}$. Esto demuestra que $\mathcal{F}$ es una familia de conjuntos de carácter finito.

Ahora, por el axioma de elección (en la versión de lema de Tukey-Teichmüller) toda familia no vacía de carácter finito tiene un elemento $\subseteq$-maximal. Sea $B$ un elemento $\subseteq$-maximal en $\mathcal{F}$. Afirmamos que $B$ es una base para $V$. Como $B$ es linealmente independiente, sólo basta probar que $B$ genera a $V$.

Procedamos por contradicción y supongamos que $B$ no genera a $V$. Sea $v\in V$ que no esté en el espacio generado por $B$. Entonces $B\cup\set{v}$ sería un subconjunto de $V$ linealmente independiente que contiene propiamente a $B$ (ver, por ejemplo la última proposición en la entrada Conjuntos generadores e independencia lineal). ¡Esto contradice la maximalidad de $B$ con respecto a la contención en $\mathcal{F}$!

Así, $B$ es linealmente independientes y generador, y por lo tanto es una base de $V$.

$\square$

Tarea moral

Los siguientes resultados presentan algunos refinamientos del resultado mencionado. Por ejemplo, enuncian que «cualquier base parcial se puede completar» a una base, o que «de cualquier conjunto generador se puede extraer una base», etc.

  1. Sea $V$ un espacio vectorial sobre un campo $K$. Muestra que todo conjunto linealmente independiente está contenido en una base de $V$.
  2. Sea $V$ un espacio vectorial. Muestra que si $S$ es un subconjunto generador de $V$, entonces existe $\beta\subseteq S$ tal que $\beta$ es una base para $V$.
  3. Sea $V$ un espacio vectorial con base $\beta$. Si $S$ es un conjunto linealmente independiente, muestra que existe un subconjunto $S_1$ de $\beta$ tal que $S\cup S_1$ es una base para $V$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: El lema de Zorn

Por Gabriela Hernández Aguilar

Introducción

En la entrada anterior vimos algunas equivalencias del axioma de elección. En esta nueva entrada veremos algunas otras equivalencias del mismo axioma, pero en términos de órdenes. Estas versiones no son tan evidentes e incluso resultan sorprendentes. En muchas ramas de las matemáticas se apela a las formas equivalentes del axioma de elección que veremos a continuación, por lo que es importante tratarlas.

Familias de caracter finito

Para llegar al lema de Zorn, necesitaremos desarrollar previamente algo de teoría. La siguiente definición jugará un papel clave a lo largo de esta entrada.

Definición. Sea $\mathcal{F}$ una familia de conjuntos. Decimos que $\mathcal{F}$ es de carácter finito si dado un conjunto $A$ se tiene que $A\in\mathcal{F}$ si y sólo si todo subconjunto finito de $A$ está en $\mathcal{F}$.

Veamos los siguientes ejemplos.

Ejemplo.

Sea $\mathcal{F}$ la familia vacía. Luego, por vacuidad, un conjunto $A\in\mathcal{F}$ si y sólo si todo subconjunto finito de $A$ está en $\mathcal{F}$.

$\square$

Ejemplo.

Sea $X$ un conjunto y $\mathcal{F}=\mathcal{P}(X)$ su conjunto potencia. Luego, si $A$ es un conjunto tal que $A\in\mathcal{F}$, entonces $A\subseteq X$ y, por tanto, todo subconjunto finito de $A$ es un subconjunto de $X$, por lo que todo subconjunto finito de $A$ está en $\mathcal{P}(X)$. Ahora, sea $A$ un conjunto tal que cualquiera de sus subconjuntos finitos está en $\mathcal{P}(X)$. Veamos que $A\in\mathcal{P}(X)$, es decir, que $A\subseteq X$. Sea pues $a\in A$ cualquier elemento. Luego, $\set{a}$ es un subconjunto finito de $A$ por lo que $\set{a}\in\mathcal{P}(X)$ y, en consecuencia, $\set{a}\subseteq X$, lo cual es equivalente a que $a\in X$. Por tanto, $A\subseteq X$, lo que muestra que $A\in\mathcal{P}(X)$. De modo que para todo conjunto $X$ su conjunto potencia $\mathcal{P}(X)$ es una familia de conjuntos de carácter finito.

En el último ejemplo tenemos una familia de carácter finito no vacía que tiene al vacío como elemento, pues el conjunto potencia de cualquier conjunto siempre tiene al vacío Esto no sólo ocurre para este caso particular, si tenemos una familia no vacía de carácter finito, entonces el conjunto vacío es un elemento de dicha familia. En efecto, sea $\mathcal{F}$ cualquier familia no vacía de carácter finito. Luego, sea $A\in\mathcal{F}$. Dado que $\emptyset\subseteq A$ y $\emptyset$ es finito, entonces $\emptyset\in\mathcal{F}$.

$\square$

Un poco más adelante necesitaremos del siguiente lema. En un conjunto parcialmente ordenado $(X,\leq)$, una cadena es un subconjunto $Y$ de $X$ tal que la restricción de $\leq$ a $Y$ es un orden total. Dicho de otra forma, en $Y$ cualesquiera dos elementos son $\leq$-comparables.

Lema. Sea $\mathcal{F}$ una familia de carácter finito y sea $\mathcal{B}$ una cadena en $\mathcal{F}$ con respecto a la contención, entonces $\bigcup\mathcal{B}\in\mathcal{F}$.

Demostración.

Dado que $\mathcal{F}$ es de carácter finito basta mostrar que cada subconjunto finito de $\bigcup\mathcal{B}$ está en $\mathcal{F}$. Sea $F$ un subconjunto finito de $\bigcup\mathcal{B}$. Luego, para cada $x\in F$ existe $B_x\in\mathcal{B}$ tal que $x\in B_x$. Dado que $F$ es finito existe un natural $n$ y una función biyectiva $f:n\to F$, por lo que podemos expresar a $F$ como el conjunto $\set{f(m):m\in n}$. Luego, $F\subseteq\cup_{m\in n}B_{f(m)}$. Ahora, como $\mathcal{B}$ es una cadena, entonces existe $m_0\in n$ tal que $B_{f(m)}\subseteq B_{f(m_0)}$ para todo $m\in n$, así que $F\subseteq B_{f(m_0)}$. Finalmente, como $B_{f(m_0)}\in\mathcal{F}$ y $F$ es un subconjunto finito de $B_{f(m_0)}$, entonces $F\in\mathcal{F}$. Esto muestra que $\bigcup\mathcal{B}\in\mathcal{F}$.

$\square$

El lema de Tukey-Teichmüller

Para probar el siguiente teorema debemos asumir que el axioma de elección se cumple. El resultado que enunciamos a continuación John W. Tukey lo enuncia y demuestra en su tesis doctoral en 1939.

Teorema. (Lema de Tukey-Teichmüller). Toda familia no vacía de carácter finito tiene un elemento $\subseteq$-maximal.

Demostración.

La prueba será por contradicción. Supongamos entonces que existe una familia no vacía $\mathcal{F}$ de carácter finito tal que no tiene elementos $\subseteq$-maximales. Luego, para cada $F\in\mathcal{F}$ definamos $\mathcal{A}_F=\set{E\in\mathcal{F}:F\subset E}$, es decir, $\mathcal{A}_F$ es el conjunto de todos los elementos de $\mathcal{F}$ que contienen propiamente a $F$. Dado que $\mathcal{F}$ no tiene elementos $\subseteq$-maximales, para cada $F\in\mathcal{F}$ el conjunto $\mathcal{A}_F$ es no vacío.

Sea $\mathcal{E}=\set{\mathcal{A}_F:F\in\mathcal{F}}$, la cual es una famila no vacía de conjuntos no vacíos. Por el teorema de la entrada anterior sobre algunas de las equivalencias del axioma de elección, existe una función $f:\mathcal{F}\to\mathcal{E}$ de tal forma que $f(F)\in\mathcal{A}_F$ para todo $F\in\mathcal{F}$. Luego, como $f(F)\in\mathcal{A}_F$ para cada $F\in\mathcal{F}$, entonces $F\subset f(F)$ para todo $F\in\mathcal{F}$.

Utilizando esta función $f$ diremos que una subfamilia $\mathcal{G}$ de $\mathcal{F}$ es $f$-inductiva si tiene las siguientes propiedades:

  1. $\emptyset\in\mathcal{G}$.
  2. $A\in\mathcal{G}$ implica $f(A)\in\mathcal{G}$.
  3. Si $\mathcal{B}$ es una $\subseteq$-cadena contenida en $\mathcal{G}$, entonces $\bigcup\mathcal{B}\in\mathcal{G}$.

Dado que $\mathcal{F}$ es una familia de carácter finito no vacía tenemos que $\emptyset\in\mathcal{F}$. Ahora, si $F\in\mathcal{F}$, entonces $f(F)\in\mathcal{F}$ por la elección de la función $f$. Finalmente, si $\mathcal{B}$ es una $\subseteq$-cadena contenida en $\mathcal{F}$, entonces, por el lema previo, $\bigcup\mathcal{B}\in\mathcal{F}$. Así pues, $\mathcal{F}$ es una subfamilia de $\mathcal{F}$ que es $f$-inductiva. Consecuentemente, la familia de conjuntos $\set{\mathcal{G}\subseteq\mathcal{F}:\mathcal{G}\ \textnormal{es $f$-inductiva}}$ es no vacía. Podemos considerar así al conjunto $\mathcal{G}_0:=\bigcap\set{\mathcal{G}\subseteq\mathcal{F}:\mathcal{G}\ \textnormal{es $f$-inductiva}}$.

Veamos que $\mathcal{G}_0$ es $f$-inductiva. Primero, como $\emptyset\in\mathcal{G}$ para toda subfamilia $f$-inductiva de $\mathcal{F}$, entonces $\emptyset\in\mathcal{G}_0$. Ahora, si $A\in\mathcal{G}_0$, entonces $A\in\mathcal{G}$ para toda familia $f$-inductiva de $\mathcal{F}$, por lo que, por definición de subfamilia $f$-inductiva, $f(A)\in\mathcal{G}$ para toda familia $f$-inductiva de $\mathcal{F}$ y, por ende, $f(A)\in\mathcal{G}_0$. Por último, si $\mathcal{B}$ es un $\subseteq$-cadena contenida en $\mathcal{G_0}$, entonces $\mathcal{B}$ es una $\subseteq$-cadena contenida en cada subfamilia $f$-inductiva de $\mathcal{F}$, por lo que $\bigcup\mathcal{B}$ pertenece a cada una de estas subfamilias $f$-inductivas y, consecuentemente, $\bigcup\mathcal{B}\in\mathcal{G}_0$. Esto muestra que $\mathcal{G}_0$ es $f$-inductiva.

Por el párrafo anterior tenemos que toda subfamilia $f$-inductiva de $\mathcal{F}$ contiene a $\mathcal{G}_0$. Lo que haremos ahora es probar que $\mathcal{G}_0$ es una $\subseteq$-cadena, es decir, que para cualesquiera $A$ y $B$ elementos de $\mathcal{G}_0$ se tiene que $A\subseteq B$ o $B\subseteq A$.

Definamos el conjunto $$\mathcal{H}=\{A\in\mathcal{G}_0:\textnormal{si $B\in\mathcal{G}_0$ y $B\subset A$, entonces $f(B)\subseteq A$}\}.$$

Notemos que $\mathcal{H}$ es no vacío. En efecto, si consideramos $A=\emptyset$, entonces $A\in\mathcal{H}$, ya que si $B\in\mathcal{G}_0$ es un subconjunto propio de $A$, entonces, por vacuidad, $f(B)\subseteq A$, pues $\emptyset$ no tiene subconjuntos propios.

Veamos ahora que para cualquier $A\in\mathcal{H}$ y cualquier $C\in\mathcal{G}_0$, se cumple que $C\subseteq A$ o $f(A)\subseteq C$. Sea pues $A\in\mathcal{H}$ cualquier elemento. Definamos $\mathcal{G}_A=\set{C\in\mathcal{G}_0:C\subseteq A\ o\ f(A)\subseteq C}$. Notemos que si $C\in\mathcal{G}_A$, entonces $C\subseteq A$ o bien, $f(A)\subseteq C$ por lo que $A\subseteq C$, ya que $A\subset f(A)$. Así que para probar que $A\subseteq C$ o $C\subseteq A$ para cualquier $C\in\mathcal{G}_0$, basta probar que $\mathcal{G}_A=\mathcal{G}_0$.

Lo que haremos será mostrar que $\mathcal{G}_A$ es una subfamilia de $\mathcal{F}$ que es $f$-inductiva. Primero, como $\emptyset\in\mathcal{G}_0$ y $\emptyset\subseteq A$, entonces $\emptyset\in\mathcal{G}_A$. Luego, si $C\in\mathcal{G}_A$, entonces o bien $C\subset A$ o $C=A$ o $f(A)\subseteq C$. Si $C\subset A$, entonces $f(C)\subseteq A$ pues $A\in\mathcal{H}$. Si $C=A$, entonces $f(A)=f(C)$ y por tanto $A\subseteq f(A)=f(C)$. Si $f(A)\subseteq C$, entonces $A\subseteq C$ y, por ende, $A\subseteq f(C)$, ya que $C\subset f(C)$. En cualquier posibilidad tenemos que $f(C)\subseteq A$ o $f(A)\subseteq f(C)$, lo que implica que $f(C)\in\mathcal{G}_A$. Sea ahora $\mathcal{B}$ una cadena en $\mathcal{G}_A$. Si $C\subseteq A$ para todo $C\in\mathcal{B}$, entonces $\bigcup\mathcal{B}\subseteq A$. Si existe $C\in\mathcal{B}$ tal que $f(A)\subseteq C$, entonces $f(A)\subseteq\bigcup\mathcal{B}$, pues $C\subseteq\bigcup\mathcal{B}$. Como estas son las únicas posibilidades, concluimos que o bien $\bigcup\mathcal{B}\subseteq A$ o $f(A)\subseteq\bigcup\mathcal{B}$ y, por tanto, $\bigcup\mathcal{B}\in\mathcal{G}_A$. Estas propiedades muestran que $\mathcal{G}_A$ es una subfamilia de $\mathcal{F}$ que es $f$-inductiva.

En consecuencia, $\mathcal{G}_0\subseteq\mathcal{G}_A$. Luego, por definición tenemos que $\mathcal{G}_A\subseteq\mathcal{G}_0$ y, por consiguiente, tenemos la igualdad $\mathcal{G}_0=\mathcal{G}_A$.

Así pues, para todo $A\in\mathcal{H}$ y cualquier $C\in\mathcal{G}_0$, o bien $C\subseteq A$ o $A\subseteq C$.

Para terminar de probar que $\mathcal{G}_0$ es una cadena basta probar que $\mathcal{H}$ es una subfamilia $f$-inductiva de $\mathcal{F}$. Primero, ya vimos que $\emptyset\in\mathcal{H}$. Ahora, sea $A\in\mathcal{H}$ y sea $B\in\mathcal{G}_0$ cualquier elemento tal que $B\subset f(A)$. Dado que $B\in\mathcal{G}_A=\mathcal{G}_0$, entonces $B\subseteq A$ o $f(A)\subseteq B$, pero hemos supuesto que $B\subset f(A)$, por lo que es imposible que $f(A)\subseteq B$ y, en consecuencia, $B\subseteq A$. Luego, si $B\subset A$, entonces $f(B)\subseteq A$ pues $A\in\mathcal{H}$ y, por tanto, $f(B)\subseteq f(A)$. Si $B=A$, entonces $f(B)=f(A)\subseteq f(A)$. Por lo tanto, $f(B)\subseteq f(A)$. Esto muestra que $f(A)\in\mathcal{H}$. Para finalizar, sea $\mathcal{B}$ una $\subseteq$-cadena de $\mathcal{H}$. Sea $B\in\mathcal{G}_0$ cualquier elemento tal que $B\subset\bigcup\mathcal{B}$. Si existe $C\in\mathcal{B}$ tal que $B\subseteq C$, entonces $B\subset C$ o $B=C$, en el primer caso tendríamos que $f(B)\subseteq C$, porque $C\in\mathcal{H}$, y por ende que $f(B)\subseteq\bigcup\mathcal{B}$; supongamos ahora que $B=C$, entonces, $B\in\mathcal{H}$ (pues $C$ es un elemento de $\mathcal{H}$) y $\bigcup\mathcal{B}\in\mathcal{G}_0=\mathcal{G}_B$. Así, $\bigcup\mathcal{B}\subseteq B$ o $f(B)\subseteq\bigcup\mathcal{B}$, pero $\bigcup\mathcal{B}\subseteq B$ es imposible pues asumimos que $B\subset\bigcup\mathcal{B}$, por lo que debe ocurrir necesariamente que $f(B)\subseteq\bigcup\mathcal{B}$. De modo que si existe $C\in\mathcal{B}$ tal que $B\subseteq C$, entonces $f(B)\subseteq\bigcup\mathcal{B}$. Supongamos ahora que $B\nsubseteq C$ para todo $C\in\mathcal{B}$. Ahora, como $B\in\mathcal{G}_0$ y $\mathcal{G}_0=\mathcal{G}_C$ para todo $C\in\mathcal{B}\subseteq\mathcal{H}$, entonces $B\in\mathcal{G}_C$ para todo $C\in\mathcal{B}$. Consecuentemente, $B\subseteq C$ o $f(C)\subseteq B$ para cada $C\in\mathcal{B}$, pero asumimos ahora que $B\nsubseteq C$ para todo $C\in\mathcal{B}$, por lo que $f(C)\subseteq B$ para todo $C\in\mathcal{B}$ y, por consiguiente, $C\subseteq B$ para todo $C\in\mathcal{B}$, lo cual implica que $\bigcup\mathcal{B}\subseteq B$ pero esto contradice el hecho de que $B\subset\bigcup\mathcal{B}$. De modo que, necesariamente, debe existir $C\in\mathcal{B}$ tal que $B\subseteq C$, lo cual vimos implica que $f(B)\subseteq\bigcup\mathcal{B}$. Esto demuestra que $\bigcup\mathcal{B}\in\mathcal{H}$. Por lo tanto, $\mathcal{H}$ es una subfamilia de $\mathcal{F}$ que es $f$-inductiva.

Como consecuencia del párrafo anterior tenemos que $\mathcal{G}_0\subseteq\mathcal{H}$, pero por definición sabemos que $\mathcal{H}\subseteq\mathcal{G_0}$, lo cual implica $\mathcal{G}_0=\mathcal{H}$.

De esta serie de argumentos tenemos que si $A,B\in\mathcal{G}_0$, entonces $A\in\mathcal{H}$ y $B\in\mathcal{G}_A$, por lo que $B\subseteq A$ o bien $f(A)\subseteq B$, es decir, $B\subseteq A$ o $A\subseteq B$. Por lo tanto, cualesquiera dos elementos de $\mathcal{G}_0$ son $\subseteq$-comparables y, en consecuencia, $\mathcal{G}_0$ es una $\subseteq$-cadena.

Consideremos ahora $M=\bigcup\mathcal{G_0}$, el cual es un elemento de $\mathcal{G_0}$ por ser $\mathcal{G}_0$ $f$-inductiva y una subcadena de sí misma. Ahora para todo $A\in\mathcal{G}_0$ se tiene que $A\subseteq\bigcup\mathcal{G}_0=M$. Por otro lado, como $M\in\mathcal{G}_0$, entonces $f(M)\in\mathcal{G}_0$ y, por tanto, $f(M)\subseteq M$; sin embargo, como $M\in\mathcal{F}$, entonces $M\subset f(M)$, pero esto es una contradicción.

Dado que esta contradicción viene de suponer que $\mathcal{F}$ no tiene un elemento $\subseteq$-maximal, concluimos que $\mathcal{F}$ sí tiene un elemento $\subseteq$-maximal.

$\square$

El principio maximal de Hausdorff

Pasemos ahora a un resultado muy cercano al lema de Zorn, demostrado por Felix Hausdorff en 1914. Se obtiene rápidamente al aplicar el lema de Tukey-Teichmüller.

Teorema. (Principio Maximal de Hausdorff). Cualquier conjunto no vacío y parcialmente ordenado tiene una cadena $\subseteq$-maximal.

Demostración.

Sea $A\neq \emptyset$ y $\leq$ un orden parcial para $A$. Sea $\mathcal{C}=\set{B\subseteq A:B\ \textnormal{es una cadena}}$. Recordemos que $B\subseteq A$ es una cadena en $A$ si cualesquiera dos elementos en $B$ son comparables con el orden de $A$.

Lo que queremos probar es que existe $C\in\mathcal{C}$ tal que ningún otro elemento de $\mathcal{C}$ contiene propiamente a $C$. Para ello probaremos que $\mathcal{C}$ es una familia no vacía de carácter finito y aplicaremos el lema de Tukey-Teichmüller para concluir que $\mathcal{C}$ tiene un elemento $\subseteq$-maximal.

Supongamos que $B\in\mathcal{C}$ es cualquier elemento. Luego, sea $B’\subseteq B$ un conjunto finito. Veamos que $B’$ es una cadena en $A$, es decir, que cualesquiera dos elementos de $B’$ son comparables con el orden de $A$. Si $B’=\emptyset$, por vacuidad $B’$ es una cadena en $A$. Asumamos ahora que $B’\not=\emptyset$ y sean $a,b\in B’$ cualesquiera elementos. Luego, como $a,b\in B’$, entonces $a,b\in B$ y como $B$ es una cadena en $A$, entonces $a$ y $b$ son comparables con el orden de $A$, y esto muestra que $B’$ es también una cadena en $A$, por lo que $B’\in\mathcal{C}$.

Supongamos ahora que $B$ es un conjunto tal que cualquiera de sus subconjuntos finitos está en $\mathcal{C}$. Ciertamente $B\subseteq A$, pues si $a\in B$, entonces $\set{a}\in\mathcal{C}$, es decir, $\set{a}$ es una cadena en $A$, por lo que $a\in A$. Ahora, si $a,b\in B$, entonces $\set{a,b}\in\mathcal{C}$ y, por tanto, $\set{a,b}$ es una cadena en $A$, es decir, $a$ y $b$ son comparables con el orden de $A$. Por tanto, $B$ es una cadena en $A$, ya que cualesquiera dos de sus elementos son comparables con el orden de $A$.

Esta serie de argumentos muestra que $\mathcal{C}$ es una familia de conjuntos de carácter finito. Por el lema de Tukey-Teichmüller, $\mathcal{C}$ tiene un elemento $\subseteq$-maximal, es decir, existe una cadena en $A$ $\subseteq$-maximal.

$\square$

El lema de Zorn

Finalmente enunciaremos y demostraremos una de las versiones más usadas del axioma de elección: el conocido lema de Zorn. Este resultado fue demostrado por Max Zorn en 1935 (y de manera independiente por Kazimierz Kuratowski en 1922). Para nuestra demostración usaremos el principio maximal de Hausdorff.

Teorema. (Lema de Kuratowski-Zorn). Cualquier conjunto parcialmente ordenado y no vacío en el cual toda cadena tiene una cota superior tiene un elemento maximal.

Demostración.

Sea $(A,\leq)$ un conjunto parcialmente ordenado no vacío en el que toda cadena tiene una cota superior. Por el principio maximal de Hausdorff el conjunto $A$ tiene una cadena $\subseteq$-maximal. Sea pues $C\subseteq A$ una cadena $\subseteq$-maximal de $A$. Luego, por hipótesis, existe $a\in A$ cota superior de $C$, es decir, $c\leq a$ para todo $c\in C$. Ahora, notemos que $a$ es maximal con respecto a $\leq$, ya que si existiera $x\in A$ tal que $a<x$, entonces $x\not=a$ y $x\notin C$, por lo que $C\cup\set{x}$ sería una cadena en $A$ que contiene propiamente a $C$ y esto contradice la maximalidad de $C$ con respecto a la contención en el conjunto de cadenas de $A$. Por lo tanto, $a$ es un elemento maximal en $A$.

$\square$

Tarea moral

  1. Prueba que la intersección de un sistema de familias $f$-inductivas es una familia $f$-inductiva.
  2. Sea $X$ un conjunto. Prueba que si $X$ puede ser bien ordenado, entonces $\mathcal{P}(X)$ puede ser linealmente ordenado. (Sugerencia: dados $A,B\in\mathcal{P}(X)$ considera al mínimo de $A\Delta B$).
  3. Demuestra que para cualesquiera dos conjuntos $A$ y $B$, o bien existe una función inyectiva $f:A\to B$, o bien existe una función inyectiva $g:B\to A$.
  4. Demuestra que la colección $\mathcal{F}$ de subconjuntos finitos de $\mathbb{N}$ no es de caracter finito.

Más adelante…

En la siguiente entrada comenzaremos probando un resultado algo antintuitivo: que cualquier conjunto puede ser bien ordenado. Por ejemplo, a $\mathbb{R}$ se le podrá dar un orden de manera que cualquier subconjunto no vacío tenga mínimo. ¡Esto es muy difícil de imaginar! Sobre todo si pensamos en el orden usual de $\mathbb{R}$. El resultado que probaremos será existencial (y no constructivo), así que aunque tengamos la garantía de que dicho buen orden existe, no podremos saber muy bien cuál es.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Axioma de elección

Por Gabriela Hernández Aguilar

Introducción

En esta entrada abordaremos un axioma relevante no sólo en teoría de conjuntos sino en muchas ramas de las matemáticas. Distintas proposiciones aparentemente sencillas no podrían demostrarse sin su ayuda y algunas de sus consecuencias son tan poderosas que cuesta trabajo aceptarlas. Es por eso que el llamado axioma de elección ha sido controversial desde su formulación a manos de Ernst Zermelo en 1904.

Funciones de elección

Comenzaremos dando una definición para después enunciar el mencionado axioma.

Definición. Sea $A$ un conjunto. Una función de elección para $A$ es una función $f:\mathcal{P}(A)\setminus\{\emptyset\}\to A$ tal que, para todo $B\in\mathcal{P}(A)\setminus\{\emptyset\}$, se tiene que $f(B)\in B$.

Ejemplo.

Sea $A=\set{0,1}$. Luego, $\mathcal{P}(A)=\{\emptyset,\{0\},\{1\},\{0,1\}\}$. Si definimos $f:\mathcal{P}(A)\setminus\set{\emptyset}\to A$ por medio $f=\set{(\set{0},0),(\set{1},1),(\set{0,1},1)}$, entonces $f$ es una función de elección.

$\square$

El siguiente resultado muestra que existe una gran cantidad de conjuntos que tienen una función de elección.

Proposición. Si $X$ es un conjunto finito no vacío, entonces $X$ tiene una función de elección.

Demostración.

Sea $X$ un conjunto finito y no vacío. Luego, por ser finito, existe un número natural $n$ y una función biyectiva $f:n\to X$ y, además, $n\not=0$ ya que $X$ es no vacío. Ahora, para cada $A\subseteq X$ no vacío consideremos su imagen inversa, $f^{-1}[A]=\set{m\in n:f(m)\in A}$. Dado que $f^{-1}[A]\not=\emptyset$, entonces existe $\min(f^{-1}[A])$. Definamos $F:\mathcal{P}(X)\setminus\set{\emptyset}\to X$ por medio de $F(A)=f(\min(f^{-1}[A]))$. Luego, $F$ es una función de elección para $X$.

$\square$

Axioma de elección y equivalencias

Aunque todos los conjuntos finitos tengan función de elección, resultará imposible demostrar lo mismo para todos los conjuntos. Es por ello que necesitaremos agregar un axioma a nuestra teoría.

Axioma de elección. Todo conjunto no vacío tiene una función de elección.

Nos discutir varios de los usos de este axioma, pero para ello es conveniente poder pensarlo de muchas maneras. En esta primera entrada enunciaremos una serie de equivalencias a este teorema muy relacionadas con «elegir». En la siguiente entrada enunciaremos equivalencias relacionadas con «ordenar».

Teorema. Las siguientes proposiciones son equivalentes:

  1. El axioma de elección.
  2. Si $\mathcal{A}$ es una familia no vacía de conjuntos no vacíos y ajenos dos a dos, entonces existe un conjunto $B$ tal que para todo $A\in\mathcal{A}$, se tiene que $A\cap B$ es un conjunto unitario.
  3. Toda función suprayectiva tiene al menos una inversa derecha.
  4. Si $\set{A_\alpha}_{\alpha\in\Gamma}$ es tal que $A_\alpha\not= \emptyset$ y $A_\alpha\cap A_\beta=\emptyset$ para cualesquiera $\alpha,\beta\in\Gamma$ con $\alpha\not=\beta$, entonces existe $B\subseteq\cup_{\alpha\in\Gamma}A_\alpha$ tal que $B\cap A_\alpha$ es unitario para cada $\alpha\in\Gamma$.
  5. Si $\set{A_\alpha}_{\alpha\in \Gamma}$ es una famila indizada no vacía de conjuntos no vacíos, entonces existe una función $f:\Gamma\to\cup_{\alpha\in\Gamma}A_\alpha$ tal que para cada $\alpha\in\Gamma$, se cumple que $f(\alpha)\in A_\alpha$.
  6. Si $F:X\to \mathcal{P}(Y)\setminus\set{\emptyset}$ es una función, entonces existe una función $f:X\to Y$ tal que $f(x)\in F(x)$ para todo $x\in X$.

La diferencia entre $2$ y $4$ es que en $5$ se pide que $B$ sea subconjunto de la unión de la familia.

Demostración.

$1)\Rightarrow 2)$ Supogamos que el axioma de elección es válido. Sea $\mathcal{A}$ una familia no vacía de conjuntos no vacíos ajenos dos a dos.

Sea $C=\bigcup\mathcal{A}$. Luego, podemos fijar $f:\mathcal{P}(C)\setminus\set{\emptyset}\to C$ una función de elección. Notemos que si $A\in\mathcal{A}$, entonces $A\subseteq C$, por lo que $A\in\mathcal{P}(C)\setminus\set{\emptyset}$. Definamos $B=\set{f(A):A\in\mathcal{A}}$. Veamos ahora que $B\cap A$ es un conjunto unitario para todo $A\in\mathcal{A}$.

Sea $A\in\mathcal{A}$ un elemento arbitrario. Notemos que $f(A)\in B$ por definición de $B$, pero también $f(A)\in A$ ya que $f$ es una función de elección en $C$. Por lo tanto, $\set{f(A)}\subseteq A\cap B$. Ahora, si $x\in A\cap B$, en particular, $x\in B$, por lo que $x=f(A’)\in A’$ para algún $A’\in\mathcal{A}$ y así $x\in A\cap A’$. En consecuencia, $A=A’$ pues elementos distintos de $\mathcal{A}$ son ajenos dos a dos. Tenemos entonces que $x=f(A’)=f(A)$, lo cual es suficiente para concluir que $A\cap B=\set{f(A)}$, es decir, $A\cap B$ es un conjunto unitario.

$2)\Rightarrow 3)$

Sean $A$ y $B$ conjuntos y $f:A\to B$ una función suprayectiva. Para cada $x\in B$ definamos $A_x=\set{a\in A:f(a)=x}$. Notemos que para cada $x\in B$, se tiene que $A_x\not=\emptyset$, pues $f$ es suprayectiva. Además, si $x\not=x’$, entonces $A_x\cap A_{x’}=\emptyset$, ya que si existiera un elemento $y\in A_x\cap A_{x’}$, tendríamos que $f(y)=x$ y $f(y)=x’$ y, por consiguiente, $x=x’$ ya que $f$ es una función, pero esto contradice que $x\not=x’$. Así pues, si $x\not=x’$, entonces $A_x\cap A_{x’}=\emptyset$.

Consideremos a la familia de conjuntos $\mathcal{A}=\set{A_x:x\in B}$ la cual consta de conjuntos no vacíos y ajenos dos a dos. Por hipótesis, existe un conjunto $C$ tal que $C\cap A_x$ es un conjunto unitario para cada $A_x\in\mathcal{A}$. Para $x\in B$, denotemos por $a_x$ al único elemento del conjunto $C\cap A_x$. Definamos $g:B\to A$ por medio de $g(x)=a_x$. Expresando a $g$ como un subconjunto de $B\times A$ tenemos que $g=\set{(x,a_x):x\in B}$. Notemos que $g$ es una función, ya que si $(w,v),(w,z)\in g$, entonces $(w,v)=(x,a_x)$ y $(w,z)=(y,a_y)$ para algunos $x,y\in B$. De las iguladades anteriores se sigue que $w=x=y$ y, por tanto, $v=a_x=a_y=z$. Por tanto, $g$ es función. Finalmente, veamos que $g$ es inversa derecha de $f$, es decir, que $f\circ g:B\to B$ es la función identidad; esto es, $f\circ g=Id_B$, donde $Id_B$ es la función que va de $B$ en $B$ tal que $Id_B(x)=x$ para cada $x\in B$.

Sea pues $x\in B$ un elemento arbitrario. Luego, $(f\circ g)(x)=f(g(x))=f(a_x)=x$, pues $a_x\in A_x$. Por lo tanto, $f\circ g=Id_B$, lo que muestra que $g$ es inversa derecha de $f$.

$3)\Rightarrow 4)$ Supongamos que $\mathcal{A}=\set{A_\alpha:\alpha\in\Gamma}$ es una familia no vacía de conjuntos no vacíos tales que $A_\alpha\cap A_\beta=\emptyset$ si $\alpha\not=\beta$.

Definamos $f:\bigcup_{\alpha\in\Gamma}A_\alpha\to\Gamma$ por medio de $f(x)=\alpha$ si $x\in A_\alpha$. Podemos describir a $f$ como el siguiente conjunto $f:=\set{(x,\alpha):x\in A_\alpha,\alpha\in\Gamma}\subseteq(\bigcup_{\alpha\in\Gamma}A_\alpha)\times \Gamma$. Nuevamente, lo primero que hay que hacer es verificar que $f$ sea una función. Sean $(a,b),(a,c)\in f$. Luego, $(a,b)=(x,\alpha)$ y $(a,c)=(y,\beta)$ para algunos $x,y\in\bigcup_{\alpha\in \Gamma}A_\alpha$ y $\alpha,\beta\in\Gamma$, tales que $x\in A_\alpha$ y $y\in A_\beta$. Dado que $(a,b)=(x,\alpha)$ y $(a,c)=(y,\beta)$, entonces $a=x=y$ y, en consecuencia, $x\in A_\alpha\cap A_\beta$, lo que muestra que $A_\alpha\cap A_\beta\not=\emptyset$ y, por tanto, $\alpha=\beta$, es decir, $b=\alpha=\beta=c$, lo que muestra que $f$ es una función.

Ciertamente, $f$ es una función suprayectiva, pues si $\alpha\in\Gamma$ es cualquier elemento, entonces, existe $x\in A_\alpha$ pues $A_\alpha\not=\emptyset$, tal que $f(x)=\alpha$, por definición de $f$. Esto muestra que $\alpha$ es la imagen de un elemento en $\bigcup_{\alpha\in \Gamma}A_\alpha$ bajo la función $f$ y, por tanto, $f$ es suprayectiva. Luego, por hipótesis, existe $g:\Gamma\to\bigcup_{\alpha\in\Gamma}A_\alpha$ función inversa derecha de $f$, es decir, $f\circ g=Id_\Gamma$. Sea $B:=g[\Gamma]=\set{g(\alpha):\alpha\in\Gamma}\subseteq\bigcup_{\alpha\in\Gamma}A_\alpha$.

Notemos que para cada $\alpha\in\Gamma$, se tiene que $g(\alpha)\in A_\alpha$. En efecto, si $\alpha\in\Gamma$, entonces $f(g(\alpha))=Id_\Gamma(\alpha)=\alpha$, por lo que $g(\alpha)\in A_\alpha$. Por lo tanto, $\set{g(\alpha)}\subseteq A_\alpha\cap B$ para todo $\alpha\in\Gamma$.

Ahora, si $x\in A_\alpha\cap B$, entonces $x=g(\beta)$ para algún $\beta\in\Gamma$. Luego, $f(x)=f(g(\beta))=Id_\Gamma(\beta)=\beta$. Por otro lado, como $x\in A_\alpha$, también se tiene que $f(x)=\alpha$ y, por consiguiente, $\beta=\alpha$. Así, $x=g(\alpha)$, lo que demuestra que $A_\alpha\cap B=\set{g(\alpha)}$. Por lo tanto, $B$ es subconjunto de $\bigcup_{\alpha\in\Gamma}A_\alpha$ y cumple que $B\cap A_\alpha$ es un conjunto unitario para cada $\alpha\in\Gamma$.

$4)\Rightarrow 5)$ Sea $\set{A_\alpha}_{\alpha\in\Gamma}$ una familia de conjuntos no vacíos. Para cada $\alpha\in\Gamma$ definamos $B_\alpha:=\set{\alpha}\times A_\alpha$. Luego, $\set{B_\alpha:\alpha\in\Gamma}$ es una familia no vacía de conjuntos no vacíos tales que $B_\alpha\cap B_\beta=\emptyset$ si $\alpha\not=\beta$.

Luego, por hipótesis, existe $B\subseteq\bigcup_{\alpha\in\Gamma}B_\alpha$ tal que $B\cap B_{\alpha}$ es un conjunto unitario para cada $\alpha\in \Gamma$. Ahora bien, el único elemento de $B\cap B_\alpha$ es de la forma $(\alpha,a)$ con $a\in A_\alpha$, pues pertenece, en particular, al conjunto $B_\alpha=\set{\alpha}\times A_\alpha=\set{(\alpha,a):a\in A_\alpha}$. Denotemos por $a_\alpha$ al único elemento de $A_\alpha$ tal que $B\cap B_\alpha=\set{(\alpha,a_\alpha)}$. Definamos $f:\Gamma\to\bigcup_{\alpha\in \Gamma}A_\alpha$ por medio de $f(\alpha)=a_\alpha$. Notemos que $f$ puede ser descrita como el conjunto $\set{(\alpha,a_\alpha):\alpha\in\Gamma}$. Luego, para comprobar que $f$ es una función tomemos $(a,b),(a,c)\in f$. Entonces, $(a,b)=(\alpha,a_\alpha)$ y $(a,c)=(\beta,a_\beta)$ para algunos $\alpha,\beta\in\Gamma$ y $a_\alpha\in A_\alpha$ y $a_\beta\in A_\beta$ tales que $(\alpha,a_\alpha)$ y $(\beta,a_\beta)$ son los únicos elementos de $B\cap B_\alpha$ y $B\cap B_\beta$, respectivamente. A partir de las igualdades $(a,b)=(\alpha,a_\alpha)$ y $(a,c)=(\beta,a_\beta)$ se sigue que $a=\alpha=\beta$ y, por tanto, $b=a_\alpha=a_\beta=c$. Esto que muestra $f$ es una función. Finalmente, para cada $\alpha\in\Gamma$, se tiene que $f(\alpha)\in A_\alpha$.

$5)\Rightarrow 6)$ Sea $F:X\to\mathcal{P}(Y)\setminus\set{\emptyset}$ una función.

Consideremos a la familia de conjuntos no vacíos $\mathcal{F}=\set{F(x):x\in X}$. Luego, por hipótesis, existe una función $f:X\to\bigcup\mathcal{F}$ tal que $f(x)\in F(x)$ para cada $x\in X$. Notemos ahora que $\bigcup\mathcal{F}=\bigcup_{x\in X}F(x)\subseteq Y$. Así, $f$ es una función con dominio $X$ y codominio $Y$. Por lo tanto, existe $f:X\to Y$ tal que $f(x)\in F(x)$ para cada $x\in X$.

$6)\Rightarrow 1)$ Sea $X$ un conjunto. Definamos $F:\mathcal{P}(X)\setminus\set{\emptyset}\to\mathcal{P}(X)\setminus\set{\emptyset}$ por medio de $F(B)=B$. Luego, por hipótesis, existe una función $f:\mathcal{P}(X)\setminus\set{\emptyset}\to X$ tal que $f(B)\in F(B)=B$ para todo $B\in\mathcal{P}(X)\setminus\set{\emptyset}$. Por lo tanto, $X$ tiene una función de elección.

$\square$

Una aplicación del axioma de elección a cardinales numerables

Para finalizar esta entrada, enunciaremos y demostraremos un resultado sobre cardinalidades que puede deducirse con el uso del axioma de elección.

Teorema. Sea $\set{A_n:n\in\mathbb{N}}$ una familia de conjuntos ajenos dos a dos tal que $A_n$ es numerable para todo $n\in\mathbb{N}$. Entonces, $\bigcup_{n\in\mathbb{N}}A_n$ es numerable.

Demostración.

Para cada $n\in\mathbb{N}$ sea $B_n:=\set{f\subseteq \mathbb{N}\times A_n:f \ \text{es función biyectiva}}$. Dado que cada $A_n$ es numerable, entonces, por definición, existe una función $f_n:\mathbb{N}\to A_n$ biyectiva para todo $n\in\mathbb{N}$. Así pues, $B_n\not=\emptyset$ para cada $n\in\mathbb{N}$.

Consideremos la colección de conjuntos no vacíos $\set{B_n:n\in\mathbb{N}}$. Por el teorema anterior, el axioma de elección implica que existe una función $F:\mathbb{N}\to\bigcup_{n\in\mathbb{N}}B_n$ tal que $F(n)\in B_n$ para cada $n\in\mathbb{N}$. Definamos $g_n:=F(n)$ para cada $n\in\mathbb{N}$.

Definamos ahora $G:\mathbb{N}\times\mathbb{N}\to\bigcup_{n\in\mathbb{N}}A_n$ por medio de $G(r,s)=g_s(r)$. Veamos que $G$ es una función. Sean $(a,b),(a,c)\in G$. Luego, $(a,b)=((r,s),g_s(r))$ y $(a,c)=((x,y),g_y(x))$ para algunos $(r,s),(x,y)\in\mathbb{N}\times\mathbb{N}$. Se sigue de lo anterior que $a=(r,s)=(x,y)$ y, por tanto, que $r=x$ y $s=y$. Así pues, como $s=y$, entonces $g_s=F(s)=F(y)=g_y$ debido a que $F$ es función. Por otro lado, también tenemos que $b=g_s(r)$ y $c=g_y(x)$, por lo que $b=c$, ya que $r=x$, $g_s=g_y$ y $g_s$ es función. Esta serie de argumentos muestran que $G$ es efectivamente una función.

Ahora, veamos que $G$ es una función biyectiva. Sean $(r,s),(x,y)\in\mathbb{N}\times\mathbb{N}$ tales que $G(r,s)=G(x,y)$. Entonces, $g_s(r)=g_y(x)$. Como $g_s\in B_s$ y $g_y\in B_y$, entonces $g_s(r)\in A_s$ mientras que $g_y(x)\in A_y$ y, consecuentemente, $A_s\cap A_y\not=\emptyset$, lo cual puede ocurrir si y sólo si $A_s=A_y$, es decir, $s=y$. Dado que $g_s(r)=g_s(x)$ y $g_s$ es biyectiva, entonces $r=x$. Esto muestra que $(r,s)=(x,y)$ y, por lo tanto, $G$ es inyectiva.

Finalmente veamos que $G$ es suprayectiva. Sea $a\in\bigcup_{n\in\mathbb{N}}A_n$. Luego, $a\in A_m$ para algún $m\in\mathbb{N}$ y, por consiguiente, existe $b\in\mathbb{N}$ tal que $g_m(b)=a$, ya que $g_m$ es biyectiva. De modo que tomando al elemento $(b,m)\in\mathbb{N}\times\mathbb{N}$ se sigue que $G(b,m)=g_m(b)=a$, lo que muestra que $G$ es suprayectiva.

Por lo tanto, $G$ es una biyección y, en consecuencia, $\mathbb{N}\times\mathbb{N}$ es equipotente a $\bigcup_{n\in\mathbb{N}}A_n$. Luego, como $\mathbb{N}\times\mathbb{N}$ es equipotente a $\mathbb{N}$, se sigue que $\bigcup_{n\in\mathbb{N}}A_n$ es equipotente a $\mathbb{N}$, es decir, $\bigcup_{n\in\mathbb{N}}A_n$ es numerable.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta entrada:

  1. Demuestra que la unión numerable de conjuntos finitos es un conjunto numerable.
  2. Otro de los pendientes que teníamos en entradas anteriores es la existencia de conjuntos de representantes para relaciones de equivalencia. Ahora lo podemos demostrar. Prueba que si $X$ es un conjunto y $R$ es una relación de equivalencia en $X$, entonces existe un conjunto completo de representantes de la relación $R$.
  3. Demuestra que el axioma de elección es equivalente a la siguiente proposición: para toda relación $R$ existe una función $f$ tal que $dom\ f$ es igual al dominio activo de $R$ y $f\subseteq R$.
  4. Argumenta axiomáticamente que el conjunto $B_n$ de la demostración del último teorema en efecto es un conjunto.

Más adelante…

En la siguiente entrada veremos otras equivalencias del axioma de elección, ahora relacionadas con órdenes parciales. Posteriormente usaremos eso para mostrar que todo conjunto puede ser bien ordenado.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»