Archivo de la etiqueta: Cálculo I

Cálculo Diferencial e Integral I: Funciones crecientes y decrecientes. Funciones acotadas.

Introducción

Continuando con ahora con las funciones crecientes y decrecientes, veremos que condiciones se deben cumplir para decir si una función crece o decrece en un intervalo. De igual manera cuando una función es no creciente o no decreciente para finalizar con la definición de función acotada.

Definición de función creciente y decreciente

Definición: Sea $f: A \rightarrow B$ una función.

  • Decimos que $f$ es una función creciente si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ tales que
    $$x_{1}< x_{2} \Rightarrow f(x_{1})<f(x_{2})$$
  • Decimos que $f$ es una función decreciente si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ tales que
    $$x_{1}< x_{2} \Rightarrow f(x_{2})<f(x_{1})$$

Definición de función no creciente y no decreciente

Definición: Consideremos a la función $f: A \rightarrow B$.

  • Llamamos a $f$ una función no creciente (que decrece o permanece igual) si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ que cumplen
    $$x_{1}< x_{2} \Rightarrow f(x_{2})\leq f(x_{1})$$
  • Llamamos a $f$ una función no decreciente (que crece o permanece igual) si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ que cumplen
    $$x_{1}< x_{2} \Rightarrow f(x_{1})\leq f(x_{2})$$

Ejemplo 1

Veamos que para la función definida como:
$$f(x)=x^{2}$$

Tenemos las siguientes observaciones:

  1. Es creciente en el intervalo $[0, \infty)$
  2. Es decreciente en el intervalo $(- \infty,0)$

Demostración:

  1. Sea $0 \leq x_{1} < x_{2}$ así se sigue que:
    \begin{align*}
    &\Rightarrow x_{1}^{2} < x_{2}^{2}\\
    &\Rightarrow f(x_{1}) < f(x_{2})
    \end{align*}
    $\therefore f$ es creciente en $[0, \infty)$
  2. Ahora tomemos $x_{1} < x_{2} < 0$
    \begin{align*}
    &\Rightarrow 0< -x_{2} <-x_{1}\tag{ Multiplicando por $-1$}\\
    &\Rightarrow f(-x_{2})<f(-x_{1})\tag{por 1.}\\
    &\Rightarrow (-x_{2})^{2} <(-x_{1})^{2}\\
    &\Rightarrow x_{2}^{2} < x_{1}^{2}\\
    &\Rightarrow f(x_{2})<f(x_{1})
    \end{align*}
    $\therefore f$ es decreciente en $(- \infty,0)$

$\square$

Ejemplo 2

Para la función $g(x)= x^{2}-5x+2$ probaremos que es creciente en el intervalo $[0,\infty)$.

Tomemos $x_{1}, x_{2} \in [0,\infty)$ tales que $x_{1} < x_{2}$. Queremos demostrar que $g(x_{1})<g(x_{2})$ por lo que desarrollamos lo siguiente:
\begin{align*}
x_{1} < x_{2} &\Rightarrow x_{1} – 5 < x_{2}-5 \tag{restando $-5$}\\
&\Rightarrow x_{1}(x_{1} – 5) <x_{2}( x_{2}-5) \tag{multiplicando por $x_{1}$ y $x_{2}$}\\
&\Rightarrow x_{1}^{2} – 5x_{1} < x_{2}^{2}-5x_{2}\\
&\Rightarrow x_{1}^{2} – 5x_{1}+2 < x_{2}^{2}-5x_{2}+2 \tag{sumado $2$}\\
&\Rightarrow g(x_{1})<g(x_{2})
\end{align*}
Así concluimos que $g$ es creciente en el intervalo $[0,\infty)$.

$\square$

Algunos teoremas

Teorema: Sean $f,g: D \subseteq \r \rightarrow \r$ si $f$ y $g$ son crecientes en $D$ tales que
$f(x)>0$ y $g(x) >0$ para todo $x \in D \Rightarrow fg$ es creciente en D.
Demostración:
Tomemos $x_{1}, x_{2} \in D$ tales que $x_{1}<x_{2}$. Queremos probar que:
$$(fg)(x_{1})< (fg)(x_{2})$$
Es decir, queremos ver que se cumple la siguiente desigualdad:
$$f(x_{1})g(x_{1})< f(x_{2})g(x_{2})$$
Observemos que por hipótesis tenemos que se cumplen para todo $x \in D$ las siguientes desigualdades:

  1. $f(x)>0$ y $g(x)>0$
  2. $f(x_{1}) < f(x_{2})$ ya que $f$ es creciente
  3. $g(x_{1}) < g(x_{2})$ ya que $g$ es creciente

De los puntos 2 y 3 al realizar el producto obtenemos:
$$f(x_{1})g(x_{1})< f(x_{2})g(x_{2})$$

$\square$

Teorema: Si tenemos una función $f$ tal que:

  1. $f$ par y creciente en el intervalo $[0, \infty) \Rightarrow f$ es decreciente en $(-\infty, 0)$
  2. $f$ par y decreciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$
  3. $f$ impar y creciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$
  4. $f$ impar y decreciente en el intervalo $[0, \infty) \Rightarrow f$ es decreciente en $(-\infty, 0)$

Demostración 4:

Queremos probar que $f$ es decreciente en $(-\infty, 0)$.
Tenemos por hipótesis que $f$ es una función impar, así por definición:
$$f(-x)=-f(x)$$
Ahora si tomamos $0< x_{1}<x_{2}$ ocurre que:
\begin{align*}
f(-x_{1})&= -f(x_{1}) & f(-x_{2})&= -f(x_{2})\\
\end{align*}
Vemos que si multiplicamos por $-1$ las igualdades anteriores tenemos la siguiente equivalencia:
\begin{align}
-f(-x_{1})&= f(x_{1}) & -f(-x_{2})&= f(x_{2})\\
\end{align}

Como $f$ es una función decreciente en $[0, \infty)$ para $x_{1}$ y $x_{2}$ se sigue:
$$f(x_{2})< f(x_{1})$$
Aplicando $(1)$ tendríamos la siguiente desigualdad:
$$-f(-x_{2})< -f(-x_{1})$$
donde $-x_{1},-x_{2} \in (-\infty,0)$

$\square$

Definición de función acotada

Definición: Sea $f: A \rightarrow B$. Decimos que:

  • $f$ está acotada superiormente $\Leftrightarrow$ existe $M \in \r$ tal que $f(x) \leq M$ para todo $x \in A$.
La gráfica de $f$ queda por debajo del valor $M$.
  • $f$ está acotada inferiormente $\Leftrightarrow$ existe $m \in \r$ tal que $m \leq f(x)$ para todo $x \in A$.
La gráfica de $f$ queda por arriba del valor $m$.
  • $f$ está acotada $\Leftrightarrow$ existe $m, M \in \r$ tal que $m \leq f(x) \leq M$ para todo $x \in A$.
La gráfica de $f$ queda entre los valores de $M$ y $m$.
  • Una equivalencia para la última definición sería:
    $f$ está acotada $\Leftrightarrow$ existe $N \in \r$ tal que $|f(x)| \leq N$ para todo $x \in A$.
La gráfica de $f$ queda entre los valores de $N$ y $-N$.
  • $f$ no está acotada $\Leftrightarrow$ para toda $M >0$ existe $x_{M} \in A$ tal que $|f(x_{M})|>M$.

Ejemplo 1

Si tenemos la función $f: \r^{+} \rightarrow \r$ definida como:
$$f(x)=\sqrt{x}$$

Probaremos que $f$ no es acotada en su dominio.
Demostración: Consideremos a $M>0$ y a $x_{M}=(M+1)^{2}$ donde $x_{M} \in D_{f}$. Así al evaluar la función en $x_{M}$ tenemos:
\begin{align*}
f(x_{M})&=f((M+1)^{2})\\
&=\sqrt{(M+1)^{2}}\\
&= M+1
\end{align*}
aquí observamos siempre ocurre que: $M+1>M$
$\therefore f$ es no acotada en su dominio.

$\square$

Ejemplo 2

Ahora si consideramos la función $g: (0, \infty) \rightarrow \r^{+}$ definida como:
\begin{equation*}
g(x)=\frac{1}{\sqrt[3]{x^{2}}}
\end{equation*}

Veremos ahora que $g$ no es acotada en su dominio.
Demostración: Sea $N>0$ y a $x_{N} \in D_{g}$ definida como:
\begin{equation*}
x_{N}= \frac{1}{(N+1)^{\frac{3}{2}}}
\end{equation*}
Al tomar $g(x_{N})$ tenemos:
\begin{align*}
g(x_{N})&=g\left(\frac{1}{(N+1)^{\frac{3}{2}}}\right)\\
&=\frac{1}{\left(\frac{1}{(N+1)^{\frac{3}{2}}}\right)^{\frac{2}{3}}}\\
&=\frac{1}{\frac{1}{N+1}}\\
&=N+1
\end{align*}
donde $N+1>N$ por lo que conluimos que $g$ es no acotada en su dominio.

$\square$

Tarea moral

  • Dada la función $f(x)=x^{3}$. Demuestra que:
    • $f$ es creciente en $[0, \infty)$
    • $f$ es creciente en $(-\infty,0)$
  • Demuestra los puntos 2 y 3 del Teorema:
    • $f$ par y decreciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$
    • $f$ impar y creciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$
  • Demuestra que la función $h: (0,1) \rightarrow \r$ definida como:
    $$h(x)=\frac{1}{x^{3}}$$
    no es acotada en su dominio.

Más adelante

En la siguiente entrada veremos a un conjunto de funciones muy particular: las funciones polinomiales. Adicionalmente revisaremos las funciones racionales. Para ambos tipos de funciones revisaremos su definición y algunos ejemplos.

Entradas relacionadas

Cálculo Diferencial e Integral I: Funciones pares e impares.

Introducción

Ahora veremos cuales son las características que debe cumplir una función para poder decir si es par o impar. Veremos geométricamente que ocurre con estas funciones, de igual manera que ocurre al realizar operaciones entre ellas.

Definición de función par

Definición: Decimos que $f: A \rightarrow B$ una función es par si y sólo si para todo $x \in A$ ocurre que:
$$f(x)=f(-x)$$

Ejemplo

La función $f(x)=x^{2}$ cumple ser par ya que:
$$f(-x)=(-x)^{2}=x^{2}=f(x)$$
para todo $x \in \r$.
De su gráfica observamos que $f$ se refleja respecto al eje $y$:

Definición de función impar

Definición: Decimos que $f: A \rightarrow B$ una función es impar si y sólo si para todo $x \in A$ ocurre que:
$$f(x)= – f(x)$$

Ejemplo

La función $g(x)=x$ cumple ser impar ya que:
$$g(-x)=(-x) = – (x) = -g(x)$$
para todo $x \in \r$.
De su gráfica observamos que $f$ se refleja respecto al origen:

Un teorema importante

Teorema: Cualquier función $f: \r \rightarrow \r$ puede expresarse como la suma de una función par e impar, es decir,
$$f(x)= P(x)+ I(x)$$
para toda $x \in \r$, donde $P(x)$ e $I(x)$ son únicas.
Demostración: Consideremos las funciones $P(x)$ par e $I(x)$ impar como sigue:
\begin{align*}
P(x)&=\frac{f(x)+f(-x)}{2} & I(x)&=\frac{f(x)-f(-x)}{2}
\end{align*}

Vemos que al realizar la suma obtenemos:
\begin{align*}
P(x)+I(x) &= \frac{f(x)+f(-x)}{2} + \frac{f(x)-f(-x)}{2}\\
&= \frac{f(x)+f(-x)+f(x)-f(-x)}{2}\\
&= \frac{2f(x)}{2}\\
&= f(x)
\end{align*}

Ahora nos falta ver que $P(x)$ e $I(x)$ son únicas. Como ya sabemos que $f(x)= P(x)+ I(x)$ tenemos lo siguiente:
\begin{align}
f(x)&=P(x)+I(x)\\
f(-x)&=P(x)-I(x)\\
\end{align}
Así sumando $(1)$ y $(2)$ obtenemos:
\begin{align*}
f(x)+f(-x) &= 2 P(x)\\
P(x) &= \frac{f(x)+f(-x)}{2}
\end{align*}
Ahora restando $(1)$ y $(2)$ obtenemos:
\begin{align*}
f(x)-f(-x) &= 2 I(x)\\
P(x) &= \frac{f(x)-f(-x)}{2}
\end{align*}
Dado que tenemos la igualdad $f(x)= P(x)+ I(x)$ concluimos que $P(x)$ e $I(x)$ son únicas.

$\square$

Ejercicio

Consideremos las funciones $f,g: \r \rightarrow \r$. ¿Cómo es $f+g$, $fg$ y $f \circ g$ si:

  1. $f$ y $g$ son pares.
  2. $f$ y $g$ son impares.
  3. $f$ es par y $g$ es impar.
  4. $f$ es impar y $g$ es par.

es par, impar o no necesariamente alguna de las anteriores?

Para $f+g$:


1. Si $f$ y $g$ son pares $\Rightarrow f+g$ es par.
Demostración:
Vemos que al desarrollar:
\begin{align*}
(f+g)(-x)&= f(-x)+g(-x)\tag{ definición de $f+g$}\\
&= f(x)+g(x)\tag{ por $f$ y $g$ pares}\\
&= (f+g)(x)\tag{ definición de $f+g$}\\
\end{align*}
3. Si $f$ es par y $g$ es impar $\Rightarrow f+g$ no necesariamente es par o impar.
Consideremos $f(x)= x^{2}$ y $g(x)=x$. Luego si $x=1$ entonces:
\begin{align*}
(f+g)(-1)&= f(-1)+g(-1) & (f+g)(1)&= f(1)+g(1)\\
&= 1-1 & &= 1+1\\
&= 0 & &=2
\end{align*}
$\therefore (f+g)(-1) \neq (f+g)(1)$
$\therefore f+g$ no es par.

Además veamos que $-(f+g)(1)=-2$ por lo que:
$$-(f+g)(1) \neq (f+g)(-1)$$
$\therefore f+g$ tampoco es impar.

Para $fg$:


1. Si $f$ y $g$ son pares $\Rightarrow fg$ es par.
Demostración:
Si tomamos $fg(-x)$ observamos lo siguiente:
\begin{align*}
(fg)(-x)&= f(-x)g(-x) \tag{definción de $fg$}\\
&= f(x)g(x) \tag{por$f$ y $g$ pares}\\
&= (fg)(x)
\end{align*}
$\therefore fg$ es par

2. Si $f$ y $g$ son impares $\Rightarrow fg$ es par.
Demostración:
Comenzando con $fg(-x)$ y desarrollando tenemos:
\begin{align*}
(fg)(-x)&= f(-x)g(-x) \tag{definción de $fg$}\\
&= (-f(x))(-g(x)) \tag{por$f$ y $g$ impares}\\
&=f(x)g(x)\\
&= (fg)(x)
\end{align*}
$\therefore fg$ es par

Para $f \circ g$:


3. Si $f$ es par y $g$ es impar $\Rightarrow f \circ g$ es par.
Demostración:
Realizando la composición $(f \circ g)(-x)$:
\begin{align*}
(f \circ g)(-x)&=f(g(-x)) \tag{definción de $f \circ g$}\\
&= f(-g(x)) \tag{ por $g$ impar}\\
&= f(g(x)) \tag{por $f$ par}\\
&=(f \circ g)(x)
\end{align*}
$\therefore f \circ g$ es par

4.Si $f$ es impar y $g$ es par $\Rightarrow f \circ g$ es par.
Demostración:
Procediendo análogamente al punto anterior:
\begin{align*}
(f \circ g)(-x)&=f(g(-x)) \tag{definción de $f \circ g$}\\
&= f(g(x)) \tag{ por $g$ par}\\
&=(f \circ g)(x)
\end{align*}
$\therefore f \circ g$ es par

Los puntos faltantes se dejarán cómo ejercicios de Tarea moral, para resolverlos se debe proceder como en los incisos anteriores según sea el caso.

Tarea moral

  • Prueba que las funciones $P(x)$ e $I(x)$ cumplen con ser par e impar respectivamente:
    \begin{align*}
    P(x)&=\frac{f(x)+f(-x)}{2} & I(x)&=\frac{f(x)-f(-x)}{2}
    \end{align*}
  • Demuestra que la función constante cero es la única que cumple ser par e impar.
  • Exprese a las siguientes funciones como suma de una función par y una impar:
    • $f(x)= x^{2}-4x+2$
    • \begin{multline*}h(x)=\frac{1}{1+x^{2}}\end{multline*}
  • Termina los puntos faltantes del ejercicio de $f+g$, $fg$ y $f \circ g$

Más adelante

En la siguiente entrada continuaremos con las funciones crecientes y decrecientes, veremos que características debe cumplir una función para poder decir si crece o decrece en un intervalo. También veremos que significa ser una función acotada y algunas pruebas relacionadas con este concepto.

Entradas relacionadas

Cálculo Diferencial e Integral I: Suma, producto, cociente y composición de funciones.

Introducción

Ya que hemos visto el concepto de función, en esta entrada veremos como están definidas las operaciones de suma, producto y cociente. De igual modo definiremos la composición entre un par de funciones. Para dejar más claras dichas operaciones daremos ejemplos.

Operaciones de funciones

Definición (operaciones): Sean $f: D_{f}\subseteq \r \rightarrow \r$, $\quad g: D_{g}\subseteq \r \rightarrow \r$. Definimos las siguientes operaciones cómo:

  • $f+g: D_{f} \cap D_{g} \subseteq \r \rightarrow \r$
    $$(f+g)(x)= f(x)+g(x)$$
  • $\alpha f: D_{f}\subseteq \r \rightarrow \r \quad$ y $\quad \alpha \in \r$
    $$(\alpha f)(x)= \alpha f(x)$$
  • $fg: D_{f} \cap D_{g} \subseteq \r \rightarrow \r$
    $$(fg)(x)= f(x)g(x)$$
  • $\begin{multline*} \frac{f}{g}: D_{f/g} \subseteq \r \rightarrow \r \end{multline*}$
    \begin{equation*}
    \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
    \end{equation*}
    donde $D_{f/g}=D_{f} \cap (D_{g} – \left\{x \in D_{g}: g(x)=0 \right\})$

Notación: Cuando escribamos $f-g$ hacemos referencia a:
$$f-g=f+ (-g)$$

Ejemplos

Consideremos a las siguientes funciones:
\begin{align*}
f: \r – \left\{-1\right\} &\rightarrow \r & g: \r &\rightarrow \r & h: \r &\rightarrow \r^{+}
\end{align*}
\begin{align*}
f(x)&= \frac{1}{x+1}& g(x)&= x^{3}+3 & h(x)&=x^{2}+2x+1
\end{align*}
Notación: Usamos $\r^{+}$ para referirnos al conjunto de los números reales positivos.

Realizaremos las siguientes operaciones entre ellas para ejemplificar lo visto anteriormente:

  • $$(f+g)(x)= f(x)+g(x)= \frac{1}{x+1} + x^{3}+3$$
    con $D_{f+g}=D_{f} \cap D_{g}= \r \cap (\r- \left\{-1\right\})= \r- \left\{-1\right\}$
  • $$(fg)(x)= f(x)g(x)=\left(\frac{1}{x+1}\right)(x^{3}+3)=\frac{x^{3}+3}{x+1}$$
    con $D_{fg}=D_{f} \cap D_{g}= \r \cap (\r- \left\{-1\right\})= \r- \left\{-1\right\}$
  • Si $\alpha = – 4$:
    $$(\alpha g)(x)= \alpha g(x)= -4(x^{3}+3)=-4x^{3}-12$$
    con $D_{\alpha g}= D_{g}= \r$
  • $$\left(\frac{g}{h}\right)(x)=\frac{g(x)}{h(x)}=\frac{x^{3}+3}{x^{2}+2x+1}$$
    como $D_{g/h}=D_{g} \cap (D_{h} – \left\{x \in D_{h}: h(x)=0 \right\})$
    Observemos que $x^{2}+2x+1 = (x+1)^{2}$ por lo que $(x+1)^{2}=0$ cuando $x=-1$.
    Así el dominio sería:
    $$D_{g/h}=\r \cap (\r- \left\{-1 \right\})= \r – \left\{-1\right\}$$
  • $$(h-g)(x)=h(x)-g(x)=x^{2}+2x+1-(x^{3}+3)=x^{2}+2x+1-x^{3}-3$$
    con $D_{h-g}= D_{h} \cap D_{g}= \r \cap \r= \r$

Composición de funciones

Definición (composición): Consideremos a las funciones $g: A \rightarrow B$ y $f: B \rightarrow C$ definimos a la composición de $f$ en $g$ como:

$$f \circ g: A \rightarrow C$$
$$f \circ g(x)= f(g(x))$$
observamos así que $g(x) \in B$.
En el siguiente diagrama podemos ver más claramente cómo funciona la composición $f \circ g$:

PASO 1

Primero tomamos $x \in A$ a la cuál le aplicamos la función $g$ para así obtener $g(x) \in B$.

PASO 2

Ahora tomamos a $g(x) \in B$ para aplicarle la función $f$ y finalmente obtener $f(g(x)) \in C$.

DIAGRAMA PARA $f \circ g$

Así la composición de $f \circ g$ se vería cómo en el diagrama anterior.

Observación: La composición no es conmutativa, es decir, ocurre que:
$$f \circ g \neq g \circ f$$

Ejemplos

Retomando las funciones:
\begin{align*}
f(x)&= \frac{1}{x+1}& g(x)&= x^{3}+3 & h(x)&=x^{2}+2x+1
\end{align*}

Realicemos las siguientes composiciones de funciones para tener más claro cómo funciona lo antes explicado:

  • Ejemplo 1:
    \begin{align*}
    (g \circ f)(x)&= g(f(x))\\
    &= g\left(\frac{1}{x+1} \right)\\
    &= \left( \frac{1}{x+1} \right)^{3} +3\\
    &= \frac{1}{(x+1)^{3}}+3
    \end{align*}
    Así la tenemos que la composición obtenida es:
    \begin{equation*}
    (g \circ f)(x)=\frac{1}{(x+1)^{3}}+3
    \end{equation*}
  • Ejemplo 2:
    \begin{align*}
    (f \circ h)(x)&= f(h(x))\\
    &= f((x^{2}+2x+1))\\
    &= \frac{1}{(x^{2}+2x+1)+1}\\
    &=\frac{1}{x^{2}+2x+2}
    \end{align*}
    Por lo que la composición quedaría como:
    \begin{equation*}
    (f \circ h)(x) = \frac{1}{x^{2}+2x+2}
    \end{equation*}

Tarea moral

  • Si tenemos a las funciones $f : \r \rightarrow \r$ y $g : \r \rightarrow \r^{+}$ definidas como siguen:
    $$ f(x) = x-8$$
    $$g(x)= x^{4}$$
    Realiza las siguientes operaciones:
    • $f + g$
    • $f – g$
    • $fg$
    • $\frac{g}{f}$
    • $g \circ f$
  • Da una función $f$ y una función $g$ que ejemplifiquen que la composición no es conmutativa:
    $$f \circ g \neq g \circ f$$
  • Demuestra que la composición es asociativa, es decir,
    $$f\circ (g \circ h)= (f\circ g) \circ h$$

Más adelante

Ahora que ya hemos definido las operaciones entre funciones y la composición, en la siguiente entrada veremos que características debe cumplir una función para poder decir si es inyectiva, sobreyectiva o biyectiva. De igual manera veremos el concepto de función inversa donde haremos uso de la composición de funciones y algunas condiciones.

Entradas relacionadas

Cálculo Diferencial e Integral I: Funciones inyectivas, sobreyectivas y biyectivas. Función inversa.

Introducción

Anteriormente vimos las operaciones que podemos llevar a cabo entre las funciones. Ahora revisaremos las características que debe cumplir una función para poder decir si es: inyectiva, sobreyectiva o biyectiva. De igual manera definiremos el concepto de función inversa.

Definición de función inyectiva

Definición (1): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es inyectiva si para cualesquiera dos elementos distintos en $A$, la función le asocia elementos distintos en $B$, es decir,
$$x_{1} \neq x_{2} \Rightarrow f(x_{1}) \neq f(x_{2})$$
para cualesquiera $x_{1}, x_{2} \in A$.

Definición (2): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es inyectiva si para cualesquiera dos elementos iguales en $B$, provienen de dos elementos iguales en $A$ bajo la función, es decir,
$$f(x_{1}) = f (x_{2}) \Rightarrow x_{1} = x_{2}$$
para cualesquiera $x_{1}, x_{2} \in A$.

Ejemplo

Sea $f: (-\infty,-1] \rightarrow \r$ definida como:
$$f(x)=11- \sqrt{x^{2}-4x-5}$$

Tomemos $x_{1}, x_{2} \in (-\infty,-1]$ tales que $f(x_{1}) = f(x_{2})$. Así queremos probar que $x_{1}=x_{2}$.
Cómo $f(x_{1}) = f(x_{2})$ tenemos que:
\begin{align*}
11- \sqrt{x_{1}^{2}-4x_{1}-5} &=11- \sqrt{x_{2}^{2}-4x_{2}-5}\\
– \sqrt{x_{1}^{2}-4x_{1}-5} &=- \sqrt{x_{2}^{2}-4x_{2}-5} \quad \text{sumando $11$}\\
\sqrt{x_{1}^{2}-4x_{1}-5} &=\sqrt{x_{2}^{2}-4x_{2}-5} \quad \text{multiplcando por $-1$}\\
\sqrt{(x_{1}-2)^{2}-9} &=\sqrt{(x_{2}-2)^{2}-9} \quad \text{factorizando}\\
\sqrt{(x_{1}-2)^{2}} &=\sqrt{(x_{2}-2)^{2}}\\
|x_{1}-2| &=|x_{2}-2|\quad \text{quitando la raíz cuadrada}\\
x_{1}-2 &= x_{2}-2\\
x_{1}&= x_{2}\quad \text{sumando 2}
\end{align*}

De lo anterior vemos que $f$ es inyectiva.

Definición de función sobreyectiva

Definición (1): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es sobreyectiva si todo elemento en $B$ proviene de algún elemento en $A$ bajo la función, es decir, para todo $y \in B$ existe $x \in A$ tal que:
$$f(x)=y$$

Definición (2): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es sobreyectiva si
$$Im_{f}=Codom_{f}$$

Ejemplo

Un ejemplo sería la función tangente, más adelante veremos su definición con mayor detenimiento:
$$f(x)=tan(x)$$

Definición de función biyectiva

Definición: Sea $f: A \rightarrow B$ una función. Decimos que $f$ es biyectiva si cumple con ser inyectiva y sobreyectiva.

Ejemplo

Sea $f: \r \rightarrow \r$ definida cómo:
$$Id(x)=x$$

Veremos que esta función es inyectiva:
Tomemos $x_{1}, x_{2} \in \r$ distintos, queremos ver que $f(x_{1}) \neq f(x_{2})$. Como tenemos que:
$$f(x_{1})= x_{1}$$
$$f(x_{2})= x_{2}$$
Y cómo sabemos $x_{1} \neq x_{2}$ se sigue así:
$$f(x_{1})\neq f(x_{2})$$
Por lo que $Id(x)$ es inyectiva.

Ahora vemos que también cumple ser sobreyectiva:
Consideremos $y \in \r$. Por definición de la función identidad tenemos que:
$$y=Id(y)$$
Así vemos que cumple ser sobreyectiva.

De lo anterior podemos concluimos que $Id(x)$ es una función biyectiva.

Proposición

Proposición: Si tomamos las funciones $g: A \rightarrow B$ y $f: B \rightarrow C$ se cumple que:

  1. $f$ inyectiva y $g$ inyectiva $\Rightarrow \quad f \circ g$ es inyectiva.
  2. $f$ sobreyectiva y $g$ sobreyectiva $\Rightarrow \quad f \circ g$ es sobreyectiva.
  3. $f$ biyectiva y $g$ biyectiva $\Rightarrow \quad f \circ g$ es biyectiva.

Demostración:

  1. Tomemos $x_{1}, x_{2} \in A$ tales que $f \circ g (x_{1})= f \circ g (x_{2})$. Queremos probar que:
    $x_{1}=x_{2}$.
    Observemos que por hipótesis tenemos que:
    $$f(g(x_{1}))= f(g(x_{2}))$$
    donde $g(x_{1}), g(x_{2}) \in B$.
    Como $f$ es una función inyectiva entonces se cumple:
    $$g(x_{1})=g(x_{2})$$
    Y al ser $g$ inyectiva obtenemos:
    $$x_{1}=x_{2}$$
  2. Como $f \circ g : A \rightarrow C$ por lo que tomemos $c \in C$. Queremos ver que existe $a \in A$ tal que $f(a)=c$.
    Ya sabemos que $f: B \rightarrow C$ es sobreyectiva entonces existe $b \in B$ tal que:
    $$f(b)=c$$
    Recordemos que $g: A \rightarrow B$ al ser sobreyectiva ocurre que existe $a \in A$ tal que:
    $$g(a)=b$$
    De lo anterior al sustituir en la composición de funciones se sigue:
    \begin{align*}
    f \circ g(a)&=f(g(a))\\
    &=f(b)\\
    &=c
    \end{align*}
  3. Se queda cómo ejercicio de tarea moral.

$\square$

Función inversa

Definición (función invertible): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es invertible si y sólo si existe una función $g: B \rightarrow A$ tal que cumple las siguientes condiciones:

  • $g \circ f = Id_{A}$
  • $f \circ g = Id_{B}$

A continuación veremos una equivalencia que nos será de utilidad para poder decir si una función es invertible:

Teorema: Consideremos a $f: A \rightarrow B$ una función. Decimos que:
$f$ es Invertible $\Leftrightarrow f$ es biyectiva.
Demostración:
$\Rightarrow ):$ Tomemos $f$ invertible, así por definición existe una función $g: B \rightarrow A$ tal que cumple:

  • $g \circ f = Id_{A}$
  • $f \circ g = Id_{B}$

Debemos probar que $f$ es biyectiva, por lo que debemos verificar que sea inyectiva y sobreyectiva:

Inyectiva: Sean $x_{1} , x_{2} \in A$ tales que $f(x_{1})= f (x_{2})$ por lo que $g(f(x_{1}))=g( f (x_{2}))$ al ser $g$ función. Reescribiendo lo anterior tenemos lo siguiente:
\begin{align*}
g(f(x_{1}))=g( f (x_{2})) &\Rightarrow (g \circ f)(x_{1})=(g \circ f)(x_{2})\\
&\Rightarrow Id_{A}(x_{1})=Id_{A}(x_{2}) \tag{por definición de $g$}\\
&\Rightarrow x_{1}= x_{2}
\end{align*}

$\therefore f$ es inyectiva
Sobreyectiva: Sea $y \in B$. Debido a que $Id_{B}$ es sobreyectiva tenemos que $Id_{B}(y)=y$. De lo anterior tenemos:
\begin{align*}
Id_{B}(y)=y &\Rightarrow f \circ g (y)= y\\
&\Rightarrow f(g(y))=y\\
&\Rightarrow g(y) \in A
\end{align*}
$\therefore f$ es sobreyectiva
De todo lo anterior concluimos que $f$ es biyectiva.

$\Leftarrow ):$ Sea $f: A \rightarrow B$ una función biyectiva. De este modo para todo $y \in B$ existe $x \in A$ tal que:
$$f(x)=y$$
ya que $f$ es sobreyectiva. De igual manera cumple ser inyectiva por lo que esa $x$ es única.

Consideremos la función $g: B \rightarrow A$ tal que:
$$g(y)=x \Leftrightarrow f(x)=y$$
Por lo que al realizar la siguiente composición de funciones tenemos:
$$ (g \circ f)(x)=g(f(x)) =g(y)=x = Id_{A}(x)$$
$$(f \circ g)(y)= f(g(y))= f(x)=y = Id_{B}(y)$$
Vemos que esto cumple la definición de ser invertible.
$\therefore f$ es una función invertible

$\square$

Definición (función inversa): Si $f: A \rightarrow B$ es invertible donde $g: B \rightarrow A$ que cumple lo anterior. Decimos que $f^{-1}=g$ es la inversa de $f$.

Corolario: Si $f: A \rightarrow B$ es una función invertible entonces $f^{-1}$ también es biyectiva.

Demostración:
Como $f$ es invertible por definición cumple:

  • $f^{-1} \circ f =Id_{A}$
  • $f \circ f^{-1}=Id_{B}$

Que nos dice que cumple ser inyectiva y sobreyectiva.

$\square$

Del resultado anterior observamos que $f^{-1}$ es función inversa al componer por la derecha y por la izquierda.

Teorema: Si $f: A \rightarrow B$ entonces es equivalente lo siguiente:

  • $f$ es una función inyectiva
  • $f$ tiene inversa izquierda

es decir, existe $g: B \rightarrow A$ tal que $g \circ f=Id_{A}$.

Teorema: Si $f: A \subseteq \r \rightarrow \r$ entonces es equivalente lo siguiente:

  • $f$ es una función suprayectiva
  • $f$ tiene inversa derecha

es decir, existe $h: B \rightarrow A$ tal que $g \circ f=Id_{B}$.

Tarea moral

  • Demuestra que $f: [0, \infty) \rightarrow [0, \infty)$ definida como:
    $$f(x)= x^{2}$$
    es inyectiva.
  • Argumenta porque la función $f: \r \rightarrow \r$ definida como:
    $$f(x)= x^{2}$$
    no es inyectiva.
  • Demuestra que $f: \r \rightarrow \r$ definida como:
    $$f(x)= -2x+1$$
    es inyectiva.
  • Prueba que si $f$ y $g$ son funciones biyectivas entonces $f \circ g$ es biyectiva.
  • Demuestra la siguiente igualdad:
    $$(f \circ g)^{-1}= f^{-1} \circ g^{-1}$$

Más adelante

En la siguiente entrada veremos otras características que las funciones pueden cumplir para clasificarse como pares o impares. Veremos su definición formal, algunos ejemplos y resultados.

Entradas relacionadas

Cálculo Diferencial e Integral I: Concepto de función.

Introducción

En la unidad anterior desarrollamos todo lo concerniente a los números reales, ahora comenzaremos a ver funciones. Para ello recordemos de nuestros cursos de álgebra como se define el producto cartesiano de un par de conjuntos $A$ y $B$:
$$ A\times B := \left\{ (a,b) : a \in A, b \in B \right\}$$
así vemos que sus elementos son pares ordenados.

Por lo que decimos que una relación $R \subseteq A\times B$ si ocurre que $(a,b) \in R$ donde $a \in A$ y $b \in B$.

Basándonos en este par de conceptos daremos la definición formal de función entre un par de conjuntos.

Definición de función

Definición (función): Una función $f$ es una relación tal que:

  • Para todo $a \in A$ existe $b \in B$ donde $(a,b) \in f$
  • Si $(a, b_{1}), (a, b_{2})$ entonces $b_{1}= b_{2}$

Notación:

  • $f : A \rightarrow B$ es una función con dominio $A$ y codominio $B$.
  • Si $(a,b) \in f$ entonces $f(a)=b$ es llamada la regla de correspondencia de f.

En resumen, a una función $f : A \rightarrow B$ la conforman tres cosas:

  • Su dominio
  • Su codominio
  • Su regla de regla de correspondencia

El conjunto imagen de una función

Definición (Conjunto imagen): Sea $f : A \rightarrow B$ una función. La imagen de f se define cómo:
$$Im_{f}:= \left\{ b \in B : \exists a \in A (f(a) =b) \right\}$$
Simplificado sería:
$$Im_{f}:= \left\{ f(a) \in B : a \in A \right\}$$

Ejemplo: Sea $f: \r \rightarrow \r$. Si $f(x)=|x|$ entonces $Im_{f}=[0, \infty)$

Demostración:
$\subseteq )$ Sea $x \in \r$. Vemos que $f(x)= |x|\geq 0$ por lo que $f(x) \in [0, \infty)$

$\supseteq )$ Tomemos $y \in [0, \infty)$. Debemos probar que existe $x \in \r$ tal que $f(x)= y$.
Sea $x=y \in \r$ con $y \geq 0$. Así se sigue que $f(y)= |y|=y$ por lo que $f(y)=x$

$\square$

Ejemplo

Encuentra el dominio y la imagen de la siguiente función:
$$f(x)= \sqrt{1-x^{2}}$$

Dominio:
Vemos que $y=\sqrt{1-x^{2}}$ está bien definido
\begin{align*}
&\Leftrightarrow 1-x^{2} \geq 0\\
&\Leftrightarrow 1 \geq x^{2}\\
&\Leftrightarrow 1 \geq |x|\\
\end{align*}
Así concluimos que el dominio es el conjunto:
$$D_{f}= [-1,1]$$
Imagen:
Cómo $x \in [-1,1]$ entonces
\begin{align*}
-1 \leq x \leq 1 &\Leftrightarrow 0 \leq x^{2} \leq 1\\
&\Leftrightarrow 0 \geq -x^{2} \geq -1\\
&\Leftrightarrow 1\geq 1-x^{2} \geq 1-1\\
&\Leftrightarrow 1\geq 1-x^{2} \geq 0\\
&\Leftrightarrow 1\geq \sqrt{1-x^{2}} \geq 0\\
\end{align*}

Por lo anterior tenemos:
$$Im_{f} = [0,1]$$

Ejercicio 1

Encuentra el dominio de la siguiente función:
\begin{equation*} f(x)= \frac{1}{4-x^{2}} \end{equation*}

Vemos que la función está bien definido si y sólo si:
\begin{align*}
4-x^{2} \neq 0 &\Leftrightarrow (2-x)(2+x) \neq 0\\
&\Leftrightarrow x \neq 2 \quad \text{y} \quad x\neq -2
\end{align*}
Por lo que su dominio sería:
$$D_{f}= \r – \left\{-2,2 \right\}$$
es decir, todos los reales quitando el $-2$ y el $2$.

Ejercicio 2

Encuentra el dominio de la siguiente función:
$$f(x)= \sqrt{x-x^{3}}$$

Dominio:
Vemos ahora que para $y=\sqrt{x-x^{3}}$ está bien definido
\begin{align*}
&\Leftrightarrow x-x^{3} \geq 0\\
&\Leftrightarrow x(1-x^{2}) \geq 0\\
&\Leftrightarrow x(1-x)(1+x) \geq 0\\
&\Leftrightarrow x_{1} \geq 0,\quad x_{2} \leq 1, \quad x_{3} \geq -1
\end{align*}

De las condiciones anteriores vemos que tenemos los siguientes posibles intervalos que cumplen la desigualdad inicial:

  • $(-\infty, -1]$
    Vemos que al sustituir $x= -1 \in (-\infty,-1]$ tenemos que:
    $$-1-(-1)^{3} = -1-(-1)= 0 \geq 0$$
    por lo que se cumple la desigualdad $x-x^{3} \geq 0$.
  • $(-1,0)$
    Tomando $x=-\frac{1}{2}$ vemos que:
    $$-\frac{1}{2} -\left(-\frac{1}{2} \right) ^{3} = -\frac{1}{2} + \frac{1}{8} = -\frac{3}{8}$$
    Por lo que no se cumple ser mayor o igual que cero.
  • $[1,0]$
    Ahora si tomamos $x=1$ observamos:
    $$1- 1^{3} =1-1 =0$$
    por lo que cumple la desigualdad.
  • $(1,\infty)$
    Por último si consideramos $x= 2$ ocurre que:
    $$2- (2)^{3} =2-8 =-6$$
    que no cumple la desigualdad.

Del análisis anterior vemos que los intervalos que cumplen con $x-x^{3} \geq 0$ son:
$$(-\infty, -1] \cup [1,0]$$
Por lo que el dominio de la función sería:
$$D_{f}=(-\infty, -1] \cup [1,0]$$

Gráfica de una función

Definición (gráfica): Sea $f:D_{f} \subseteq \r \rightarrow \r$ Definimos a la grafica de f como el conjunto:
$$ Graf(f)= \left\{ (x,y)\in {\mathbb{R}}^2: x \in D_{f}, \quad y=f(x) \right\}$$
que es equivalente a decir:
$$Graf(f)= \left\{(x, f(x)): x \in D_{f} \right\}$$

Ejemplos

  • Para la función constante tenemos:
    $$f(x)=c$$
    donde $D_{f}= \r$ y $Im_{f}= {c}$.

    Por lo que si gráfica se vería como:
  • Para la función identidad tenemos:
    $$Id(x)=x$$
    donde $D_{f}= \r$ y $Im_{f}= \r$.

    Así su gráfica se vería:

Tarea moral

A continuación encontrarás una serie de ejercicios que te ayudarán a repasar los conceptos antes vistos:

  • Sea $f: \r \rightarrow \r$. Demuestra que si $f(x)=x^{2}$ entonces $Im_{f}=[0, \infty)$
  • Encuentra el dominio de las siguientes funciones:
    • $\begin{multline*} f(x)= \sqrt{x+1} \end{multline*}$
    • $\begin{multline*} f(x)= x \sqrt{x^{2}-2} \end{multline*}$
    • $\begin{multline*} f(x)= \sqrt{-x}+ \frac{1}{\sqrt{x+2}} \end{multline*}$
    • $\begin{multline*} f(x)= \sqrt{2+x-x^{2}} \end{multline*}$

Más adelante

En la próxima entrada veremos las definiciones relacionadas con las operaciones entre funciones: suma, producto, cociente y composición.

Entradas relacionadas