Teoría de los Conjuntos I: Construcción de los números naturales

Por Gabriela Hernández Aguilar

Introducción

Hasta ahora solo hemos usado los conjuntos $0$, $1$, $2$, $3$ y $4$ que definimos en las notas de axioma de par, pero es momento de hablar de números naturales, para ello comenzaremos con su construcción rigurosa, sin dejar de lado la noción intuitiva que ya tenemos.

Construcción

Al principio del curso hablamos acerca de los primeros axiomas de la teoría de los conjuntos, vimos que existía un conjunto y que tal conjunto (vacío) no tiene elementos, además probamos su unicidad. Con base a los demás axiomas y al conjunto vacío construimos más conjuntos como $\set{\emptyset}$, $\set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}$, $\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$, etcétera.

Si nos fijamos en la cantidad de elementos que tienen estos conjuntos notaremos que varía o que algunos tienen la misma cantidad pero son conjuntos distintos, como $\set{\emptyset}$ y $\set{\set{\emptyset}}$.

Dado que queremos construir a los números naturales lo que intentaremos hacer es asociarle a cada número un conjunto según la cantidad de elementos que tenga. Por el argumento anterior podemos deducir que existe más de una forma de hacer esto, por ejemplo:

\begin{align*}
0 &-\emptyset\\
1&-\set{\set{\emptyset}}\\
2&-\set{\emptyset, \set{\set{\emptyset}}}\\
3&-\set{\emptyset, \set{\set{\emptyset}}, \set{\emptyset, \set{\set{\emptyset}}}}\\
\vdots
\end{align*}

Otra forma posible es la siguiente:

\begin{align*}
0 &-\emptyset\\
1&-\set{\emptyset}\\
2&-\set{\emptyset, \set{\emptyset}}\\
3&-\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}\\
\vdots
\end{align*}

Sin embargo, según la definición que daremos más adelante, vamos a requerir que nuestra construcción tenga ciertas características, por lo que aunque exista más de una forma de asociarle un número a un conjunto según la cantidad de elementos que este tenga nos quedaremos con la segunda forma.

Para definir formalmente a los números naturales comenzaremos definiendo una de las características que a simple vista cumplirá un número natural, tal característica es la de ser un conjunto transitivo.

Conjuntos transitivos

Definición. Sea $x$ un conjunto. Decimos que $x$ es un conjunto transitivo si para cualquier $y\in x$ se cumple que $y\subseteq x$.

Ejemplo.

Dado que nos quedamos con la segunda forma que dimos para identificar a los números naturales, al vacío le asociamos el número natural 0, por lo que este conjunto tendría que ser transitivo. En efecto, si $x=\emptyset$, se cumple por vacuidad que para cualquier $y\in \emptyset$, $y\subseteq \emptyset$. Por lo tanto, $\emptyset$ es un conjunto transitivo.

$\square$

Ejemplo.

Sea $x=\set{\emptyset}$. Dado que su único elemento es $y=\emptyset$, para ver que $x$ es transitivo basta ver que $\emptyset\subseteq \set{\emptyset}$ lo cuál sabemos que es cierto. Por lo tanto, $\set{\emptyset}$ es un conjunto transitivo.

$\square$

Ejemplo.

Sea $x=\set{\emptyset, \set{\set{\emptyset}}}$. Tenemos que $x$ no es transitivo. En efecto, pues $\set{\set{\emptyset}}\in x$ pero $\set{\set{\emptyset}}\not\subseteq x$ dado que $\set{\emptyset}\in \set{\set{\emptyset}}$ pero $\set{\emptyset}\notin x$. Por lo tanto, $\set{\emptyset, \set{\set{\emptyset}}}$ no es un conjunto transitivo.

$\square$

A continuación veremos algunas equivalencias para conjunto transitivo.

Proposición. Sea $x$ un conjunto. Entonces, $x$ es un conjunto transitivo si y sólo si $x\subseteq \mathcal{P}(x)$.

Demostración.

Si $x=\emptyset$, entonces se cumple que $\emptyset\subseteq \mathcal{P}(x)=\set{\emptyset}$.

Supongamos ahora que $x\not=\emptyset$. Sea $y\in x$, como $x$ es un conjunto transitivo se tiene que $y\subseteq x$ y por lo tanto, $y\in \mathcal{P}(x)$. Así, $x\subseteq \mathcal{P}(x)$.

Ahora, supongamos que $x\subseteq \mathcal{P}(x)$ y veamos que $x$ es un conjunto transitivo. Sea $y\in x$, tenemos que $y\in \mathcal{P}(x)$ y así, $y\subseteq x$.

Por lo tanto, $x$ es un conjunto transitivo.

$\square$

Proposición. Sea $x$ un conjunto. Si $x$ es un conjunto transitivo, entonces $\bigcup x\subseteq x$.

Demostración.

Si $x=\emptyset$, entonces $\bigcup x= \emptyset\subseteq \emptyset=x$.

Si $x\not=\emptyset$.
Sea $y\in \bigcup x$, entonces existe $z\in x$ tal que $y\in z$. Luego, como $z\in x$ y $x$ es un conjunto transitivo entonces $z\subseteq x$ y así, $y\in x$. Por lo tanto, $\bigcup x\subseteq x$.

$\square$

Otros resultados para conjuntos transitivos

A continuación y para concluir esta entrada veremos algunos resultados para conjuntos transitivos, esta vez con respecto a la intersección y la unión.

Proposición. Si $x$ y $y$ son conjuntos transitivos, entonces $x\cap y$ es un conjunto transitivo.

Demostración.

Sean $x$ y $y$ conjuntos transitivos. Veamos que $x\cap y$ es un conjunto transitivo, es decir, para cada $z\in x\cap y$ se cumple que $z\subseteq x\cap y$.

  1. Como $x$ es un conjunto transitivo, entonces para cualquier $z\in x$ se cumple que $z\subseteq x$.
  2. Dado que $y$ es un conjunto transitivo, entonces para cualquier $z\in y$ se cumple que $z\subseteq y$.

De $1$ y $2$ podemos concluir que para cualquier $z\in x\cap y$ se satisface que $z\subseteq x\cap y$.

Por lo tanto, $x\cap y$ es un conjunto transitivo.

$\square$

Proposición. Si $x$ y $y$ son conjuntos transitivos, $x\cup y$ es un conjunto transitivo.

Demostración.

Sean $x$ y $y$ conjuntos transitivos. Veamos que $x\cup y$ es un conjunto transitivo, es decir, para cada $z\in x\cup y$ se cumple que $z\subseteq x\cup y$.

  1. Como $x$ es un conjunto transitivo, entonces para cualquier $z\in x$ se cumple que $z\subseteq x$.
  2. Dado que $y$ es un conjunto transitivo, entonces para cualquier $z\in y$ se cumple que $z\subseteq y$.

De $1$ y $2$ podemos concluir que para cualquier $z\in x\cup y$ se satisface que $z\subseteq x\cup y$.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitira reforzar el concepto de conjunto transitivo y el de conjuntos ordenados:

  • ¿Cuál de los siguientes conjuntos es transitivo?
    1. $\set{\emptyset, \set{\emptyset}}$,
    2. $\set{\set{\emptyset}}$,
    3. $\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$.
  • Demuestra que $(\set{\emptyset, \set{\emptyset}}, \in)$ es un conjunto totalmente ordenado.
  • Demuestra que $x=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$ tiene elemento máximo y elemento mínimo en el orden $\in_x$.
  • Sea $x$ un conjunto. Demuestra que si $\bigcup x\subseteq x$, entonces $x$ es un conjunto transitivo.

Más adelante…

En la siguiente entrada daremos la definición formal y rigurosa de que es un número natural. Además demostraremos algunas de sus propiedades.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.