Archivo de la etiqueta: principio del buen orden

Álgebra Superior II: Algoritmo de la división en los enteros

Introducción

Gracias a todo lo trabajado con anterioridad y en particular a la entrada anterior de inmersión de los naturales en los enteros, ya podemos pensar al conjunto de enteros como el conjunto $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$. Además, dentro de esta estructura tenemos operaciones de suma, resta y producto. Sin embargo, aún no tenemos una operación de «división». Hay dos caminos que podemos seguir. Uno es algo parecido a lo que hicimos para tener una operación de resta: podemos construir ciertas clases de equivalencia sobre parejas de enteros, definir operaciones, orden, etcétera. Esto es lo que se hace para construir el conjunto $\mathbb{Q}$ de números racionales, del cual hablaremos más adelante. Otro camino es quedarnos en $\mathbb{Z}$ e intentar decir todo lo que podamos, aunque no tengamos una operación de división. Eso es lo que haremos ahora.

Por ejemplo, si tenemos los números $-20$ y $5$, entonces sí «podemos hacer la división» de manera exacta. Dicho de otra forma, sí existe un entero $k$ tal que $-20=5k$. Ese entero es $k=-4$. Sin embargo, si tenemos los números $20$ y $3$ no podemos hacer la división, en el sentido de que no existe un entero $k$ tal que $20=3k$. Sin embargo, sí podemos lograr que $3k$ quede muy cerca de $20$. Por ejemplo, podemos escribir $20=3\cdot 6 + 2$, es decir, el $20$ se queda únicamente a dos unidades de tres veces un entero.

En esta entrada hablaremos del algoritmo de la división. Lo que nos dice es que dados dos enteros $a$ y $b$, siempre sucederá que $a$ puede ser escrito como $b$ veces un entero, más un residuo «pequeño» en términos de $b$. También nos dice que esta forma de escribir a $a$ será única.

La intuición del algoritmo de la división

Lo que nos permite hacer el algoritmo de la división es saber «cuántas veces cabe un entero en otro». En general, vamos a poder escribir $a=qb+r$ y esto querrá decir que «$b$ cabe $q$ veces en $a$ y sobran $r$». Lo que nos gustaría es hacer esto de manera que sobre lo menos posible.

Un ejemplo sencillo sería el siguiente. Tomemos $a=7$ y $b=2$. Si nos preguntáramos: ¿cuántos equipos de $2$ personas se necesitan para repartir a $7$ personas?, una posible respuesta sería: podemos formar $2$ equipos de dos personas cada uno y dejar fuera a $3$ personas. Esto se escribiría como $7=2\cdot 2 + 3$. Sin embargo, una mejor respuesta (y la que deja a menos personas fuera) es la siguiente: podemos formar $3$ equipos de dos personas cada uno, y dejar a alguien fuera. Esto corresponde algebraicamente a la igualdad $7=3\cdot 2 + 1$. Esta forma de escribir al $7$ es mejor pues el residuo es más pequeño.

Hay algunos casos que suenan un poco raros. Por ejemplo, tomemos $a = 2$, $b = 3$. Podría parecer que la división de $2$ entre $3$ da cero pues «el $3$ el mayor que el $2$ y no hay modo de que $3$ quepa en $2$». Esto es cierto: $3$ cabe cero veces en $2$. Pero hay un residuo que no se ha mencionado, que en este caso es $2$. La forma de escribir esto algebraicamente será $2=3\cdot 0 + 2$. Aquí el $0$ quiere decir que «el $3$ cabe cero veces en el $2$» y el $2$ de la derecha quiere decir que «sobran $2$». Si lo pensamos como equipos, no nos alcanzaría para crear ni un sólo equipo de $3$ personas teniendo sólo $2$.

Otro caso extraño es cuando tenemos números negativos. Por ejemplo, si $a=-7$ y $b=3$ entonces la forma en la que queremos expresar a $a$ es como sigue: $-7=(-3)\cdot 3 + 2$. Lo hacemos de esta manera pues siempre querremos que el residuo que queda sea positivo. Y de entre los residuos que se pueden obtener, lo mejor es que sobren únicamente $2$.

Resulta que la cantidad que sobra siempre se puede garantizar que sea «chica». Si estamos repartiendo $a$ en cachos de tamaño $b$, siempre podremos garantizar que lo que sobra esté entre $0$ y $|b|-1$. En símbolos, el algoritmo de la división dice que dados $a, b \in \mathbb{Z}$, con $b\neq 0$, es posible encontrar $q$ y $r$ únicos, tales que $a = bq + r,$ con $0 \leq r < |b|$. A $q$ se le llama el cociente y a $r$ le llamamos el residuo.

Que no espante el valor absoluto que se le añade a la $b$. Aún no hemos definido qué es, pero lo explicaremos un poco más abajo. Sin embargo, antes de enunciar y demostrar el teorema daremos un ejemplo con números un poco más grandes y su intuición numérica.

Otro ejemplo para entender el algoritmo de la división en $\mathbb{Z}$

Comencemos planteando el problema para $a=3531$ y $b=8$. Es decir, queremos encontrar $q$ y $r$ enteros tales que $3531 = 8q + r$, donde además $0 \leq r < 8$. Ya que $r$ debe ser un número muy pequeño entre $0$ y $8$, podemos ir dando valores a $r$ hasta que $3531-r$ se pueda escribir como $8$ veces un entero.

Si $r = 0$, habríamos de verificar si $3531$ se puede escribir como $8$ veces un entero. Nuestra intuición nos dice que esto no debería poderse, pues $3531$ es un número impar, pero $8$ veces un entero siempre será un número par.

Si $r = 1$, entonces querríamos ver si $8q = 3530$. Pero esto tampoco se puede pues con $q=441$ tenemos $8q=3528<3530$ y con $q=442$ tenemos $8q=3536>3530$ y entonces ya se pasa. Si $r = 2$, buscaríamos si $8q = 3529$, pero de nuevo este es un número impar.

Finalmente, si $r = 3$, entonces queremos ver si se puede lograr $3528= 8q$. Esto sí se puede: se toma $q=441$. Así, hemos logrado determinar que con $q = 441$, $r = 3$ se cumple que $3531 = 8q + r$, con lo que terminamos el problema.

Geométricamente, esto significa que $3531$, en la recta de los números enteros, estará situado entre números que sean $8$ veces un entero, a saber, $8\cdot 441$ y $8\cdot 442$:

$$ \ldots < 8\cdot 441 < 3531 < 8\cdot 442 < \ldots \text{.}$$

Más precisamente, como $3531$ es un entero positivo, el problema consistió en encontrar el entero que sea $8$ veces un entero más cercano por la izquierda y añadir $3$ unidades. Esto también lo podemos enunciar como que «$3531$ está a $3$ unidades a la derecha de un número que es $8$ veces un entero»:

$$ 8\cdot 441 < 8\cdot 441 + 1 < 8\cdot 441 +2 < 3531 < 8\cdot 441 +4 < 8\cdot 441 +5 < 8\cdot 441 +6 < 8\cdot 441 +7 < 8\cdot 442 \text{.}$$

En realidad esto funciona sin importar los valores de $a$ y $b$. Dado un entero $b$, podemos poner los enteros de la forma $mb$ en la recta numérica y siempre podremos situar al entero $a$ entre dos de ellos:

$$qb \leq a < (q+1)b, \qquad q\in \mathbb{Z}.$$

Si $b>0$, los múltiplos de $b$ en la recta numérica se verían así:

$$\ldots -4b, -3b, -2b, -b, 0, b, 2b, 3b, 4b, \ldots $$

De este modo, $q$ sería el mayor múltiplo de $b$ más cercano a $a$, sin excederse de $a$.

Enunciado y demostración del algoritmo de la división en $\mathbb{Z}$

Para poder enunciar el algoritmo de la división sin importar el signo de $a$ y $b$, debemos introducir un símbolo adicional.

Definición. Si $b \in \mathbb{Z}$, definimos el valor absoluto de $b$, denotado por $|b|$, como sigue: $$|b| = \left\lbrace \begin{matrix} b & \text{si $b\geq 0$}\\ -b & \text{si $ b < 0$} \end{matrix}\right.$$

En el algoritmo de la división nos darán dos números enteros $a$ y $b$. Para la restricción $0 \leq r \leq |b|$, sucederá que, no importa si $b$ sea un número positivo o negativo, nosotros nos fijaremos en el número siempre positivo que resulta de aplicarle valor absoluto a $b$. El resultado dice lo siguiente.

Teorema. Sean $a$ y $b$ en $\mathbb{Z}$ con $b\neq 0$. Entonces existen únicos enteros $q$ y $r$ enteros únicos tales que $$ a = qb + r$$ y $0 \leq r < |b|$.

Para la demostración del algoritmo de la división, necesitaremos el principio del buen orden. Como recordatorio, dice que todo subconjunto no vacío de $\mathbb{N}$ tiene un elemento mínimo.

Demostración. Primero hay que demostrar que siempre existen $q$ y $r$ enteros que satisfacen las condiciones que queremos. Vamos a suponer que $b>0$. El caso $b<0$ es muy parecido y quedará como tarea moral.

Lo que haremos es considerar al conjunto $S$ de todos los elementos de la forma $a-tb$ en donde $t$ es un entero, y tales que sean mayores o iguales a cero. Primero veremos que $S$ en efecto es un conjunto no vacío.

  • Si $a\geq 0$, tomamos $t=0$ y obtenemos la expresión $a-tb=a\geq 0$.
  • Si $a<0$, tomamos $t=a$ y obtenemos $a-tb=a-ab=a(1-b)$. Como $b>0$, entonces $b\geq 1$ y por lo tanto $(1-b)\leq 0$. Como $a<0$, obtenemos $a(1-b)\geq 0$, como queríamos.

Como $S$ es un conjunto no vacío de naturales, debe tener un elemento mínimo, al que le llamaremos $r$. Como $r$ está en $S$, obtenemos que $r=a-qb$ para algún entero $q$. Esto es un buen primer paso, pues nos muestra que $a=qb+r$. Sin embargo, todavía nos falta demostrar la importante desigualdad $0\leq r < |b|$. Como $b>0$, debemos mostrar $0\leq r < b$. Como $r$ está en $S$, obtenemos de manera inmediata que $r\geq 0$.

Sólo nos falta mostrar que $r<b$. Supongamos, con el fin de encontrar una contradicción, que $r\geq b$. Si este fuera el caso, sucedería que $r-b\geq 0$ además tendríamos la siguiente cadena de igualdades: $$r-b=a-tb-b=a-(t+1)b.$$

Esto lo que nos diría es que $r-b$ también está en $S$. ¡Pero eso es una contradicción!. Por construcción, $r$ era el menor elemento de $S$ y $r-b$ es un número menor que $r$ y que también está en $S$. Esta contradicción salió de suponer que $r\geq b$, así que en realidad debe pasar $r<b$, como queríamos.

Con esto queda demostrada la existencia de los enteros $q$ y $r$, tales que $a = bq + r$, con $0 \leq r < b$. Falta ver la unicidad. Supongamos que existen $q’$ y $r’$ enteros que también cumplen $$a = bq’ + r’$$ con $0\leq r’ < b$.

Demostramos primero que $r = r’$. Al hacer la resta $r-r’$ por un lado notamos que como mucho, puede valer $(b-1)-0=b-1$, lo cual pasa cuando $r=b-1$ y $r’=0$. Así mismo, por lo menos debe valer $0-(b-1)=-b+1$, lo cual sucede cuando $r=0$ y $r’=b-1$. Pero esta resta también se puede escribir de la siguiente manera: $$r-r’=(a-qb)-(a-q’b)=(q’-q)b.$

El único número de la forma $bk$ en $\{-b+1,-b+2,\ldots,0,\ldots,b-2,b-2\}$ es el entero $0$, pues justo no alcanza para llegar a $b$ ni a $-b$. De esta forma, $r-r’=0$, es decir $r=r’$. Y de aquí, obtenemos que $(q’-q)b=r-r’=0$. Como $b\neq 0$, obtenemos $q’-q=0$ y por lo tanto $q’=q$. Esto termina la demostración de la unicidad.

$\square$

Quizás el uso del principio del buen orden de la impresión de que la demostración anterior es «muy sofisiticada». En realidad, esto no es así. Simplemente es la forma en la que se formaliza una idea muy intuitiva: si el residuo queda mayor a $b$, entonces todavía le podemos «transferir» un sumando $b$ de $r$ a $qb$. El principio del buen orden simplemente nos garantiza que en algún momento este proceso de «transferir» sumandos $b$ debe de concluir.

Tarea moral

Los siguientes ejercicios y problemas te ayudarán a reforzar lo aprendido en esta entrada.

  1. Encuentra $q$ y $r$ enteros tales que $-1873 = 31q + r$ y $0\leq r < 31$.
  2. Demuestra las siguientes propiedades de la función valor absoluto de $\mathbb{Z}$:
    • $|a|\geq 0$ para cualquier entero $a$.
    • $|ab|=|a||b|$ para cualesquiera enteros $a$ y $b$.
    • $|a+b|\leq |a|+|b|$ para cualesquiera enteros $a$ y $b$.
  3. En general, ¿cómo se calcula $q$, para $a<0$? ¿y para $b<0$? Completa los detalles de la demostración del algoritmo de la división para cuando $b<0$.
  4. Encuentra un número que al dividirse entre $2$ deje residuo $1$, que al dividirse entre $3$ deje residuo $2$ y que al dividirse entre $4$ deje residuo $3$.
  5. Demuestra que cualquier entero se puede escribir de la forma $3q+r$ en donde $r$ es $-1$, $0$ ó $1$.

Más adelante…

Cuando aplicamos el algoritmo de la división nos puede pasar un caso muy especial: que $r$ sea igual a cero. En otras palabras, en este caso podemos escribir $a=qb$ y por lo tanto $b$ cabe en $a$ «de manera exacta». Este caso es muy interesante y amerita un profundo estudio. Cuando esto sucede, decimos que $a$ es múltiplo de $b$, o bien que $b$ divide a $a$. En la siguiente entrada estudiaremos con más detalle la relación de divisibilidad en $\mathbb{Z}$. Un poco más adelante hablaremos de los ideales de $\mathbb{Z}$, que son un tipo de subconjuntos fuertemente relacionados con la noción de divisibilidad.

Entradas relacionadas