Cálculo Diferencial e Integral I:Supremo e ínfimo.

Introducción

Ya hemos visto los conceptos de máximo, mínimo, cota superior e inferior de un conjunto en $\r$. En esta entrada definiremos formalmente el concepto de supremo e ínfimo de un conjunto, veremos que los revisados previamente se encuentran relacionados. Adicionalmente, demostraremos algunas proposiciones útiles y algunos ejemplos en los cuáles aplicaremos las definiciones respectivas.

Supremo e ínfimo primera definición

Definición: Sea $A \subseteq \r$ con $A\neq \emptyset$. Decimos que $\alpha \in \r$ es:

  • El supremo de $A \Leftrightarrow$
    • $\alpha$ es cota superior de $A$
    • $\alpha$ es la mínima cota superior. Si $\beta$ es cota superior de $A \Rightarrow \alpha \leq \beta$.
  • El ínfimo de $A \Leftrightarrow$
    • $\alpha$ es cota inferior de $A$
    • $\alpha$ es la máxima cota inferior. Si $\beta$ es cota inferior de $A \Rightarrow \beta \leq \alpha$.

Retomemos el último ejemplo visto en la entrada pasada:

$$A= \left\{\frac{1}{n}: n\in \mathbb{N} \right\}$$

  • El conjunto de cotas superiores de $A$ esta dado por:
    $$[1, \infty)$$
    tiene elemento mínimo y es 1. Esto nos indica que existe una mínima cota superior.
  • El conjunto de cotas inferiores de $A$ esta dado por:
    $$(- \infty, 0]$$
    tiene elemento máximo y es 0. Esto nos indica que existe una máxima cota inferior.

Dadas las observaciones anteriores ahora podemos decir que:

  • El supremo de $A$ es $1$: $$sup(A)=1$$
  • El ínfimo de $A$ es $0$: $$inf(A)=0$$

Observación: El supremo o el ínfimo de un conjunto puede o no pertenecer al conjunto.

Más adelante veremos ejemplos donde realizaremos las demostraciones necesarias para nuestras afirmaciones, por ahora con lo expuesto será suficiente.

Unicidad del supremo y el ínfimo

Teorema: Sea $A \subseteq \r$ con $A\neq \emptyset$. El supremo y el ínfimo de $A$ son únicos.

Demostración (Unicidad del supremo): Supongamos que existen $\alpha_{1}, \alpha_{2}$ tales que:
$\alpha_{1} = sup(A)$ y $\alpha_{2}=sup(A)$.

Para $\alpha_{1}$ tenemos que para toda $a \in A, a\leq \alpha_{1}$. Y cómo $\alpha_{1}$ es mínima cota superior entonces $\forall M$ cota superior de $A, \alpha_{1}\leq M$ Así en particular ocurre que: $\alpha_{1}\leq \alpha_{2}$ es cota superior.

Análogamente para $\alpha_{2}$ tenemos que: $\alpha_{2} \leq M$
$\Rightarrow \alpha_{2}\leq \alpha_{1}$ es cota superior.

Debido a que $\alpha_{1}\leq \alpha_{2}$ y $\alpha_{2}\leq \alpha_{1}$ concluimos:
$$\alpha_{1}=\alpha_{2}$$
$\therefore$ El supremo de $A$ es único.

$\square$

Relaciones entre supremos e ínfimos

Proposición: Sean $A,B \subseteq \r$ distintos del vacío. Para toda $a\in A$ y para toda $b \in B$ si se cumple $a \leq b \Rightarrow sup(A)\leq inf(B)$

Demostración:
Primero observamos que $A$ tiene supremo, ya que cómo $A \neq \emptyset$ y $B \neq \emptyset$:
$\Rightarrow \exists b_{0} \in B, \forall a\in A $ se cumple que $a \leq b_{0}$
$\Rightarrow b_{0}$ es cota superior de $A$
$\Rightarrow A \neq \emptyset$ y acotado superiormente
$\therefore \exists \alpha =sup(A) \in \r$

Ahora vemos que $B$ tiene ínfimo, esto se sigue de $B \neq \emptyset$ y $A \neq \emptyset$:
$\Rightarrow \exists a_{0} \in A, \forall b\in B$ ocurre que $a_{0} \leq b$
$\Rightarrow a_{0}$ es cota inferior de $B$
$\Rightarrow B \neq \emptyset$ y acotado inferiormente
$\therefore \exists \beta =inf(B) \in \r$

Definamos el siguiente par de conjuntos:
$$U_{A}:=\left\{ a\in \r: a \quad cota\quad superior\quad de \quad A\right\}$$
$$D_{B}:=\left\{ b\in \r: b \quad cota\quad inferior\quad de \quad B\right\}$$
Observemos que:

  1. $U_{A}$ tiene elemento mínimo.
  2. $D_{B}$ tiene elemento máximo.

Por lo que sólo nos falta verificar que $\alpha \leq \beta$:
Si tomamos $u$ cota superior de $A \Rightarrow \alpha \leq u$.
Y si tomamos $v$ cota inferior de $B \Rightarrow v \leq \beta$

Cómo por hipótesis tenemos que $\forall a \in A, \forall b\in B (a\leq b)$ obtenemos:
$\Rightarrow \forall a \in A$ ($a$ es cota inferior de $B$)
$\Rightarrow \forall a \in A$ ($a\leq \beta$)
$\Rightarrow \beta$ cota superior de $A$
$\Rightarrow \alpha \leq \beta$

$\square$

Proposición: Sean $C \subseteq A \subseteq \r$ donde $C$ es no vacío y $A$ acotado.
$\Rightarrow inf(A) \leq inf(C) \leq sup(C) \leq sup(A)$
Demostración:

Sea $C \neq \emptyset$ subconjunto de $A$, como $ C \subseteq A \Rightarrow A \neq \emptyset$.
Ya que $A$ es acotado para toda $a \in A$ ocurre que: $m \leq a \leq M$. Así si tomamos $c \in C$ tenemos:
$c \in A \Rightarrow m \leq c \leq M \Rightarrow C$ es acotado
Por lo que afirmamos que existen:
$$sup(A) \quad sup(C) \quad inf(A) \quad inf(C)$$
Observemos que $sup(A) $ al ser cota superior de $A$ y $C \subseteq A \Rightarrow \sup(A)$ es cota superior de $C$ , por lo que podemos concluir:
$$sup(C) \leq sup(A)$$
Análogamente para los ínfimos se sigue que:
$$inf(A) \leq inf(C)$$
Y cómo $inf(C) < sup(C$ obtenemos:
$$inf(A) \leq inf(C) \leq sup(C) \leq sup(A)$$

$\square$

Proposición: Sean $A’ \subseteq A \subseteq \r$ y $B’ \subseteq B \subseteq \r$ donde $A’, B’$ son distintos del vacío. Si se cumple que:

  • $\forall a\in A, \forall b \in B \quad (\alpha \leq \beta)$
  • $sup(A’)=inf(B’)$

$\Rightarrow sup(A)=inf(B)$
Demostración:

Primero observemos que $A$ y $B$ son no vacíos ya que:

  • $A’ \neq \emptyset$ y $A’ \subseteq A$
  • $B’ \neq \emptyset$ y $B’ \subseteq B$

Por lo que afirmamos la existen en $\r$:
$$sup(A) \quad inf(B)$$
Por hipótesis aplicando la proposición anterior y el Lema auxiliar tenemos:
$$sup(A’) \leq sup(A) \leq inf(B) \leq inf(B’)$$
$$\therefore sup (A) \leq inf(B)$$
Además vemos que:
$$inf(B) \leq inf(B’) = sup(A’) \leq sup(A)$$
$$\therefore inf(B) \leq sup (A) $$
Por lo que obtenemos la igualdad:
$$inf(B)= sup (A)$$

$\square$

Lema Auxiliar: Si $\forall a \in A$ y $\forall b \in B$ ocurre que $a \leq b$ entonces
$$sup(A) \leq inf(B)$$

La prueba de este resultado se dejará como Tarea moral, ahora continuaremos con una definición de supremo e ínfimo equivalente a la primera.

Supremo e ínfimo segunda definición

Definición: Sea $A \subseteq \r$ con $A\neq \emptyset$. Decimos que $\alpha \in \r$ es:

  • El supremo de $A \Leftrightarrow$
    • $\alpha$ es cota superior de $A$
    • $\forall \varepsilon > 0, \exists x_{\varepsilon} \in A$ tal que $\alpha – \varepsilon < x_{\varepsilon}$.
  • El ínfimo de $A \Leftrightarrow$
    • $\alpha$ es cota inferior de $A$
    • $\forall \varepsilon > 0, \exists x_{\varepsilon} \in A$ tal que $x_{\varepsilon} < \alpha + \varepsilon$.

Ejemplos

Veamos para
$$B=\left\{2-\frac{1}{n}: n\in \mathbb{N} \right\}$$
consideramos como candidatos $inf(B)=1$ y $sup(B)=2$.

Comenzaremos probando $inf(B)=1$ haciendo uso de la segunda definición:

  • Tenemos que probar que $1$ es cota inferior de $B$, es decir, $1 \leq x$ para toda $x \in B$.
    Sea $x \in B \Rightarrow x=2-\frac{1}{n}$ para algún $n \in \mathbb{N}$.
    \begin{align*}
    1 \leq 2- \frac{1}{n} &\Leftrightarrow 1-2 \leq – \frac{1}{n}\\
    &\Leftrightarrow -1 \leq – \frac{1}{n}\\
    &\Leftrightarrow 1 \geq \frac{1}{n}\\
    &\Leftrightarrow n \geq 1
    \end{align*}
    $\therefore 1$ es cota inferior
  • Ahora probamos que $\forall \varepsilon > 0, \exists x_{\varepsilon} \in B$ tal que $x_{\varepsilon}< 1+ \varepsilon$.
    Sea $\varepsilon >0$. Tomemos $x_{\varepsilon}=1 \in B$ entonces $1<1+\varepsilon$
    $\therefore 1$ es ínfimo de $B$.

Ahora procedamos a demostrar que $sup(B)=2$:

  • $2$ es cota superior de $B$, es decir, $2 \geq x$ para toda $x \in B$.
    Tomemos $x \in B \Rightarrow x=2-\frac{1}{n}$ para algún $n \in \mathbb{N}$.
    \begin{align*}
    2 \geq 2-\frac{1}{n} &\Leftrightarrow 2-2 \geq -\frac{1}{n}\\
    &\Leftrightarrow 0 \geq -\frac{1}{n}\\
    &\Leftrightarrow 0 \leq \frac{1}{n}\\
    \end{align*}
    $\therefore 2$ es cota superior
  • Demostremos que $\forall \varepsilon > 0, \exists x_{\varepsilon} \in B$ tal que
    $2- \varepsilon < x_{\varepsilon}$.
    Sea Sea $\varepsilon >0$. Tomemos $x_{\varepsilon}= 2-\frac{1}{n}$ para algún $n \in \mathbb{N}$.
    \begin{align*}
    2- \varepsilon < 2-\frac{1}{n}&\Leftrightarrow – \varepsilon < -\frac{1}{n}\\
    &\Leftrightarrow \varepsilon > \frac{1}{n}\\
    &\Leftrightarrow (\varepsilon )n> 1\\
    &\Leftrightarrow n> \frac{1}{\varepsilon}\\
    \end{align*}
    $\therefore 2$ es supremo de $B$

$\square$

Hallar el supremo y el ínfimo del siguiente conjunto:
$$C= \left\{x: x^{2}+x+1 \geq 0 \right\}$$

Solución:
Notemos que:
\begin{align*}
x^{2}+x+1 \geq 0 &\Leftrightarrow x^{2}+x+\frac{1}{4}+1-\frac{1}{4} \geq 0\\
&\Leftrightarrow (x + \frac{1}{2})^{2}+\frac{3}{4} \geq 0\\
\end{align*}
Vemos que la última desigualdad la cumple cualquier número real tenemos que $C= \r$.
$\therefore$ no existe ni $sup(C)$ ni $inf(C)$

$\square$

Tarea moral

  • Prueba que la primera y segunda definición de supremo e ínfimo son equivalentes.
  • Demuestra que el ínfimo de un conjunto es único.
    HINT: La prueba es análoga a la dada para el supremo.
  • Prueba el Lema Auxiliar.
  • Para $A= \left\{\frac{1}{n}: n\in \mathbb{N} \right\}$ prueba usando la definición que prefieras que $sup(A)=1$ e $inf(A)=0$.
  • Encontrar el supremo y el ínfimo del conjunto
    $$D= \left\{x: x^{2}+x-1 < 0 \right\}$$

Más adelante

Ahora que ya hemos visto el concepto de supremo, en la siguiente entrada veremos una propiedad más que cumple el conjunto de números reales: el Axioma del Supremo. Veremos su enunciado y varias de sus aplicaciones, algunas de ellas se demostrarán en las próximas unidades.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.