Archivo de la etiqueta: Cota inferior

Teoría de los Conjuntos I: Cotas inferiores e ínfimos

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca de cotas inferiores e ínfimos. Estos nuevos conceptos también nos permitirán a acotar conjuntos ordenados.

Cotas inferiores

Para comenzar definiremos a una cota inferior, notaremos que este concepto es muy parecido al de mínimo, sin embargo la cota inferior podría no ser elemento de $B$ un subconjunto de $A$. Veamos la definición.

Definición: Sea $(A, \leq)$ un orden parcial y sea $B\subseteq A$. Decimos que $a\in A$ es una cota inferior de $B$ si $a\leq x$ para toda $x\in B$.

Ejemplo:

Consideremos $(A=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}, \subseteq)$ un orden parcial. Sea $B= \set{\set{\emptyset}, \set{\emptyset, \set{\emptyset}}}\subseteq A$, tenemos que $\emptyset\in A$ es una cota inferior de $B$ pues $\emptyset\leq x$ para todo $x\in B$, como se muestra en el siguiente diagrama:

Sin embargo, podemos notar que $\emptyset\notin B$, por lo que para ser cota inferior no es necesario ser elemento de $B$, solo de $A$. Por otro lado, $\set{\emptyset}\in B$ también es una cota inferior de $B$ pues para cada $x\in B$, $\set{\emptyset}\leq x$. Más aún, $\set{\emptyset}$ es el elemento mínimo de $B$.

Como consecuencia de lo anterior podemos concluir que la propiedad de ser mínimo implica ser cota inferior, pero no es válido el regreso.

$\square$

En este último ejemplo es posible notar que la cota inferior en un conjunto puede no ser única, y entonces podemos pensar en el conjunto que tenga a todas las cotas inferiores. Esta idea junto con el concepto de máximo motiva el concepto de ínfimo.

Ínfimos

Definición: Sea $(A, \leq)$ un orden parcial y sea $B\subseteq A$. Decimos que $a\in A$ es ínfimo de $B$ si es el elemento máximo del conjunto de todas las cotas inferiores de $B$. Lo denotamos por $\inf(B)$.

Ejemplo:

Retomando el ejemplo anterior, si consideramos al conjunto de todas las cotas inferiores de $B$, es decir, $\set{\emptyset, \set{\emptyset}}$ tenemos que el ínfimo es $\set{\emptyset}$ pues respecto al orden de $A$, $\emptyset\leq \set{\emptyset}$ y por lo tanto, $\set{\emptyset}$ es el máximo de las cotas inferiores de $B$.

$\square$

Teorema: Sea $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Si $B$ tiene ínfimo en el orden $\leq$, entonces es único.

Demostración:

Sea $(A,\leq)$ un orden parcial y $B\subseteq A$ no vacío. Supongamos que $B$ tiene ínfimo, es decir, que existe $a\in A$ de tal forma que $a\leq x$ para toda $x\in B$ y, si $b\in A$ es tal que $b\leq x$ para toda $x\in B$, entonces, $b\leq a$.

Supongamos que $a_1,a_2\in A$ son ínfimos de $B$. Veamos que $a_1=a_2$.

Como $a_1$ es ínfimo $B$, en particular se tiene que $a_1\leq x$ para toda $x\in B$. Luego, como $a_2$ es ínfimo de $B$ se sigue por definición que $a_1\leq a_2$. De manera análoga, como $a_2$ es ínfimo de $B$, en particular se tiene que $a_2\leq x$ para toda $x\in B$ y así, como $a_1$ es ínfimo de $B$ se sigue por definición que $a_2\leq a_1$.

Tenemos entonces que $a_1\leq a_2$ y $a_2\leq a_1$, de donde se sigue que $a_1=a_2$, lo cual demuestra la unicidad del ínfimo.

$\square$

Teorema: Sea $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Si $b\in B$ es el elemento mínimo de $B$, entonces $b$ es el ínfimo de $B$.

Demostración:

Sea $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Luego como $b\in B$ es el elemento mínimo de $B$, entonces para cualquier $x\in B$, $b\leq x$.

Sea $C$ el conjunto de todas las cotas inferiores de $B$. Veamos que $b\in C$ y que $b=\max(C)$. Dado que $b\leq x$ para todo $x\in B$, entonces $b$ es cota inferior de $B$ y, por tanto, $b\in C$. Luego, si $c\in C$ es cualquier elemento, entonces $c$ escota inferior de $B$, es decir, $c\leq x$ para cualquier $x\in B$. En particular, como $b\in B$ se tiene que $c\leq b$. Esto muestra que $b=\max(C)$.

Por lo tanto, $b=\inf(B)$.

$\square$

Aún cuando ser mínimo implica ser ínfimo, no siempre va a ocurrir que el ínfimo de un conjunto sea mínimo, como ocurre en el siguiente ejemplo.

Ejemplo:

Consideremos $(A=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}}, \subseteq)$ un orden parcial. Sea $B= \set{\set{\emptyset}, \set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}}\subseteq A$, tenemos que $\emptyset \in A$ es una cota inferior de $B$ pues $\emptyset\leq x$ para todo $x\in B$, como se muestra en el siguiente diagrama:

Sin embargo, $B$ no tiene mínimo pues no existe $x\in B$ tal que $x\leq y$ para todo $y\in B$. De forma especifica aunque $\set{\emptyset}\leq \set{\emptyset, \set{\emptyset}}$ y $\set{\set{\emptyset}}\leq \set{\emptyset, \set{\emptyset}}$, no hay nadie por debajo de $\set{\emptyset}$ ni de $\set{\set{\emptyset}}$.

$\square$

Tarea moral

La siguiente lista de ejercicios te ayudará a reforzar el contenido de esta sección y de la sección anterior(Teoría de los Conjuntos I: Mínimos, máximos, minimales y maximales):

  • Sean $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Demuestra que si $b$ es ínfimo y $b\in B$, entonces $b$ es mínimo de $B$.
  • Sean $(A, \leq)$ un orden parcial y $B,C\subseteq A$ no vacíos. Si $B$ y $C$ tienen ínfimo y $C\subseteq B$, demuestra que $inf (B)\leq inf (C)$.
  • Exhibe un conjunto que esté acotado inferiormente pero que no tenga ínfimo.
  • Dé un ejemplo de un conjunto ordenado $(A,\leq)$ en el cual se cumpla que el conjunto $\emptyset$ tiene ínfimo.
  • Escribe las definiciones de cota inferior e ínfimo para un orden parcial estricto.

Más adelante…

La siguiente sección estará dedicada a cotas superiores y supremos. Con esto concluiremos la sección de acotar conjuntos ordenados.

Enlaces

Entrada anterior: Teoría de los Conjuntos I: Mínimos, máximos, minimales y maximales

Siguiente entrada: Teoría de los Conjuntos I: Cotas superiores y supremos

Cálculo Diferencial e Integral I: Cota superior e inferior de un conjunto

Por Karen González Cárdenas

Introducción

Ahora comenzaremos a ver un tema un tanto diferente a los vistos en la entrada anterior. Primero veremos los conceptos de máximo y mínimo de un conjunto, después las definiciones formales para cota superior e inferior, y terminaremos revisando algunos ejemplos donde las aplicaremos.

Máximo y mínimo de un conjunto

Definición: Sean $A,B \subseteq \r$ no vacíos. Decimos que:

  • $A$ tiene elemento máximo $\Leftrightarrow \exists a_{0} \in A$ tal que $\forall a \in A$ se cumple que: $a \leq a_{0}$
  • $B$ tiene elemento minímo $\Leftrightarrow \exists b_{0} \in B$ tal que $\forall b \in B$ se cumple que: $b_{0} \leq b$

Para darnos una idea más clara de estas definiciones veamos los siguientes ejemplos:

$$C=(0,1]$$

  1. No tiene mínimo.
  2. Tiene máximo y es 1.

Para probar estas afirmaciones haremos uso de las definiciones anteriores:
Demostración 1 (por contradicción): Supondremos que existe un elemento $c_{0} \in C$ tal que $\forall c \in A$ cumple que $c_{0} \leq c$. Por lo que se sigue que: $0<c_{0}<1$.
Observemos que $\frac{c_{0}}{2} \in C$ ya que $0<\frac{c_{0}}{2}<c_{0}$
$$\Rightarrow c_{0}\leq \frac{c_{0}}{2}<c_{0} \contradiccion$$
Lo cual es una contradicción.

Demostración 2: Veamos que por la definición del conjunto C tenemos:
$$C=\left\{ c\in \r|0<c \leq 1 \right \}$$
Por lo que $1\in C$ y se cumple que $\forall c\in C, c\leq 1$.

$\square$

Observación:

  • El elemento máximo de un conjunto es único.
  • El elemento mínimo de un conjunto es único.

Cota superior e inferior de un conjunto

Definición: Sea $A \subseteq \r$. Decimos que un número $M \in \r$ es:

  • Cota superior $\Leftrightarrow \forall a \in A$ se cumple que: $a\leq M$.
  • Cota inferior $\Leftrightarrow \forall a \in A$ se cumple que: $a\geq M$.

Observación: Si hay una cota superior $M \Rightarrow \forall a \in A$ ocurre que: $$ a \leq M < M+1<M+2<M+3 \ldots$$ Es decir, hay una infinidad de cotas superiores de $A$.

Ejemplo

Consideremos al conjunto:
$$E=(0,2]$$
Vemos que para todo $x\in E$ ocurre que $-2<0<x$
$$\therefore -2 \leq x$$
Por lo que podemos concluir que $-2$ es cota inferior de $E$.

Y además tenemos que $\forall x \in E$ se cumple $ x \leq 2$
$\therefore 2$ es cota superior de $E$.

Conjuntos acotados

Definición: Consideremos $A, B \subseteq \r$. Decimos que:

  1. $A$ es acotado superiormente $\Leftrightarrow \exists M\in \r$ tal que $\forall a \in A$, $a \leq M$.
  2. $B$ es acotado inferiormente $\Leftrightarrow \exists m\in \r$ tal que $\forall b \in B$, $m \leq b$.
  3. $A$ es acotado $\Leftrightarrow \exists m,M \in \r$ tal que $\forall a \in A$: $m \leq a \leq M$.
  4. $A$ es acotado $\Leftrightarrow \exists M \in \r$ tal que $\forall a \in A$: $|a| \leq M$.

Vamos a demostrar que las definiciones 3 y 4 son equivalentes.

Demostración:
$\Rightarrow)$ Sean $m_0, M_0 \in \r$ tal que $m_0 \leq a \leq M_0$. Queremos demostrar que existe $M \in \r$ que cumple con:
$$-M \leq a \quad \quad \text{y}\quad \quad a \leq M$$
Por definición de $m_0$ y $M_0$ vemos que se cumple:
\begin{align*}
0 &\leq a-m_0 \leq M_0 -m_0 \tag{restando $m_0$}\\
m_0-M_0&\leq a-M_0 \leq 0 \tag{restando $M_0$}
\end{align*}
Por transitividad obtenemos la siguiente desigualdad:
\begin{align*}
m_0-M_0&\leq a-M_0 \leq a-m_0 \leq M_0 -m_0 \\
&\Rightarrow m_0-M_0 \leq M_0-m_0\\
&\Rightarrow -(M_0-m_0)\leq M_0-m_0
\end{align*}
Ahora como $\quad a\leq M_0 \quad$ y $\quad m_0\leq M_0 \quad$ observamos que:
$$a\leq M_0-m_0$$

Análogamente para $\quad m_0\leq a$:
$$m_0-M_0\leq a$$

Si consideramos $M:= M_0-m_0$ concluimos que:
$$-M \leq a \leq M$$
$$\therefore |a|\leq M$$

$\Leftarrow)$ Como $|a| \leq M$ se sigue que $-M \leq a \leq M$. Como $-M \leq a$ tenemos que $A$ es acotado inferiormente por definición si tomamos $m := M$:
$$m \leq a$$
Análogamente de $a \leq M$ tenemos que $A$ es acotado superiormente por definición concluimos:
$$\therefore m \leq a \leq M$$

$\square$

Lema: Para cualesquiera $A,B \subseteq \r$. Si $A\subseteq B$ y $B$ es acotado entonces $A$ es acotado.

Demostración: Como tenemos que $B$ es acotado existe $M>0$ tal que para todo $b\in B$:
$$|b|\leq M$$
CASO 1 $A\neq\emptyset$: Como $A \subseteq B$ entonces para todo $a \in A$ existe $b \in B$ tal que $a=b$.
$\therefore a \in A, a=b \Rightarrow |a|=|b|\leq M$
CASO 2 $A= \emptyset$: Sabemos que $A =\emptyset\subseteq B$ por lo que se sigue $A$ es acotado por vacuidad.

$\square$

Ejemplo

Si tenemos: $$A= \left\{\frac{1}{n}: n\in \mathbb{N} \right\}$$

Observamos que:

  • $A$ es acotado superiormente ya que para todo $n\in \mathbb{N}$:
    $$1<n \Leftrightarrow \frac{1}{n} \leq 1$$
    $\therefore 1$ es cota superior de $A$.
  • $A$ tiene elemento máximo. Tenemos que $\forall n\in \mathbb{N}: \frac{1}{n} \leq 1$
    Así para $n=1$ ocurre que $\frac{1}{1} \leq 1$.
    $\therefore 1$ es máximo de $A$.
  • El conjunto de cotas superiores de $A$ esta dado por:
    $$[1, \infty)$$
    tiene elemento mínimo y es 1. Esto nos indica que existe una mínima cota superior.
  • $A$ es acotado inferiormente. Vemos que para todo $n\in \mathbb{N}, \frac{1}{n} > 0$ por lo que $0 \notin A$. Concluimos así que $\forall a\in A, 0 \leq \frac{1}{n}$.
    $\therefore 0$ es cota inferior de $A$
  • El conjunto de cotas inferiores de $A$ esta dado por:
    $$(- \infty, 0]$$
    tiene elemento máximo y es 0. Esto nos indica que existe una máxima cota inferior.
  • $A$ no tiene elemento mínimo. Si suponemos que existe un elemento $a_{0} \in A$ tal que $\forall n\in \mathbb{N}, a_{0} \leq \frac{1}{n}$. Tenemos que $a_{0}$ sería de la forma
    $a_{0} = \frac{1}{n_{0}} > 0$
    $\Rightarrow 0< \frac{1}{2n_{0}}<\frac{1}{n_{0}}$ con $\frac{1}{2n_{0}} \in A$.
    De lo anterior vemos que $a_{0}$ no es mínimo $\Rightarrow \frac{1}{n_{0}}\leq\frac{1}{2n_{0}} \contradiccion$

$\square$

Tarea moral

  • Demuestra que:
    • El elemento máximo de un conjunto es único.
    • El elemento mínimo de un conjunto es único.
  • Prueba que son equivalentes las definiciones para $A$ acotado:
    $\exists m,M \in \r$ tal que $\forall a \in A$: $m \leq a \leq M \Leftrightarrow \exists M \in \r$ tal que $\forall a \in A$: $|a| \leq M$.
  • Para el conjunto $D=(-\infty, 1)$ demuestra que se cumplen las siguientes afirmaciones:
    • D no tiene elemento mínimo
    • D no tiene elemento máximo
    • D es acotado superiormente
    • D no tiene cotas inferiores

Más adelante

Ahora que ya hemos revisado los conceptos de máximo, mínimo y cotas superiores e inferiores de un conjunto en $\r$ tenemos los antecedentes necesarios para comenzar a hablar de supremos e ínfimos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»