Archivo del Autor: Ana Ofelia Negrete Fernández

Álgebra Superior II: El algoritmo de Euclides

Por Ana Ofelia Negrete Fernández

Introducción

En entradas anteriores estudiamos los conceptos de máximo común divisor y de mínimo común múltiplo. Ahora nos enfocaremos en un aspecto un poco más práctico sobre el máximo común divisor que dejamos pendiente: ¿cómo lo calculamos? Para ello hablaremos de un procedimiento conocido como el algoritmo de Euclides, el cual afirma que afirma que podemos aplicar iteradas veces el algoritmo de la división en ciertos números específicos, comenzando con dos enteros $a$ y $b$ para encontrar su máximo común divisor de dos enteros positivos $a$ y $b$.

Lo primero que haremos es explicar el procedimiento mediante el cual podemos encontrar el máximo común divisor de dos números aplicando repetidamente el algoritmo de la división. En la siguiente sección daremos la demostración de por qué funciona este procedimiento. Hacia el final de la entrada también veremos que este mismo procedimiento nos permite también escribir al máximo común divisor de dos enteros $a$ y $b$ como combinación lineal de ellos, es decir, de la forma $ra+sb$ con $r$ y $s$ números enteros.

El procedimiento del algoritmo de Euclides

Sean $a, b$ cualesquiera enteros positivos, con $a \neq b$ y $a > b.$ Por el algoritmo de la división, sabemos que siempre existen $q, r \in \mathbb{Z}$ tales que podemos escribir $$a = bq + r, \enspace \text{con} \quad \quad 0 \leq r < b. $$

Luego, como $b$ y $r$ son enteros, también existen $q_1$ y $r_1$ tales que $$b = rq_1 + r_1,\enspace \text{con} \quad \quad 0 \leq r_1 < r.$$

Y como $r$ y $r_1$ son enteros, existen $q_2$ y $r_2 \in \mathbb{Z}^+$ tales que $$r = r_1q_2 + r_2,\enspace \text{con} \quad \quad 0 \leq r_2 < r_1.$$

Se puede continuar así sucesivamente. Pero este procedimiento debe de terminar, pues tenemos $b>r>r_1>r_2>\ldots \geq 0$, de modo que debe existir una $i$ tal que $r_i=0$. De esta forma, en el penúltimo paso tendremos que existen $q_{i-1}$ y $r_{i-1}$ enteros tales que $$r_{i-3} = r_{i-2}q_{i-1} + r_{i-1}, \enspace \text{con} \quad \quad 0 \leq r_{i-1} < r_{i-2}.$$

Y en el último paso tendríamos $q_i \in \mathbb{Z}^+$ y $r_i = 0$ tales que
$$r_{i-2} = r_{i-1}q_i + 0, \enspace \text{con} \quad \quad 0 = r_i < r_{i-1} .$$

Lo que nos dice el algoritmo de Euclides es que el último residuo no cero, en este caso $r_{i-1}$ es el máximo común divisor de $a$ y $b$.

Este procedimiento es particularmente útil cuando $a$ y $b$ son números tan grandes, tanto que determinar el máximo común divisor de ellos no sea inmediato. Aunque se comience con números muy grandes, el algoritmo de Euclides encuentra el MCD de manera rápida.

Ejemplo del algoritmo de Euclides

A continuación veremos el algoritmo de Euclides en acción.

Problema. Encuentra el máximo común divisor de $3456$ y $6524$.

Solución. Observamos que $6524 > 3456$. Así, $$6524 = 3456\cdot 1 + 3068, \quad \quad 0 \leq 3068 < 3456. $$
Aplicando nuevamente el algoritmo de la división, obtenemos
$$3456 = 3068 \cdot 1 + 388, \quad \quad 0 \leq 388 < 3068. $$
Aplicando una vez más el algoritmo de la división, se tiene
$$3068 = 388\cdot 7 + 352, \quad \quad 0 \leq 352 < 388. $$
Siguiendo este procedimiento,
$$388 = 352 \cdot 1 + 36, \quad \quad 0 \leq 36 < 352. $$
$$352 = 36 \cdot 9 + 28, \quad \quad 0 \leq 28 < 36. $$
$$36 = 28\cdot 1 + 8, \quad \quad 0 \leq 8 < 28.$$
$$28 = 8 \cdot 3 + 4, \quad \quad 0 \leq 4 < 8.$$
$$8 = 4\cdot 2 + 0.$$

Como el último residuo no cero es $4$, entonces $(6524, 3456)=4$.

$\square$

Observación. Aunque el algoritmo de Euclides requiere que los números $a$ y $b$ sean positivos, cuando ocurre el caso de que uno de ellos o los dos fueran negativos, no hay un gran obstáculo. Basta sacar el valor absoluto de ambos números al inicio, ya que los divisores de un número negativo son los mismos que los de su valor absoluto.

Veamos un ejemplo que usa esta observación.

Ejemplo. Obtén el máximo común divisor de $-100$ y $45$.

Solución. Como uno de los números es negativo, antes que nada sacamos valores absolutos: $|-100| = 100$ y $|45| = 45.$ Le aplicamos el algoritmo de Euclides a estos números:
$$ 100 = 45 \cdot 2 + 10, \quad \quad 0 \leq 10 < 45. $$
$$ 45 = 10 \cdot 4 + 5, \quad \quad 0 \leq 5 < 10. $$
$$10 = 5 \cdot 2 + 0.$$

Notemos que el último residuo no cero es $5$. Por lo tanto, $(-100, 45) = 5.$

$\square$

Demostración de la validez del algoritmo de Euclides

Ahora, veamos la demostración de que el algoritmo de Euclides funciona. El resultado clave para demostrarlo es la siguiente proposición.

Proposición. Sean $a,b \in \mathbb{Z}^+, $ tales que $a = bq + r.$ Entonces $(a,b) = (b,r).$

Demostración. Sean $a,b \in \mathbb{Z}^+$. Sea $d=(a,b)$ el máximo común divisor de $a$ y $b$, y sea $f=(b,r)$ el máximo común divisor de $b$ y $r$.

Tenemos que $d\mid a$. Además, $d \mid b,$ por lo que $d\mid bq$. Así, $d\mid a-bq=r$. De este modo, $d$ es un divisor común de $b$ y de $r$, de modo que $d\mid f$.

Por otro lado, $f\mid b$, de donde $f\mid bq$. Además, $f\mid r$. De este modo, $f\mid bq+r=a$. Concluimos entonces que $f$ es divisor común de $a$ y $b$. Pero entonces $f\mid d$.

Por propiedades de divisibilidad, tenemos entonces que $|f|=|d|$, pero como ambos son números no negativos concluimos entonces que $f=d$, como queríamos.

$\square$

Ya con este resultado demostrado, enunciemos formalmente el algoritmo de Euclides y demos su demostración.

Teorema. Empecemos tomando dos enteros positivos $a$ y $b$, con $a\geq b$. Usando el algoritmo de la división, definimos sucesivamente los números $r_0,r_1,\ldots,r_i$ y $q_0,q_1,\ldots,q_i$ de manera que se cumpla

\begin{align*}
b=aq_0+r_0\\
a=r_0q_1+r_1
\end{align*}

con $0\leq r_0<a$, y $0\leq r_1 < r_0$ y para $j=2,\ldots,i$ que se cumpla

\begin{align*}
r_{j-2}=r_{j-1}q_j+r_{j},
\end{align*}

con $0\leq r_j < r_{j-1}.$

Como $b\geq a > r_0 > r_1 > r_2 > \ldots > r_i$, entonces podemos suponer que $r_i=0$. Entonces $(a,b)=r_{i-1}$.

Demostración. Por la proposición anterior, tenemos que $(a,b)=(b,r_0)$. También por esa misma proposición, tenemos que $(b,r_0)=(r_0,r_1)$. Y, de hecho, aplicando repetidametne la proposición tenemos que:

$$(r_0,r_1)=(r_1,r_2)=\ldots=(r_{i-1},r_i)=(r_{i-1},0)=r_{i-1}.$$

La penúltima igualdad es porque $r_i=0$ y la última porque $(n,0)=n$ para cualquier entero positivo $n$.

$\square$

Máximo común divisor como combinación lineal entera

Una última consecuencia del algoritmo de Euclides es que nos ayuda a poner al máximo común divisor de dos números $a$ y $b$ como combinación lineal entera de ellos dos.

Una forma práctica de encontrar la combinación lineal correspondiente es mediante el siguiente procedimiento. Tomaremos como ejemplo el algoritmo de Euclides que ya habíamos hecho para encontrar $(6524,3456)$.

$$6524 = 3456\cdot 1 + 3068, \quad \quad 0 \leq 3068 < 3456. $$
$$3456 = 3068 \cdot 1 + 388, \quad \quad 0 \leq 388 < 3068. $$
$$3068 = 388\cdot 7 + 352, \quad \quad 0 \leq 352 < 388. $$
$$388 = 352 \cdot 1 + 36, \quad \quad 0 \leq 36 < 352. $$
$$352 = 36 \cdot 9 + 28, \quad \quad 0 \leq 28 < 36. $$
$$36 = 28\cdot 1 + 8, \quad \quad 0 \leq 8 < 28.$$
$$28 = 8 \cdot 3 + 4, \quad \quad 0 \leq 4 < 8.$$
$$8 = 4\cdot 2 + 0.$$

Lo que haremos es la siguiente tabla, en donde en la columna izquierda ponemos todos los residuos que vamos encontrando. Además, completaremos la primera fila con $1,0$ y la segunda con $0,1$.

$6524$$1$$0$
$3456$$0$$1$
$3068$
$388$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Vamos a ir llenando la tabla con lo que ya sabemos del algoritmo de Euclides. Por el algoritmo de Euclides, sabemos que $3456$ cabe $1$ vez en $6524$. Por esta razón, restamos $1$ vez la segunda fila de la primera, para obtener $1-0=1$ y $0-1=-1$. Estos son los números que van en la fila $3$, columnas $2$ y $3$:

$6524$$1$$0$
$3456$$0$$1$
$3068$$\mathbf{1}$$\mathbf{-1}$
$388$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

De nuevo, $3068$ cabe una vez en $3456$, así que de nuevo restamos una vez el tercer renglón del segundo. Nos queda $0-1=-1$ y $1-(-1)=2$ para las nuevas entradas:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$\mathbf{-1}$$\mathbf{2}$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Ahora cambia un poco, pues $388$ ya sabemos que cabe $7$ veces en $3068$ (por lo que hicimos del algoritmo de Euclides). Así, para la nueva fila restamos siete veces la cuarta fila de la tercera, para obtener como nuevos números $1-7\cdot (-1)=8$ y $-1-7\cdot (2)=-15$. La tabla queda así:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$-1$$2$
$352$$\mathbf{8}$$\mathbf{-15}$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Siguiendo este procedimiento repetidamente, llegamos a la siguiente tabla:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$-1$$2$
$352$$8$$-15$
$36$$-9$$17$
$28$$89$$-168$
$8$$-98$$185$
$4$$383$$-723$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Los últimos dos números que pusimos en la tabla nos dan la respuesta de cómo poner a $4$ como combinación lineal entera de $6524$ y de $3456$:

$$4=383 \cdot 6524 – 723 \cdot 3456.$$

Verifica que en efecto las cuentas son correctas, y que esta expresión final es válida.

¿Cómo se demuestra que este procedimiento siempre funciona? Se puede mostrar inductivamente que, de hecho, para cada uno de los renglones con entradas $a,b,c$ se cumple que $a=6524b+3456c$. Esto queda como uno de los problemas de tarea moral.

Más adelante…

Esta entrada termina nuestra exploración introductoria al mundo de la aritmética de los números enteros. Sin embargo, todavía hay otros lugares a los que nos llevará el algoritmo de la división. Hasta ahora hemos discutido mucho el caso de la divisibilidad, es decir, cuando el residuo de la división de un número entre otro es igual a cero. Pero también podemos encontrar estructuras matemáticas muy ricas si estudiamos al resto de los posibles residuos. A partir de la siguiente entrada hablaremos del anillo de enteros módulo $n$, lo cual nos ayudará a formalizar estas ideas.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Usa el algoritmo de Euclides para encontrar el máximo común divisor de las siguientes parejas de números, y para escribirlo como combinación lineal entera de ellos.
    1. $15$ y $35$
    2. $18$ y $92$
    3. $201$ y $153$
    4. $328$ y $528$
  2. ¿Cómo usarías el algoritmo de Euclides para encontrar el máximo común divisor de los números $91$, $105$ y $119$? Es decir, debes encontrar el mayor entero $d$ que divida a estos tres números de manera simultánea.
  3. Hay otra forma de encontrar el máximo común divisor de dos números si conocemos su factorización en números primos. Imagina que tenemos dos números $n$ y $m$ y que, conjuntamente, usan los números primos distintos $p_1,p_2,\ldots, p_k$ en su factorización en primos (quizás con exponente cero). Esto nos permite escribirlos como:
    \begin{align*} m=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_k^{\alpha_k} \\ n=p_1^{\beta_1}p_2^{\beta_2}\ldots p_k^{\beta_k}\ \end{align*}
    1. Demuestra que la máxima potencia de $p_1$ que divide tanto a $m$ como a $n$ es $p_1^{\text{min}(\alpha_1,\beta_1)}$
    2. Demuestra que el máximo común divisor de $m$ y $n$ es $$p_1^{\text{min}(\alpha_1,\beta_1)} p_2^{\text{min}(\alpha_2,\beta_2)}\cdots p_k^{\text{min}(\alpha_k,\beta_k)}.$$
  4. Demuestra un resultado análogo al del inciso anterior para el mínimo común múltiplo y úsa ambos resultados para dar otra demostración de que $(m,n)[m,n]=mn$.
  5. Verifica que, en efecto, el método explicado en la entrada ayuda a escribir al máximo común divisor de dos enteros como combinación lineal de ellos.

Entradas relacionadas

Álgebra Superior II: Teorema fundamental de la aritmética e infinidad de números primos

Por Ana Ofelia Negrete Fernández

Introducción

En la entrada anterior comenzamos a hablar de los números primos. Lo que ahora veremos es que, en un sentido muy preciso, los números primos son los bloques con los cuales se construyen todos los demás enteros. El enunciado preciso estará dado por el teorema fundamental de la aritmética.

A grandes rasgos, el teorema fundamental de la aritmética afirma que todo entero se puede escribir como producto de primos, quizás algunos repetidos. Nos referimos a situaciones del tipo
\begin{align*}
8 &= 2 \cdot 2 \cdot 2 = 2^3,\\
13 &= 13^1,\\
152 &= 2^3\cdot 9, \enspace \text{etc.}
\end{align*}

Otro resultado que demostraremos en esta entrada es que hay una infinidad de primos. Euclides fue una de las primeras personas de quienes nos queda registro que lo notó. Veremos una demostración similar a la que él dió.

El teorema fundamental de la aritmética

El teorema fundamental de la artimética dice que cualquier número entero es producto de números primos. Pero, más aún, nos dice que este producto es único, bajo ciertas condiciones que le ponemos a la representación. Para simplificar la presentación, estudiaremos primero lo que dice el enunciado para enteros positivos.

Teorema. Sea $n$ un entero positivo. Entonces, existe un único entero $k$ y únicos números primos $p_1\leq p_2 \leq p_3 \leq \ldots \leq p_k$ tales que $$n=p_1\cdot p_2\cdot \ldots \cdot p_k.$$

Por ejemplo, consideremos el número $1060$. Notemos que en efecto se puede escribir como producto de primos de la siguiente manera: $1060=2\cdot 2 \cdot 5 \cdot 53$. El teorema fundamental de la aritmética nos dice que esta es la única manera en la que podemos ponerlo como producto de primos. Si lo piensas un poco, no es totalmente obvio. ¿Qué impide que, por ejemplo, no pase que $1060$ tenga otra posible representación en donde el $5$ aparezca más veces, o el $2$ menos veces? Es lo que debemos estudiar.

Demostración de la existencia

Vamos a partir la demostración del teorema fundamental de la aritmética en dos partes. Primero veremos la existencia, y después la unicidad. Así, nos enfocaremos primero en ver que cualquier entero positivo tiene una factorización en números primos.

La demostración será por inducción fuerte. Si $n=1$, la factorización es la factorización vacía, en donde $k=0$, y como no estamos multiplicando nada obtenemos $1$. Si $n=2$, entonces la factorización es precisamente $2=2$, pues $2$ es un número primo. Supongamos que el resultado es cierto hasta antes de cierto número fijo $n$ y veamos qué pasa con $n$. Si $n$ es un número primo, entonces $n=n$ ya es una factorización como las que buscamos. Si $n$ no es un número primo, entonces lo podemos factorizar como $n=ab$, en donde $a$ y $b$ son enteros positivos distintos de $1$. Por ello, cada uno de $a$ y $b$ son menores que $n$ y por hipótesis inductiva tienen una factorización en primos, digamos
\begin{align*}
a&=q_1\cdot q_2 \cdot \ldots\cdot q_l\\
b&=r_1\cdot r_2 \cdot \ldots \cdot r_m.
\end{align*}

Así, renombrando $q_1,\ldots,q_l,r_1,\ldots,r_m$ como $p_1\leq \ldots \leq p_k$ (donde $k=l+m$) para que queden en orden no decreciente obtenemos la factorización $$n=p_1\cdot p_2\cdot \ldots \cdot p_k $$ buscada. Esto termina la prueba de la primera parte.

Demostración de la unicidad

Veamos ahora que las factorizaciones en primos son únicas. Una vez más, procedemos por inducción fuerte. El resultado claramente es cierto para $n=1$ y $n=2$. Supongamos que el resultado es cierto hasta antes de cierto entero $n$ dado y supongamos que tenemos dos factorizaciones para $n$:

\begin{align*}
n&=p_1\cdot p_2 \cdot \ldots\cdot p_k\\
n&=q_1\cdot q_2 \cdot \ldots \cdot q_l.
\end{align*}

Notemos que $p_k$ es un divisor de $n$, así que debe dividir a $q_1\cdot\ldots\cdot q_l$. Por una propiedad de divisibilidad que vimos en la entrada pasada, debe suceder que o bien $p_k$ divide a $q_l$, o bien que divide a $q_1\cdot \ldots \cdot q_{l-1}$. Si pasa lo segundo, debe dividir o bien a $q_{l-1}$, o bien a $q_1\cdot \ldots \cdot q_{l-2}$. Y así sucesivamente, de modo que $p_k$ debe dividir a alguno de los $q_i$. Pero como $p_k$ y $q_i$ son primos, debe suceder entonces que $p_k=q_i$. Tras cancelar este término en ambas expresiones de $n$, llegamos a que:

$$p_1\cdot p_2 \cdot \ldots\cdot p_{k-1}=q_1\cdot \ldots \cdot q_{i-1} \cdot q_i \cdot \ldots \cdot q_l,$$

pero esto es una igualdad de factorizaciones en primos para un número menor estricto a $n$. Por hipótesis inductiva, ambas factorizaciones deben de ser la misma. Así, ambas factorizaciones de $n$ son la misma, pues se obtienen a partir de estas multiplicando por el número $p_k=q_i$.

$\square$

Otra forma de escribir el teorema fundamental de la aritmética

Hay otra manera de escribir el teorema fundamental de la aritmética, en donde los primos iguales se agrupan en un mismo término, y se coloca la potencia correspondiente.

Teorema. Sea $n$ un entero positivo. Existe un único entero no negativo $k$, únicos primos $p_1\leq \ldots \leq p_k$ y únicos exponentes $\alpha_1,\ldots,\alpha_k$ tales que:

$$n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot \ldots \cdot p_k^{\alpha_k}.$$

En realidad esta segunda versión del teorema se deduce de manera inmediata de la anterior.

Ejemplo. Consideremos el número $36$. El $2$ lo divide, así que $36=18\cdot 2$. Luego, el $3$ divide al $18$, de manera que $36=3\cdot 6\cdot 2$. Finalmente, notamos que $6=2\cdot 3$, de donde $36=3\cdot 2 \cdot 3 \cdot 2$. Para obtener la «forma estándar» de la factorización, agrupamos los primos iguales, les ponenmos el orden correspondiente y escribimos en orden creciente de primos. Así, la factorización de $36$ quedaría $36=2^2\cdot 3^2$.

$\square$

El conjunto de primos es infinito

En esta sección queremos demostrar otro resultado importante sobre el conjunto de los números primos.

Teorema. El conjunto de números primos es infinito.

Para dar la demostración, usaremos el método de demostración por contradicción, es decir, partiremos de que el conjunto de primos no es finito y, eventualmente se disparatará el asunto.

Este en efecto parece ser el método más conveniente. Sería difícil usar inducción dado que, si bien el conjunto de primos puede indexarse por $p_1, p_2, p_3, \ldots$, no es fácil determinar cuál es el primo que sigue en la lista. O bien, dado un entero $n$, no es fácil determinar si $n+1$ será o no un número primo. Resultaria igualmente difícil intentar la demostración por algún otro método directo.

La idea que usaremos es la siguiente. Si hay finitos primos, digamos $k$, significa que se puede crear una lista finita con ellos: $p_1, p_2, \ldots , p_k$. Veremos que siempre debe existir un primo distinto de los de la lista, lo que llevará a una contradicción con la hipótesis de que sólo existían $k$ primos.

Veamos primero unos casos partiulares del argumento que usaremos. Supongamos que sólo existieran $2$ primos, el $2$ y el $3$. Consideremos el número $z = 2\cdot 3 + 1$. De acuerdo al teorema fundamental de la aritmética, este número o bien es primo, o bien debe tener un divisor primo $p$. No puede ser primo, pues dijimos que los únicos primos eran $2$ y $3$. No puede ser divisible entre $2$ pues deja residuo $1$ al hacer la división. Tampoco puede ser divisible entre $3$ pues también deja residuo $1$ al hacer la división. Así, debe haber otro primo que no sea $2$ y $3$ y que divida a este número. Esto contradice que sólo existieran $2$ primos.

Veamos otro ejemplo. Supongamos que hay únicamente 4 primos: $2,3,5,7$. Consideremos el número $2 \cdot 3 \cdot 5 \cdot 7 + 1 = 211.$ Si dividimos este número entre $2$, nos da $211=105\cdot 2 +1$, así que $2\nmid 211$. Si lo dividimos entre $3$, nos da $211=70\cdot 3 + 1$, así que $3\nmid 211$. De manera similar, se puede ver que las divisiones entre $5$ y $7$ también dejan residuo $1$, así que $5 \nmid 211$ y $7\nmid 211$.

Por el teorema fundamental de la aritmética, debe haber algún primo que divida a $211$. Pero estamos suponiendo que los únicos primos que existen son $2,3,5,7$ y acabamos de ver que ninguno de estos funciona. ¡Esto es una contradicción! Lo mismo ocurrirá sin importar la cantidad de primos $p_1, p_2, \ldots , p_k$ inicial. El problema no es cuántos son exactamente, sino la suposición de que son una cantidad finita.

Demostración. Supongamos, para buscar una contradicción, que el conjunto de números primos es finito y que consiste de exactamente los $k$ números primos $p_1, p_2, \ldots , p_k$. Consideremos el número $$p_1\cdot p_2 \cdot \ldots \cdot p_k +1.$$

El anterior número no es divisible por ninguno de los primos $$p_1, p_2, \ldots , p_k,$$ pues precisamente al hacer la división el residuo que queda es igual a $1$.

Por el teorema fundamental de la aritmética, $$p_1\cdot p_2 \cdot \ldots \cdot p_k + 1$$ debe tener entonces un divisor primo $p$ diferente de $$p_1, p_2, \ldots , p_k. $$ Esto es una contradicción, pues supusimos que sólo existían los primos $p_1,\ldots,p_k$.

$\square$

Más adelante…

Con los dos teoremas de esta entrada hemos profundizando un poco más en por qué los números primos son interesantes e importantes. La exploración de los números primos en este curso no irá mucho más lejos, pues pronto comenzaremos a tratar otros temas de aritmética modular. Sin embargo, te dejamos algunos pocos párrafos más sobre los números primos.

Los números primos siguen siendo interesantes para los matemáticos hoy en día; primero por la irregularidad con que van apareciendo en la recta numérica y porque hay muchas cosas que aún no se sabe acerca de su raro comportamiento. Por ejemplo, se conjetura que hay infinitos «primos gemelos», es decir, se cree que siempre es posible encontrar dos primos $a$ y $b$ que estén distanciados en dos unidades; no importa qué tan alejados estén del cero. El $3$ y el $5$ son primos gemelos. También los son el $17$ y el $19$. Nadie sabe si esta conjetura es cierta o falsa.

Los números primos aparecen en patrones muy irregulares, pero sí es posible decir algunas cosas al respecto. Por ejemplo, después del $2$ todo número primo $p$, es de la forma $4n +1$ o de la forma $4n -1$ para alguna $n \in \mathbb{N}$. Un resultado lindo en teoría de números es que para aquéllos primos que pertenecen a la primera categoría, que son los de la forma $4n+1$, siempre existe su expresión como una suma de cuadrados: $p = 4n + 1 = m^2 + n^2$, $n, m \in \mathbb{Z}.$ Pero a los primos de la segunda categoría es imposible expresarlos como suma de cuadrados. Estos son dos de los muchos resultados que demostró Euler para números primos, y puedes ahondar en ello en un curso de teoría de números.

Los números primos también han encontrado aplicaciones en criptografía, pues es bien sabido que si se eligen dos primos $p_1$ y $p_2$ tales que al multiplicarlos se obtenga un número compuesto $z$ de más de 100 dígitos, y si luego se establece que $p_1$ y $p_2$ sean la «clave» de mi mensaje cifrado pero yo únicamente doy a conocer el número compuesto $z$ a otra persona, entonces a una computadora le resultaría imposible factorizar $z$ en un corto lapso de tiempo. ¡Le tomaría años! De ahí que la contraseña secreta sería indescifrable.

Ahora, lo que se conoce como el «teorema fundamental de la aritmética» también tiene varias extensiones interesantes en otras áreas de las matemáticas. De hecho, en algunas estructuras la unicidad deja de ser cierta. Si combinamos a los números enteros con los números complejos (que veremos después), tenemos algunos ejemplos como $$12 = (1 + \sqrt{-11})(1 – \sqrt{-11})$$ pero también $$12 = (2 + \sqrt{-8})(2 – \sqrt{-8}).$$

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Encuentra la factorización en primos de cada uno de los siguientes números 100, 170, 2022, 5000 y 713.
  2. Encuentra el menor entero positivo $k$ que haga que $775k$ sea un número cuadrado perfecto, es decir, de la forma $n^2$ para algún entero $n$.
  3. Halla el número de divisores de $2360$ y calcula la suma de todos ellos.
  4. ¿Cuál es el número entero de $1$ a $100$ que tiene la mayor cantidad posible de divisores?
  5. Demuestra que un entero tiene una cantidad impar de divisores si y sólo si es un número cuadrado.

Entradas relacionadas


Álgebra Superior II: Números primos y sus propiedades

Por Ana Ofelia Negrete Fernández

Introducción

En esta entrada hablaremos de los protagonistas de entre los números enteros: los números primos. Es difícil poder enunciar en palabras sencillas la importancia que tienen este tipo de números, así que haremos un recorrido que incluye lo siguiente. Comenzaremos dando la definición de qué es un número primo, y haremos algunas aclaraciones conceptuales. Luego, enunciaremos propiedades de divisibilidad que cumplen los números primos y que son muy únicas a ellos. Esto nos ayudará a entender un poco de las razones por las cuales son especiales.

Finalmente, dejaremos preparado el terreno para poder hablar de dos resultados fundamentales sobre los números primos en la próxima entrada: el teorema fundamental de la aritmética y la infinidad del conjunto de números primos. El primer resultado nos permitirá pensar a los números primos como los átomos de los números enteros, ya que a partir de multiplicarlos se obtendrá cualquier entero, sea éste primo o compuesto.

Definición de números primos

La definición con la que trabajaremos es la siguiente.

Definición. Un entero número entero $p$ es primo si y sólo si es positivo y tiene exactamente cuatro divisores: $1, \enspace -1, \enspace z \enspace \text{y } -z \text{.}$

De la definición hay algunos números que inmediatamente debemos descartar por no ser números primos. Por ejemplo, el $1$ no es un número primo pues tiene como divisores únicamente al $-1$ y al $1$, que son dos divisores, y no exactamente cuatro, como pide la definición. Del mismo modo, $-1$ tampoco es número primo pues tiene sólo dos divisores también y, para rematar, es negativo, lo cual no se vale.

Del mismo modo, concluimos que el $0$ no es número primo. Su problema es que tiene demasiados divisores. Cualquier número entero divide al $0$, así que tiene mucho más que cuatro divisores. Veamos nuestro primer ejemplo de un número que sí es primo.

Proposición. El entero $2$ es primo.

Demostración. Lo primero por notar es que $2$ es positivo. Supongamos que $x \in \mathbb{Z}$ divide a $2$. Por cómo se comparan en tamaños un número con un divisor, obtenemos que $|d|\leq 2$. Esto nos deja $5$ posibilidades para $d$: $-2,-1,0,1,2$. El $0$ nunca es divisor y se puede ver que cada uno de los otros cuatro números sí lo son. Así, el $2$ tiene exactamente cuatro divisores, que son $1$, $2$, $-1$ y $-2$. Concluimos entonces que $2$ es un número primo.

$\square$

Si bien el $-2$ también tiene exactamente esos mismos $4$ divisores, a $-2$ no le llamamos número primo porque es negativo. Recuerda que por definición sólo los números positivos pueden ser primos.

En la duda, si no sabemos si un número es primo, siempre podemos regresar a la definición.

Proposición. El entero $57$ no es primo.

Demostración. Notamos que $1$, $3$, $19$ y $57$ son todos ellos divisores de $57$, así como sus negativos. Por ello, el número $57$ tiene ocho divisores, y por lo tanto no es primo.

$\square$

Otras formas de pensar a los números primos

La definición de primos que dimos está en términos de la cantidad de divisores en total que se deben tener. Sin embargo, hay por lo menos otras dos formas de escribir esto mismo.

Proposición. Son equivalentes las siguientes tres afirmaciones para un número entero $p$:

  • El número $p$ es primo de acuerdo a nuestra definición de tener exactamente $4$ divisores.
  • El número $p$ es positivo y tiene exactamente $2$ divisores positivos.
  • El número $p$ es positivo y en cualquier forma de escribir $p=ab$ con $a$ y $b$ enteros positivos, sucede forzosamente que $a=1$ ó $b=1$.

Demostración. Los primeros dos puntos son equivalentes entre sí pues si $d$ es un divisor de $p$, entonces $-d$ también. Así, por cada divisor positivo hay uno negativo y viceversa. De hecho, los dos divisores positivos son, explícitamente, $1$ y $p$.

Si $p$ es primo con respecto a esta segunda definición, entonces el tercer inciso es claro, pues escribir $p=ab$ justo nos dice que $a|p$, de donde $a=1$ ó $a=p$, pues son sus únicos dos posibles divisores. Si $a=1$, tenemos lo que queremos. Y si $a=p$, entonces para que se de $p=ab$, debemos tener $b=1$, como queremos.

Finalmente, a partir del tercer inciso también se puede demostrar el segundo. Supongamos que $p$ cumple con el tercer inciso y supongamos que $d$ es divisor. ESto nos permite escribir $p=dr$ con $r$ algún entero. Por el tercer inciso, debemos tener $d=1$, o bien $r=1$, y entonces $d=p$, tal como nos pide el segundo inciso.

$\square$

Quizás no se ve tanto la ventaja entre distinguir entre las primeras dos versiones de la proposición anterior. De hecho, se parecen mucho. Sin embargo, sí vale la pena pensar en la tercera como algo diferente: nos dice que hay sólamente dos maneras de escribir a un primo como producto de números positivos. Esto nos ayuda, por ejemplo, a darnos cuenta rápidamente que un número no es primo aunque no tengamos todos sus divisores.

Ejemplo. El número $105$ no es primo pues se puede escribir como $5\cdot 21$. En esta expresión ninguno de los dos números es igual a $1$. Así, concluimos que $105$ no es primo.

$\square$

Propiedades de divisibilidad de los números primos

En el caso de los números primos, los máximos comunes divisores son asunto de todo o nada. Esto está escrito más formalmente en la siguiente definición.

Proposición. Sea $p$ un número primo y $a$ un entero. Si $p$ divide a $a$, tenemos $(a,p)=p$. Y si no, tenemos $(a,p)=1$.

Demostración. Sabemos que $(a,p)|p$ y que $(a,p)$ no es negativo. Así, $(a,p)$ debe ser uno de los dos divisores de $p$: $1$ ó $p$. Si $p$ divide a $a$, entonces $(a,p)=p$ pues $p$ es divisor común tanto de $p$ como de $a$. Pero si $p$ no divide a $a$, entonces a $(a,p)$ no le queda más que ser igual a $1$.

$\square$

La proposición anterior nos lleva a un lema de divisibilidad que nos resultará útil cuando enunciemos y probemos el teorema fundamental de la aritmética.

Proposición. Sea $p$ un número primo y $a,b$ números enteros. Si $p|ab$, entonces $p|a$ ó $p|b$.

Demostración. Si $p|a$, entonces ya terminamos. Si no, por la proposición anterior tenemos que $(p,a)=1$. Pero entonces por una propiedad anterior de divisibilidad con primos relativos obtenemos que $p|b$, como queríamos.

$\square$

Para la proposición anterior resultó crucial que $p$ fuera un número primo. Por ejemplo, tenemos que $9|180=15\cdot 12$, pero no es cierto ni que $9|15$, ni que $9|12$.

Más adelante…

En la siguiente entrada veremos dos teoremas importantes relacionados con los números primos: el teorema fundamental de la aritmética y el teorema de que existe una infinidad de primos.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Encuentra todos los números primos de $1$ a $20$.
  2. Sea $n$ un número entero que no sea un número primo, ni el negativo de un número primo. Demuestra $n$ que se puede expresar de la forma $ab$ con $a$ y $b$ enteros (positivos o negativos) de por lo menos ocho formas distintas.
  3. Sea $p>2$ un número tal que ninguno de los números $2,\ldots,\left\lfloor \sqrt{p}\right \rfloor$ lo divide. Muestra que $p$ es un número primo.
  4. Sea $n$ un número entero y $p$ un primo. Muestra que si $p|n^2$, entonces $p|n$. De hecho, muestra que en general, para un entero $k\geq 1$ se cumple que $p|n^k$ si y sólo si $p|n$.
  5. Sea $p$ un número primo. ¿Cuántos divisores tiene el número $p^{10}$? ¿Cuántos son positivos y cuántos negativos?

Entradas relacionadas

Álgebra Superior II: Mínimo Común Múltiplo

Por Ana Ofelia Negrete Fernández

Introducción

En la entrada anterior hablamos del máximo común divisor, para lo cual lo definimos en términos de ideales. Luego vimos que cumplía las propiedades que esperábamos. Es el turno de hacer lo mismo con el mínimo común múltiplo.

Recordando lo que nos enseñaron en la educación básica, el mínimo común múltiplo de dos enteros $a$ y $b$ tenía que ser simultáneamente múltiplo de ambos y, a la vez, tenía que ser lo más pequeño posible. Siendo un poco más precisos, tenía que ser un múltiplo positivo.

Como ejemplo, tomemos $a = 6$, $b = 8$. Una manera muy sencilla de encontrar un múltiplo en común es multiplicando ambos: $6\cdot 8 = 48$. Pero este no es el múltiplo más pequeño. Para poder encontrar aquel que sí sea el más pequeño, podemos enlistar los múltiplos de cada uno de estos números:

  • Múltiplos de $6$: $6,12,18,24,30,36, \ldots$
  • Múltiplos de $8$: $8, 16, 24, 32, 40, \ldots$

Notamos que el número más pequeño que está en ambas listas es el $24$. En educación básica había otras maneras de obtener esto sin hacer las listas anteriores, por ejemplo, mediante la siguiente tabla, en donde «vamos encontrando divisores en común, o bien de cada número».

862
432
232
133
1
El mínimo común múltiplo de 8 y 6 es $2^3\cdot 3 = 24.$

Lo que haremos será un poco distinto. Nuestra definición se basará nuevamente en el concepto de ideales. Veremos cómo hacer esto y cómo regresar al terreno familiar de mínimo común múltiplo que ya conocemos.

Mínimo Común Múltiplo

En la entrada de ideales en $\mathbb{Z}$ demostramos que la intersección de cualesquiera dos ideales es un ideal. También vimos que cualquier ideal era generado por algún entero no negativo. Esto nos lleva a la siguiente definición.

Definición. Sean $a$ y $b$ números enteros. Definimos a su mínimo común múltiplo como al entero no negativo $k$ tal que $a\mathbb{Z} \cap b\mathbb{Z} = k \mathbb{Z}$. En símbolos, nos referimos al mínimo común múltiplo de $a$ y $b$ como $\text{mcm}(a,b)$, o bien simplemente como $[a,b]$.

Ejemplo. Retomemos el ejemplo de la introducción. Si queremos calcular, por definición, al mínimo común múltiplo de los enteros $6$ y $8$, debemos considerar a los ideales $6\mathbb{Z}$ y $8\mathbb{Z}$, que respectivamente son:

$$6 \mathbb{Z} = \{\ldots, -12, -6, 0, 6, 12 ,18, 24, \ldots \}$$

$$8 \mathbb{Z}= \{\ldots, -16, -8, 0 ,8, 16, 24, 32, \ldots \}$$

Si hacemos la intersección de ambos ideales, notemos que obtenemos lo siguiente:

$$6 \mathbb{Z} \cap 8 \mathbb{Z} = \{\ldots, -24, 0, 24, 48, 72, \ldots\},$$

que es el ideal generado por el $24$. Así, tenemos, por definición, que el mínimo común múltiplo de $6$ y $8$ es igual a $24$.

$\square$

Propiedad fundamental del Mínimo Común Múltiplo

Lo que nos gustaría hacer ahora es demostrar que el mínimo común múltiplo que obtuvimos de nuestra definición es, en efecto, el número que cumple con las propiedades que esperamos. Escribimos esto en la siguiente proposición.

Proposición. Sean $a$ y $b$ números enteros. Se cumple que:

  • $a\mid [a,b]$ y $b\mid [a,b]$
  • Si $a\mid m$ y $b\mid m$, entonces $[a,b]\mid m$.

Demostración. La primera parte es sencilla. Como $[a,b]$ genera a $a\mathbb{Z} \cap b \mathbb{Z}$, en particular está en este conjunto. Como $[a,b]\in a\mathbb{Z}$, entonces $a|[a,b]$ y como $[a,b]\in b\mathbb{Z}$, entonces $b|[a,b]$.

Para la segunda parte, si $a\mid m$ y $b\mid m$, entonces $m\in a\mathbb{Z}$ y $m\in b\mathbb{Z}$, pero entonces $m\in a\mathbb{Z} \cap b\mathbb{Z} = [a,b]\mathbb{Z}$. De este modo, $[a,b]|m$.

$\square$

Así, el primer punto dice que $[a,b]$ es en efecto un múltiplo en común. El segundo punto es el que dice que «es el mínimo», pues a partir de la divisibilidad ahí escrita se deduce que $|[a,b]|\leq |m|$. Si pedimos que $m$ sea positivo, tenemos entonces que, en efecto, $[a,b]\leq m$. En resumen.

Corolario. Sean $a$ y $b$ enteros y $m$ un entero positivo múltiplo tanto de $a$ como de $b$. Entonces $m\geq [a,b]$.

Otra propiedad del Mínimo Común Múltiplo

Tanto el mínimo común múltiplo, como el máximo común divisor, tienen muchas propiedades que se pueden demostrar. Hay dos caminos que usualmente funcionan: o bien usar la definición a partir de ideales, o bien usar las propiedades fundamentales de cada uno de los conceptos. Veamos algunos ejemplos para el mínimo común múltiplo.

La siguiente propiedad dice que ahora mostraremos que el mínimo común múltiplo «saca constantes» en cierto sentido. Veremos una demostración usando ideales.

Proposición. Sea $k$ un entero positivo, y $b,c$ enteros cualesquiera. Se cumple que $ [kb, kc] = k[b,c]. $

Demostración. Por definición, $[kb,kc]$ es el entero no negativo que genera al ideal $(kb)\mathbb{Z} \cap (kc)\mathbb{Z}$. Nos gustaría ver que dicho entero es $k[b,c]$, en otras palabras, hay que verificar la siguiente igualdad de conjuntos:

$$(kb)\mathbb{Z} \cap (kc)\mathbb{Z} = k[b,c]\mathbb{Z}.$$

Veamos que el lado izquierdo está contenido en el derecho. Tomemos un entero $m$ del lado izquierdo. Como es múltiplo de $kb$, lo podemos escribir como $m=kbr$ para $r \in \mathbb{Z}$. Como es múltiplo de $kc$, lo podemos escribir como $m=kcs$ para $s\in \mathbb{Z}$. Tenemos entonces $kbr=m=kcs$, de donde $br=cs$ (usando $k>0$). Así, $n=br=cs$ es simultánteamente múltiplo de $b$ y $c$, así que debe ser múltiplo de $[b,c]$, digamos $n=t[b,c]$. De este modo, tenemos que $m=kbr=kn=kt[b,c]$. Esto muestra que $m$ está en $k[b,c]\mathbb{Z}$.

Ahora veamos que el lado derecho está contenido en el izquierdo. Un entero $m$ en $k[b,c]\mathbb{Z}$ es de la forma $m=k[b,c]t$ para $t$ un entero. Como $[b,c]$ es múltiplo de $b$ y $c$, podemos escribir $[b,c]=rb$ y $[b,c]=sc$ para algunos enteros $r$ y $s$. Tenemos entonces que

$$m=k[b,c]t=krbt=(kb)(rt),$$

lo cual muestra que $m$ está en $(kb)\mathbb{Z}$ y que

$$m=k[b,c]t=ksct=(kc)(st),$$

lo cual muestra que $m$ está en $(kc)\mathbb{Z}$. Esto muestra que $m$ está en la intersección buscada.

$\square$

Mínimo común múltiplo y primos relativos

Cuando dos números positivos son primos relativos, es sencillo encontrar su mínimo común múltiplo: simplemente se multiplican. De hecho, esto es una caracterización para los números primos relativos.

Proposición. Sean $a$ y $b$ dos números enteros positivos. Se tiene que $(a,b)=1$ si y sólo si $[a,b]=ab$.

Demostración. Supongamos primero que $(a,b)=1$. Tenemos que $a|[a,b]$ y que $b|[a,b]$ Por una propiedad de primos relativos de la entrada anterior, podemos deducir que $ab|[a,b]$. A la vez, sabemos que $[a,b]$ divide a cualquier múltiplo en común de $a$ y $b$, en particular, a $ab$, así, $[a,b]|ab$. Por cómo interactúa la divisibilidad con los valores absolutos, obtenemos entonces que $[a,b]=|[a,b]|=ab$, como queríamos.

Ahora supongamos que $[a,b]=ab$. Tomemos un número $d$ que divida tanto a $a$ como a $b$. Veremos que ese número debe ser $1$ ó $-1$. Escribamos $a=dr$ y $b=ds$. Tomemos el número $n=drs$. Notemos que $n=as=br$, así que $n$ es un múltiplo común de $a$ y $b$. Por ello, debe ser múltiplo del mínimo común múltiplo de ambos, que estamos suponiendo que es $ab$. Así, existe un entero $k$ con $drs=kab$ y por lo tanto $$drs=kab=kdrds.$$ De aquí deducimos que $1=kd$, por lo que $d$ debe de dividir a $1$ y por lo tanto es $1$ ó $-1$, como queríamos.

$\square$

En realidad esta proposición tiene una versión más general. Siempre se cumple, para cualesquiera dos enteros $a$ y $b$, que $|ab|=[a,b]\cdot (a,b)$. Este es un problema clásico que estudiaremos más adelante.

Más adelante…

El mínimo común múltiplo y el máximo común divisor son dos conceptos que se utilizan mucho en la teoría de números enteros. En estas últimas dos entradas hemos platicado un poco acerca de ellos. Más adelante veremos que estas mismas nociones se pueden generalizar para otras estructuras algebraicas, como la de los polinomios.

Por ahora continuaremos estudiando teoría de la divisibiliad dentro de los números enteros. Es el momento de introducir otro de los conceptos estelares: el de números primos.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Encuentra el mínimo común múltiplo de los números $24$ y $36$. Luego, encuentra su máximo común divisor.
  2. Demuestra que, para $a,b\in \mathbb{Z}$ se cumple: $[a,b] = [-a,b] = [a,-b] = [-a, -b].$
  3. Sean $a$ y $b$ enteros positivos. Muestra que $[a^2,b^2]=[a,b]^2$ y que, en general, para un entero $k\geq 1$ se cumple que $[a^n,b^n]=[a,b]^n$.
  4. ¿Cómo definirías el mínimo común múltiplo de tres números? ¿Y el máximo común divisor de tres números?
  5. Sean $a$, $b$, $c$ enteros. ¿Cómo están relacionados entre sí $[a,c]$, $[b,c]$ y $[a+b,c]$? ¿Será alguno de ellos la suma de los otros dos? Demuéstralo o da un contraejemplo.

Entradas relacionadas

Álgebra Superior II: Máximo Común Divisor

Por Ana Ofelia Negrete Fernández

Introducción

La entrada anterior fue un poco técnica y habló acerca de ideales en los números enteros. Podemos apoyarnos de los ideales para construir otras nociones conocidas de la teoría de números enteros. En esta entrada hablaremos de una de ellas: la de máximo común divisor.

Quizás recuerdes la idea general del máximo común divisor a partir de lo que aprendiste en la educación básica. Por ejemplo, si tenemos a los números $14$ y $35$,y queremos encontrar su máximo común divisor, lo que se hacía es escribir los divisores de ambos:

  • Divisores de $14$: $1,2,7,14$.
  • Divisores de $35$: $1,5,7,35$.

Ya teniendo ambas listas, se elige número más grande que estén en ambas: el $7$.

Con lo que platicaremos en esta entrada vamos a recuperar esta misma noción, sin embargo lo haremos desde un punto de vista un poco más teórico, el cual nos permitirá entender más aspectos de divisibilidad de los máximos comunes divisores.

Definición de máximo común divisor

Recordemos, que en la entrada pasada vimos cómo encontrar al «ideal más pequeño» que tuviera a dos números $a$ y $b$ enteros dados.

Proposición. Si $a$ y $b$ son enteros, entonces:

  • El conjunto $M=\{ra+sb:r,s\in \mathbb{Z}\}$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$.
  • Si $I$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$, entonces $M\subseteq I$.

Como $M$ es el ideal más pequeño que tiene a $a$ y a $b$, le llamamos el ideal generado por $a$ y $b$, y lo escribimos como $\langle a,b\rangle$.

Además, en la entrada anterior también vimos que cualquier ideal de $\mathbb{Z}$ forzosamente es de la forma $k\mathbb{Z}$ para algún entero no negativo $k$, es decir, que consiste justo de los múltiplos de algún entero no negativo $k$. Esto nos permite plantear la siguiente definición.

Definición. Si $a$ y $b$ son enteros, definimos a su máximo común divisor como el entero no negativo $k$ tal que $$k\mathbb{Z}=\langle a,b\rangle.$$ A este número $k$ a veces se le denota por $\text{MCD}(a,b)$, o bien simplemente $(a,b)$.

Esta es una definición muy distinta de la que nos dan en la educación básica, sin embargo, pronto recuperaremos las propiedades familiares: veremos que en efecto es un divisor de $a$, es un divisor de $b$, y que de entre los divisores en común, es el más grande de ellos. Antes de pasar a las propiedades, veamos un ejemplo.

Ejemplo. Tomemos a los enteros $6$ y $14$. ¿Qué ideal $I$ generan? Es decir, ¿quién es $\langle 6,8\rangle$? Bueno, dicho ideal $I$ debe tener a $6$ y $14$, así que por cerradura de la resta tiene también a $14-6-8$, y similarmente debe tener a $8-6=2$. Pero recordemos que los ideales también son cerrados bajo producto por cualquier entero, así que al estar $2$ en $I$, debe pasar que todos los números pares están en $I$. Y en efecto, los números pares son un ideal de $\mathbb{Z}$ que tienen a $6$ y $14$. Con esto acabamos de demostrar que $\langle 6,14 \rangle = 2\mathbb{Z}$. De este modo, por definición, el máximo común divisor de $6$ y $14$ es igual a $2$.

$\square$

Propiedades del máximo común divisor

En esta sección veremos dos propiedades muy importantes del máximo común divisor. Por un lado, veremos que siempre se puede escribir «como combinación» de los números originales, en un sentido muy específico. Por otro lado, recuperaremos las «propiedades usuales» que queremos que se cumplan por lo que aprendimos en educación básica.

Proposición. Sean $a$ y $b$ números enteros. Entonces, existen enteros $r$ y $s$ tales que $$(a,b)=ra+sb.$$

Demostración. Por definición, $(a,b)$ es el entero tal que $\langle a,b \rangle =(a,b)\mathbb{Z}$, en particular, $(a,b)$ está en $\langle a,b\rangle$. Pero también ya sabemos que $$\langle a,b \rangle = \{ra+sb:r,s\in \mathbb{Z}\}.$$ Como $(a,b)$ está en $\langle a,b \rangle$, entonces se puede escribir de la forma de los elementos del conjunto de la derecha también, es decir, existen enteros $r$ y $s$ tales que $$(a,b)=ra+sb.$$

$\square$

Como estamos poniendo a $(a,b)$ de la forma $ra+sb$, en donde los coeficientes de $a$ y $b$ son los números enteros $r$ y $s$, decimos que $(a,b)$ se puede escribir como una combinación lineal entera de $a$ y $b$. La proposición anterior nos demuestra la existencia de dicha combinación lineal, sin embargo no nos dice exactamente cómo encontrarla. Más adelante veremos el algoritmo de Euclides, el cual nos da una forma práctica de encontrar al máximo común divisor de dos números como combinación lineal de ellos.

Veamos ahora el resultado que nos dice que, en efecto, el máximo común divisor divide a cada número, y que es «el más grande» que hace esto.

Proposición. Sean $a$ y $b$ números enteros. Entonces, se cumple lo siguiente:

  • $(a,b)|a$ y $(a,b)|b$.
  • Si $d$ es algún otro número tal que $d|a$ y $d|b$, entonces $d|(a,b)$.

Demostración. Notemos que $a\in \langle a, b\rangle$, y que por definición $\langle a,b \rangle = (a,b) \mathbb{Z}$. De este modo, $a$ es múltiplo de $(a,b)$. Análogamente, $b$ es múltiplo de $(a,b)$. Esto muestra el primer inciso.

Ahora supongamos que $d$ es otro número tal que $d|a$ y $d|b$. Por la proposición anterior, existen enteros $r$ y $s$ tales que $(a,b)=ra+sb$. Como $d|a$, entonces $d|ra$. Como $d|b$, entonces $d|sb$. Así, $d|ra+sb=(a,b)$, como queríamos.

$\square$

La proposición anterior sí dice que el máximo común divisor divide a ambos, sin embargo no es totalmente directo por qué es el «máximo» en tamaño. La segunda parte habla más bien de una divisibilidad. Pero esto se traduce rápidamente a una desigualdad con la ayuda de las propiedades de la divisibilidad. Observa que si $d$ es un número tal que $d|a$ y $d|b$, entonces $d|(a,b)$. Tenemos entonces que $|d|\leq |(a,b)|$. Pero $(a,b)$ siempre es no negativo por definición, así que $|d|\leq (a,b)$. En resumen, tenemos el siguiente resultado.

Corolario. Si $a$ y $b$ son enteros y $d$ es un entero tal que $d|a$ y $d|b$, entonces $|d|\leq (a,b)$.

Números primos relativos (de máximo común divisor igual a uno)

Una situación muy especial en la teoría de los números ocurre cuando el máximo común divisor de dos números es igual a $1$.

Definición. Decimos que dos números enteros $a$ y $b$ son primos relativos si su máximo común divisor es igual a $1$. En símbolos, son primos relativos si $(m,n)=1$.

Por lo que hemos discutido hasta ahora, algunas de las consecuencias de que dos números $a$ y $b$ sean primos relativos son las siguientes:

  • Si $d$ es un número que divide a $a$ y a $b$, entonces $|d|\leq (a,b)=1$, es decir, $d=1$ o $d=-1$. De este modo, los únicos divisores que tienen en común son el $1$ y el $-1$.
  • El ideal generado por $a$ y $b$ es $1\cdot \mathbb{Z} = \mathbb{Z}$, es decir, consiste de todos los enteros.
  • Por esa misma razón, se tiene que $\{ra+sb: r,s \in \mathbb{Z}\}=\mathbb{Z}$, en otras palabras, cualquier entero es combinación lineal entera de $a$ y de $b$.
  • En particular, el $1$ es combinación lineal entera de $a$ y de $b$, es decir, existen enteros $r,s$ tales que $ra+sb=1$.

Estas consecuencias son prácticamente inmediatas de la definición, y es recomendable que intentes deducirlas por tu cuenta.

Veamos algunas otras propiedades que relacionan a los números primos relativos, con divisibilidad de algunas expresiones.

Proposición. Sean $a,b,c$ números enteros . Si $a\mid bc$ y $(a,b) = 1$, entonces $a\mid c.$

Demostración. Como $a$ divide a $bc$, existe $x \in \mathbb{Z}$ tal que $ax = bc$. Como $a$ y $b$ son primos relativos, sabemos que existen enteros $r$ y $s$ tales que $1 = ra+sb$. Multipliquemos esta última igualdad por $c$. Tenemos entonces que:
$$ c = rac + sbc = rac+ sax = a (rc+sx).$$

De aquí obtenemos la divisibilidad $a\mid c$ que buscábamos.

$\square$

En la proposición anterior es crucial la hipótesis de que $a$ y $b$ sean primos relativos. Por ejemplo, $7|28=14\cdot 2$, pero no pasa que $7|2$. Es decir, usualmente si dividimos a un producto, no se cumple que dividamos a cualquiera de sus factores.

A continuación tenemos otro resultado con un estilo similar.

Proposición. Sean $a,b,c \in \mathbb{Z}.$ Si $a\mid c$, $b\mid c$ y $(a,b) =1,$ entonces $ab \mid c$.

Demostración. Ya que $a,b$ son primos relativos, existen $m,n \in \mathbb{Z}$ tales que $1=am + bn $. Multipliquemos dicha ecuación por $c$: $$c=cam + cbn.$$

Como $a\mid c$ y $b\mid c$, existen $q,r \in \mathbb{Z}$ tales que $aq = c$ y $br = c$. Sustituyendo esto en la ecuación anterior, obtenemos que: $$c=cam + cbn = bram + aqbn = ab(rm+qn).$$

Esta igualdad justo nos dice que $ab\mid c$, como queríamos.

$\square$

Intenta encontrar un contraejemplo cuando no se cumple la hipótesis de que $a$ y $b$ son números primos relativos.

Más adelante…

Dejaremos el estudio del máximo común divisor hasta aquí por el momento. En la siguiente entrada hablaremos de un concepto muy cercano: el de mínimo común múltiplo. Así como en el caso de esta entrada, introduciremos la noción a partir de un contexto de ideales, para luego ver ejemplos y algunas propiedades clave.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Demuestra todas las consecuencias de ser primos relativos de la lista enunciada en la entrada.
  2. Prueba que dos enteros consecutivos siempre son primos relativos. Usa esto para demostrar que siempre que se eligen $51$ números distintos entre $1$ y $100$, forzosamente debes tener dos de ellos que sean primos relativos.
  3. Sea $m$ un entero positivo. Demuestra que $(a,b)=1$ si y sólo si $(a^m, b^m) =1.$
  4. De acuerdo a la entrada, al tomar dos números $a$ y $b$ podemos encontrar enteros $r$ y $s$ tales que $(a,b)=ra+sb$. Demuestra que siempre sucede que $(r,s)=1$.
  5. Encuentra el máximo común divisor de $91$ y $70$ e intenta escribirlo como combinación lineal entera de ellos.

Entradas relacionadas