Cálculo Diferencial e Integral I: Teorema del valor intermedio

Introducción

En la entrada anterior se hizo la revisión del concepto de continuidad así como sus propiedades y se vieron algunos ejemplos. Además, se definió la continuidad en un intervalo la cual usaremos en esta entrada para probar uno de los resultados más relevantes para la funciones continuas: El Teorema del valor intermedio.

Idea intuitiva

Este teorema nos dice que para una función continua en determinado intervalo $[a,b]$, si $f$ es negativa al evaluarla en $a$ y es positiva al evaluarla en $b$, entonces en algún momento debió haber sucedido que fuese cero. Recordemos la idea intuitiva de continuidad, una función es continua si puedes dibujarla sin soltar el lápiz; pensemos entonces que $f$ debe iniciar en un punto negativo en el eje vertical y terminar en un punto positivo del mismo eje. En la siguiente imagen se muestra una función continua que pasa por ambos.

¿Podrías dibujar una función continua que pase por ambos puntos sin pasar por $y=0$? Justamente la respuesta es no y lo probaremos en el siguiente teorema; pero antes desarrollemos la intuición de lo que debe suceder. Para ello, recordemos el último teorema revisado en la entrada anterior.

Teorema. Supongamos que $f$ es continua en $x_0$ y $f(x_0)>0$. Entonces $f(x) >0$ para todo x en un intervalo que contiene a $x_0$, es decir, existe $\delta > 0$ tal que $f(x) >0$ para todo $x$ tal que $|x-x_0|< \delta$.

De forma análoga, si $f(x_0) <0$, entonces existe $\delta > 0$ tal que $f(x) < 0$ para todo $x$ tal que $|x-x_0|< \delta$.

Es decir, si una función continua toma un valor positivo en un punto $x_0$, entonces debe suceder que fue positiva en todo un intervalo: $(x_0-\delta, x_0+\delta)$. Análogamente esto sucede en si la función es negativa en determinado punto. Así, podemos pensar en el intervalo más grande que captura el comportamiento negativo (o positivo), ¿en qué punto se termina? Para responder esta pregunta haremos uso de un concepto revisado anteriormente, el supremo.

Teorema del valor intermedio

Teorema. Sea $f:[a,b] \to \mathbb{R}$ continua en todo el intervalo $[a,b]$. Si sucede que $f(a) < 0$ y $f(b) > 0$, entonces existe $c$, $a<c<b$, tal que $f(c) = 0$.

Demostración.

Como $f(a) < 0$, sabemos que existe $\delta_1$ tal que para todo $x \in (a – \delta_1, a + \delta_1) \cap [a,b]$ se tiene que $f(x) < 0$. Es decir,

$$\forall x \in [a, a+\delta_1), \quad f(x) <0 \tag{1}$$

Como $f(b) > 0$, sabemos que existe $\delta_2$ tal que para todo $x \in (b – \delta_2, b + \delta_2) \cap [a,b]$ se tiene que $f(x) > 0$. Es decir,

$$\forall x \in (b-\delta_2,b], \quad f(x) > 0 \tag{2}$$

Definamos ahora el siguiente conjunto:

$$A = \{ t \in [a,b] \quad | \quad \forall x \in [a, t], f(x) < 0 \}$$


$A$ básicamente define el conjunto de radios de $a$, $[a,t]$ donde $f$ es negativa.

Veamos que $A \neq \varnothing$

Consideremos $t_0 = a + \frac{\delta_1}{2}$. Es inmediato que $a< a + \frac{\delta_1}{2} < a +\delta_1 $ y como $[a, a + \frac{\delta_1}{2}] \subset [a, a+\delta_1)$, por $(1)$ se tiene que, para todo $x \in [a, a + \frac{\delta_1}{2}]$, $f(x) < 0$.

$$\therefore t_0 \in A \Rightarrow A \neq \emptyset$$

Notemos que el conjunto $A$ está acotado debido a que por definición si $t \in A$, entonces $t \in [a,b]$, es decir, $t \leq b$. Ahora, como nuestro conjunto $A$ es no vacío y está acotado, sí tiene supremo. Sea $\alpha = supA$

Adicionalmente, notemos que

  1. $t_0 = a+\frac{\delta_1}{2} \in A$ y $a+\frac{\delta_1}{2} \leq \alpha \leq b$.
  2. Para todo $x \in (b-\delta_2, b]$ se tiene que $f(x) >0$, entonces $\alpha \leq b-\delta_2$.

Por lo anterior, se tiene
\begin{gather*}
& a< a+\frac{\delta_1}{2} \leq \alpha \leq b-\delta_2 < b \\
\Rightarrow & a<\alpha<b
\end{gather*}

Para finalizar con la prueba, demostraremos que $f(\alpha) = 0$

Para demostrarlo procederemos por contracción, es decir, supongamos que $f(\alpha) \neq 0$, entonces existen dos casos, $f(\alpha) > 0$ ó $f(\alpha) < 0$.

  • Caso 1. $f(\alpha) < 0$

    Se tiene que $f(\alpha) < 0$, entonces existe $\delta_3$ tal que para todo $x \in (\alpha – \delta_3, \alpha + \delta_3)$ se cumple que $f(x) < 0$.

    Dado que $\alpha = supA \quad$ y $\quad \alpha – \delta_3 < \alpha$, entonces existe $t \in A$ tal que $\alpha-\delta_3 < t \leq \alpha$. Adicionalmente, consideremos $s$ tal que $\alpha < s < \alpha + \delta_3$.

    Como $[t, s] \subset (\alpha – \delta_3, \alpha + \delta_3)$

    $$\Rightarrow \forall x \in [a,t], \quad f(x) < 0$$

    Además, para toda $x \in [a,t]$ se tiene $f(x) < 0$

    $$\Rightarrow \forall x \in [a,s] = [a,t] \cup [t,s], \quad f(x) < 0$$

    Entonces $s \in A$ y $\alpha < s$, lo cual es una contradicción

    $$\therefore f(\alpha) \geq 0$$
  • Caso 2. $f(\alpha) > 0$

    Dado que $f$ es continua en $\alpha$, entonces existe $\delta_4 > 0$ tal que para todo $x \in (\alpha – \delta_4, \alpha + \delta_4)$, $f(x) > 0$.

    Como $\alpha – \delta_4 < \alpha$, entonces existe $t \in A$ tal que $\alpha – \delta_4 < t \leq \alpha$. Como $t \in A$, entonces $f(t) < 0$ y como $\alpha – \delta_4<t \leq \alpha < \alpha + \delta$, $f(t) >0$, lo cual es una contradicción.

    Por tanto, $f(\alpha) = 0$.

Así, consideremos $c = \alpha$, $a<c<b$ y $f(c) = 0$

$\square$

Podemos notar que el teorema no solo vale cuando la función va de negativo a positivo, sino también en el caso inverso y lo probaremos en el siguiente corolario.

Corolario. Sea $f: [a, b] \to \mathbb{R}$, continua en $[a, b]$. Si $f(a) > 0$ y $f(b) < 0$, entonces existe $c$, $a<c<b$, tal que $f(x) = c$.

Demostración.

Consideremos la función $h: [a, b] \to \mathbb{R}$, $h(x) = -f(x)$

Notemos que $h$ es continua pues $f$ lo es. Además $h(a) = -f(a) <0$ y $h(b) = -f(b) >0$. Aplicando el teorema del valor intermedio, existe $c$ que cumple $a<c<b$ tal que

\begin{gather*}
& h(c) = 0 \\
\Rightarrow & -f(c) = 0 \\
\therefore & f(c) = 0
\end{gather*}

$\square$

Más aún, si la función inicia por debajo de un real $M$ y termina por arriba del mismo número, entonces también sucede que la función pasó por $M$.

Corolario. Sea $M \in \mathbb{R}$, si $f(a) < M$ y $f(b) > M$. Entonces existe $c$, $a<c<b$, tal que $f(c) = M$.

Demostración.

Consideremos la función $h:[a,b] \to \mathbb{R}$, con $h(x) = f(x)-M$.

Notemos que $h$ es continua. Además $h(a) = f(a)-M < 0$ y $h(b) = f(b)-M > 0$. Por el teorema del valor intermedio, existe $c$, $a<c<b$, tal que $h(c) = 0$. Entonces $f(c)-M = 0$.

$$\therefore f(c) = M$$

$\square$

Análogamente, tenemos el siguiente resultado.

Corolario. Sea $M \in \mathbb{R}$, si $f(a) >M$ y $f(b) < M$. Entonces existe $c$, $a<c<b$, tal que $f(c) = M$.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Sea $f$ continua en el intervalo $[0,1]$ a $\mathbb{R}$ y tal que $f(0) = f(1)$. Demostrar que existe un punto $c \in [0, \frac{1}{2}]$ tal que $f(c) = f(c + \frac{1}{2}).$
  2. Sea $M \in \mathbb{R}$, si $f(a) >M$ y $f(b) < M$. Prueba que existe $c$, $a<c<b$ tal que $f(c) = M.$
  3. Dado $f(x) = x^2 + 2x – 7$, demuestre que existe $c$ tal que $f(c) = 50.$
  4. Demuestra que la ecuación $2x^7= x-1$ tiene una solución en $[0,1].$
  5. Demuestra que todo polinomio de grado impar con coeficientes reales tiene al menos una raíz real.

Más adelante…

En la siguiente entrada demostraremos otra propiedad fuerte respecto a las funciones continuas: si una función es continua en un intervalo, entonces está acotada. Más aún, existe un valor $x_0$ en el intervalo tal que la función alcanza su máximo en dicho punto. De forma análoga, existe un punto en el que la función alcanza su mínimo.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.